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Abstract

The numerica package defines a command \nmcEvaluate (short-name form
\eval) to wrap around mathematical expressions in the LaTeX form in which
they are typeset and numerically evaluate them. For programs (like IyX) with
a preview facility, or for compile-as-you-go systems, interactive back-of-envelope
calculations and numerical exploration are possible within the document being
worked on.



This document applies to version 3.0.0 of numerica.

numerica requires a BWTEX 2¢ system from October 2020 or later (when
xparse became available in WTEX 2¢ systems).

The package requires amsmath and mathtools, is compatible with the
mleftright and xfrac packages, and ‘knows about’ some symbols from
amssymb.

I refer many times in this document to Handbook of Mathematical Func-
tions, edited by Milton Abramowitz and Irene A. Stegun, Dover, 1965,
abbreviated to HMF, and often followed by a number like 1.2.3 to locate
the actual expression referenced.

Version 3.0.0 of numerica

— dispenses with a configuration file (numerica.cfg) but adds three
package options:
* comma sets the comma as the decimal point; items in the vari-
able=value list must then be separated by semicolons;
x rounding=n sets the default rounding value to the integer n;
* approx replaces the default = between formula and result in dis-
plays with \approx (=);
— enables outputting results as (approximate) fractions with integer
numerators and denominators in both slash and \frac forms;

— allows use of ITEX braces for delimiting arguments to functions like
\sin and \cos to handle complicated arguments in (e.g.) Fourier
series; the previous ()=0, 1, 2 setting for this is removed;

— enables multiple formulas to be evaluated within the one \eval com-
mand; and

— provides enhanced treatment of mathematical environments for the
presentation of results, especially for such multiple evaluations, with
the env key in the settings option (which makes the * key obsolete);

— defines a \degree command and uses it as an alternative to the o
setting for specifying angles in degrees;

— allows nested commands to be evaluated to a specified rounding value
(rather than insisting that they be evaluated to maximum precision);

— accepts the use of spaces to group blocks of digits in numbers in the
variable=value list and formula (with the setting 1s2=1);

— resolves the ‘leading space’ issue with the \macros command when a
user-defined macro begins with an expandable token;

— continues . ..



e Version 3.0.0 of numerica (continued)

reworks (again!) the \reuse command to simplify its use, and

removes the reuse setting of \eval (not the command); now only the
numerical result is saved, either as a decimal or in scientific notation
or in fraction form (but without math delimiters or variable=value
list);

adds the WTEX form of a result to the debug display (dbg=11);

adds warnings with line numbers to the IXTEX log file for numerica
errors (which continue to be displayed in the pdf);

accepts the use of a-, ar- or arc- prefixes for the inverses of all
six hyperbolic functions so that, for instance, \asinh, \arsinh,
and \arcsinh, displaying as asinh, arsinh and arcsinh, can be used
(rather than only \asinh as before);

accepts the \sfrac command from the xfrac package, producing
elegant slash fractions like 355/113;

accepts commands of the mleftright package;
accepts \mkern and \mskip commands in formulas;

defines the commands \comma and \equals (expanding to , and =)
for use in the settings option, as distinct from the ‘bare’ marks used
in formulas;

fixes bugs that could occur: (i) when raising an n-th root to a power;
(ii) when using a dot with \left, \right; and (iii) when using a
non-integer in the first argument of \binom;

amends and adds to documentation.
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Chapter 1

Introduction

numerica is a ITEX package offering the ability to numerically evaluate math-
ematical expressions in the KTEX form in which they are typeset.

There are a number of packages which can do calculations in I¥TEX,! but
those I am aware of all require the mathematical expressions they operate on
to be changed to an appropriate syntax. Of these packages xfp comes closest
to my objective with numerica. For instance, given a formula

\frac{\sin (3.5)}{2} + 2\cdot 10°{-3}

(in a math environment), this can be evaluated using xfp by transforming the
expression to sin(3.5)/2 + 2e-3 and wrapping this in the command \fpeval.
In numerica you don’t need to transform the formula, just wrap it in an \eval
command:

\eval{ \frac{\sin (3.5)}{2} + 2\cdot 10°{-3} }.

(For the actual calculation see §1.1.3.)

numerica, like xfp and a number of other packages, uses 13fp (the IXTEX3
floating point module in 13kernel and since February 2020 available in IATEX 2¢
distributions) as its calculational engine. The main command of the package,
\nmcEvaluate, short-name form \eval, in many ways acts as a pre-processor to
13fp, converting mathematical expressions written in the KITEX form in which
they will be typeset into an ‘fp-ified’ form that is digestible by 13fp. The aim
is for the command to act as a wrapper around KTEX formulas, processing
them into a form that is digestible by 13fp and allows compilation to pdf to
take place. Ideally, one should not have to make any adjustment to a formula,

LA simple search finds the venerable calc in the IATEX base, calculator (including an
associated calculus package), fltpoint, fp (fized rather than floating point), spreadtab
(using either £p or 13fp as its calculational engine) if you want simple spreadsheeting with
your calculations, the elaborate xint, pst-calculate (a limited interface to 13fp), 13fp in the
IATEX3 kernel, and xfp, the IATEX3 interface to 13fp. Other packages include a calculational
element but are restricted in their scope. (longdivision for instance is elegant, but limited
only to long division.)



although any text on Fourier series suggests that hope in full generality is delu-
sional. Surprisingly often however it is possible. We shall see shortly that even
complicated formulas like
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can be evaluated ‘as is’ (see below, §1.1.6.3). There is no need to shift the
position of the superscript 2 on the sines, no need to parenthesize the arguments
of \sin and \cos, no need to insert asterisks to indicate multiplication, no need
to change the \frac and \tfrac-s to slashes, /, and in the second expression
no need to delete the \1left and \right that qualify the big parentheses (in the
underlying BTEX). Of course, if there are variables in an expression, as in these
examples, they will need to be assigned values; that is unavoidable. And how
the result of the evaluation is displayed also requires specifying, but the aim is
always: to evaluate mathematical expressions in IXTEX with as little adjustment
as possible to the form in which they are typeset.

numerica is written in expl3, the programming language of the IXTEX3
project, now incorporated into the IZTEX kernel. It uses the IXTEX3 module
13fp (since early 2020 part of a standard ITEX 2¢ distribution) as its calcula-
tional engine. This enables floating point operations to 16 significant figures,
with exponents ranging between —10000 and +10000. Many functions and op-
erations are built into 13fp — arithmetic operations, trigonometric, exponential
and logarithm functions, factorials, absolute value, max and min. Others have
been constructed for numerica from 13fp ingredients — binomial coefficients,
hyperbolic functions, sums and products — but to the user there should be no
discernible difference.

Associated packages provide for additional operations: iteration of functions,
finding zeros of functions, recurrence relations, mathematical table building.

1.1 How to use numerica

The package is invoked in the usual way: put
\usepackage [<options>] {numerica}

in the IXTEX preamble. numerica requires the amsmath and mathtools pack-
ages and loads these automatically. numerica will also accept use of some
relation symbols from the amssymb package (see §2.3.5), all commands from
the mleftright package, and the \sfrac command from xfrac (part of the
13packages bundle), provided these last three packages have been loaded by
the user.



1.1.1 Package options

Version 2 of numerica had no package options. The options available in version
1 that gave access to commands for iteration, finding zeros, math-table making,
etc., were discontinued. That functionality became available in associated but
separate ITEX packages (see below §1.1.1.2). With version 3.0.0 some package
options have been added and the possible use of a configuration file dispensed
with. The current options available with version 3.0.0 are:

o comma If present, a decimal point is denoted by a comma (more exactly, an
unspaced comma). If absent, a decimal point is denoted by a dot (period,
full stop, also unspaced). The choice — comma present, comma absent — has
consequences for the item separator in the variable=value list and n-ary
functions (see §1.1.2), and the item separator in the main argument of the
\eval, \macros and \constants commands; see below §1.1.2.

— ‘Out of the box’ the comma option is not used and the decimal point
is a dot.

e rounding=<integer> The rounding value. The value of <integer> deter-
mines how many digits after the decimal point are displayed in numerical
results (see §2.3.1). ‘Out of the box’ the value is set to 6.

o approx sets the default relation linking formula and result in displays from
= to \approx (displaying as ~). (The eq setting (§5.3.2.2) is available to
change the relation for individual calculations.)

Thus a possible invocation of numerica might be
\usepackage [comma,rounding=4,approx] {numerica}

meaning that the decimal point is an unspaced comma, the default rounding
value is 4, and \approx is inserted between formula and numerical result in
(some) displays. Alternatively,

\usepackage{numerica}

means the decimal point is an unspaced dot, the rounding value is 6, and the
display of (some) results is in the form formula=result. This is how numerica
is invoked for the present document.

1.1.1.1 numerica.cfg

Previous versions of numerica supported use of a configuration file for setting
various default values. With version 3.0.0, this has been dispensed with. Now,
numerica supports (currently) the three package options mentioned. On review,
most of the .cfg settings did not feel like ones that realistically qualified as
package-level settings. For calculation-level default values, see Chapter 5.



1.1.1.2 Associated packages

Currently there are two of these, numerica-plus and numerica-tables. They
are loaded with the familiar \usepackage command in the document preamble
and require numerica to be loaded. This is different from version 2 where calling
numerica-plus or numerica-tables automatically loaded numerica. I think
it is clearer to do this in two explicit steps. Neither package will function without
numerica loaded. Thus putting

\usepackage [<options>] {numerica}
\usepackage{numerica-plus}

in the preamble of your document gives access to the commands \nmcIterate,
\nmcSolve, and \nmcRecur of numerica-plus and of course also to the com-
mands in numerica. \nmcIterate enables the iteration of functions of a single
variable, including finding fixed points and, by means of Newton-Raphson it-
eration, finding zeros. \nmcSolve enables the solving of equations of the form
f(z) =0 (i.e. finding zeros) by bisection, or the finding of local maxima or min-
ima of a function of one variable. \nmcRecur enables the calculation of terms in
recurrence relations, like the terms of the Fibonacci series, or othogonal poly-
nomials defined recurrently. In all three cases, see the associated document
numerica-plus.pdf for details.
If you enter

\usepackage [<options>] {numerica}
\usepackage{numerica-tables}

in the preamble of your document you gain access to the command \nmcTabulate,
which enables the creation of (possibly multi-column) tables of function values
and makes available most of the table formats used in HMF (and also to the
commands in numerica). See the associated document numerica-tables.pdf
for details.

1.1.2 Decimal point and item separators

From version 3.0.0 of numerica the trio of marks .,; have different functions
depending as the package is called without or with the comma option. Without
the comma option, the decimal point is a dot (period, full stop) and the vari-
able=value list (§2.2) is punctuated with commas. There is no ambiguity in a
list like [g=9.81,u=1,t=0.5] nor in the arguments of n-ary functions (§3.5) like
\max, \min, \gcd, e.g. \gcd (63,231), although the presence of such functions in
the vv-list needs protective braces, e.g. [x={\min(\pi,e,\phi,\gamma)},y=2].

But if the decimal point is a comma, then its use as a separator in these lists
is problematic. For that reason, with the comma package option, numerica uses
a semicolon to punctuate the variable=value list and the argument lists of n-ary
functions: [g=9,81;u=1;t=0,5], \max(6,1;2e;\gamma\pi~2). This is in line
with ISO 80000 Part 2, section 3 which reads: ‘A comma, semicolon or other
appropriate symbol can be used as a separator between numbers or expressions.
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The comma is generally preferred, except when numbers with a decimal comma
are used.” However, rather than the gently permissive language of the standard,
numerica insists on semicolons for separating items when the comma package
option is used.

In summary, the trio of punctuation marks .,; are used in numerica like
this: when the comma package option is not used, the marks function as

e . = decimal point

— also BTEX dot signifying ‘no delimiter’ when used with \1eft, \right
ete.

e , = item separator in the variable=value list

— also argument separator in n-ary functions (\max, \min, \gcd)
— also formula separator in the main argument of \nmcEvaluate for
multi-formula calculations
or, when the comma package option is used, as
e . = BTEX dot signifying ‘no delimiter’ when used with \left, \right etc.
e , = decimal point
e ; = item separator in the variable=value list

— also argument separator in n-ary functions (\max, \min, \gcd),

— also formula separator in the main argument of \nmcEvaluate for
multi-formula calculations

Note, in both cases, that if a formula involves an n-ary function (at present
only \max, \min, or \gcd) then it’s argument will need to be hidden in braces to
avoid being interpreted as containing multi-formula separators. Alternatively
(and better) there is a setting that allows a different character to be used as the
multi-formula separator for a calculation, e.g. £f=] ; see §1.1.5 and §5.2.3.

1.1.3 Basic procedure
A simple example of how numerica is used is provided by the document

\documentclass{article}
\usepackage{numerica}
\begin{document}

\eval{$ mc~2 $}[m=70,c=299792458] [8x]
\end{document}

There is a formula, mc~2, between math delimiters: $ $. A command \eval{ }
is wrapped around these, and two square-bracketed optional arguments have
been appended. In the first option numerical values are assigned to the quan-
tities m and c occurring in the formula. The assignments are separated by a

11



comma since the dot is being used as the decimal point in this document. The
second option contains a cryptic specification of the format of the numerical
result — to 8 places of decimals, and in (proper) scientific notation — the x.
Running pdflatex on this document generates a pdf displaying

me? = 6.29128625 x 1018, (m = 70, ¢ = 299792458)

where the formula (mc?) is equated to the numerical value resulting from substi-
tuting the given values of m and c¢. Those values are displayed in a list following
the result. As specified, the result of the calculation is presented to 8 decimal
places in scientific notation. (According to Einstein’s famous equation E = mc?
this is the enormous energy content, in joules, of what was once considered an
average adult Caucasian male.)?

A second example is provided by the formula in earlier remarks:

\documentclass{article}

\usepackage{numerica}

\begin{document}

\begin{quote}

First, evaluate the expression when it sits between
textstyle delimiters,

\eval{\( \frac{\sin(3.5)}{2} + 2\cdot 10°{-3} \)},
and then, second, when it sits between
displaystyle delimiters:

\eval{\[ \frac{\sin(3.5)}{2} + 2\cdot 107°{-3} \1}
\end{quote}

\end{document}

Running pdflatex on this document produces the result:

First, evaluate the expression when it sits between textstyle delim-
iters, w +2-1072 = —0.173392, and then, second, when it sits
between displaystyle delimiters:

in(3.5
% £2.1073 = —0.173392

(For a quick mental check of the result, note that sin(3.5) ~ —0.35.) The \eval
command used in these examples is the main command of the numerica package

and is discussed fully in the next two chapters, but I first discuss different ways
to display the results of calculations.

2In earlier versions of numerica this calculation evaluated incorrectly because spaces were
used to make ¢=299792458 more ‘eye friendly’. Although numbers with spaces can now be
read by numerica, this ability needs to be turned on by the user. ‘Out of the box’ it is off;
see §2.1.2.

12



1.1.4 Display of the result
In what follows I shall write things like (but generally more complicated than)
$ \eval{ 1+1 } $ =2

to mean: run pdflatex on a document containing $ \eval{ 1+1 } $ in the
document body to generate a pdf containing the calculated result — 2 in this
instance, as indicated by the arrow. The reader will note that I have used dollar
signs to delimit the math environment. I could (and perhaps should) have used
the more XTEX-pure \ ( \), but habit has won out.

In the example the \eval command is used within a math environment
(delimited by the dollar signs).

e When the \eval command is used within a math environment, only the
numerical result, followed possibly by the variable=value list, is displayed
(within the given math environment).

For the variable=value list see the mc? example earlier where values were as-

signed to m and c¢ in a trailing optional argument; this is discussed more fully
in §2.2. As a simple example, I repeat the previous addition with variables x
and y:

$ \eval{ x+y }[x=1,y=1] $ = 2

(If the package option comma were being used, setting the comma as the decimal
point, then the example would look like $ \eval{ x+y }[x=1;y=1] $ with a
semicolon separating the variable assignments.)

To my eye, display of the variable=value list in this example looks silly. It
needs context, some prior commentary or statement of the formula like

$ x+y=\eval{ x+y }[x=1,y=1] $§ = o +y =2

Otherwise display of the variable=value list can be suppressed, most simply by
appending a star (asterisk) to the \eval command; see §2.2.4.2 or later in this
section. Environments may include the standard TEX inline ($ $ or \( \) or
math) environments, the displaymath, \[ \] and equation environments, the
egnarray environment, as well as the AMS environments which come into their
own when multi-formula calculations are performed, or when long formulas with
many variables are involved (multline). Examples will recur throughout this
document.

\eval is not limited to use within a math environment. As we have already
seen with the mc? example, it can also wrap around math delimiters:

\eval{$ x+y $}[x=1,y=1] = 2 +y=2, (z=1,y=1)

When it does, the display that results is different, as you can see. The formula
is automatically included in the display; it does not need to be written in ‘by
hand’ as I did in the previous example.

13



¢ When the \eval command is wrapped around a math environment, the re-
sult is displayed within that environment in the form, formula=numerical
result, followed possibly by the variable=value list.

— If the formula is long or contains many variables then it may be de-
sirable to split the display over two lines; see the multline* example
below, and §2.2.4.1.

e An alternative to explicitly wrapping \eval around math delimiters is to
use the settings option, an optional argument before the main (mandatory)
argument, and enter env=<environment> there, for example like this:

\eval[env=$]{x+y}[x=1,y=1] = z+y=2, (z=1,y=1)

which reproduces the previous display. Doing this is more convenient when more
‘verbose’ environment names than the brief $ $, \( \) or \[ \] are used (al-
though you can write, say, \eval{\begin{multline*}...\end{multlinex*}}
if so inclined). Here is an example of a multline* environment being used to
‘tame’ the display of a long unwieldy formula (the phantom is there so that the
hanging + sign spaces correctly):

\eval [env=multlinex]
{ 1+2+3+4+5+6+7+8+9+10+\phantom{0}\\
11+12+13+14+15+16+17+18+19 }

=

14+24+3+4+54+64+74+8+9+10+
11+12+13+14+15+ 16+ 17+ 18 +19 = 190

Note how the phantom and the new line command \\ are swallowed by \eval
without complaint.

o It is also possible to dispense with math delimiters entirely, neither wrapped
within the \eval command nor wrapped around it nor invoked with the
env setting, in which case numerica displays the numerical result between
$ delimiters.

This is different from the behaviour in earlier versions of numerica when no
math delimiters were involved. Then, \[ \] delimiters were wrapped around
the numerical result, possibly followed by the variable=value list. Now only the
numerical result is displayed and, since the absence of the variable=value list
means no mathematical constructs like \frac-tions are present, inline delimiters
seem more appropriate than the previously used \[ \].

\begin{quote}
The result of subtracting $e~\pi$ from $\pi~e$ is
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\eval{ \pi~“e-e~\pi }
which is negative; hence $e~\pi>\pi~e$.
\end{quote}

is an example of \eval used in the absence of delimiters and produces the result:

The result of subtracting e™ from ¢ is —0.681535 which is negative;
hence e™ > 7°.

Note that the minus sign displays correctly because of the $ delimiters auto-
matically inserted by numerica.

o What is displayed can be pared to the minimum by appending an asterisk
to the \eval command. Then, only the numerical result is displayed, with
no math delimters added; if \eval* is used within a math environment,
the numerical result will be displayed accordingly, but otherwise the result
will be displayed as text, a negative sign displaying as a hyphen.

Compare \eval*{ \pi“e-e"\pi } = -0.681535 with the previous example.
In the present example only the numerical result is displayed — as text, with
a hyphen depicting the minus sign. It is up to you, the user, to provide the
surrounding math environment if you want a proper minus.

1.1.4.1 Punctuation: the p setting

To complete a display you may wish to add a punctuation mark — usually a
comma or full stop — after the displayed expression. For inline use punctuation
is easy: add the punctuation mark after the \eval command and its arguments:
\eval{$ 2\pi $}, = 27 = 6.283185, and $\eval{ 1+x+y }[x=2,y=318$.
=—> 6. The mark appears in the right place.

For displaystyle environments punctuation is not so straightforward. When
\eval is used within a displaystyle environment, say between \[ \] delimiters,
it is easy to add a comma or full stop after the \eval command and its ar-
guments but before the closing delimiter, \[ x+1=\eval{ x+1 }[x=11,\] and
the punctuation mark will appear in the right place. But when the \eval com-
mand wraps around \[ \] delimiters or the env=\[ option is used, a problem
arises: a fullstop or comma after the \eval command and its arguments —
\eval{\[ 1+1 \1}. — lies beyond the closing delimiter and will slide off to the
start of the next line, after the displayed result. We want it to display as if it
were the last element before the closing delimiter.

Explicitly putting it there, like \eval{\[ 1+1.\]}, means the punctuation
mark becomes part of the formula. Potentially numerica then needs to check
not just for a fullstop but also other punctuation marks like comma, semicolon,
perhaps even exclamation and question marks. All these marks have roles in
mathematics or 13fp or numerica, and the program responds to them accord-
ingly. For instance a full stop is also the decimal point mark and is treated
as such (giving the rather cryptic result \eval{$ . $} — . = 0 since the
solitary dot is interpreted as the number 0.0). An exclamation mark is the
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factorial sign; numerica recognizes it as such: \eval{$ 4! $} — 4! =24. A
comma is used to separate the arguments of n-ary functions like \max and \min:
$\eval{\min(\pi,e,\phi,\gamma)}$ — 0.577216. And as we will see below,
a semicolon is used by numerica to separate expressions in a multi-formula cal-
culation. Distinguishing the punctuation role from the mathematical role of
these marks would only complicate the code and slow evaluation.

Instead, numerica uses a key in the settings option to add punctuation. As
already noted, the settings option is an optional argument preceding the main
argument, already met in relation to the env-ironment key. A second setting is
the punctuation key p. Indeed, simply entering p, as here,

\eval [p]{\[ 1l+x+y+z+xy+yz+zx+xyz \]}[x=2,y=3,z=4]

Ltaty+ztay+yz+omtays =60, (v=2y=32=4),

puts a comma in the correct place, after the closing parenthesis of the vari-
able=value list. If a full stop is wanted use p=.:

\evall[env=\[,p=.1{ (1+x) (1+y) (1+z) }[x=2,y=3,z=4]

—
(I4+x)(14+y)(1+2) =60, (x=2,y=3,z=4).

Again the mark appears in the right place. As you can see, the settings option
is a comma-separated list of key=value pairs. This remains true of the settings
option even when the comma package option is used, since the only numbers
appearing in the settings are integers — ambiguity does not arise. That entering
p alone sufficed is because the punctuation key p defaults to a comma. If you
want some other mark — a semicolon or exclamation mark perhaps — equate p
to that mark in the optional argument. The default value for p does not change
if the comma package option is used.

The comma is chosen as the default not only because it is a commonly used mark
at the end of equations but because the settings option is a comma-separated
list. By making the default the comma, it suffices to write p when you want
a comma — rather than the more awkward p={,} which would otherwise be
required.

1.1.5 Multi-formula calculations

It is possible to evaluate more than one expression at a time in the one \eval
command by means of a further setting £f, or ff=<char>. The default separator
of one formula from the next is the same as that used in the variable=value list.
If the decimal point is a dot, then the default separator is a comma; if the
decimal point is a comma (with the comma package option) then the default
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separator is a semicolon. In both cases this will generally be fine except when
n-ary functions are involved since their arguments are delimited in the same
way. Either one can wrap the arguments of these functions in braces or, better,
choose a different separator by means of the setting ff=<char>. I give an
example shortly below; also see §5.2.3. For this document the decimal point is
a dot and the comma generally suffices.

Suppose we want the values of the main trigonometric functions at, say, 7 /6.
In the example, I have entered the functions separated by commas, assigned the
value /6 to the variable x in the trailing optional argument and concluded the
display with a full stop by means of the p=. setting. The point to note is the
ff in the settings option, signalling a multi-formula calculation:

\eval [ff,p=.]1{\[ \sin x, \cos x, \tan x \]1}[x=\pi/6]

sinx = 0.5, (x =m/6)
cosz = 0.866025, (x = m/6)
tanx = 0.57735, (x =7/6).
To understand these values we might add

\eval[ff,p=.1{\[ \surd3/2, 1/\surd3 \1} =
V/3/2 = 0.866025

1/y/3 = 0.57735.

The displays in both instances follow the default format for a multi-formula
calculation in the equation#* (\[) environment.

There are irritants: the failure of the equals signs to line up, the repetition of
the variable=value list, the different numbers of digits displayed in the answers
and, if you are a ‘punctuator’, you might like commas to terminate the inter-
mediate rows. For back-of-envelope calculations, who cares? But for inclusion
in more formal documents such things matter. All can be remedied: see §2.3.2
(and below) about padding numbers with zeros to a given number of decimal
places; see §5.3.2 about use of AMS environments to guarantee alignment; see
§5.3.2.6 about suppressing repetition of the variable=value list. Punctuating
the intermediate rows I discuss next.

1.1.5.1 Punctuation: the pp

Like the p setting, there is a pp setting also entered in the settings argument
of the \eval command that enables the insertion of punctuation at the end of
intermediate results in a multi-formula calculation; the p setting still determines
the terminating punctuation mark. Like p, pp defaults to a comma, which means
that you need enter only pp to insert commas. This remains true if the comma
package option is used. For any other mark you need to equate pp to that
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mark — e.g. pp=;. Thus, repeating the first of the examples above, I've added
pp to the settings option, and also added a star (asterisk) in a second trailing
argument on the right. This triggers padding the numerical result with zeros,
should it not display the default six decimal places — as happens with both sin x
and tan z (because they round to five or fewer figures).

\evallff,pp,p=-1{\[ \sin x, \cos x, \tan x \]1}[x=\pi/6] [*]

=
sin z = 0.500000, (x =m/6),

cosx = 0.866025, (x = 7/6),
tanx = 0.577350, (x =m/6).

The display is improved: commas terminate intermediate rows, a full stop is at
the end, and by padding with zeros, all three results display six decimal places
and now align vertically.

1.1.5.2 Multi-formula separator: the ff setting

That the last example displays as desired depends on all three results being
positive. If x = 57/6, cosz and tanz will be negative and minus signs will
destroy the alignment. The secret then is to use an alignat* environment.
Also, just to show how it’s done, I’ve changed the multi-formula separator with
the setting £f=|. (Even if a formula contained an absolute value it should not
contain the | character but rather \abs or \lvert, \rvert; see §3.6.)

\eval [pp,p=.,env=alignat*,ff=|]
{\[ \sin x | \cos x | \tan x \]}[x=5\pi/6] [*]

sinz = 0.500000, (x = 57/6),
cosz = —0.866025, (z = 57/6),
tanx = —0.577350, (x = 51/6).

Padding wit zeros and the alignat* environment have ensured alignment of
the numerical results.

Multi-formula calculations can also be performed in an inline context. In
the following example, the p setting has been dispensed with since a full stop
can be inserted at the end ‘by hand’ without problem. Again, just to show how,
I have used the ff=<char> setting (although & is a confusing character to use
for anyone familiar with TEX):

$\eval[pp,ff=&1{ \pi & \pi/2 & 1/\pi & \surd\pi }$ —
3.141593, 1.570796, 0.31831, 1.772454.
By default, a quad of space is inserted between results of a multi-formula cal-
culation in an inline ($ $, \( \) or math) context, as evident here. This can

be changed by means of the sep (for separator) setting (§5.3.2.4). For more on
environments and their tweaks, see §5.3.2.
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1.1.6 Examples of use

To give a sense of how numerica can be used, I include some examples of ac-
tual use of the program. (The numerica-plus and numerica-tables packages
contain others.)

1.1.6.1 Checking

Occasionally, just to reassure myself that age hasn’t completely rotted my brain
I like to tackle short mathematical problems I come across on the internet. One

that caught my attention was to simplify 1/220 — 30v/35. After some bumbling
and fumbling, T let

z=1/220 —30V35,  y=1/220+ 30V/35,

(which seems an obvious thing to do) so that

xy = 10v/484 — 315 = 10v/169 = 10v'132 = 130.

Since 22 + y? = 440 it was easy to form both (z + y)? and (z — y)?, and by
separating the resulting numbers into their prime factors, to find y+x and y —x
and work out that 2 = 5v/7 — 3v/5. Was I right, or had I made a mistake? Since

\eval [p,pp,f£1{\ [\sqrt{220-30\sqrt{35}},
B5\sqrt{7}-3\sqrt{5}\1}

220 — 30V 35 = 6.520553,

5V7 — 3v/5 = 6.520553.
the simplification was correct. Indeed y = 5v/7 + 3/5:

\eval[p=.,pp,ff]1{\ [\sqrt{220+30\sqrt{35}},
5\sqrt{7}+3\sqrt{5}\1}

220 + 30v/35 = 19.93696,

5V7 + 3v/5 = 19.93696.
As a final flourish,

\eval{$xy$} [x=5\sqrt{7}-3\sqrt{5},
y=b\sqrt{7}+3\sqrt{53}]

— zy = 130, (z=5V7—3V5,y =57+ 3V5).
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1.1.6.2 Exploring

When working on numerica’s predecessor package, I constantly tested it against
known results to check for coding errors. One test was to ensure that

=)

did indeed converge to the number e as n increased. Let’s do that here. Try
first n = 10:

\eval{$ e-(1+1/n)"n $}[n=10] [x] =
e— (1+1/n)" = 1.245394 x 10~1, (n = 10).

(The default number of decimal places displayed is 6.) The difference between
e and (1+1/n)" is about an eighth (0.125) when n = 10, which is encouraging
but hardly decisive. The obvious thing to do is increase the value of n. I’ll use
an align* environment to ‘prettify’ the presentation of the results. Although
looking like a solid block of typing, most of the following was done by copy-and-
paste; I only had to change the exponent on the 10:

\begin{alignx*}
e-(1+1/n)"{n} &= \eval{e-(1+1/n) "n}[n=1\times107°5] [*x],\\
e-(1+1/n)"{n} &= \eval{e-(1+1/n) "n}[n=1\times1076] [*x],\\
e-(1+1/n)"{n} &= \eval{e-(1+1/n) n}[n=1\times10°7] [*x],\\
e-(1+1/n)"{n} &= \eval{e-(1+1/n) n}[n=1\times1078] [*x].
\end{alignx}

This gave the result
e—(1+1/n)" =1.359128 x 107,
e— (14 1/n)" =1.359140 x 10~°,
e—(14+1/n)" =1.359141 x 1077,
e—(14+1/n)" =1.359141 x 1078,

n=1x10%),
n=1x10%),
n=1x107),
n=1x10%).

P

Clearly (14 1/n)™ converges to e, the difference between them being of order
1/n, but that is not what catches the eye. There is an unanticipated regularity
here. 1.359147 Double the number: \eval{2\times 1.35914}[5] = 2.71828
which looked like e to me and suggested a relationship, namely,

1 n
hmn(e—(l—&—)):%e.
n—oo n

I hadn’t seen this before. Is it true? Since
ln(1+1) —nln(1+1>7
n n
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it followed from the familiar expansion of the logarithm that

(14 1\" 1 11 +1 1
n -] =n|l-——-—==+-——...
n n  2n? 3nd
1 21 21
=1l—-—(1l-=—4+-—=—.
2n < 3n *3 n? >
Write E,, for the bracketed series on the right. FE, is an alternating series

and the magnitudes of the terms of the series tend to 0 monotonically. Hence
1>E,>1-2/3nand E,, — 1 as n — co. Now exponentiate:

1 n
n

n <e - <1 + ;>n> - ne(l - e*En/Q").

The proposed limit, new to me, now followed from the standard inequality (see
HMF 2.3.32), z/(142) <1—e " <z when 2 > —1.

so that

1.1.6.3 Reassuring

In the course of some hobbyist investigations in plane hyperbolic geometry I
derived the formula

By( ) " (1— 4sin? )sin%wsian_lw
1m,n :COSZTF— — 48In %ﬂ' T 2 m
2sin” 22w
for m = 2,3,... and integral n > 2m + 1. A key concern was: when is ®;

positive? ®; itself was opaque; could I work it into an equivalent but more
enlightening form? After an embarrassingly laborious struggle, I derived the
expression

s 2m—3

m—3
Sin N

T Sin Wﬂ',

1 — 4sin? 3T
2(m.m) = ( 2sin? T >
in which the conditions for positivity were now clear: with n > 2m + 1, so that
mn/3n < 7/6, the first parenthesized factor is always positive; the second is
positive for m > 2, and the third is positive for m > 4. All well and good, but
given the struggle to derive ®5, was I confident that ®; and ®, really are equal?
It felt all too likely that I had made a mistake.

The simplest way to check was to see if the two expressions gave the same
numerical answers for a number of m, n values. First I checked for m = 2,n = 5:
I wrote \eval{\[ \]1}[m=2,n=5] twice and between the delimiters pasted the
already composed expressions for ®; and @5, namely:
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\eval{\[
\cos\tfrac{mMHn}\pi-(1-4\sin~ {2} \tfrac{m}{3n}\pi)
\frac{\sin\tfrac{1}{n}\pi\sin\tfrac{m-1}{n}\pi}
{2\sin~{2}\tfrac{m}{3n}\pi}

\]1} [m=2,n=5]
\eval{\[ \left(
\frac{1-4\sin"{2}\tfrac{m}{3n}\pi}
{2\sin" {2\ tfrac{m}{3n}\pi}
\right)
\sin\tfrac{2m-3}{3n}\pi\sin\tfrac{m-3}{3n}\pi
\]} [m=2,n=5]

I have added some formatting — indenting, line breaks — to make the formulas
more readable but otherwise left them unaltered. The \eval command can be
used for even quite complicated expressions without needing to tinker with their
KETEX form, but you may wish — as here — to adjust white space to clarify their
component parts. Running pdflatex on these expressions, the results were

1
n

2sin? Brr
3n

m—1

sin =7 sin s

cos B — (1 — 4 sin? o) = —0.044193, (m=2,n=05)

2 m
<1 %S;nm?m”) sin 28=%rgin M3 — 0044193, (m = 2,n = 5)
2sin” 22w
which was reassuring. (The result is negative since m — 3 < 0.)

I could have avoided the double writing of \eval and [m=2,n=5] by putting
a comma between the expressions and performing a multi-formula calculation.
This time I've checked equality for m=5 and n=13, which should give a positive
result, and I've taken the opportunity to align* the results with the env setting:

\eval [p=.,pp,env=alignx,ff]

{ \cos\tfrac{mMHn}\pi-(1-4\sin~{2}\tfrac{m}{3n}\pi)
\frac{\sin\tfrac{1}{n}\pi\sin\tfrac{m-1}{n}\pi}
{2\sin~{2}\tfrac{m}{3n}\pi}

, \left(

\frac{1-4\sin"{2}\tfrac{m}{3n}\pi}
{2\sin~{2}\tfrac{m}{3n}\pi}
\right)
\sin\tfrac{2m-3}{3n}\pi\sin\tfrac{m-3}{3n}\pi
} [m=5,n=13]

which evaluates to
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sin L7 sin =17
2sin 5T

.2
cos ' — (1 — 4sin” g-)

<1 — dsin’ 5,’;;7r> in 2037 iy m=3 5 _ (0.107546,  (m = 5,n = 13)
— sin === sin = = 0. , m=5n=13).
2sin® 247 " "
Thus reassured that there was not an error in my laborious derivation of ®5 from
®4, it was not difficult to work back from ®5 to ®; then reverse the argument

to find a straightforward derivation.
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Chapter 2

\nmcEvaluate (\eval)

The main calculational command in numerica is \nmcEvaluate. Because this
would be tiresome to write too frequently, particularly for back-of-envelope cal-
culations, there is an equivalent short-name form, \eval, used almost exclusively
in this document. But wherever you see \eval you can substitute \nmcEvaluate
and obtain the same result. \eval is defined using \ProvideDocumentCommand
from the xparse package. Hence if already defined in some other package al-
ready loaded, it will not be redefined by numerica. It will retain its meaning in
the other package. Its consequent absence from numerica may be an irritant,
but only that. \nmcEvaluate is unlikely to be defined elsewhere and should still
be available.

2.1 Syntax of \nmcEvaluate (\eval)

\nmcEvaluate (or \eval) takes five arguments of which only the third is manda-

tory. All others are optional. If all are deployed the command looks like
\nmcEvaluatex*[settings]{expr.}[vv-1list] [num. format]

I discuss the various arguments in the referenced sections.

1. * optional number-only switch; if present ensures display of only the nu-
merical result, as text with no formatting; see §2.2.4.2;

2. [settings] optional comma-list of key=value settings of the calculational
environment for this particular calculation; see §5;

3. {expr.} mandatory main argument, the mathematical expression in WTEX
form that is to be evaluated, or a list of such expressions; see §2.1.1;

4. [vv-list] optional list of variable=value entries; see §2.2;

5. [num. format] optional number-format specification for the numerical re-
sult (rounding, padding with zeros, scientific notation, boolean or fraction-
form output); see §2.3.
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Note that arguments 4 and 5 are both square-bracket delimited optional argu-
ments. Should only one such argument be used, numerica determines which
is intended by looking for an equals sign within the argument. Its presence
indicates the argument is the vv-list; its absence indicates the argument is the
number-format specification.

The vv-list and number-format specification are trailing optional arguments
but do not need to be hard against their preceding arguments; intervening spaces
are allowed. This means there is a possibility that should the \eval command be
followed by a square-bracketed mathematical expression that expression might
be interpreted as a trailing argument. Experience using numerica suggests that
this will be a (very) rare occurrence and is easily prevented by inserting an
intervening empty brace pair ({}). By allowing spaces between the arguments
complicated expressions and large vv-lists can be formatted, in the interests
of clarity, with new lines and white space without requiring the insertion of
line-ending comment characters (%).

Recommended practice is to minimise the number of optional arguments
used in BTEX commands by consolidating them into a single key=value list.
Although numerica uses such an argument (the settings optional argument),
the vv-list does not fit naturally into that scheme. And practice suggests that
separating out the elements of the number-format specification of the result and
placing them in a trailing argument is both convenient and intuitive for the kind
of back-of-envelope calculations envisaged for numerica.

2.1.1 Expressions

What kind of formula or expression can be ‘digested’ by \nmcEvaluate? As
seen above (§1.1.3), a formula can be complicated, including components like

2 gin? ﬂnﬂ or
1 — 4gin? 3T
-7 3
2sin? 3ﬂ7r ’
n

3

but the underlying aim is always: if the meaning of a formula in the pdf is clear
to a human reader, it ought to be clear to numerica. In a perhaps surprising
number of cases this aim can be met. Mathematicians understand an expression
like sin27x to mean the sine of the triple product 27wx; so does numerica.
Mathematicians casually use and understand logically wrong but customary
notations like sin? z, the square of the sine of x; numerica digests this without
fuss. Mathematicians use a wide variety of formatting commands to clarify
their intent: \left and \right, \phantom-s, spaces and new lines (\quad, \\),
structural commands like \mathstrut, or environments like align or multline;
all are grist to numerica’s mill.

2.1.1.1 Multi-formula expressions

From version 3.0.0 of numerica the main (and only mandatory) argument of the
\eval command may contain more than one formula to be evaluated. ‘Expres-
sion’ can now mean a (generally short) list of formulas. The default punctuation
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mark separating one formula from the next in the list is the same as that used
in the vv-list — a comma if the decimal point is a dot, a semicolon if the decimal
point is a comma. The only potential conflict is if a formula contains an n-ary
function (\max or \min or \gcd), since their arguments are separated by the
same separators in the two cases. There are two responses. One is to wrap
the n-ary function in braces. The other is to specify a different multi-formula
delimiter in the settings option. This is done by entering ff=<char> there (see
§5.2.3), where <char> is some suitably ‘neutral’ character not otherwise present
in any of the formulas to be evaluated — perhaps @, or |.

Examples of multi-formula expressions being evaluated within the one \eval
command were seen earlier in the Introduction, especially at §1.1.5, and §1.1.6.3.
A multi-formula calculation is a natural way to check identities — see for example
the test of sinh 3z = 3sinhz + 4sinh® 2 in §3.4.5. Numerous other examples
occur throughout this document.

2.1.1.2 ETEX braces and mathematical arguments

There are mathematical braces, \{ \}, which display in the pdf and are used
to delimit (generally larger) parts of mathematical expressions, and there are
KTEX braces, { }, which do not display in the pdf and are used to delimit
ETEX arguments or groupings. This discussion is about ITEX braces.

Generally, the ITEX braces \eval encounters should be ‘announced’ by
a preceding ITEX command. Thus the braced argument in \sqrt{x~2+1},
displaying in a math environment as /22 + 1, is ‘announced’ by the square root
command. Similarly, \frac and \binom each announce two braced arguments.
The superscripting ~ or subscripting _ also announce a braced argument (in
general). In these cases \eval knows what to do with the braced argument
because it is prepared by the preceding command.

Although there is no I¥TEX requirement for them, braced arguments can also
be used after unary functions like \sin or \1n or \tanh. Given the presence
of the unary function, \eval knows what to do with an immediately following
braced argument and will happily digest it — it has been announced by the unary
function. Indeed, from version 3.0.0 of numerica this is the recommended way
of handling (for instance) the more complicated arguments that frequently occur
following \sin and \cos in the study of Fourier series; see §3.4.1.1.

Even without braces, \eval will happily digest an argument to a unary
function that is the product of a number, a variable, a constant, a \tfrac (or
an \sfrac if xfrac is loaded) or some subset thereof:

\eval{$ \cos \tfrac1{12}2n\pi $}[n=2] = cos 52nm =0.5, (n=2).

ETEX braces are for those situations where the reader sees the function’s argu-
ment extending beyond the point where a programming rule would end the argu-
ment. For example, a reader knows that the argument of the sine in sin %(A—i—B)
does not end with the %7 nor with the right parenthesis in sin(n + %)71’ nor with
the first factor in sin(n + §)(z — t). It is for situations like this that em-bracing
the argument is recommended. It makes no difference to the visual appearance,
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hence does not interfere with the reader’s comprehension, but informs numerica
of exactly where the argument ends.

Because they are invisible in the pdf, IXTEX braces should never be used to
shorten what the reader sees as the argument of a function. \eval assumes that
the braced part is the whole argument but the reader doesn’t read that. For
example, presented with \sin{2n}\pi, \eval assumes the sine’s argument is 2n
and does not extend to \pi. This is not what a human reads in the pdf. The
compiled expression, sin 2n, is read as ‘the sine of 2n7’. If the intention really
is to multiply 7 by sin 2n then the reader needs to see that this is so: (sin2n)m
perhaps or sin 2n X 7 or, best, 7sin 2n, but not by means of XIEX braces which
leave no visual trace in the pdf.

2.1.1.3 Unannounced braces

Unannounced braced expressions should be used with care. When \eval meets
an unnanounced brace group it is ‘flying blind’. I®TEX braces are ‘punctuation
marks’ for IXTEX code, not for mathematical formulas. How could they be, since
they do not display in the pdf? For numerica it is how things look in the pdf
that is the guide.

\eval converts an unannounced braced expression into its corresponding
13fp form and appends that to the overall expression that is to be evaluated. It
does not do anything further. Note in particular that it does not first evaluate
the braced expression and append the result to the overall expression, nor does
it parenthesize the 13fp form of the braced expression, nor does it check to see
if a multiplying asterisk * should be appended or prepended to the 13fp form.
It simply converts the braced expression into its 13fp form and appends.

This works fine if, as suggested above, the braces surround a function like
\max(x,y,z) so it can be included in a multi-formula calculation, but it can
give unexpected results in other contexts. Thus (math braces; XTEX braces),

\eval [ff1{\[ \{ 1+2 \}72, { 1+2 }72 \1} =
{1+2}*=9
1+2°=5
In the first of these eval reads the math-braced expression, converts it into its
13fp form and appends that, which includes the math braces, to the (empty at
this stage) overall expression. In the second of these, \eval reads the braced
expression, converts that to its 13fp form and appends the result to the (empty
at this stage) overall expression. In both cases, \eval proceeds to read and
append "2 to the overall expression so that the superscript acts on a bracketed

expression in the first case and on 2 alone in the second.
A second example is

\eval[f£J{\[ 3\{ 2+1 \}, 3{ 2+1 } \1} =
3{2+1}=9
32+1=33
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Similarly { 2+1 }\tfrac13 displays like 2+ 1% which one might naively expect
to evaluate to 3.333333 but in fact it evaluates to 2.333333 since 13fp uses
juxtaposition to mean multiply. Because IXTEX braces do not visibly display,
this kind of result is all too likely. Unless there is some compelling reason to
do otherwise avoid unannounced brace groups in expressions except to ‘hide’
functions containing problematic characters (like the argument separator in n-
ary functions in some contexts).

There is also a quirk (or feature) of 13fp that could catch one out. An expression
of the form (1)1 produces a IATEX error when 13fp tries to evaluate it. In 13fp
a number can be placed directly before a parenthesized expression but not after;
1(1) and (1)1 are read very differently by the program. In normal use, ‘behind
the scenes’ numerica takes care of this quirk; a user should never have to worry
about it. But this internal coping mechanism is not activated when the 13fp
form of a braced group is appended to the overall expression.

2.1.2 Numbers

In the present document the numerous examples presented mainly use ordinary
decimal notation for numbers, but scientific notation is also available, both for
input (see §5.2.1) and output (see §2.3.3).

2.1.2.1 Decimal point

Prior to version 3.0.0 the only decimal marker accepted was the dot (period,
full stop). Now, by means of the comma package option, the comma can also be
used as the decimal point. This means using semicolons in the variable=value
list (see below §2.2) and for separating the arguments of n-ary functions (§3.5)
in line with ISO 80000 Part 2, section 3 which reads: ‘A comma, semicolon
or other appropriate symbol can be used as a separator between numbers or
expressions. The comma is generally preferred, except when numbers with a
decimal comma are used” When the comma package option is used, numerica
insists on semicolons for separating items in the two contexts mentioned.

2.1.2.2 Grouping blocks of digits

Sometimes, to make numbers more readable, blocks of digits are grouped to-
gether, separated perhaps by spaces or by an explicit mark like a comma.
numerica can digest numbers in which the grouping is by spaces, but not a
mark. ‘Out of the box’, however, the package does not expect spaces in num-
bers. This needs to be turned on by the user by entering 1s2 (or 1s2=1; 1s2
indicating a space ‘s’ between digits) in the settings option:

\eval[1s2]{ 12 345.678 901 } — 12345.678901

13fp works to 16 significant figures; so does numerica. But experience suggests
that in ‘everyday’ use significantly fewer digits are generally used, both as input
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and output. The cases in which grouping digits aids readability will be rare.
For this reason, ‘out of the box’, 1s2=0.

Note that 1s2=0 should not cause a ITEX error nor raise a message in
numerica if a number containing spaces is fed to \eval, but the result may be
disconcerting;:

\eval[1s2=0]{ 12 34 } = 408

What has happened in the example is that 12 and 34 have been read separately
as distinct numbers, an asterisk inserted between them, and multiplied. Some-
times the product may lead to a result sufficiently close to the expected one as
to pass unnoticed. For this reason it is recommended that spaces in numbers
be avoided as a matter of habit except in rare special circumstances (e.g. when
entering a number like 0.7777 7777 7777 T777).

Grouping blocks of digits with spaces is available through the 1s2 setting
solely for inputting numbers in the variable=value list or formula. The \eval
command does not output numbers in this form.

2.1.3 Variable names

In mathematical practice, variable names are generally single letters of the Ro-
man or Greek alphabets, or occasionally from other alphabets, in a variety of
fonts, and often with subscripts or primes or other decorations: z, x, u, 2/, o,
T®, O,,al, B, U, kT, k_ are examples. numerica does not attempt to char-
acterize variables by their ‘internals’(alphabet, font, decoration, etc.). Rather,
the program accepts as a variable whatever lies to the left of the equals sign in
an item of the variable=value list (for which see §2.2 immediately below).

What lies to the left is a BTEX expression. Different BTEX almost always
means different variable. For instance x and x are different variables since,
in the underlying IATEX, one is x and the other \mathrm{x}. I write ‘almost
always’ because there are exceptions. Since braces do not display in the pdf,
names that look identical in the pdf may well be distinct in IXTEX. This is true
particularly of superscripts and subscripts: x_0 and x_{03} appear identical in
the pdf but in the underlying IXTEX they are distinct, and will be treated as
distinct variables by numerica. The user needs to be aware of this. Also,
because equals signs and commas give structure to the variable=value list, a
variable name should not contain a naked equals sign or a naked comma. Instead
they should be decently wrapped in braces, like R_{=} displaying as R_. These
provisos aside, variables can be single- or multi-token, can be in different fonts,
can be decorated with primes and indices — and may even contain spaces. (But
please don’t; such names are not part of mathematical practice.) If a variable
is natural to the mathematical context, it will almost certainly be accepted as
a variable in numerica. For the kind of back-of-envelope calculations envisaged
for the package, most variables will be single letters from the Roman or Greek
alphabets.
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2.1.3.1 Multi-token variable handling

Although multi-token variables are perfectly acceptable, internally numerica
works with single tokens. Variable names can be so different in structure, one
from another, that to ease the parsing of formulas, all internal variable names
are assumed to be single tokens. Hence a necessary initial step for the package
is to map all multi-token variable names in the vv-list and the formula to single
tokens. numerica does this by turning the multi-token variable names into
control sequences with names in the sequence \nmc_a, \nmc_b, \nmc_c, etc.,
then searches through the vv-list and the formula for every occurrence of the
multi-token names and replaces them with the relevant control sequences. It
does this in order of decreasing size of name, working from the names that
contain most tokens down to names containing only two tokens. (Doing the
replacing in this order prevents parts of longer names possibly being mistaken
for shorter variable names.)

The conversion process uses computer resources. Even if there are no multi-
token variables present, numerica still needs to check that this is so — unless
the user alerts the program to the fact with the setting xx=0; see §5.2.2.

2.2 The variable=value list

To evaluate algebraic, trigonometric and other formulas that involve variables
we need to give those variables values. This is done in the variable=value list — or
vu-list for short. This is the fourth argument of the \nmcEvaluate command and
is a square-bracket delimited optional argument (optional because an expression
may depend only on constants and numbers).

A vv-list is a comma-separated list (or, if the comma package option is used,
semicolon-separated list) where each item is of the form variable=value. Tt might
be something simple like [g=9.81,t=2] or something more complicated like

[V_S=\tfrac43\pi r~3,V_C=2\pi r~2h,h=3/2,r=2].

Spaces around the equals signs or the commas (resp., semicolons) are stripped
away during processing so that [g=9.81,t=2] and [ g = 9.81 , t = 2 ] are
the same variable=value list.

Math delimiters should never be used in the vv-list. If they are present they
will cause errors. Math delimiters have a part to play only in the main argument,
where their presence or absence can determine the form of display of the result,
as discussed above in §1.1.4.

2.2.1 Evaluation from right to left

In these examples, with variables depending on other variables, there is an
implication: that the list is evaluated from the right. Recall how a function of
a function is evaluated, say y = f(g(h(x))). To evaluate y, first = is assigned
a value then h(z) is calculated, then g(h(z)) then f(g(h(x))) = y. We work
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from right to left, from the innermost to the outermost element. Or consider an
example like calculating the area of a triangle by means of the formula

A=/s(s—a)(s—b)(s—c).

First we write the formula; then we state how s depends on a,b,c, namely
s = %(a + b+ ¢), then we give values to a,b,c. In numerica this is mirrored in
the layout of the \eval command:

\eval{$ \sqrt{s(s-a) (s-b)(s-c)} $}
[s=\tfraci12(a+b+c),a=3,b=4,c=5]

The formula in a sense is the leftmost extension of the vv-list. The entire
evaluation occurs from right to left. This means that the rightmost variable in
the vv-list can depend only on constants and numbers — although it may be
a complicated expression of those elements. Other variables in the vv-list can
depend on variables to their right but not to their left.

2.2.2 Constants

numerica has five built-in constants and can also accept user-defined constants.
For the latter, see §6.3. The five built-in constants known to numerica are
\pi, the ratio of circumference to diameter of a circle; e, the base of natural

logarithms; Euler’s constant \gamma, the limit of (Eiv 1/n) —InN as N — oo;

the golden ratio \phi, equal to %(1 +4/5); and the utilitarian constant \deg, the
size of a degree in radians. Using a comma list for a multi-formula calculation
and an align* environment,

\eval [env=align*,pp,p,ffl1{ \pi, e, \gamma, \phi, \deg } =

T = 3.141593,
e = 2.718282,
v = 0.577216,
¢ = 1.618034,

deg = 0.017453,

so that \eval{$ 180\deg $} = 180deg = 3.141593 (as it should).

In some contexts it may feel natural to use any or all of \pi, e, \gamma and
\phi as variables by assigning values to them in the vv-list. numerica does not
object. The values assigned in this way override the built-in constant values.

For example, if instead of the usual ABC we label a triangle EFG with sides
(note!) e =3, f =4 and g =5, its area is

\eval{$ \sqrt{s(s-e) (s-f) (s-g)} $}
[s=\tfracl2(e+f+g),e=3,f=4,g=5]
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E
Vs(s—e)(s—f)s—g) =6, (s=35(e+f+g),e=3f=49=5).

Clearly the value 3 assigned to e in the vv-list has been used in the calculation,
not the value of the constant. But if e (or \pi or \gamma or \phi) is not assigned
a value in the vv-list then it has, by default, the value of the constant. In the
case of e, if you wish to use it as a variable, the constant is always available as
\exp(1). No similar alternative is available for \pi, \gamma or \phi.

2.2.3 Expressions in the variable=value list

Suppose our expression is 2713, the volume Vg of a sphere in terms of its radius
3 b

r, and we want to calculate the volume for different values of r to get a sense
of how rapidly volume increases with radius.

$ V_S=\eval{ \tfrac43\pi r~3 }[r=1] $ = Vs = 4.18879.

Having set up this calculation it is now an easy matter to change the value of r
in the vv-list:

$ V_S=\eval{ \tfrac43\pi r~3 }[r=1.5] $ = Vg = 14.137167.
Or we could ‘rephrase’ the calculation like this:

\eval{$ V_S $}[V_S=\tfrac43\pi r"3,r=2] =
Vs = 33.510322, (Vs = 4mrd 7 = 2).

As you can see, values in the vv-list are not limited to numbers. They can be
expressions depending on constants, numbers or other variables to their right
in the list. This calculation also shows a multi-token variable (V_S) being used.

Another example: to compute the volume Vo = 7r2h of a cylinder, we have
two variables to assign values to:

$ V_C=\eval{ \pi r~2h }[h=4/3,r=1] $§ = Vo = 4.18879.
Or we can divide the calculation up like this,
$ V_C=\eval{ hA_C }[A_C=\pi r~2,h=4/3,r=1] $ = Vi = 4.18879,

which emphasizes that the volume is ‘base x height’ (and again uses a multi-
token variable).

A third instance is provided by the example above in which we calculated
the area of a triangle by means of Brahmagupta’s formula.

2.2.4 Display of the vv-list

By default, the vv-list is displayed with the numerical result. That and the
format of the display can both be changed.
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2.2.4.1 Changing the display format

In the example above where the area of a triangle is calculated using Brah-
magupta’s formula, display of the result is crowded. One remedy is to force
display of the vv-list to a new line. In the default set-up, this happens auto-
matically if the env setting is equated to multline or multline*. Let’s do
this when Brahmagupta’s formula is used not for a triangle but in the more
challenging case of a cyclic quadrilateral.

The cyclic quadrilateral in question is formed by a 45-45-90 triangle of hy-
potenuse 2 joined to a 30-60-90 triangle along its hypotenuse of the same length.
Two triangles, six vertices but the two along the hypotenuses are shared, hence
four vertices in all, lying on a circle. The sides of the cyclic quadrilateral are
therefore 1/2,+/2,+/3,1. Adding the areas of the two triangles, the area of the
quadrilateral is A = 1+ %\/3, or in decimal form, $\eval{1+\tfrac12\surd3}$
= 1.866025. Let’s check with Brahmagupta’s formula:

\eval [env=multline*]{\sqrt{(s-a) (s-b) (s-c) (s-d)}}
[s=\tfrac12(a+b+c+d),
a=\surd2,b=\surd2, c=\surd3,d=1]

=

V(s —a)(s —b)(s — ¢)(s — d) = 1.866025,
(s=2(a+b+c+d),a=2,b=2,c=/3,d=1)

2.2.4.2 Suppressing display of the vv-list

Star (*) option If display of the vv-list is not wanted at all, only the numer-
ical result, it suffices to attach an asterisk (star) to the \eval command, giving
a ‘naked’ result:

\eval*{ hA_C }[A_C=\pi r~2,h=4/3,r=1] = 4.18879.

The star option for a multi-formula calculation evaluates each formula and
presents the numerical result of each calculation with a space between; it is
minimal and inelegant:

\eval*[ff]1{ \surd x, x, x72 }[x=\pil = 1.772454 3.141593 9.869604

However, the pp setting is available to add a comma (for instance) and the sep
setting can change the space — perhaps sep=\quad.

Note that with the star option a negative result will display with a hyphen
for the minus sign.

\eval*{ y }[y=ax+b,x=2,a=-2,b=2] = -2,

In a math environment, the hyphen will display as a minus sign. Wrapping
\eval* around math delimiters or using the env option has no effect — the *
dominates.
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No math environment: In the absence of a math environment, recall from
§1.1.4, \eval (no star!) automatically presents the numerical result without vv-
list between $ delimiters, (so that negative values display with a proper minus

sign):
\eval{ y }[y=ax+b,x=2,a=-2,b=2] — —2.

Settings option: Display of the vv-list can also be suppressed through the
settings option, by writing vv=there —i.e. by giving the key vv an empty value.
If the example above is too bare, then perhaps

\eval[vv=]1{$ V_C $}[V_C=h\pi r~2,h=4/3,r=1] = Vi = 4.18879

is more acceptable? See §5.3.2.3 for a fuller discussion of the vv setting.

Scriptstyle contexts: In versions of numerica before version 3, display of
the vv-list was automatically suppressed in scriptstyle (and scriptscriptstyle)
contexts. This occurred by means of TEX’s \mathchoice command. Version
3.0.0 of numerica has dispensed with \mathchoice and requires the user to
suppress display in these contexts (if so wished), by starring the \eval com-
mand:

$e~{\eval*{xy} [x=\pi,y=1/e] }$ = ! 155727

Empty vv-list suppressed: Should the vv-list be empty, or display of all
variables be suppressed by wrapping each in braces (see next, §2.2.4.3), then
nothing is displayed where the vv-list would normally be:

$ V_C=\eval{ hA_C }[{A_C}=\pi r~2,{h}=4/3,{r}=1] $. —
Ve = 4.18879.

2.2.4.3 Suppressing display of items

You may wish to retain some variables in the vv-list display, but not all. For
those variables you wish omitted from the display, wrap each variable (but
not the equals sign or value) in braces. When calculating the volume of a
cylinder in a previous example, the base area Ac has a different status from the
‘fundamental’ variables r and h. It is an intermediate value, one that we pass
through on the way to the final result. To suppress it from display enclose the
variable in braces:

$ V_C=\eval{ hA_C }[{A_C}=\pi r~2,h=4/3,r=1] $ = Vi = 4.18879.

As you can see, Ac no longer appears in the displayed vv-list. Of course the
name and its value are still recorded ‘behind the scenes’ and can still be used
in calculations. Note that the braces enclose only the variable name, not the
equals sign or the value.
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2.2.5 Abusing multi-token variable names

A variable name is what lies to the left of the equals sign of an item in the
vv-list. Since multi-token variables are converted to single tokens before any
calculating is done, it is possible to sin. We can, for instance, make sin7 a
variable name and produce an absurdity:

\eval{$ \sin\pi $}[{\sin\pi}=1] = sinnm =1;
or similarly treat a number as a variable name and produce another:
\eval{$ -1 $}[{-1}=1] — -1 =1.

What is happening here is that the multi-token ‘variables’ \sin\pi and -1 are
converted, right at the start of proceedings, to single tokens like \nmc_a, \nmc_b.
These TEX macros expand to their respective multi-token variable names when
displayed, but for calculating within numerica the single token is used. By this
means it is easy to construct whatever grotesqueries you like.

Should numerica try to check variable names to avoid consequences like this? I
see no reasonable way of doing so. Digits, and symbols like ( and +, can easily
be part of valid variable names — kT, xy, C,(LO) and so on. It is left to the user,
in any public document, to avoid such sins (which can easily be constructed
in WTEX without recourse to \eval at all, should the user so wish). See also

§6.2.5.1 where a similar issue arises with user-defined macros.

2.3 Formatting the numerical result

Internally, values are stored to 16 significant figures (if available), calculations
are carried out to 16 significant figures, but only rarely are results displayed to
16 figures. Generally, they are rounded to some smaller number of figures. The
default ‘out of the box’ rounding value is 6, meaning at most 6 decimal places
are shown. (It can of course be reset with the rounding package option, e.g.
rounding=4; see §§1.1.1, 2.3.1.) So far, nearly all results have been rounded to
the default figure, although not all digits are always displayed — for instance if
the sixth one is 0, or the result is an integer.

But numerica is not limited to the decimal presentation of results. Scientific
notation is also available, as is fraction-form output with numerator and denom-
inator both integers, and boolean output when the formula being evaluated is
a comparison, treated by the \eval command not as a statement like ‘A is less
than B’ but rather as a question: ‘Is A less than B?".

The appearance of the result in any of these various formats can be chosen
and customized by means of a square-bracketed optional argument following
the vv-list — or the formula if there is no vv-list. This optional argument may
contain a number of juxtaposed items from these possibilities:
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e a question mark ? which gives boolean output, 1 for true, 0 for false; see

§2.3.5;
— a second question mark, 7?7, which gives boolean output T for true,
F for false;
— a third question mark, 777, which gives boolean output T for true, F
for false;

e a slash / which gives output in slash-fraction form with integers for both
numerator and denominator; see §2.3.4; if followed by s the fraction will
be formed with the \sfrac command from the xfrac package if loaded,
or in scriptstyle slash fraction form if not;

— a second slash, //, which gives output in fraction form using \frac
with integers for both numerator and denominator; if followed by t
or d the fraction will be formed with, respectively, the \tfrac or
\dfrac commands from amsmath;

e an integer, the rounding value, positive, negative or zero, specifying how
many decimal places to display the result to, or to how many zeros after
the decimal point fraction-form output approximates the result; see §2.3.1
and §2.3.4;

o an asterisk, *, which pads the result with zeros should it not display as
many decimal places as the rounding value specifies; see §2.3.2;

« the character x (lower case!) which presents the result in ‘proper’ scientific
notation (a form like 1.2345 x 10° for 123450) except for numbers in the
interval [1,10); see §2.3.3.1;

— the character x repeated, xx, which extends the notation to numbers
in the interval [1,10);

« the character t (lower case!) which presents the result in a style of scientific
notation useful in tables (a form like (5)1.2345 for 123450) except for
numbers in the interval [1,10); see §2.3.3.1;

— the character t repeated, tt, which extends the notation to numbers
in the interval [1,10);

e a letter other than x or t, usually one of the letters e, d, E, D, which
presents the result in scientific notation with that letter as the exponent
mark (a form like 1.2345e5 for 123450); see §2.3.3.1;

— the letter repeated — say dd — which extends the notation to numbers
in the interval [1,10).

If you use 7 in the same specification as some other character, the ? prevails; if
you use / in the same specification as some other character except for 7, the /
prevails; if you use x in the same specification as some other character except
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for 7 or /, the x prevails; if you use t in the same specification as some other
character except for 7, / or x, the t prevails: ?>/>x>t>... (where > means
‘prevails over’).

2.3.1 Rounding value

If the number is displayed as a decimal, the rounding value specifies the number
of decimal places displayed. If a number is displayed in scientific notation (see
below §2.3.3) that is still true, but it can mean differences in the overall number
of digits displayed. For the moment, I show the effect of rounding in a purely
decimal display:

\eval{ 1/3 }[4],\qquad \eval{ 1/3 } = 0.3333, 0.333333.

In the first case 4 was entered in the number-format option and the result is
displayed to four decimal places; in the second, the default rounding value of 6
takes effect.

Following the default behaviour in 13fp, which is the calculational engine
used by numerica, ‘ties’ are rounded to the nearest even digit. Thus a number
ending 55 with a ‘choice’ of rounding to 5 or 6 rounds up to the even digit 6,
and a number ending 65 with a ‘choice’ of rounding to 6 or 7 rounds down to
the even digit 6:

\eval [pp,ff]{ 0.1234555, 0.1234565 } = 0.123456, 0.123456.

13fp works to 16 significant figures and never displays more than that number
(and often fewer).

e In the following, although I have specified a rounding value of 19, only 16
decimal places are displayed (with the final digits rounded up):

\eval{ 0.12345678912345678912 }[19] = 0.1234567891234568
\eval{ 1.12345678912345678912 }[19] = 1.123456789123457

e Now I add ten zeros after the decimal point, meaning that all 19 decimal
places specified by the rounding value can be displayed in the first since
the ten zeros do not contribute to the significant figures, but in the second,
by changing the figure before the decimal point to 1, the ten zeros added
do contribute to the significant figures:

\eval{ 0.0000000000123456789 }[19] == 0.0000000000123456789
\eval{ 1.0000000000123456789 }[19] = 1.000000000012346

o Lastly, I have added 9 digits before the decimal point:

\eval{ 987654321.123456789 }[19] — 987654321.1234568
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In all cases, no more than 16 significant figures are displayed, although the
number of decimal places displayed may exceed 16.

It is possible to use megative rounding values. Such a value replaces the
specified number of digits before the decimal point with zeros.

\eval{ 987654321.123456789 }[-4] — 987650000
A rounding value of 0 rounds to the nearest integer:
\eval{ 987654321.123456789 }[0] — 987654321

If you wish to change the default rounding value from 6 to some other value, this
can be done by means of the package option rounding. For example, calling
numerica like this,

\usepackage [rounding=4] {numerica}

will make 4 the new default rounding value.

The rounding value also plays a part in how closely fraction-form output
approximates the calculated result (§2.3.4), and how many terms are used to
evaluate ‘infinite’ sums (§3.1).

2.3.2 Padding with zeros

A result may contain fewer decimal places than the rounding value specifies, the
trailing zeros being suppressed by default (this is how 13fp does it). Sometimes,
perhaps for reasons of presentation like aligning columns of figures, it may be
desirable to pad results with zeros — we have already met an example at §1.1.5.1.
Padding is achieved by inserting an asterisk into the final optional argument of
the \eval command:

\eval{ 1/4 }[4] = 0.25,
\eval{ 1/4 }[4x],\quad \eval{ 1/4 }[*4] = 0.2500, 0.2500.

As you can see, it doesn’t matter if there is a rounding value also present (the
example at §1.1.5.1, using the default rounding value, had none), nor the order
in which the asterisk and rounding value are entered.

2.3.3 Scientific notation

numerica can output numbers in various scientific notations. Entering x (lower
case) in the number-format option produces the ‘pure’ form:

\eval[pp,ff]1{ 2°{256}, 2°{-256} }[x] —
1.157921 x 1077, 8.636169 x 10~ "8.

With the default rounding value, as here, one digit is shown before the decimal
point and 6 digits after. Alternatively, you can enter some other letter in the
number-format option, generally e, to generate a less elegant, more utilitarian
output:
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\evallpp,ffl{ 37{81}, e7{-81} }[e]l = 4.434265e38, 2.255165e-39.

Other letters sometimes used for this purpose are E, d and D, but numerica
will accept any letter (although x and t produce distinctive output). The ‘e’
in the output is the exponent mark, separating the significand (1.234) from the
exponent (3). In scientific notation, the significand always has one non-zero
digit before the decimal point (except for 0 itself).

For scientific notation the rounding value still means the number of dec-
imal places displayed — by default, 6. This can mean different numbers of
digits being shown from those displayed in ‘ordinary’ decimal form. Compare
\eval{ 123.456789 } — 123.456789, where nine significant figures are dis-
played, with \eval{ 123.456789 }[e] = 1.234568e2 where only seven are,
one before the decimal point and six after. In the other direction, only five signif-
icant figures are shown in the ‘ordinary’ decimal form \eval{ 0.0123456789 }
= 0.012346, whereas in scientific notation \eval{ 0.0123456789 }[e] —
1.234568e-2 once again seven are on display.

Negative rounding values are pointless for scientific notation.

Sometimes letters other than ‘e’ are used for the exponent mark, particularly
‘E’ or ‘d’ or ‘D’.

\eval{$ 1/123456789 $}[4d] = 1/123456789 = 8.1d-9.

But when x is inserted in the trailing optional argument, the output is in the
form do.dy ... d, x 10™ (except when n = 0), where each d; denotes a digit.

\eval{$ 1/123456789 $}[4xx] = 1/123456789 = 8.1000 x 10~ .

As you can see, padding with zeros still applies in scientific notation and is
activated, as before, with an asterisk in the number-format option.

The requirements of tables leads to another form of scientific notation. Plac-
ing t in the trailing argument turns on this table-ready form:

\eval{$ 1/123456789 $}[4t*] = 1/123456789 = (—9)8.1000.

This is discussed more fully in the documentation for the numerica-tables
package.

The order in which items are entered in the number-format option doesn’t
matter:

\eval{$ 1/125 $}[*e4] = 1/125 = 8.0000e-3,
\eval{$ 1/125 $}[4ex] — 1/125 = 8.0000e-3.

2.3.3.1 Numbers in the interval [1,10)

Usually when scientific notation is being used, numbers with magnitude in the
interval [1,10) are rendered in their normal decimal form, 3.14159 and the like.
Occasionally it may be desired to present numbers in this range in scientific
notation (this can be the case in tables where the alignment of a column of figures
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might be affected). numerica offers a means of extending scientific notation to
numbers in this range by repeating the letter chosen as the exponent mark in
the trailing optional argument.

\eval{$ \pi $3}[4xx] = 7 = 3.1416 x 10°

2.3.3.2 \eval* and scientific notation

Starring the \eval command gives a number-only result which can be presented
in scientific notation:

\eval*{ \pi~\pi }[e] = 3.646216el

There is one catch: if you substitute x for e here, compilation will halt and ETEX
will state Missing $ inserted. This is because an x in the number-format
option means a \times in the output and that requires a math environment
to display. It is up to you, as the user, to provide the necessary delimiters
outside the \eval* command. (Alternatively, use \eval without the star and
without any delimiters whatever. Dollar signs are automatically placed around
the result.)

2.3.4 Fraction-form output

The \eval command can output numbers in fraction form by including in the
number-format specification either one or two slashes:

\eval[pp,f£]{0.333333, 1.875}[4/] = 1/3, 15/8;
\evallpp,f£1{\pi, e}[2//] = 2, 1.

A single slash results in a textstyle slash fraction; two slashes produce a \frac-
tion. Always, numerator and denominator are integers. The rounding value
determines how close the fraction is to the calculated result. Consider

\eval{\pi}[1//],\quad \eval{\pi}[2//],
\eval{\pi}[3//],\quad \eval{\pil}[6//].

19 22 267 355
60 7 85 113’

and compare these results against 7:

\eval [env=alignat*,pp,p=.,ff]1{ \pi-\tfrac{19}6,
\pi-\tfrac{22}7, \pi-\tfrac{267}{85},
\pi-\tfrac{355}{113} }[8%*]

T — 1 = —0.02507401,

7 — 2 = —0.00126449,

m— 20 = 0.00041618,

7w — 333 — _0.00000027.
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In each case the fraction approximates the correct result to at least as many dec-
imal places as specified in the rounding value — the difference between pi and the
fraction is zero to that rounding value. Sometimes, as evident with the familiar
approximations 22/7 and 355/113, the difference is zero to twice the number of
digits in the denominator — these are exceptionally good approximations.

The example illustrates the use of an alignat* environment to ensure the
results line up, including taking account of the minus signs.

What happens if T seek a still more accurate approximation — say to (at
least) seven places of decimals? The result is a message:

\eval{\pi}[7//] = !l No result to 7 zeros with 1 < denom < 200 in:
formula. !

By default numerica searches denominators from 1 to 200 before halting the
search and producing the message. The program offers two settings that may
assist here. The first is the /max setting which allows the user to specify the
maximum denominator tried, e.g. putting /max = 1000 in the settings option
of the \eval command would allow the search to continue up to a denominator
of 1000. But perhaps that means waiting too long? The user can also specify
an initial value to start searching from with the /min setting, by entering in the
settings option, say, /min = 500, which would mean searching from an initial
denominator of 500. By default /min = 1 and /max = 200.
To test the settings equate both to 113:

\eval[/min=113,/max=113]{\pi}[6//] = %

Performing a similar exercise with other irrational numbers like e, ¢ and /2,
one realizes just how good this particular approximation is.

2.3.4.1 Refining the form of fraction

The form of the fraction output can be refined by adding a qualifying letter to
the single or double slash in the number format option.

By adding an s after a single slash, /s, it is possible to get scriptstyle
numbers in a slash fraction. If the xfrac package' has been loaded (as it has
been for the present document), then the fraction takes this form:

\eval{$ \pi $}[2/s] = m = 22/7.

This is the result of the \sfrac command from the xfrac package. If that
package had not been loaded then the fraction would have been presented in
the form 22/7.

By adding a t or 4 after two slashes, //t or //d, it is possible to force
textstyle or displaystyle output by means of amsmath’s \tfrac or \dfrac com-
mands (in place of \frac). For example, even in a displaystyle environment,

Ixfrac is included in the 13packages bundle.
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\eval[pl{\[ \pi \1}[6//t] =

355

=113

with the //t specification, and similarly, in a textstyle environment you can
force a displaystyle fraction with the //d specification.

2.3.5 Boolean output

13fp can evaluate comparisons, outputting 0 if the comparison is false, 1 if it
is true. By entering a question mark, ?, in the trailing optional argument, you
can force numerica to do the same depending as the result of a calculation is
zero or not. (The expression being evaluated does not need to be a comparison,
\eval{\pi}[?] = 1, but comparisons are what this is designed for.)

Possible comparison relations are =, <, >, \ne, \neq, \ge, \geq, \le, \leq.
Although programming languages use combinations like <= or >= and, from
version 3.0.0 \eval will accept these without raising an error, this is not part
of mathematical practice.

An example of boolean output where the relation is equality exhibits a nu-
merological curiosity:

\eval[p=.1{\[ \frac1{0.0123456789}=81 \1}[57] —

1

. 811
0.0123456789 oL

The expression on the left is to be read as a question: ‘Is 1/0.0123456789 equal
to 817’, not as a statement; the arrow points to the answer, in this instance
1, meaning true. But notice the 5 alongside the question mark in the trailing
argument. That is critical. Change it to 6 (or omit it since the default rounding
value is 6) and the outcome is different:

\eval[p=.1{\[ \frac1{0.0123456789}=81 \1}[67] —

1

—__ —81-0.
0.0123456789 ~ oF 0

Now the relation is false. Evaluating the fraction to more than 6 places, say to
9, we can see what is going on:

\eval{$ 1/0.0123456789 $}[9] = 1/0.0123456789 = 81.000000737.

In other words, the question posed by the ? specification is not ‘Is 1/0.0123456789
equal to 817" but ‘Is 1/0.0123456789 equal to 81 to the specified number of dec-
imal places?’ To 5 decimal places it is; to 6 decimal places it is not.

42



2.3.5.1 Outputting T or F

To my eye, outputting 0 or 1 in response to a question like 1/0.0123456789 =
81 is confusing. It is easy to change the boolean output from 0,1 to a more
appropriate F, T, or F,T by duplicating (F,T') or triplicating (F,T) the question
mark in the number-format option.

\eval[p=.]{\[ \frac1{0.0123456789}=81 \]1}[6777] —

1

1 g5
0.0123456789 o1

The default boolean output format is chosen to be 0,1 in case an \eval com-
mand is used within another \eval command (‘nesting’— see Chapter 7.1 ). The
inner command needs to output a numerical answer.

2.3.5.2 Rounding error tolerance

If at least one of the terms in a comparison is the result of a calculation, then
it’s value is likely to contain rounding errors. What level of rounding error can
we tolerate before such errors interfere with the comparison being made? 13fp
tolerates none. It decides the truth or falsity of a comparison to all 16 significant
figures: 1.000 0000 0000 0000 and 1.000 0000 0000 0001 are not equal in 13fp.
But for most purposes this will be far too severe a criterion.

Suppose our comparison relation is o, denoting one of =, <, >, \le, etc.
If XoY then X —YpY —Y,ie X —Yp0. This is what numerica does.
It takes the right-hand side of the relation from the left-hand side and then
compares the rounded difference under ¢ to 0. The rounding value used is the
number specified with the question mark in the trailing argument of the \eval
command or, if no number is present, the default rounding value (‘out of the
box’ this is 6). Thus, in a recent example, 1/0.0123456789 — 81 when rounded to
5 decimal places is 0.00000, indistinguishable from zero at this rounding value;
hence the equality 1/0.0123456789 = 81 is true. But when rounded to 6 places
it is 0.000001 which s distinguishable from zero and so the equality is false.
Truth or falsity depends on the rounding value.

When dealing with numbers generated purely mathematically, rounding val-
ues of 5 or 6 are likely to be too small. More useful would be rounding values
closer to 13fp’s 16 — perhaps 147 — depending on how severe the calculations
are that generate the numbers. However if the numbers we are dealing with
come from outside mathematics, from practical experiments perhaps, then even
a rounding value of 5 or 6 may be too large.
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Mathematically, the claim that X =Y at a rounding value n is the claim that
|X — Y| <5x10-(FD,

since this rounds down to zero at n places of decimals. This gives a more accurate
test of equality than doing things in the opposite order — rounding each number
first and then taking the difference. One might, for instance, have numbers like
X =0.12345, Y = 0.12335. Rounding to n = 4 places, both round to 0.1234 and
yet the difference between them is 0.0001 — they are distinguishable numbers to
4 places of decimals. This is why numerica forms the difference before doing
the rounding.

2.3.5.3 And, Or, Not

For logical And TEX provides the symbols \wedge and \land, both displaying
as A, but numerica adds thin spaces ( \, ) around the symbol for \land
(copying the package gn-logicl4.sty). For logical Or TEX provides the
symbols \vee and \lor, both displaying as V, but again numerica adds thin
spaces around the symbol for \lor.

\eval{$ 1<2 \wedge 2<3 $}[?7] = 1 <2A2<3 =T,
\eval{$ 1<2 \land 2<3 $}[??7] = 1 <2 A 2<3—T.

To my eye the second of these with its increased space around the wedge sym-
bol displays the meaning of the overall expression better than the first. Both
And and Or have equal precedence; in cases of ambiguity the user needs to
parenthesize as necessary to clarify what is intended.

ETEX provides two commands for logical Not, \neg and \1lnot, both dis-
playing as — . Not binds tightly to its argument:
\eval{$ \lnot A \land B $}[A=0,B=0] — —-A A B=0, (A=0,B=0).

Here \1not acts only on the A; if it had acted on A A B as a whole the result
would have been different:

\eval{$ \lnot(A \land B) $}[A=0,B=0] —
-(AANB)=1, (A=0,B=0).

For a little flourish, I evaluate a more complicated logical statement:?

\eval{$(A\lor\lnot C)\land(C\lor B)\land
(\1lnot A\lor\lnot B)$}[A=1,B=0,C=1][777]

= (AV-C)A(CVB)AN(-mAV -B)—=T, (A=1,B=0,C=1).

2Quoting from an article in Quanta Magazine (August 2020) by Kevin Hartnett: ‘Let’s
say you and two friends are planning a party. The three of you are trying to put together
the guest list, but you have somewhat competing interests. Maybe you want to either invite
Avery or exclude Kemba. One of your co-planners wants to invite Kemba or Brad or both of
them. Your other co-planner, with an ax to grind, wants to leave off Avery or Brad or both
of them. Given these constraints, you could ask: Is there a guest list that satisfies all three
party planners?’ I have written C for Kemba, A and B for Avery and Brad.
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2.3.5.4 Chains of comparisons

numerica can handle chains of comparisons like 1 < 2 <142 < 5—1. ‘Behind
the scenes’ it inserts logical And-s into the chain, 1 <2A2 < 14+2A 142 < 51,
and evaluates the modified expression:

\eval{$ 1<2<1+2<5-1 $}[?77] — 1<2<14+2<5—-1—>T.

2.3.5.5 amssymb comparison symbols

numerica accepts some alternative symbols for the basic comparison relations
from the amssymb package provided that package is loaded, i.e. the preamble of
your document includes the statement

\usepackage{amssymb}

The variants from this package are: \leqq ( < ), \legslant ( < ), \geqq ( =
and \gegslant ( > ).> There are also negations: \nless ( £ ), \nleq ( £ ),
\nleqq ( % ), \nlegslant ( £ ), \ngtr ( # ), \ngeq ( # ), \ngeqq ( %
\ngegslant ( # ).

3No, that is not eggplant.
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Chapter 3

Calculational details

3.1 Arithmetic

Addition, subtraction, multiplication, division, square roots, n-th roots, and
exponentiating (raising to a power) are all available.
Multiplication can be rendered explicitly with an asterisk,

\eval{$ 9%9 $} —= 99 =81,
but that’s ugly. More elegant is to use \times:
\eval{$ 9\times9 $} =— 9 x 9 =8&1.
\cdot is also available and in many cases juxtaposition alone suffices:

\eval{$ \surd2\surd2 $} = /2/2 =2,
\eval{$ ab $}[a=123,b=1/123] = ab=1, (a=123,b=1/123).

Division can be rendered in multiple ways too. Using a comma list for a multi-
formula evaluation (and the ff setting),

\eval[p=.,ff]1{\[ 42/6, 42\div6, \frac{42}6 \1} —

42/6 =7
42 -6 =17
42
—=T.
6
In a displaystyle environment, \frac displays as shown. In a textstyle envi-
ronment it displays as %. If you want to force a textstyle display, even in

a displaystyle environment, use \tfrac (from amsmath) and, conversely, if you
want to force a displaystyle display, even in a textstyle environment, use \dfrac.
If the package xfrac is loaded, then slash fractions are rendered with scriptstyle
numbers, \eval [p]{\[ \sfrac{42}{6} \1} =

2[5 =7,
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even in a displaystyle environment. If xfrac is not loaded, then numerica
defines \sfrac to expand to a scriptstyle slash fraction, e.g. 42/6.

Note that since juxtaposition means multiplication, a combination like 42%
also evaluates to 7 within an \eval command; it does not mean ‘forty two and
a sixth’ Such fractions need to be entered as improper fractions to evaluate
correctly — for instance, ‘two and a half’ entered as % (as one does anyway in
mathematical expressions because of the ambiguity in a form like 2%)

Powers are indicated with the superscript symbol ~. It is clear from the
braced IWTEX grouping that a ‘tower’ of superscripts is evaluated from the top
down. Thus 32’is 38 (= 9%), not 9% = 729:

\eval{$ 3°{273} $} = 32° = 6561 .

3.2 Square roots and n-th roots

Let us check that 3, 4, 5 and 5, 12, 13 really are Pythagorean triples (I use
\sqgrt in the first, \surd in the second):

\eval [ff]1{\[ \sqrt{372+472}, \surd(5°2+1272) \]1} =

V32+442=5
V(52 +12%) =13

The \sqrt command has an optional argument which can be used for extracting
n-th roots of a number. In numerica, when used with the \sqrt command, n
is assumed to be a positive integer, in practice generally a small positive integer
like 3 or 4.

\eval{$ \sqrt[4]{81} $} — /81 =3,
\eval{$ \sqrt[n]{125} $}[n=\floor{\pi}] — V125 =15, (n=|~x]).

For displaystyle expressions, the \sqrt sign grows to accommodate the extra
vertical height; the \surd sign doesn’t. Here is an example which uses the
\mleft, \middle, \mright commands from the package mleftright (requiring
\usepackage{mleftright} in the preamble of the present document). In the
formula I have enlarged the 3 of the cube root from the default \scriptscriptstyle
visible in the examples above to a more appropriately sized \scriptstyle.

\eval [p=.1{\[ \sqrt[\scriptstyle3]{\!
\mleft(\frac AD\middle/\frac BC\mright)}
\]1}[A=729,B=81,C=9,D=3]

A /B

3 J— — — — — frnd frnd
<D/C> 3, (A=729,B=81,C=9,D=3).
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As implemented in numerica, n-th roots found using \sqrt [n] are restricted
to positive integral n. This raises an interesting question: if the ‘n’ of an n-th
root is the result of a calculation, what happens with rounding errors? The
calculation may not produce an ezact integer. (This problem also arises with
factorials; see §3.7.) The solution employed in version 3.0.0 of numerica is
simply to round to the nearest integer. This is simpler than in previous versions
where an error could be raised in some rare situations. But it does mean that,
e.g. /27 = 3, since 7 rounds to 3. In such cases, for the sake of the reader, a
user should make the rounding explicit — as I did in an example above, wrapping
7 in the \floor command.

3.2.1 n-th roots of negative numbers

Odd (in the sense of ‘not even’) positive integral roots of negative numbers are
available with \sqrt,

\eval[p=.,ff]1{\[ \sqrt[3]1{-125}, \sqrt[3]1{-3.375} \1} =
V=125 = -5
v/—3.375 = —1.5.

3.2.2 Powers of n-th roots

In previous versions of numerica, raising an n-th root to a power when n # 2
gave a false answer unless the n-th root was parenthesized before raising to
the power. From version 3.0.0, the parentheses are unnecessary (but notice the
thin space inserted before the 3 in the second example to improve the visual
appearance):

\evallp=.,ffJ{\[ \bigl (\sqrt[3]1{-8}\,\bigr)~3, \sqrt[3]1{-8}"{\,3} \1}

_—
(V=8)" = -8
y—g° = _3.

3.2.3 Inverse integer powers
Of course to find an n-th root we can also raise to the inverse power,
\eval{$ 817{1/4} $} = 814 =3.

However, raising a negative number to an inverse power generates an error even
when, mathematically, it should not. This matter, which is a product of floating
point representation of numbers, is discussed below in §4.1.7.2.
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3.3 Precedence and parentheses

The usual precedence rules apply: multiplication and division bind equally
strongly and more strongly than addition and subtraction which bind equally
stongly. Exponentiating binds most strongly. Evaluation occurs from the left.

\eval{$ 4+5\times6+3 $} =— 4+5x 6+ 3 =37,
\eval{$ 6\times1073/2\times10"2 $} = 6 x 103/2 x 102 = 300000,

which may not be what was intended. Parentheses (or brackets or braces)
retrieve the situation:

\eval{$ (4+5)(6+3) $} = (4+5)(6+ 3) = 81,
\eval{$ (6\times10°3)/(2\times1072) $} = (6 x 10%)/(2 x 10?) = 30.
When one writes —42 it is not clear what is intended: is it —(42) or (—4)2? In

numerica exponentiating binds most strongly; negative values must therefore
be parenthesized when raised to a power. Thus

\evallpp,ff1{$ -472, (-4)"2 $} = —42=-16, (—4)*>=16.

3.3.1 Command-form brackets

Note that brackets of all three kinds are available also in command form:
\lparen \rparen (from mathtools) for ( ), \lbrack \rbrack for [ ], and
\1lbrace \rbrace for \{ \}.

3.3.2 Modifiers (\left, \right, \big, etc.)

The \left and \right modifiers and also the series of \big... modifiers
(\bigl \bigr; \Bigl \Bigr; \biggl \biggr; \Biggl \Biggr) are available
for use with all brackets (parentheses, square brackets, braces). If you feel
\left, \right give too much space around your formulas, you can use \mleft,
\mright from the mleftright package.

\eval [p=.,ff]{\[ \exp\left(
\dfrac{\1n2}{4}+\dfrac{\1n8}{4}
\right),
\exp\mleft(
\dfrac{\1n2}{4}+\dfrac{\1n8}{4}

\mright)\]1}
lni2 + 1I178 =2
exp { — )=

In2 In8
exp\ Tt ) =%

numerica also accepts the use of left-right modifiers with . (dot) and with /,
but if parentheses are not wanted it can be simpler just to use a \big command:
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\eval [p=.]{\[ \dfrac{3+4}{2+1}\bigg/\dfrac{1+2}{4+56} \1} =
3+4 /142 .
2+1/ 445
Modifiers with their accompanying brackets etc. can be nested.

3.4 Unary functions

The unary functions catered for in numerica (at present) are the trigonometric
and hyperbolic functions, the various logarithms, the exponential function, and
the signum function. Mathematicians delimit the arguments of these functions
not only with parentheses, but also with square brackets and (mathematical)
braces (\{ \}). In KETEX these are available both in explicit character form
and also in the command form of §3.3.1. Of whatever kind, brackets can be
qualified with \1left \right, \bigl \bigr, etc., and \mleft and \mright from
the mleftright package.

3.4.1 Trigonometric functions

KETEX provides all six trignometric functions, \sin, \cos, \tan, \csc, \sec,
\cot. Their arguments are assumed to be in radians unless degrees are explic-
itly ordered, either by entering o (lowercase letter ‘o’, reminiscent of a degree
symbol) in the settings option, or by appending \degree to a number. The
command \degree is defined in numerica (using \ProvideDocumentCommand)
and expands to ° in both text and math modes.)

\eval{$ \sin(\pi/3) $} = sin(n/3) = 0.866025,
\eval[o]{$ \sin 60 $} = sin60 = 0.866025,
\eval{$ \sin 60\degree $} = sin60° = 0.866025.

KTRX also provides the three main trigonometric inverses: \arcsin, \arccos,
\arctan. The three missing inverses — \arccsc, \arcsec, \arccot — are pro-
vided by numerica. In the example, the p setting has been used to attach a
degree symbol to the answer:

\eval[p=\degreel{$ (\arccot 1)/1\deg $} — (arccot1)/1deg = 45°.

Alternatively, you can manually append a \degree command after the \eval
command. Repeating the last example, everything is clearer if the o option is
used:

\eval[o]l{$ \arccot 1 $}\degree = arccot 1 = 45°.
Inverses can also be constructed using the ‘—1’ superscript notation. Thus

\eval [p=\degree,o0]{$ \sin“{-1}(1/\surd2) $} = sin='(1/\/2) = 45°.
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3.4.1.1 Complicated arguments

A general function f of x is usually written f(z): the argument of the function
is delimited by parentheses. In practice, with familiar functions, mathemati-
cians often don’t bother with the parentheses, even when the argument includes
more than one factor: sin %77, cos2nt, lnzy (= Inz + Iny), and so on. So
long as the argument is composed of numbers, constants, variables or \tfrac-
s or \sfrac-s, numerica parses the argument without difficulty and without
requiring parentheses to be inserted. As function arguments become more com-
plicated, parentheses can become necessary to clarify just what expression the

function is acting on. But trigonometric identities like
sin A + sin B = 2sin 2(A + B)cos (A — B)
and especially Fourier series where expressions like

2 2
cos %nt, cos %n(t +1T), sin(N +3)

2rT
T )

: r 1 :
sin 27 (/\ — T) . sin(n+ 1) (z —t),

are a common occurrence, show that in practice parentheses that enclose the
whole argument, even for complicated expressions, are often omitted. Context
makes clear where the function argument ends and mathematicians read the
expressions accordingly.

What should numerica do? Insist that the whole argument be parenthe-
sized? But that results in expressions that are generally less pleasing to the eye
and require more concentration to read, to disentangle the enclosing from the
enclosed parentheses:

T t

sin (L(A+ B)), sin<27r<)\—T>), sin (n + 1)@ — 1)).

Admittedly square brackets and mathematical braces can help here, but math-
ematicians don’t (generally) do this. The examples above are culled from a
number of different texts that I had to hand — I didn’t need to go searching
for them. To insist that formulas be written in a ‘forced’ or pedantic way, goes
against the underlying idea behind numerica: to evaluate expressions in the
form in which they are typeset.

Rather, from version 3.0.0 the recommended way of handling such expres-
sions is to put the whole argument of the function between BTEX braces. (This
applies not only to the trigonometric functions but also to any unary func-
tion.) Yes, inserting IXTEX braces does involve modifying the formula, but it
fits naturally within IXTEX practice and, crucially, it makes no change to the pdf
display. The formula retains its ‘natural’ appearance at the same time as the
full argument is delimited so that numerica knows what to operate on. Thus

\eval{$ \sin{\tfrac16(m+n)\pi} $}[m=1,n=2], —
sini(m+n)r=1, (m=1n=2),
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which is sin %71’, and

\eval{\[
\sin{2\pi\mleft (\frac{x}{\lambda}
-\frac{t}{TH\mright)?}
\1}[x=1,\lambda=2,t=3,T=4]

T t
in2r( —— =1 =-1 =1, A=2t=3T=4
sin 7r<>\ T) , (z , , , )

which is the sine of —3m =21 x (—1).

In earlier versions of numerica there was a setting ()=0, 1, 2 (see Chapter 5 for
a discussion of settings) which changed the way parentheses were parsed and
allowed (most of) these usages. But it was difficult to document and remember
exactly what was and was not allowed at each setting value, meaning the result
of a calculation might not reflect what a user intended. Besides, dealing with
the different setting values complicated the code. From version 3.0.0, with the
use of braces to delimit such arguments, this setting has been withdrawn and
now produces a numerica error message. The use of N TEX braces to delimit the
arguments of mathematical functions is more generally discussed at §2.1.1.2.

3.4.2 Hyperbolic functions

Four of the six hyperbolic functions: \sinh, \cosh, \tanh, and \coth are pro-
vided by EXTEX, and no inverses. numerica fills the gaps, providing the missing
hyperbolic functions, \csch and \sech, and all missing inverses. There is no
agreed notation in common use for the hyperbolic inverses. HMF writes arcsinh,
arccosh, ..., ISO recommends arsinh, arcosh, ..., 13fp uses asinh, acosh, ...
as do the computer algebra system maxima and the spreadsheet LibreOffice
Calc. numerica makes no attempt to decide the issue. From version 3.0.0, it
accepts all three forms for all six functions. All can be used within an \eval
command:

\eval[pp,p=.,ff]1{\[ \atanh\tanh 3, \sinh\arsinh 3,
\arcsech\sech 3 \1}

atanh tanh 3 = 3,
sinh arsinh 3 = 3,
arcsech sech 3 = 3.

As for the trig. inverses, hyperbolic inverses can also be constructed using the
‘—1’ superscript notation. Thus

\eval{$ \coth\coth~{-1}1.5 $} = cothcoth™! 1.5 = 1.5.
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3.4.2.1 Absence from 13fp

Please note that 13fp does not (as yet) provide any hyperbolic functions na-
tively. The values numerica provides for these functions are calculated values
using familiar formulas involving exponentials (for the direct functions) and nat-
ural logarithms and square roots for the inverses. Rounding errors mean the
values calculated may not have 16-figure accuracy. The worst ‘offenders’ are
likely to be the least used, \acsch and \asech. For instance,

1 1 1/2
e
x xr

\eval{$ \csch \acsch 7 $}[15] — cschacsch 7 = 6.999999999999983.

acschz = In

3.4.3 Logarithms

The natural logarithm \1n, base 10 logarithm \1g, and binary or base 2 loga-
rithm \1b are all recognized, as is \log, preferably with a subscripted base:

\eval{$ \log_{12}1728 $} — log;, 1728 =3

If there is no base indicated, base 10 is assumed. (The notations \1n, \1lg,
and \1b follow ISO 80000-2 recommendation, which frowns upon the use of the
unsubscripted \log although only \1n appears to be widely used.) The base
need not be explicitly entered as a number. It could be entered as an expression
or be specified in the vv-list:

\eval*{$ \log_b c $}[b=2,c=1024] = 10,

the log to base 2 in this case. It is possible to use the unadorned \log with a
base different from 10; see §5.2.8.

3.4.4 Other unary functions

Other unary functions supported are the exponential function \exp, and signum
function \sgn, equal to 1, —1, or 0, depending as its argument is positive,
negative or zero.
\eval{$ \sgn(\exp(x)-e7x) $}[x=1],\quad
\eval{$ \sgn(e~x-\exp(x)) $}[x=2].
= sgn(exp(z) —e*) =0, (x=1), sgn(e® —exp(x))=-1, (v=2).
The first of these is expected, the second probably not. exp x is provided by

13fp, a built-in function; e is calculated by numerica, a number (e) raised to
a power. They differ by 1 in the 15-th decimal place:

\eval [f£f]{$ \exp 2, 72 $}[15%] —
exp 2 = 7.389056098930650 €2 = 7.389056098930649.
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3.4.5 Squaring, cubing, ... unary functions

\eval happily digests a familiar but ‘incorrectly formed’ expression like
sin? 1.234 + cos® 1.234.

You do not have to parenthesize like (sin 1.234)%+(cos 1.234)? or (heaven forbid)
(sin(1.234))2 + (cos(1.234))?; the everyday usage is fine:

\eval{$ \sin~2\theta+\cos"2\theta $}[\theta=1.234] —
sin?f 4+ cos?f =1, (6 =1.234) .

Equally \eval has no difficulty reading the ‘correct’ pedantic form

\eval{$ (\sin(\theta)) 2+(\cos(\theta)) 2 $}[\theta=1.234] —
(sin())? + (cos(0))? =1, (0§ =1.234).

A hyperbolic identity is corroborated in this example:
\eval [ff]{\[ \sinh 3x, 3\sinh x+4\sinh~3x \]}[x=1] —
sinh 3z = 10.017875,  (z=1)
3sinhz + 4sinh® z = 10.017875,  (z =1)

In fact all named unary functions in numerica can be squared, cubed, etc., in
this ‘incorrect’ but familiar way, although the practice outside the trigonometric
and hyperbolic contexts seems rare.

When the argument of the function is parenthesized and raised to a power
— like sin()? — it is read by \eval as the ‘sine of the square of pi’, sin(7?), and
not as the ‘square of the sine of pi’, (sinn)?:

\eval{$ \sin(\pi)~2 $} = sin(r)? = —0.430301 .

Things are done like this in numerica above all to handle the logarithm in a
natural way. Surely (see HMF 4.1.11) Inz™ = nlnz? Le. Ina™ = In(2™) rather
than (Inx)". And if we wish to write (as we do) In(1+1/n)" =nln(14+1/n) =
1—1/2n+1/3n? — ... to study the limiting behaviour of (1 + 1/n)", then we
are committed to In(z)"” = nln(z) = In(z™) too.

3.5 n-ary functions

The functions of more than one variable (n-ary functions) that numerica sup-
ports are \max, \min and \gcd, greatest common divisor. The comma list of
arguments (semicolon list if the comma package option has been used) to \max,
\min or \gcd can be of arbitrary length. The arguments themselves can be
expressions or numbers.

As implemented in numerica, for \gcd non-integer arguments are rounded
to integers. Hence both y and 3y are independently rounded in the following
example — to 81 and 243 respectively:
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\eval{$ \gcd(12,10x°2,3y,y,63) $}[y=1/0.0123456789,x=3] —>
ged(12,1022,3y,y,63) = 3, (y = 1/0.0123456789, 2 = 3).

The rounding occurs within the greatest common divisor routine, not in the vv-
list; the variable retains its original value. Modifying the example, this becomes
evident in the sixth decimal place of the new result:

\eval{$ \gcd(12,10x"2,3y,y,63) + y $}[y=1/0.0123456789,x=3] —
ged(12, 1022, 3y, v, 63) + y = 84.000001, (y = 1/0.0123456789,x = 3).

For n-ary functions, squaring, cubing, etc. follow a different pattern from that
for unary functions. The argument of these functions is a comma list. Squaring
it makes no sense and we understand the superscript as applying to the function
as a whole. (Consistency is not the point here; it is how a person reads the
expression that numerica tries to accommodate.)

\eval{$ \gcd(3x,x,\arcsin 1/\deg)~2 $}[x=24] —
ged(3z, @, arcsin 1/ deg)? = 36, (v =24) .

3.6 Absolute value, floor & ceiling functions

It is tempting to use the | key on the keyboard for inserting an absolute value
sign. numerica accepts this usage, but it is strongly deprecated. The spacing
is incorrect — compare | — I| using |, against |—I| using \1lvert \rvert. Also,
with |, the identity of the left and right delimiters makes parsing nested abso-
lute values difficult. numerica does not attempt to do so. \lvert \rvert are
better in every way except ease of writing. To aid such ease numerica pro-
vides the \abs function (using the \DeclarePairedDelimiter command of the
mathtools package). This takes a mutually exclusive star (asterisk) or square
bracketed optional argument, and a mandatory braced argument. The starred
form wraps \left\lvert, \right\rvert around the mandatory argument:

\eval [p=.1{\[ 3\abs*{\frac{\abs{n}}{21}-1} \1}[n=-7] =

n
3| — -1 =2, =-7).
The optional argument provides access to the \big. .. modifiers:

\eval [p=.1{\[
\abs [\Big] {\abs{a-c}-\abs[\big] {A-C}}
\1}[A=12,a=-10,C=7,c=-5]

’\aqu |A—C’|‘ -0, (A=12,a=-10,C=T,c=—5).

The form without either option dispenses with modifiers altogether:
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\eval{$ \tfracl2(x+y)+\tfraci2\abs{x-y} $}[x=-3,y=7]. =
sEry)tsle—yl =7 (z=-3y=7).

As noted, the star and square bracket options are mutually exclusive.

numerica also provides the functions \floor and \ceil, defined in the same
way, taking a mutually exclusive star or square bracketed optional argument,
the starred forms wrapping \left\1floor, \right\rfloor or \left\lceil,
\right\rceil around the mandatory argument, and the square bracket option
forms replacing the \left and \right with the corresponding \big commands
(see the \abs example above). The form without star or square-bracket option
dispenses with any modifier at all.

\eval[pp,ff]1{$ \floor{-\pi}, \ceil{\pi} $} = |-n| =—4, [n]=4

The floor function, |z, is the greatest integer < x; the ceiling function, [z] is
the smallest integer > x. Like the absolute value, the floor and ceiling functions,
can be nested:

\eval{$ \floor{-\pi+\ceil{e}} $} = |-7+ [e]| = -1

3.6.1 Squaring, cubing, ... absolute values, etc.
These three functions can be raised to a power without extra parentheses:
\evall[pp,ff1{$ \ceil{e}"2, \floor{e} 2 $} = [e]2 =19, l|e|?=4,
\eval{$ \abs{-4}"2 $} = |—4|> = 16.

3.7 Factorials, binomial coefficients

Factorials use the familiar trailing ! notation:

\eval{$ 7! $} = 7! = 5040,
\eval{$ (\alpha+\beta)!-\alpha!-\beta! $}[\alpha=2,\beta=3] —
(a+B)!—al—p'=112, (a=2,8=3).

The examples illustrate how numerica interprets the argument of the factorial
symbol: it ‘digests’

« a preceding (possibly multi-digit) integer, or
e a preceding variable, or

o a bracketed expression, or

o a bracket-like expression.

A bracket-like expression is an absolute value, floor or ceiling function, since
they delimit arguments in a bracket-like way:

96



\eval{$ \abs{-4}!+\floor{\pi}!+\ceil{e}! $} —
|—4|!'+ [7|! + [e]! = 36.

The result of feeding the factorial an expression different in kind from one of

these four cases may give an error message or an unexpected result. Use paren-

theses around such an expression; for example write (32)!, rather than 32!.
Nesting of brackets for factorials is accepted:

\eval{$ ((5-2)1+1)! $} = ((5—2)!+ 1)! = 5040.

The factorials of negative integers are not defined and raise a numerica error. It
simplifies the code to treat the factorial of a positive non-integer as the factorial
of the integer it rounds to, rather than raising an error. For the sake of the
reader, in such circumstances, an author should make the rounding explicit:

\eval{$ \floor{\pi}! $} = |=|! =6.
This rounding to an integer is different from the behaviour in earlier versions of
numerica but should make no noticeable difference.

3.7.1 Double factorials

The double factorial, written n!!, is the product n(n—2)(n—4)...x 4 x 2 when
n is even, and the product n(n —2)(n —4)... x 3 x 1 when n is odd:

$\evall[pp,ffl{6!!, 5!1}$ — 48, 15.

As with factorials, the double factorial sign can be appended to a (possibly multi-
digit) number, a variable, a bracketed expression or a bracket-like expression.

\evallenv=\[,ff]{ n!!, (n-1)!!, \abs{2-n}!! }[n=\sqrt{49}] —
nll =105,  (n=+/49)
(n—1)1=48,  (n=+/49)
2-n|l=15,  (n=+49)
Since n! = n!l(n — 1)1,

Lol (nt 1)
[ P YT PAEE D YT

on multiplying top and bottom by n + 1. Putting n = 0 in the left and right
expressions shows that 0!! = 1. Now put n = 0 in the left and middle expres-
sions. We deduce that (—1)!! = 1. Tt follows that double factorials are defined
for integers > —1.
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3.7.2 Binomial coefficients

Binomial coefficients are entered in IXTEX with the \binom command. It takes
two arguments, \binom{a}{b} and scales like \frac: inline it displays as (‘Z),

and in displaystyle as
a
b

One can force textstyle with \tbinom and force displaystyle with \dbinom. As
implemented in numerica, these are generalised binomial coefficients:

z zx—1)...(x—k+1)
(’f): k(k—1)...1 , (zeR, keN),

where x need not be a positive or zero integer, and where (”5) = 1 by definition.

\eval [pp,p=.,ff]{$ \tbinom53, \tbinom70 $} — (g) =10, (g) =1.

The first (or upper) argument can be any real number; it does not need to be
an integer or positive: recalling that 72 ~ 9.87,

\eval [pp,p=.,ff]{$ \tbinom94, \tbinom{\pi~2}4, \tbinom{10}4 $}[3]—

() =126, (%) =197.187, (') = 210.

If the second (or lower) argument of \binom is negative, numerica responds
with a message:

\eval{$ \binom 5{-3} $} = !ll Integer > 0 required in {arg2} of: binomial
coeff. 1.

If the second argument is positive but not an integer, numerica rounds it to the
nearest integer before calculating the binomial coefficient:

\eval[pp,ff]{$ \binom 5e, \binom 53 $} — (5) =10, (g) = 10.

€

This differs from previous versions of numerica which would raise an error in
this case. Although positive non-integers are now rounded to the nearest integer,
out of consideration for the reader, an author should make explicit the fact that
an integer has been used. In the example I should have written \ceil{e} rather
than e.

3.8 Sums and products

numerica recognizes \sum, displaying as >, and \prod, displaying as [], and
expects both symbols to have lower and upper summation or product limits
specified. The lower limit must be given in the form wvariable=initial value
where variable is the summation or product variable; the upper limit requires
only the final value to be specified (although it can also be given in the form
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variable=final value). The values may be expressions depending on other vari-
ables and values, and are rounded to integers. This differs from earlier versions
of numerica where, if the result of a calculation differed too much from an in-
teger, it prompted an error message. Now the rounding happens automatically,
whatever the value. As in other similar contexts, for the sake of the reader an
author should ensure that the integer value is explicit:

\eval [p]{\[ \sum_{n=\floor{\pi/e}}"{\ceil{\pi e}In \1} =
[me]

Z n = 45,

n=|m/e]

(which is 22:1 n). If the upper limit is less than the lower limit the result is
zero. Notice that there is no vv-list. The summation variable does not need to
be included there unless there are other variables that depend on it. However,
in the case

\eval [p]{\[ \sum_{k=1}"N\frac1{k"3} \]1}[N=100] [4] =

Al
> 3 =1.202, (N =100),
k=1

the upper limit N is necessarily assigned a value in the vv-list.

To the author it seems natural to enter the lower limit first, immediately
after the \sum command (the sum is from something to something), but no
problem will accrue if the upper limit is placed first (after all, the appearance
of the formula in the pdf is the same):

\eval [p=.1{\[ \sum"N_{k=1M\fraci{k"3} \1}[N=100] [4] =

|
> 3= 1202, (N =100).
k=1
Another example of a sum, using binomial coeflicients this time, is

\eval[p]{\[ \sum_{m=0}"5\binom{5} H{m}x"m y~{5-m} \]1}[x=0.75,y=2.25]
BN

5
5
> ( )zmgﬁm = 243, (z = 0.75,y = 2.25),

which is just
\eval{$(x+y) "5$} [x=0.75,y=2.25] = (v +y)° =243, (v =0.75,y = 2.25),

or 3°. Now let’s calculate a product:
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\eval [p]{\[
\prod_{k=1}"{100}
\biggl (\frac{x"2}k"2\pi~2} +1\biggr)
\1}[x=1][3]

100 /o
II<5%2+1):1IM, (x=1),

k=1
to be compared with \eval{$ \sinh 1 $}[3] = sinh1 = 1.175. Obviously
more terms than 100 are required in the product to achieve 3-figure accuracy.

3.8.1 Infinite sums and products

How many more? Let’s ‘go the whole hog’ and put oo in the upper limit of this
product:

\eval [p=.1{\[
\prod_{k=1}"{\infty}
\biggl (\frac{x"2}{k"2\pi~2} +1\biggr)
\1}[x=1][3]

II(Wﬁ+&>:11M, (z=1).

k=1

Disappointingly, we still get the same result, deficient by 1 in the third decimal
place. Obviously numerica has not multiplied an infinite number of terms and,
just as obviously, the finite number of terms it has multiplied are too few. How
numerica decides when to stop evaluating additional terms in an infinite sum
or product is discussed below in §3.8.2.

For this particular product the problem is that it converges slowly. Any cri-
terion for when to stop multiplying terms or, for an infinite sum adding terms,
seems bound to fail whenever convergence is sufficiently slow. Presumably any
stopping criterion must measure smallness in some way. But terms of the diver-
gent harmonic series Y (1/n), for example, can always be found smaller than
any value we care to specify. It is not surprising that a stopping criterion will
fail when convergence is slow enough. However, the default criterion can be
changed: again, see below in §3.8.2.

Other infinite sums converge more rapidly, and the default settings work
admirably for them. For example

\eval{$ (1+0.1234)°{4.321} $} = (1 + 0.1234)*32! = 1.653329.
Using binomial coefficients we can express this as an infinite sum:
\eval[p=.1{\[

\sum_{n=0}"{\infty}\binom{\alpha}{n}x~{n}
\]1}[\alpha=4.321,x=0.1234]
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Table 3.1: Stopping criterion settings

key type meaning default
S+ int extra rounding for sums 2
S? int >0 number of query terms for sums 0
P+ int extra rounding for products 2
P? int >0 number of query terms for products 0

(oo}
3 (Z) 2" = 1.653329, (o = 4.321, 2 = 0.1234).

n=0

3.8.2 The stopping criterion

There are ways of tweaking various parameters to nudge infinite sums and prod-
ucts to a correct limit. These tweaks are applied via the settings option of the
\eval command.

The normal convergence criterion used by numerica to determine when to
stop adding/multiplying terms in an infinite sum/product is when the next term
added/multiplied leaves the total unaltered when rounded to 2 more digits than
the specified rounding value. Suppose Ly is the partial sum/product after k
terms, and r is the rounding value.! Let (Ly), denote Ly rounded to r figures.
The infinite sum or product stops at the (k+1)-th term (and the value is attained
at the k-th term) when (Liy1), o = (Lg),,o- The hope is that if this is true
at rounding value r + 2 then at rounding value r the series or product will have
attained a stable value at that smaller rounding value.

For a series of monotonic terms converging quickly to a limit, this stopping
criterion works well, less so if convergence is slower, as seen earlier with the
infinite product for sinh 1. The criterion can fail completely when terms behave
in a non-monotonic manner. Terms of a Fourier series, for example, may take
zero values so that L1 = Ly and, a fortiori, (LkH)H_2 = (Lk)r+2? the criterion
is necessarily satisfied but the series may still be far from its limit. In a product
the equivalent would be a term taking unit value. Sometimes the initial terms
of series or products are ‘irregular’ and take these ‘stopping’ values meaning
sum or product would stop after only one or two additions/multiplications and
far from any limit.

To cope with these possibilities, numerica offers two settings for sums, two
for products, summarized in Table 3.1. These are entered in the settings option
of the \eval command.

e S+=<integer> (P+=<integer>) additional rounding on top of the spec-
ified (or default) rounding for the calculation; the larger <integer> is, the

k
n=1

'E.g. if T(n) is the n-th term then the partial sum Ly = > T(n).
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more likely that sum or product has attained a stable value at the specified
rounding value r; default = 2

e S7=<integer> > (0 (P?7=<integer> > (0) the number of terms to query
after the stopping criterion has been achieved to confirm that it is not an
‘accident’ of particular values; default = 0

— once the stopping criterion has been met, we add /multiply these next
few terms to the result and check at each step whether the result is
unchanged at the specified rounding value. Suppose the additional
rounding (S+ or P+) is 07 on top of the specified rounding r and let the
number of query terms be ¢. (By default 7 = 2 and ¢ = 0.) Suppose
Ly, is the first term at which the stopping criterion is achieved. That
means (L, ),y s, = (Lko+1),4s,.- What we require of the query terms

is that (Lig), 5p = (Lkg+145)pysr f0r 5 =0,1,...,¢.

Earlier we found that the infinite product for sinh 1 with the default settings
gave the wrong value, 0.174, deficient by 1 in the last digit. We now have the
means to tweak the stopping criterion by increasing the additional rounding:

\eval [p,P+=3]1{\[

\prod_{k=1}"{\infty}

\biggl (\frac{x"2}{k"2\pi~2} +1\biggr)
\1}[x=1] [3]\nmcInfo{prod}.

H<k2 5 +1) =1.175, (x=1),
e

k=1

350 factors. To obtain that last item of information (350 factors), I've antic-
ipated a little and used the command \nmcInfo with the argument prod (see
§6.1). The product now produces the correct three-figure value, but it takes 350
factors to do so.

Knowing how many terms or factors have been needed helps assess how
trustworthy the result from an infinite sum or product is. For example, for the
exponential series,

\eval[p]{\[
\sum_{k=0}"\infty \fraci{k!'}
\1}[9]\nmcInfo{sum}.

— 1

> o7 = 2718281828,

k=0
To 9 places of decimals, using the default value S+=2, the exponential series
arrives at the right sum after only 15 terms. Convergence is rapid. We can
trust this result (and it is in fact the correct nine-figure value). By contrast,
if we didn’t know the value of sinh 1 beforehand, noting the number of factors

62



required would make us justly cautious about accepting the result of the infinite
product calculation.

One way to gain confidence in a result is to choose a possibly unrealistic rounding
value r — say the default 6 for the infinite product — then use negative values
for the additional rounding, S+=-5, S+=-4, ... , so that the stopping criterion
applies at rounding values s = r+ S of 6+(—5) = 1 decimal place, 6+(—4) = 2
decimal places, and so on, but the result is always presented to 6 decimal places.
You can then see how the 6-figure results behave relative to the number of terms
it takes to meet the stopping criterion. A little experimenting shows that for
the infinite product for sinh 1 the number of factors N required at a stopping
rounding value s increases in geometric proportion with a scale factor of about
3: N =~ const x 3°. This rapidly becomes large (3* = 81,35 = 243...). For the
exponential series on the other hand Ny = 4 + s, the number of terms increases
only slowly, in direct proportion to the stopping rounding value.

Similar experiments with the sums of inverse fourth, third and second powers
of the integers, using \nmcInfo to find how many terms are required at each
stopping rounding value, show that at least over the rounding value range 1
to 8, for inverse fourth powers Ng &~ const x 1.7°, for inverse third powers
N; = const x 2° and for inverse squares N; =~ const x 3°. All are geometric
rather than arithmetic progressions, but for inverse fourth powers the scale
factor (= 1.7) is sufficiently small that for these low values of s the number of
terms required does not grow too quickly (e.g. 1.7% ~ 24).

It is a standard result (Euler) that the inverse fourth power series sums to
74/90: $ \eval{ \pi~4/90 } $ = 1.082323 to six places, and indeed, with
the default rounding value 6 and default extra rounding S+=2,

\eval [p]{\[ \sum_{k=1}"\infty \fraci{k"4} \1} =

=1
Z == 1.082323.
=il

3.8.2.1 Premature ending of infinite sums

All the series considered so far have been monotonic. Trigonometric series will
generally not be so, nor even single-signed.

Trigonometric sums are computationally intensive and so, for the following
example, I have specified a rounding value of 2. The series

o0
4
Z 53 (1 — cosnm) cos 2mnt
n=1

is the Fourier series for the triangular wave function \AA/A ... of period 1,

63



symmetric about the origin where it takes its maximum value 1, crossing the t-
axis at ¢t = 0.25 and descending to its minimum —1 at ¢ = 0.5, before ascending
to a second maximum at ¢ = 1 (and so on). In the interval [0,0.5) the series
should sum to 1—4¢. The problem is that the summand — (1—cos nr) cos 2rnt
vanishes both when n is even and when 4nt is an odd integer. If £ = 0.1 then
4nt is never an odd integer so the summand vanishes only for n even, every
second term. We expect the result to be 1 —4 x 0.1 = 0.6.

\eval [p]{\[
\sum_{n=1}"{\infty}
\frac{4H{n~{2}\pi~{2}}
(1-\cos n\pi)\cos2\pi nt
\1}[t=0.1] [2]1\nmcInfo{sum}.

— 4

Z 53 (1 = cosnm) cos 2nt = 0.66, (t=0.1),
n=1

1 term. Only one term? Of course — in the second term n = 2 is even so the term

vanishes and the stopping criterion is satisfied. The way around this problem

is to query terms beyond the one where the stopping criterion is achieved, i.e.

to set S? to a nonzero value. We try S7=1:

\eval [p,S?7=11{\[
\sum_{n=1}"{\infty}
\frac{4Hn " {2}\pi~{2}}
(1-\cos n\pi)\cos2\pi nt
\1}[t=0.1] [2]\nmcInfo{sum}.

> 4
Z 5— (1 — cosn) cos 2mnt = 0.6, (t=0.1),
= nPr

65 terms.

Table 3.2 lists the results of evaluating the par- Table 3.2: Partial sums
tial sums from n = 1 to n = N for values of N

around 65. Since the specified rounding value is 2 N by

for the calculation, the stopping criterion applies 63 0.6001
at a rounding value of 2 + 2 = 4. Since N = 64 64  0.6001
is even, the 64th term is zero and the sum takes 65 0.5999
the same value as for N = 63. The 65th term is 66 0.5999
the query term and the sum differs, so the sum- 67  0.5999

mation continues. The 66th term vanishes, so the
stopping criterion is met. This time for the query
term, the 67th, the sum retains the same 4-figure value, and the summation
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stops. The result was attained at the 65th term. Should we be confident in the
result? Increase the number of query terms to 3 (there is no point in increasing
S? to 2 because of the vanishing of the even terms); the sum stops after 113
terms, with the same 0.6 result.

For a final example, consider the error function

£ 2 /Z —*
ert 2 = —= e
V7 Jo

which can also be rendered as an infinite sum (HMF 7.1.5):

e Z2n+1
_ _1\n
erf z = ZO( 1) T

(\erf expanding to erf has been defined in the preamble to this document using
\DeclareMathOperator.) We calculate this sum when z = 2 to 10 places of
decimals. Although this is an alternating series, it is obvious that the summand
never vanishes when z # 0 as here. Hence there seems no need to change the
default value $7=0.

\eval [p]{\[
\frac2{\sqrt{\pi}}
\sum_{n=0}"\infty(-1)"n
\frac{z"{2n+1}}{n!'\, (2n+1)}
\1}[z=2] [10*] \nmcInfo{sum}.

22n+1

2
=3 () = 0.9953222650 =2
ﬁn:o( ) n!(2n+1) ’ (z=2),

26 terms. According to HMF Table 7.1, this calculated value of erf 2 is correct
to all 10 places. But beyond z = 2 errors will begin to interfere with the
result. Note that 26 terms means n = 26 was the last value of n for which the
summand was evaluated. (The sum stops at the 26th term, n = 25, but the next
term n = 26 needs to be calculated for the stopping criterion.) Fortuitously,
22x26+1 — 953 g the greatest power of 2 that can be ezactly rendered to the 16
significant figures that 13fp uses. But n! exceeds the 16-significant figure limit
of 13fp when n > 21, so despite the 10-figure result, errors have already begun
to occur in the denominator of the summand and accrue in the sum when z = 2.
For larger z values the errors can only get worse and at some point will render
the calculated value worthless at any meaningful rounding value. For example,
when z = 7 the sum apparently ‘evaluates’ to over 929 whereas we know that

erf z < 2 /OO e*'52 dt =1
z < — =1.
V7 Jo
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3.8.2.2 Double sums or products

Sums or products can be iterated. For instance, the exponential function can
be calculated this way:

\eval [p]
{\[ \sum_{k=0}"{\infty}
\prod_{m=1}"{k}\frac{x}{m} \1}[x=2]

o k
STI % — 7.389056,  (z=2),

k=0m=1

which is \eval{$ e"2 $} = 7.389056.
A second example is afforded by Euler’s transformation of series (HMF 3.6.27).
To calculate e~ we use

\eval [p]
[ \sum_{n=0}"{\infty}
\frac{(-1)"{n}}{n!'} \1}[3]\info{sum}.

n

= (—1
Z( |) = 0.368,
"e0 n:

9 terms. Following Euler, this series can be transformed to the form

\eval[p,S?=11{\[
\sum_{k=0}"\infty \frac{(-1)"k}{2 {k+1}}
\sum_{n=0}"k(-1) "n\binom kn \fraci{(k-n)!}
\]}[3]\nmcInfo{sum}.

U Sy (B2
> o 7;)(—1) <n>(k_n)!:0.368,

k=0

16 terms. Note the setting S7=1. Without it, the summation stops after 1 term,
the &k = 0 term, because the k = 1 term vanishes. With S7=1 it takes 16 terms
of the outer sum to reach the stopping criterion. Since that sum starts at 0,
that means that changing the upper limit from oo to 15 should give the same
result — which it does, taking % X 16 x 17 = 136 terms in total to get there,
to be compared with the 9 terms of the earlier simpler sum, and the terms are
more complicated. Obviously such double sums are computationally intensive.

3.9 Formatting commands

There are many formatting commands which change the layout of a formula on
the page but do not alter its calculational content. numerica copes with a great
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many of these, although there will surely be some that have been overlooked?
and which will trigger an ‘Unknown token’ message; see §4.

3.9.1 Spaces, phantoms, struts

These include cryptic forms like \, \: and \>, \; and the corresponding ‘ver-
bose’ forms, \thinspace, \medspace and \thickspace and their negative equiv-
alents \! or \negthinspace, \negmedspace and \negthickspace:

\eval{$ 1\negthickspace+\negthickspace 1 $} = 1+1 =2

which is a tiny bit tighter than the text spacing, 141, and much tighter than
the usual math spacing 1+ 1 — but it doesn’t affect the result of the calculation.

Other spacing commands are \quad and \qquad, and \hspace{arg} and
\mspace{arg}. For \hspace there is also a starred form, \hspace*{arg}.
Phantoms similarly take an argument: \phantom{arg}, \hphantom{arg} and
\vphantom{arg}.

\eval{$ 1\hphantom{mmm}+\hphantom{mmm}1 $} = 1 + 1=2.

Like \vphantom, struts allow vertical spacing adjustments. numerica should
digest both \xmathstrut [optarg] {arg} from mathtools and its ‘baby cousin’
\mathstrut from TEX. An example from The TEX book demonstrating the use
of \mathstrut is

\eval{$\sqrt{\mathstrut a}+\sqrt{\mathstrut d}+
\sqrt{\mathstrut y}$}[a=4,d=9,y=16]

= Va+/d+\y=9, (a=4,d=9,y=16).

And here is an evaluation of a somewhat ridiculous expression modified from
the mathtools documentation that uses \xmathstrut:

\eval{\[ \frac{ \frac{\xmathstrut{0.1} 2\ceil x-1}
{ \xmathstrut{0.25} \ceil x-\sin x } }
{\xmathstrut{0.4} \sqrt{10-\ceil x} } \1}
[x=\pi/6]

2[z]—1

[z]—sinz

V10 — [x]

3.9.1.1 \mkern, \mskip

= 0.666667,  (x = /6)

From version 3.0.0, both \mkern and \mskip are recognized by numerica.
\mkern should be followed either by an explicit space specification in mu (math

2Please contact the author in that case: ajparsloe@gmail.com
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units), like 3 mu (or 3mu), or a control sequence containing such a specifica-
tion; \mkern should be followed by an explicit ‘glue’ specification or a control
sequence containing such a specification. A glue spec. is a distance in mu pos-
sibly followed by some stretch and shrink, e.g. 3 mu plus 1 mu minus 2 mu
(or 3muplusimuminus2mu) with or without the plus and minus parts. A silly
example of the use of \mkern and \mskip is the following:

\def\negvmu{-5mu}
\eval [env=$]{ 1 \mkern \negvmu +
\mskip 18mu plus 6mu minus 9mu 1 }

= 14+ 1=2

3.9.2 \splitfrac, \splitdfrac

The mathtools package provides \splitfrac and \splitdfrac to aid handling
of clumsy fractions. I've mangled the example in the mathtools documenta-
tion illustrating this command to produce an even more ridiculous illustration,
adding to the mess an enormous square root, \left and \right modifiers, and
command-form parentheses; also the use of \dfrac. In the other direction, the
vv= in the settings option suppresses the vv-list (see §5.3.2.3). A little mental
arithmetic will convince that we are evaluating the square root of (9 x 7)? which
indeed is what we get:

\eval [p=. ,vv=]
{\[ \sqgrt{ \left\lparen
\frac{ \splitfrac{xy + xy + xy + xy + xy}
{+ xy + xy + xy + xy}
}
{ \dfrac z7}
\right\rparen \left\lparen
\frac{ \splitdfrac{xy + xy + xy + xy + xy}
{+ xy + xy + xy + xy}
}
{\dfrac z7}\right\rparen}
\1}[x=2,y=5,2z=10]

-
Y+ xy + 1Y + Y + Y Ty +xy + 1y + Y + 7Y
+zyt+xy+ 2y +ay +zytaxy+oxy+ay
7 7

3.9.3 Colour

(Anglicised spelling at least for the heading!) If you add to the preamble of your
document the line
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\usepackage{color}

two commands become available, \textcolor [optarg] {argl}{arg2} and the
declaration form of command, \color[optarg]{arg}. numerica readily ac-
cepts the former in a formula to be evaluated:

\eval{$ \sin \tfrac\pién\textcolor{red}{T}+1 $}[T=9,n=3] —
singnT +1=2, (T=9,n=3)

(assuming you had some wish to highlight the time T'). You can even colour
the T in the vv-list too, but it adds a lot of typing for a small gain:

\eval{$ \sin \tfrac\pibn\textcolor{red}{T}+1 $}[\textcolor{red}{T}=9,n=3]
= sinfnl'+1=2, (T'=9,n=23).

However \color is a declaration form of command. It has effect until the end
of the current group or environment. If you want to restrict it to only part of
that group you need to em-brace the command and what it is to apply to,

<pre-stuff>{\color{red}<red-stuff>}<post-stuff}

but that is where the problem arises. ‘Unannounced’ brace groups (see §2.1.1.2)
can easily result in unexpected results or IXTEX errors. Writing

\eval{$ \color{red} \sin \tfrac\pi6nT+1 $}[T=9,n=3]1—
singnT +1=2, (T'=9,n=3)

is fine. So too, because the \color command is ‘trapped’ within the braces
defining the first argument of the \frac, is

\eval{$ \frac{\color[gray]l{0.5}A}B $}[A=12,b=4]
:>§ =3, (A=12,B=4).

(Both arguments of the \color command have been used for grayscale output.)
Also fine is

\eval{$ 3{\color{red}x}+1 $}[x=2] = 3 +1=7, (x=2)

because juxtaposition in this case means multiplication, but substituting the
actual value 2 for x produces

\eval{$ 3{\color{red}2}+1 $} — 32+ 1 = 33.

Recall the discussion at §2.1.1.2. An wunannounced brace group is simply ap-
pended to what has gone before. The resulting juxtaposition of 3 and = means
multiply which was what was intended, but the juxtaposition of 3 and 2 has
quite a different meaning.
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3.9.4 \text, \mbox and font commands

The content of a \text or \mbox command is ‘nvisible to the \eval command
and is ignored in calculations,

\eval*{ 1/0.0123456789 \mbox{approx.\ 81} }[5] = 81,

even when the \text or \mbox contains mathematical content. The author’s
view is that these commands are likely to be used for comments, annotations,
or remarks, rather than to modify symbols of calculational significance.

Conversely, specific font commands, like \mathbf or \textrm, may well ap-
ply to such symbols and so there content should be wvisible to \eval. This be-
comes useful should numbers be input in scientific notation (see §5.2.1) where
\textrm or \texttt may be useful so that a number in scientific notation like
2e-1 appearing in a formula or the vv-list can display correctly rather than
inappropriately as the algebraic expression 2e — 1.

The complete list of font commands where the content is visible to \eval is

1. \mathrm{}, \mathit{}, \mathtt{}, \mathbf{}, \mathsf{}, \mathcal{},
\mathbb{}, \mathfrak{}, \mathscr{}

2. \textrm{}, \textsf{}, \texttt{}, \textit{}, \textsl{}, \textbf{},
\textsc{}

The commands \mathbb{} and \mathfrak{} require the amsfonts package
to be loaded; \mathscr requires the euscript package to be loaded with the
mathscr package option.

3.10 Environment precedence

Math environments are relevant particularly for multi-formula calculations. For
a single formula evaluation, either an inline ($) or equation* (\[) environment
is probably all that is needed.

The environment of a calculation is determined in one or two of three ways:
first, \eval may sit within an environment,

\begin{env}
\eval{...}
\end{env}

Second, the env setting may be used, \eval[env=...]{...}. And third, \eval
may wrap around an environment, e.g. \eval{\[...\]}. Should a user, inad-
vertently or otherwise, specify ‘extra’ environments in a calculation, the environ-
ment wrapping around \eval takes precedence over the env-setting environment
which takes precedence over the environment wrapped within \eval:

$\eval[env=align,pp,f£1{\[ \pi,e,\phi,\gamma \]1}[3]$ =
3.142, 2718, 1.618, 0.577.
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As you can see, the inline $ delimiters have prevails over the align environment
and \ [ \] delimiters.

Of course for the -ed environments of amsmath a surrounding math environ-
ment is necessary — as it is for cases, dcases and array environments. If \eval
wraps around an -ed or like environment, the surrounding environment may ei-
ther be env-specified or wrap around \eval (and if both are used, inadvertently
or otherwise, the latter takes precedence).

Having these three different ways of specifying the environment may seem like
overkill, but they are likely to arise in different contexts. The author envisaged
a user writing an expression within an environment and then wondering what
it evaluates to. Surely it is natural in this case just to wrap \eval around
the lot, environment and expression, and let it, \eval, do the formula=result
typesetting. Or, one may enter an expression into \eval before deciding on
the environment. How much easier just to write env=align* (or whatever the
environment chosen is) in the settings option than to insert \begin{align*}
before the expression and \end{align*} after. Finally, \eval can find itself
within a surrounding environment in many ways. It may be necessary in order
to use an AMS -ed environment, or it may occur in a context like that in
§1.1.6.2. The upshot is that all three ways of specifying environments should
be — and are — catered for as of version 3.0.0.
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Chapter 4

Error messages

There are two kinds of error in numerica: those in the underlying I¥TEX which
are reported in the ITEX log and shown on the terminal, and generally halt
compilation, and specifically numerica-related errors which do not halt compi-
lation and produce messages displayed in the pdf where one would expect the
result of the calculation to be. The original reason for doing things this way was
to enable numerica to be used effectively with the instant preview facility of
the document processor LyX. More philosophically, one might view such errors
as similar to errors of grammar or spelling mistakes in text. It is not clear that
they should halt compilation.

Hence strictly numerica-related errors leave brief messages in the pdf at the
offending places. From version 3.0.0 of numerica they also leave messages in
the BTEX log like

numerica error on line <n> in <location>

where <location> will usually be formula or variable=value list or possibly
some more specific location like sum or product. <n> is the line number in
the .tex file where the error occurs. These messages in the log do not halt
compilation. They allow the user to pinpoint — especially helpful in a long
document — the actual line in the .tex file where the numerica error occurs.

Before discussing specific error messages, note that there is a debug facility
(of a sort) discussed below in §5.1.

4.1 Specific messages

numerica error messages that appear in the pdf in place of the expected result
are in two parts: a what part and a where part.

4.1.1 Mismatched brackets

An unmatched left parenthesis or other left bracket (in this case a missing right
parenthesis) usually results in a numerica error:
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$\eval{\sin(\pi/ (1+x) }[x=1]1$ = !l Unmatched ( in: formula. !

For the same error in the vv-list, the what-part remains unchanged but the
where-part is altered:

$\eval{ 1+y }[x=1,y=\sin(\pi/(1+x)]$ —
Il Unmatched ( in: variable=value list. Il

An unmatched right parenthesis or other right bracket (in this case a missing
left parenthesis) usually results in a similar numerica error:

$\eval{2((x+y)/(y+2))) "2} [x=1,y=2,2=3]% —
Il Unmatched ) in: formula. !l

But note that an unmatched modifier like \1eft or \right is a I TEX error and
is caught by ITEX before numerica can respond and so results in a terminal
and logfile message.

4.1.2 Unknown tokens

An ‘Unknown token’ message can arise in a number of ways. If an expression
involves a number of variables, some of which depend on others, their order in
the vv-list matters:

$\eval{\tfracl2 vt}[t=2,v=gt,g=9.8]$ = !lI Unknown token t in:
variable=value list. !!!

The vv-list is evaluated from the right so that in this example the variable v
depends on a quantity t that is not yet defined. Hence the message. The remedy
is to move t to the right of v in the vv-list.

Similarly, if we use a variable in the formula that has not been assigned a
value in the vv-list, we again get the ‘Unknown token’ message, but this time
the location is the formula:

$\eval{\pi r~2h}[r=3]$ = !!l Unknown token h in: formula. !!!

The remedy obviously is to assign a value to h in the vv-list.
The same message will result if a mathematical operation or function is used
that has not been implemented in numerica:

$\eval{u \bmod v }[v=7,u=3]1$ — !!l Unknown token \bmod in: formula.
1

A missing comma in the vv-list will generally result in an unknown token mes-
sage:

$\eval{axy}[a=3 y=2,x=1]$ = !l Unknown token y in: variable=value list.
"
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Because of the missing comma, numerica sees only two variables in the vv-list,
x and a and assumes a has the ‘value’ 3y=2, an expression which it then tries
to evaluate, but y has not been assigned a value. Parenthetically, if you give y
a value, say y=2/3, the expression evaluates, treating the combination 3 y=2 as
a comparison evaluating to true for this value of y, meaning a=1 and

$\eval{axy}[a=3 y=2,y=2/3,x=11$ — 0.666667.
Eztra commas in the vv-list should cause no problems:
$\eval{axy}[,a=3,,y=2,x=1,1$ = 6 .

The presence of multi-token variables can also cause an unknown token message
if the check for such variables is turned off; see §5.2.2.

4.1.3 Overlooked value assignments

Perhaps if one is evaluating a long formula with a number of variables and
assigning different experimental values to them to see the effect, a variable
might be overlooked (I have done this). The example is too simple to be a likely
candidate for this error but shows the message:

$\eval{axy}[a=3,y=,x=11$ = !l No value for y in: variable=value list. !l!

In the example the variable y has been overlooked. The remedy is obvious.

4.1.4 Negative integers in the wrong place

Factorials (apart from the double factorial (—1)!! = 1), binomial coefficients,
and n-th roots, require positive or at least non-negative integers.

\eval{$ \sqrt[-1]1{2} $} = !!l Integer > O required for [arg] of: \sqrt. !!!
\eval{$ (-3)! $} = !!l Integer > O required in: factorial. !!!

\eval{$ \binom{7}{-3} $} = !l! Integer > O required in {arg2} of: binomial
coeff. Il

4.1.5 Invalid base for \log

ISO recommends using \log only with a subscripted base specified, a recommen-
dation honoured in the breach rather than the observance. numerica assumes
that when \log is used unsubscripted, the base is 10 and that \1n is used for
base e. Suppose you want to make 12 the base, but forget to put braces around
the 12:

$\eval{ \log_12 1728 }$ —
! Valid base required for \1og in: formula. !!!

Here, numerica has taken 1 as the base (and 2 as the argument) of the logarithm
and responds accordingly.
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4.1.6 Environment errors

Errors can arise from environments wrongly used, although environmental prece-
dence (§3.10) sidesteps a number of apparent problems. Some environments —
aligned, alignedat, gathered, cases, dcases and array — can be used only
within another math environment. Thus

\eval [env=aligned,ff]{ \sin x, \cos x, \tan x }[x=\pi/6] = !l!
Math mode needed for aligned environment in: settings. !!!

The remedy, obviously, is to put the \eval command between, say, \[, \]
delimiters. In the other direction, because of environment precedence, forgetting
the ed at the end of the env-ironment does not result in an error but displays
the result in the outer, wrapping environment:

\[ \evall[env=align,p=.,ff]
{ \sin x, \cos x, \tan x}[x=\pi/6] \]

0.5, (x =m/6)
0.866025, (x =7m/6)
0.57735, (x =m/6).
An unknown environment produces a message:

\eval [env=fool{ \pi }\par
\eval{\begin{foo} \pi \end{fool}}

= Il Unknown math environment foo in: settings. !l!
I Unknown math environment foo in: formula. !l

4.1.7 13fp errors

Some errors arising at the 13fp level are trapped and a message displayed.
4.1.7.1 Dividing by zero
$\eval{1/\sin x}[x=01$ = !l 13£p error 'Division by zero’ in: formula. !!!

Note however that
$\eval{1/\sin x}[x=\pil$ = 4193528956200936,

because of rounding errors in distant decimal places. No doubt this is true for
other functions as well.
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4.1.7.2 Invalid operation

Finding inverse integer powers of positive numbers should always be possible,
but raising a negative number to an inverse power generates an error even when
— mathematically — it should not:

\eval{$ (-125)"{1/3} $} = !ll 13£p error ‘Invalid operation’ in: formula. !!!

This is a feature of floating point arithmetic. When a number is raised to a
rational power, say p/q where p and ¢ are non-zero integers, then the result is
the pth power of the ¢-th root of the number. Can a ¢-th root be taken? If
our floating point system used (for ease of illustration) only 4 significant digits,
p/q = 1/3 would be the fraction 3333/10%, an odd numerator over an even
denominator. But a negative number does not possess an even (10%*th) root.
The user needs to take care of the minus sign, in this case simply by omitting
the parentheses.

Trying to evaluate a function like a factorial or square root or inverse trig.
function outside its domain of definition also produces this error:

$\eval{\arccos x}[x=2]% —
11 13£p error ‘Invalid operation’ in: formula. !!!

In this case the inverse cosine, which is defined only on the interval [—1, 1], has
been fed the value 2.

Trying to evaluate an expression that resolves to 0/0 also produces this
message:

$\eval{\frac{1-yHx-2}}[x=2,y=11$% = !ll 13fp error ‘Invalid operation’
in: formula. !
4.1.7.3 Overflow/underflow

The factorial (discussed in §3.7) provides an example of overflow:
$\eval{3249!}$ = !ll 13fp error ‘Overflow’ in: formula. !!!
This is hardly surprising since
$\eval{3248!}[x]$ = 1.973634 x 109997,

There is a limit on the size of exponents that 13fp can handle. A number in the
form a x 10° must have —10001 < b < 10000. If this is not the case an overflow
or underflow condition occurs. As the examples show, an overflow condition
generates a numerica error.

For underflow, where the number is closer to 0 than 10719901 13fp assigns
a zero value to the quantity. numerica accepts the zero value and the error is
ignored.
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4.1.8 Obsolete settings

(For settings, see the next chapter.) Some settings in earlier versions of numerica
may be superseded by later developments and rendered obsolete. With version
3.0.0 there are two of these obsolete settings, and some deprecations. The su-

perseded settings are these:

e () previously a setting for handling complicated arguments to trigono-
metric functions. Now IXTEX braces are recommended; see §2.1.1.2 and
§3.4.1.1.

e reuse previously a setting determining what is saved with the \nmcReuse

command (§6.4). Now only the numerical result is saved — although it can
be saved in a variety of forms, depending on the result-format specification

in the \eval command.

Use of either setting generates a similar message, changing only the content
between the quote marks in the following:

\eval [()=2]{$ \sin\frac12\bigl(A+B\bigr) $}[A=\pi/5,B=\pi/7] =
Il See the documentation; ¢ ()’ key discontinued in: settings. !!!
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Chapter 5

Settings

The first square-bracketed optional argument (and second argument overall) of
the \nmcEvaluate command (see Chapter 2) is the settings option preceding
the main argument that contain the expression or expressions to be evaluated.
The settings option is a comma-separated' key=value list. Such lists tend to be
wordy. For back-of-envelope calculations one wants to be able to ‘dash off’” the
calculation; hence short, cryptically named keys have been used. Many settings
are generic, applicable not only to \nmcEvaluate but also to other commands
that are available in numerica (see Chapter 6) and the packages numerica-plus
and numerica-tables — briefly described in §1.1.1.

A calculation is effected against a background of assigned values for various
quantities — the calculational environment. For a particular calculation, these
values may not be appropriate; or you may have different preferences. The
complete list of such settings available for \nmcEvaluate (or \eval) is shown
in Tables 5.1 and 5.2, separated into functional settings (which affect the cal-
culation) and display settings (which don’t).

o The initial values listed are the values assigned to the settings initially at
each use of the \eval (and other) commands.

e A default value is the value assigned to the setting if you simply enter its
name (without assigning a value to it) in the settings option.

e 0/1 alternatives are interpreted as 1 meaning ON and 0 meaning OFF.

For example, entering o in the settings option is equivalent to entering o=1,
meaning angles are assumed to be in degrees, but unless o is entered, \eval
uses 0=0, the initial value, meaning angles are assumed to be in radians.

Hncluding when the comma package option is used. No decimal number is required in the
settings, only integers.
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Table 5.1: Functional settings parameters

key type meaning default initial

dbg int debug data 0

view dbg=1 dbg=1

- char exp. mark for sci. e
notation input

XX int (0/1) accept multi-token 1
variables

£f char main arg. rr.lul.ti— , (1f dec%mal dot)
formula delimiter ; (if decimal comma)

1s2 int (0/1) allow spaced digit 1 0
groups in numbers

/min int > 1 fraction form denom- 1
inator search start

/max int >1 fraction form denom- 200
inator search end

vv@ . .

int (0/1) vv-list calculation 0

vvmode mode

o int (0/1) trig. function args in 1 0
degrees

log num base of logs for \log 10

S+ int extra rounding, sums 2

S? int >0 number of query 0
terms, sums

P+ int extra rounding, 2
products

P? int >0 number of query 0
terms, products

O obsolete; see §5.4

reuse obsolete; see §5.4

obsolete; see §5.4
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Table 5.2: Display settings parameters

key type meaning default initial
f int (0/1) show /hide formula

P token(s) concluding punctuation ,

PP token(s) multi-formula inter- ,

result punctuation

env token(s) math environment see Table 5.3
arg token(s) arg. for -at, array envs see Table 5.3
eq token(s) relation symbol see Table 5.3
vv token(s) vv-list specification see Table 5.3
sep token(s) separator between see Table 5.3

multi-formula results
\} token(s) right bracket for inner \ \}
math environments

vvi deprecated; use vv
vvd deprecated; use vv
5.1 ‘Debug’ facility

It is rather grandiose to call this a debug facility, but if a calculation goes wrong
or produces a surprising result, numerica offers a means of examining various
quantities at some intermediate stages on the way to the final result. To use
the facility, enter

dbg = <integer>

into the settings option. (White space around the equals sign is optional.)

The

dbg=0 turns off the debug function, displays the result or error message
(this is the initial setting);

dbg=1 equivalent to dbg=2*3*5x7*11 for \eval;
‘magic’ integers are the first few prime numbers and their products

dbg=2 displays the formula after multi-token variables have been converted
to their single token form, \nmc_a, \nmc_b, etc.;

dbg=3 displays the vv-list after multi-token variables have been converted
to their single token form;

dbg=>5 displays the stored variables and their values after evaluation (dbg=3
lists the values as expressions);

dbg=7 displays the formula after it has been fp-ified but before it has been
fed to 13fp to evaluate;
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— When interpreting the fp-form, be aware that differences in the ways
numerica and 13fp read formulas can lead to more or fewer parenthe-
ses than seem strictly necessary. In particular be aware that in 13fp
function calls bind most tightly so that, for example, sin 2pi evalu-
ates not to zero but to (sin2) x 7, and sin x~2 evaluates to (sinx)2.
numerica takes care of the former by inserting extra parentheses and

exploits the latter by not inserting parentheses.

e dbg=11 displays the IXTEX form of the final display; it will contain, inter
alia, the numerical result.

To display two or more of the debug elements simultaneously, use the product
of their debug numbers for the magic integer. This can be entered either as
the multiplied-out product, or as the ‘waiting to be evaluated’ product with
asterisks (stars) between the factors. Thus dbg=6 and dbg=2*3 each display
both the vv-list and formula after multi-token variables have been converted
to single token form; dbg=77 or dbg=7*11 each display both the form of the
expression that is fed to 13fp (the ‘fp-ified’ form) and the WTEX form of the
final display (including the numerical result). And generally, if an integer is
divisible by 2, 3, 5, 7, or 11 the corresponding element of the debug display will
be shown. Both dbg=2310 and dbg=2*3*5*7*11 display all five elements, but
rather than remembering this product or typing all those digits and asterisks,
it suffices to enter dbg=1. This is equivalent and displays all elements.

The debug option uses an aligned or align* environment to display its
wares, depending on whether \eval lies within or around a math environment.
The following uses align* and shows how multi-token variables are handled
and how a chain of comparisons is evaluated (§2.3.5):

\eval[dbg=1]1{ a < 2a' < 3a'' }
[a=\pi,a'=\phi,a''=e\gamma] [4777]

=

formula: a < 2\nmc_k < 3\nmc_j
vv-list:  a=\pi, \nmc_k =\phi , \nmc_j =e\gamma
stored: a=3.141592653589793, \nmc_k =1.618033988749895, \nmc__j

=1.569034853003742
fp-form: round((3.141592653589793)-

(2(1.618033988749895)),4) <0&&round(2(1.618033988749895)-
(3(1.569034853003742)),4)<0
LaTeX: $\texttt {T}$

The various items are displayed in chronological order. First comes the formula
after conversion of multi-token to single-token variables, then the vv-list in those
single-token variables; these are created essentially at the same time. Next the
stored values of the variables are displayed. These are the values after vv-list
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evaluation. (Even if the comma package option is being used and the decimal
point is a comma, the stored values will display with a decimal dot because this
is what 13fp uses.) The fourth element both in the display and chronologically
is the fp-ified formula. Often this can be a thicket of parentheses, especially if
unary functions or fractions are involved. The final element of both the display
and chronologically is the A TEX form of the display. In the example it is skimpy,
because no environment was specified. Putting, say, env=$ in the settings option
results in a much fuller final line:

\eval[dbg=11,env=8$]{ a < 2a' < 3a'' }
[a=\pi,a'=\phi,a''=e\gamma] [4777]

—

LaTeX: $a < 2\nmc_m < 3\nmc_1 \rightarrow \texttt {T},\mskip
12muplus6muminus9mu(a=\pi ,a’=\phi ,a”=e\gamma )$
By using dbg=11 in the settings option I have limited the display to the IXTEX
form, since the other elements are unchanged.
Mathematical operations that have no direct counterpart in 13fp contribute
only their numerical value to the fp-form. This applies to sums and products,
double factorials, partly to binomial coefficients, and also to \eval and other

commands when nested one within another (see Chapter 7.1). The following
(ridiculous) example illustrates the matter:

\eval [dbg=1]1{\ [
\sum_{n=1}"k n + \binom{2k}{m} - \fraci{4k} +
\prod_{n=2}"k (1-1/n) + m!! \]1}[m=6,k=5]

=

formula: \sum _{n=1}"k n + \binom {2k}{m} - \frac 1{4k} + \prod _{n=2}"%k
(1-1/n) 4+ m!!
