
Copyright 1999 Bjoern Pedersen This program can be redistributed and/or modi-
fied under the terms of the LaTeX Project Public License Distributed from CTAN
archives in directory macros/latex/base/lppl.txt; either version 1 of the License,
or any later version.
This is heavily based on: textmerg.dtx (with options: ‘textmerg’)
Copyright (C) 1992,1994 Mike Piff, University of Sheffield, England

1 Intro
This package tries do deal with single character delimited table files. It was mainly
inspired and is heavily based on Mike Piff’s textmerg package.
Note for package writers: As this package is still under development, the interface
is not g guaranteed to be stable. Please consider this if you want to use this
package in your style files

2 Description
The \SetDel<charactertoken> set the character used as a delimiter in the input\SetDel
file. The default is ~. If the character does not have \catcode=12, you should
adjust this before setting it as in this example:

{\catcode‘\^^I=12
\SetDel^^I}

This would set del to the <tab>-character
The \Fields macor takes a list of control sequence, which will be assigned during\Fields
the read in process. Example:

\Fields{\Title\Forenames\Surname\Address\Grade}

After defining the \Fields, a file is read in with \DelimRead{File}{Template},\DelimRead
where File is the filename of the data file, and Template is the text, in which
occurences of the csnames in the \Fields-macro should be replaced by text from
the data file.
Code

2.1 Header
Announce the file.

1 〈∗delimtxt〉
2 \def\fileversion{1.02}
3 \def\filedate{1999/05/03}
4 \def\filename{delimtxt.dtx}
5 \def\Copyright{Copyright 1999 Bjoern Pedersen}
6 \NeedsTeXFormat{LaTeX2e}[1998/06/01]
7 \ProvidesPackage{delimtxt}[\filedate]
8 \typeout{Package ‘delimtxt´ <\filedate>.}
9 \typeout{\Copyright}

1

2.2 Utility macros
10 \def\glet{\global\let}
11

2.3 File Handling
This opens a file and reads it line by line into \InputBuffer.
12 \newread\DelimFile
13
14 \def\InputFile#1{%
15 \openin\DelimFile=#1
16 \ifeof\DelimFile
17 \errmessage{Empty Delim file}%
18 \closein\DelimFile
19 \long\def\MakeTemplate##1{%
20 \def\Template{}}%
21 \else\GetInput
22 \fi}

Adjust the catcode of the delimiter temporarily, and read one line of input.
23 \def\GetInput{{
24 \global\LF@false
25 \endlinechar=-1%
26 \expandafter\catcode\expandafter‘\the\Del=12
27 \global\read\DelimFile to\InputBuffer}}

Check, if there is anything left in the Input file. If not, stop Iterating. Empty
lines in the file are silently skipped.

28 \def\SeeIfEof{%
29 \let\NextLook\relax
30 \ifeof\DelimFile
31 \else
32 \ifx\InputBuffer\empty
33 \LookAgain
34 \fi
35 \fi
36 \NextLook}
37
38 \def\LookAgain{\GetInput
39 \let\NextLook\SeeIfEof}

\ifNonBlank
\AllowBlank

\DontAllowBlank

We can now prepare to read actual fields from the merge file. A conditional is
used to indicate whether or not the field we are about to read is allowed to be
blank. We also set up a mechanism for changing its value.
40 \newif\ifNonBlank \NonBlankfalse
41 \def\AllowBlank{\global\NonBlankfalse}
42 \def\DontAllowBlank{\global\NonBlanktrue}

2.4 Parsing the Input Buffer
This is the difficult part of the processing.

2

2.4.1 Helper macros and registers

We need some token registers to save the Input, the delimiter, and some of the
definitions for dynamic parameter lists
43 \newif\ifLF@
44 \def\mark{\relax}
45 \newtoks\InPutField
46 \newtoks\Del
47 \newtoks\StripT@k
48 \newtoks\NextFieldT@k

2.4.2 Strip mark helper

A helper macro to strip of a marker, we placed in the input stream. It is put in
\StripT@k and the actual definiton will take place on execution of \SetDel as we
need to know what the delimiter actually is.

49 \StripT@k={%
50 {%
51 \aftergroup\gdef%
52 \aftergroup\StripMark%
53 \aftergroup#\aftergroup1%
54 \expandafter\aftergroup\the\Del%
55 \aftergroup\mark%
56 }{\gdef\InputBuffer{#1}}}

2.4.3 Get the next Field value from the input stream

On execution of \SetDel this mess will define a macro
\GetNextInputField#1<expanded \del>#2\lineend. This will perform
somthing similar to the C language strtok function. This macro gets the
contents of the \InputBuffer plus an extra delimiter, a mark and a lineend
marker. On Exit \InputBuffer is reassigned with one less Field after stripping
of all markers. If nothing is left, a flag is set and \InputBuffer is set empty.
This flag is currently unused, but could be used for better error handling in case
of missing fields in the input.
57
58 \NextFieldT@k={%
59 {%begin of aftergroup group
60 \aftergroup\gdef%
61 \aftergroup\GetNextInputField%
62 \aftergroup#\aftergroup1%
63 \expandafter\aftergroup\the\Del%
64 \aftergroup#\aftergroup2%
65 \aftergroup\lineend}%end of aftergroup group
66 {%
67 \if\mark #2%
68 \global\LF@true%
69 \glet\InputBuffer=\empty%
70 \else%
71 \global\LF@false%
72 \StripMark#2%
73 \fi%

3

74 \InPutField={#1}%
75 \if!#1!% check if Field is empty (Ref: D.Carlise in comp.text.tex)
76 \ifNonBlank%
77 \MissingField%
78 \InPutField={???}%
79 \else%
80 \InPutField={#1}%
81 \fi%
82 \else
83 \relax
84 \fi%
85 }}

This macro sets the Delimiter. As this may be called at any time, we need to
redefine the macros \GetNextInputField and \StripMark. The definitions have
been stored in two token registers, so we have just to execute them. The trickery
with \aftergroup in the token list enables expansion of \the\Del in the macro
parameter list.
86 \def\SetDel#1{\global\Del={#1}%
87 \the\StripT@k%
88 \the\NextFieldT@k%
89 }
90 \SetDel|
91
92

2.5 Parsing the fields
Here we parse the inout fields as in the textmerg package, but getting values from
our new parser. Probably, the treatment of missing items is not very good(in fact
it is completly missing) We have to put a \mark and \lineend in the stream, do
detect the end of the input line.
93
94 \def\ReadIn#1{%
95 \expandafter\expandafter\expandafter%
96 \GetNextInputField%
97 \expandafter\InputBuffer\the\Del%
98 \mark\lineend%
99 \global\edef#1{\the\InPutField}%

100 }

This is not used yet.
101 \def\MissingField{%
102 \message{Missing field in file}}

Here begins the field parsing, as in the textmerg-package.
103
104 \newtoks\GlobalFields
105 %
106 \def\Fields#1{\GlobalFields{#1}}
107 %
108 \def\ParseFields#1{%
109 \ifx#1\EndParseFields%
110 \let\NextParse\relax%

4

111 \ifLF@%
112 \message{ Line was OK}%
113 \else%
114 {\message{ There were more items than fields on line
115 \the\Iteratecounter. They will be skipped.}
116 \glet\InputBuffer=\empty}%
117 \fi%
118 \else%
119 \let\NextParse\ParseFields%
120 \ifx#1+\DontAllowBlank%
121 \else%
122 \ifx#1-\AllowBlank%
123 \else\ReadIn#1%
124 \fi%
125 \fi%
126 \fi\NextParse}%
127
128 \let\EndParseFields\ParseFields%

129 \def\ReadFields#1{
130 \ifeof\DelimFile%
131 \else%
132 \expandafter\ParseFields%
133 \the#1\EndParseFields%
134 \fi}%

2.6 The iteration code
135 \long\def\DelimRead#1#2{\begingroup%
136 \InputFile{#1}%
137 \def\Fields##1{%
138 \ParseFields##1\EndParseFields}%
139 \MakeTemplate{#2}\Iterate}%

140 \long\def\MakeTemplate#1{\def\Template{#1}}

141 \countdef\Iteratecounter=1%
142

143 \Iteratecounter=0
144 \def\Iterate{%
145 \global\advance\Iteratecounter by1%
146 \ReadFields\GlobalFields%
147 \Template%
148 \SeeIfEof%
149 \ifeof\DelimFile%
150 \def\NextIteration{%
151 \endgroup\closein\DelimFile}%
152 \else%
153 \let\NextIteration\Iterate%
154 \fi%
155 \NextIteration}
156 \endinput

</delimtxt>

3

5

