
Package ‘viscomplexr’
October 12, 2022

Type Package

Title Phase Portraits of Functions in the Complex Number Plane

Version 1.1.1

Date 2021-09-18

Description Functionality for creating phase portraits of functions in the
complex number plane. Works with R base graphics, whose full
functionality is available. Parallel processing is used for optimum
performance.

Language en_US

License GPL-3

Encoding UTF-8

Imports doParallel (>= 1.0.15), grDevices, foreach, parallel, scales,
plotrix, Rdpack, Rcpp

RdMacros Rdpack

Depends R (>= 4.0)

RoxygenNote 7.1.2

Suggests knitr, rmarkdown, Cairo, testthat (>= 2.1.0), pracma, covr

VignetteBuilder knitr

LinkingTo Rcpp

URL https://peterbiber.github.io/viscomplexr/,

https://github.com/PeterBiber/viscomplexr/

NeedsCompilation yes

Author Peter Biber [aut, cre] (<https://orcid.org/0000-0002-9700-8708>)

Maintainer Peter Biber <castor.fiber@gmx.de>

Repository CRAN

Date/Publication 2021-09-18 14:00:02 UTC

1

https://peterbiber.github.io/viscomplexr/
https://github.com/PeterBiber/viscomplexr/
https://orcid.org/0000-0002-9700-8708

2 blaschkeProd

R topics documented:
blaschkeProd . 2
jacobiTheta . 3
juliaNormal . 4
mandelbrot . 6
phasePortrait . 7
phasePortraitBw . 18
riemannMask . 23
vector2String . 26
xlimFromYlim . 28
ylimFromXlim . 29

Index 31

blaschkeProd Calculate Blaschke products

Description

This function calculates Blaschke products (https://en.wikipedia.org/wiki/Blaschke_product)
for a complex number z given a sequence a of complex numbers inside the unit disk, which are the
zeroes of the Blaschke product.

Usage

blaschkeProd(z, a)

Arguments

z Complex number; the point in the complex plane to which the output of the
function is mapped

a Vector of complex numbers located inside the unit disk. At each a, the Blaschke
product will have a zero.

Details

A sequence of points a[n] located inside the unit disk satisfies the Blaschke condition, if sum[1:n]
(1 - abs(a[n])) < Inf. For each element a != 0 of such a sequence, B(a, z) = abs(a)/a * (a
-z)/(1 - conj(a) * z) can be calculated. For a = 0, B(a, z) = z. The Blaschke product B(z)
results as B(z) = prod[1:n] (B(a[n], z)).

Value

The value of the Blaschke product at z.

See Also

Other maths: jacobiTheta(), juliaNormal(), mandelbrot()

https://en.wikipedia.org/wiki/Blaschke_product

jacobiTheta 3

Examples

Generate random vector of 17 zeroes inside the unit disk
n <- 17
a <- complex(modulus = runif(n, 0, 1), argument = runif(n, 0, 2*pi))

Portrait the Blaschke product
phasePortrait(blaschkeProd, moreArgs = list(a = a),

xlim = c(-1.2, 1.2), ylim = c(-1.2, 1.2),
nCores = 1) # Max. two cores on CRAN, not a limit for your use

jacobiTheta Jacobi theta function

Description

Approximation of "the" Jacobi theta function using the first nn factors in its triple product version

Usage

jacobiTheta(z, tau, nn = 30L)

Arguments

z Complex number; the point in the complex plane to which the output of the
function is mapped

tau Complex number; the so-called half-period ratio, must have a positive imaginary
part

nn Integer; number of factors to be used when approximating the triple product
(default = 30)

Details

This function approximates the Jacobi theta function theta(z; tau) which is the sum of exp(pi*i*n^2*tau
+ 2*pi*i*n*z) for n in -Inf, Inf. It uses, however, the function’s triple product representation. See
https://en.wikipedia.org/wiki/Theta_function for details. This function has been imple-
mented in C++, but it is only slightly faster than well-crafted R versions, because the calculation
can be nicely vectorized in R.

Value

The value of the function for z and tau.

See Also

Other maths: blaschkeProd(), juliaNormal(), mandelbrot()

https://en.wikipedia.org/wiki/Theta_function

4 juliaNormal

Examples

phasePortrait(jacobiTheta, moreArgs = list(tau = 1i/2-1/4),
pType = "p", xlim = c(-2, 2), ylim = c(-2, 2),
nCores = 1) # Max. two cores on CRAN, not a limit for your use

phasePortrait(jacobiTheta, moreArgs = list(tau = 1i/2-1/2),
pType = "p", xlim = c(-2, 2), ylim = c(-2, 2),
nCores = 1)

phasePortrait(jacobiTheta, moreArgs = list(tau = 1i/3+1/3),
pType = "p", xlim = c(-2, 2), ylim = c(-2, 2),
nCores = 1)

phasePortrait(jacobiTheta, moreArgs = list(tau = 1i/4+1/2),
pType = "p", xlim = c(-2, 2), ylim = c(-2, 2),
nCores = 1)

juliaNormal Julia iteration with a given number of steps

Description

This function is designed as the basis for visualizing normal Julia sets with phasePortrait. In
contrast to usual visualizations of Julia sets, this requires coloring the actual member points of the
set and not the points outside. Therefore, for numbers that can be identified as not being parts of
the Julia set, this function returns NaN+NaNi. All other numbers are mapped to the complex value
obtained after a user-defined number of iterations. This function has been implemented in C++;
therefore it is fairly fast.

Usage

juliaNormal(z, c, R_esc, itDepth = 500L)

juliaNormal 5

Arguments

z Complex number; the point in the complex plane to which the output of the
function is mapped

c Complex number; a parameter whose choice has an enormous effect on the
shape of the Julia set. For obtaining useful results with phasePortrait, c must
be an element of the Mandelbrot set.

R_esc Real number; the espace radius. If the absolute value of a number obtained
during iteration attains or excels the value of R_esc, juliaNormal will return
NaN+NaNi. R_esc = 2 is a good choice for c being an element of the Mandelbrot
set. See Details for more information.

itDepth An integer which defines the depth of the iteration, i.e. the maximum number of
iteration (default: itDepth = 500)

Details

Normal Julia sets are closely related to the Mandelbrot set. A normal Julia set comprises all complex
numbers z for which the following sequence is bounded for all n > 0: a[n+1] = a[n]^2 + c, starting
with a[0] = z. The parameter c is a complex number, and the sequence is certainly unbounded if
abs(a[]) >= R with R being an escape Radius which matches the inequality R^2 - R >= abs(c). As
the visualization with this package gives interesting pictures (i.e. other than a blank screen) only
for c which are elements of the Mandelbrot set, R = 2 is a good choice. For the author’s taste, the
Julia visualizations become most interesting for c located in the border zone of the Mandelbrot set.

Value

Either NaN+NaNi or the complex number obtained after itDepth iterations

See Also

Other fractals: mandelbrot()

Other maths: blaschkeProd(), jacobiTheta(), mandelbrot()

Examples

This code visualizes a Julia set with some appeal (for the author's
taste). Zoom in as you like by adjusting xlim and ylim.

phasePortrait(juliaNormal,
moreArgs = list(c = -0.09 - 0.649i, R_esc = 2),
xlim = c(-2, 2),
ylim = c(-1.3, 1.3),
hsvNaN = c(0, 0, 0),
nCores = 1) # Max. two cores on CRAN, not a limit for your use

6 mandelbrot

mandelbrot Mandelbrot iteration with a given number of steps

Description

This function is provided as a basis for visualizing the Mandelbrot set with phasePortrait. While
usual visualizations color the points outside the Mandelbrot set dependent on the velocity of diver-
gence, this function produces the information required for coloring the Mandelbrot set itself. For
numbers that can be identified as not being elements of the Mandelbrot set, we obtain a NaN+NaNi
value; for all other numbers, the function gives back the value after a user-defined number of itera-
tions. The function has been implemented in C++; it runs fairly fast.

Usage

mandelbrot(z, itDepth = 500L)

Arguments

z Complex number; the point in the complex plane to which the output of the
function is mapped

itDepth An integer which defines the depth of the iteration, i.e. the maximum number of
iteration (default: itDepth = 500)

Details

The Mandelbrot set comprises all complex numbers z for which the sequence a[n+1] = a[n]^2 + z
starting with a[0] = 0 remains bounded for all n > 0. This condition is certainly not true, if, at any
time, abs(a[]) >= 2. The function mandelbrot performs the iteration for n = 0, ..., itDepth -
1 and permanently checks for abs(a[n+1]) >= 2. If this is the case, it stops the iteration and returns
NaN+NaNi. In all other cases, it returns a[itDepth].

Value

Either NaN+NaNi or the complex number obtained after itDepth iterations

See Also

Other fractals: juliaNormal()

Other maths: blaschkeProd(), jacobiTheta(), juliaNormal()

Examples

This code shows the famous Mandelbrot figure in total, just in the
opposite way as usual: the Mandelbrot set itself is colored, while the
points outside are uniformly black.
Adjust xlim and ylim to zoom in wherever you like.

phasePortrait(mandelbrot,

phasePortrait 7

xlim = c(-2.3, 0.7),
ylim = c(-1.2, 1.2),
hsvNaN = c(0, 0, 0),
nCores = 1) # Max. two cores on CRAN, not a limit for your use

phasePortrait Create phase portraits of complex functions

Description

phasePortrait makes phase portraits of functions in the complex number plane. It uses a tech-
nique often (but not quite correctly) called domain coloring (https://en.wikipedia.org/wiki/
Domain_coloring). While many varieties of this technique exist, this book relates closely to the
standards proposed by E. Wegert in his book Visual Complex Functions (Wegert 2012). In a nut-
shell, the argument (Arg) of any complex function value is displayed as a color from the chromatic
circle. The fundamental colors red, green, and blue relate to the arguments (angles) of 0, 2/3pi, and
4/3pi (with smooth color transitions in between), respectively. Options for displaying the modulus
(Mod) of the complex values and additional reference lines for the argument are available. This func-
tion is designed for being used inside the framework of R base graphics. It makes use of parallel
computing, and depending on the desired resolution it may create extensive sets of large temporary
files (see Details and Examples).

Usage

phasePortrait(
FUN,
moreArgs = NULL,
xlim,
ylim,
invertFlip = FALSE,
res = 150,
blockSizePx = 2250000,
tempDir = NULL,
nCores = max(1, parallel::detectCores() - 1),
pType = "pma",
pi2Div = 9,
logBase = exp(2 * pi/pi2Div),
argOffset = 0,
darkestShade = 0.1,
lambda = 7,
gamma = 0.9,
stdSaturation = 0.8,
hsvNaN = c(0, 0, 0.5),
asp = 1,

https://en.wikipedia.org/wiki/Domain_coloring
https://en.wikipedia.org/wiki/Domain_coloring

8 phasePortrait

deleteTempFiles = TRUE,
noScreenDevice = FALSE,
autoDereg = FALSE,
verbose = TRUE,
...

)

Arguments

FUN The function to be visualized. There are two possibilities to provide it, a quoted
character string, or a function object.

Quoted character string A function can be provided as a quoted character
string containing an expression R can interpret as a function of a complex
number z. Examples: "sin(z)", "(z^2 - 1i)/(tan(z))", "1/4*z^2 - 10*z/(z^4+4)".
Names of functions known in your R session can be used in a standalone
way, without mentioning z, e.g. "sin", "tan", "sqrt". Obviously, this also
works for functions you defined yourself, e.g. "myIncredibleFunction"
would be valid if you coded a function with this name before. This is espe-
cially useful for functions which require additional parameters beside the
complex number they are supposed to calculate with. Such arguments can
be provided via the parameter moreArgs. One-liner expressions provided
as strings are also compatible with moreArgs (see examples).
While it is not the way we recommend for most purposes, you can even
define more complicated functions of your own as character strings. In this
case, you need to use vapply as a wrapper for your actual function (see De-
tails, and Examples). Such constructions allow to provide additional input
variables as a part of the character string by using the vapply-mechanism
(see Details and Examples). The helper function vector2String) can be
useful for that matter. However, the parameter moreArgs is not applicable
in this context. Probably, the most useful application of the function-as-
string concept is when the user defined function, possibly including values
for additional arguments, is to be pasted together at runtime.

Function object It is also possible to directly provide function objects to FUN.
This can be any function known to R in the current session. Simply put,
for functions like sin, tan, cos, and sqrt you do not even have to quote
their names when passing them to phasePortrait. Same applies to func-
tions you defined yourself. It is also possible to hand over an anonymous
function to FUN when calling phasePortrait. In all these cases, the pa-
rameter moreArgs can be used for providing additional arguments to FUN.
In general, providing a function as an object, and using moreArgs in case
additional arguments are required, is what we recommend for user-defined
functions.

When executing phasePortrait, FUN is first evaluated with match.fun. If this
is not successful, an attempt to interpret FUN as an expression will be made. If
this fails, phasePortrait terminates with an error.

moreArgs A named list of other arguments to FUN. The names must match the names of
the arguments in FUN’s definition.

phasePortrait 9

xlim The x limits (x1, x2) of the plot as a two-element numeric vector. Follows ex-
actly the same definition as in plot.default. Here, xlim has to be interpreted
as the plot limits on the real axis.

ylim The y limits of the plot (y1, y2) to be used in the same way as xlim. Evidently,
ylim indicates the plot limits on the imaginary axis.

invertFlip If TRUE, the function is mapped over a z plane, which has been transformed to
1/z * exp(1i*pi). This is the projection required to plot the north Riemann
hemisphere in the way proposed by Wegert (2012), p. 41. Defaults to FALSE. If
this option is chosen, the numbers at the axis ticks have another meaning than
in the normal case. Along the real axis, they represent the real part of 1/z,
and along the imaginary axis, they represent the imaginary part of 1/z. Thus,
if you want annotation, you should choose appropriate axis labels like xlab =
Re(1/z), and ylab = Im(1/z).

res Desired resolution of the plot in dots per inch (dpi). Default is 150 dpi. All
other things being equal, res has a strong influence on computing times (double
res means fourfold number of pixels to compute). A good approach could be to
make a plot with low resolution (e.g. the default 150 dpi) first, adjust whatever
required, and plot into a graphics file with high resolution after that.

blockSizePx Number of pixels and corresponding complex values to be processed at the same
time (see Details). Default is 2250000. This value gave good performance on
older systems as well as on a high-end gaming machine, but some tweaking for
your individual system might even improve things.

tempDir NULL or a character string, specifying the name of the directory where the tempo-
rary files written by phasePortrait are stored. Default is NULL, which makes
phasePortrait use the current R session’s temporary directory. Note that if
you specify another directory, it will be created if it does not exist already. Even
though the temporary files are deleted after completing a phase portrait (unless
the user specifies deleteTempFiles = FALSE, see below), the directory will re-
main alive even if has been created by phasePortrait.

nCores Number of processor cores to be used in the parallel computing tasks. Defaults
to the maximum number of cores available minus 1. Any number between 1
(serial computation) and the maximum number of cores available as indicated
by parallel::detectCores() is accepted. If nCores is set to a value greater
than the available number of cores, the function will use one core less than
available.

pType One of the four options for plotting, "p", "pa", "pm", and "pma" as a character
string. Defaults to "pma". Option "p" produces a mere phase plot, i.e. contains
only colors for the complex numbers’ arguments, but no reference lines at all.
the option "pa" introduces shading zones that emphasize the arguments. These
zones each cover an angle defined by 2*pi/pi2Div, where p2Div is another
parameter of this function (see there). These zones are shaded darkest at the
lowest angle (counter clockwise). Option "pm" displays the modulus by indi-
cating zones, where the moduli at the higher edge of each zone are in a constant
ratio with the moduli at the lower edge of the zone. Default is a ratio of almost
exactly 2 (see parameter logBase) for details. At the lower edge, color satura-
tion is lowest and highest at the higher edge (see parameters darkestShade, and
stdSaturation). Option "pma" (default) includes both shading schemes.

10 phasePortrait

pi2Div Angle distance for the argument reference zones added for pType = "pma" or
pType = "pa". The value has to be given as an integer (reasonably) fraction of
2*pi (i.e. 360 degrees). The default is 9; thus, reference zones are delineated
by default in distances of 2*pi/9, i.e. (40 degrees), starting with 0, i.e. the color
red if not defined otherwise with the parameter argOffset. In contrast to the
borders delimiting the modulus zones, the borders of the reference zones for the
argument always follow the same color (by definition).

logBase Modulus ratio between the edges of the modulus reference zones in pType
"pm" and "pma". As recommended by Wegert (2012), the default setting is
logBase = exp(2*pi/pi2Div). This relation between the parameters logBase
and pi2Div ensures an analogue scaling of the modulus and argument refer-
ence zones (see Details). Conveniently, for the default pi2Div = 9, we obtain
logBase == 2.0099..., which is very close to 2. Thus, the modulus at the
higher edge of a given zone is almost exactly two times the value at the lower
edge.

argOffset The (complex number) argument in radians counterclockwise, at which the ar-
gument reference zones are fixed. Default is 0, i.e. all argument reference zones
align to the center of the red area.

darkestShade Darkest possible shading of modulus and angle reference zones for pType "pm"
and "pma". It corresponds to the value "v" in the hsv color model. darkestShade
= 0 means no brightness at all, i.e. black, while darkestShade = 1 indicates
maximum brightness. Defaults to 0.1, i.e. very dark, but hue still discernible.

lambda Parameter steering the shading interpolation between the higher and the lower
edges of the the modulus and argument reference zones in pType "pm" and "pm".
Should be > 0, default and reference is lambda = 7. Values < 7 increase the
contrast at the zone borders, values > 7 weaken the contrast.

gamma Parameter for adjusting the combined shading of modulus and argument refer-
ence zones in pType "pma". Should be in the interval [0, 1]. Default is 0.9.
The higher the value, the more the smaller of both shading values will dominate
the outcome and vice versa.

stdSaturation Saturation value for unshaded hues which applies to the whole plot in pType "p"
and to the (almost) unshaded zones in pType "pm" and "p". This corresponds to
the value "s" in the hsv color model. Must be between 0 and 1, where 1 indicates
full saturation and 0 indicates a neutral grey. Defaults to 0.8.

hsvNaN hsv coded color for being used in areas where the function to be plotted is not
defined. Must be given as a numeric vector with containing the values h, s, and
v in this order. Defaults to c(0, 0, 0.5) which is a neutral grey.

asp Aspect ratio y/x as defined in plot.window. Default is 1, ensuring an accurate
representation of distances between points on the screen.

deleteTempFiles

If TRUE (default), all temporary files are deleted after the plot is completed. Set
it on FALSE only, if you know exactly what you are doing - the temporary files
can occupy large amounts of hard disk space (see details).

noScreenDevice Suppresses any graphical output if TRUE. This is only intended for test purposes
and makes probably only sense together with deleteTempFiles == FALSE. For
dimensioning purposes, phasePortrait will use a 1 x 1 inch pseudo graphics

phasePortrait 11

device in this case. The default for this parameter is FALSE, and you should
change it only if you really know what you are doing.

autoDereg if TRUE, automatically register sequential backend after the phase portrait is
completed. Default is FALSE, because registering a parallel backend can be
time consuming. Thus, if you want to make several phase portraits in succession,
you should set autoDereg only for the last one, or simply type foreach::registerDoSEQ
after you are done. In any case, you don’t want to have an unused parallel back-
end lying about.

verbose if TRUE (default), phasePortrait will continuously write progress messages
to the console. This is convenient for normal purposes, as calculating larger
phase portraits in higher resolution may take several minutes. The setting verbose
= FALSE, will suppress any output to the console.

... All parameters accepted by the plot.default function.

Details

This function is intended to be used inside the framework of R base graphics. It plots into the active
open graphics device where it will display the phase plot of a user defined function as a raster image.
If no graphics device is open when called, the function will plot into the default graphics device.
This principle allows to utilize the full functionality of R base graphics. All graphics parameters
(par) can be freely set and the function phasePortrait accepts all parameters that can be passed
to the plot.default function. This allows all kinds of plots - from scientific representations with
annotated axes and auxiliary lines, notation, etc. to poster-like artistic pictures.

Mode of operation After being called, phasePortrait gets the size in inch of the plot region
of the graphics device it is plotting into. With the parameter res which is the desired plot
resolution in dpi, the horizontal and vertical number of pixels is known. As xlim and ylim are
provided by the user, each pixel can be attributed a complex number z from the complex plane.
In that way a two-dimensional array is built, where each cell represents a point of the complex
plane, containing the corresponding complex number z. This array is set up in horizontal
strips (i.e. split along the imaginary axis), each strip containing approximately blockSizePx
pixels. In a parallel computing loop, the strips are constructed, saved as temporary files and
immediately deleted from the RAM in order to avoid memory overflow. After that, the strips
are sequentially loaded and subdivided into a number of chunks that corresponds to the number
of registered parallel workers (parameter nCores). By parallely processing each chunk, the
function f(z) defined by the user in the argument FUN is applied to each cell of the strip. This
results in an array of function values that has exactly the same size as the original strip. The
new array is saved as a temporary file, the RAM is cleared, and the next strip is loaded. This
continues until all strips are processed. In a similar way, all strips containing the function
values are loaded sequentially, and in a parallel process the complex values are translated into
colors which are stored in a raster object. While the strips are deleted from the RAM after
processing, the color values obtained from each new strip are appended to the color raster.
After all strips are processed, the raster is plotted into the plot region of the graphics device.
If not explicitly defined otherwise by the user, all temporary files are deleted after that.

Temporary file system By default, the above-mentioned temporary files are deleted after use. This
will not happen, if the parameter deleteTempFiles is set to FALSE or if phasePortrait does
not terminate properly. In both cases, you will find the files in the directory specified with the

12 phasePortrait

parameter tempDir. These files are .RData files, each one contains a two-dimensional array
of complex numbers. The file names follow a strict convention, see the following examples:

0001zmat2238046385.RData
0001wmat2238046385.RData

Both names begin with ’0001’, indicating that the array’s top line is the first line of the whole
clipping of the complex number plane where the phase portrait relates to. The array which
follows below can e.g. begin with a number like ’0470’, indicating that its first line is line
number 470 of the whole clipping. The number of digits for these line numbers is not fixed. It
is determined by the greatest number required. Numbers with less digits are zero-padded. The
second part of the file name is either zmat or wmat. The former indicates an array whose cells
contain untransformed numbers of the complex number plane. The latter contains the values
obtained from applying the function of interest to the first array. Thus, cells at the same posi-
tion in both arrays exactly relate to each other. The third part of the file names is a ten-digit
integer. This is a random number which all temporary files stemming from the same call of
phasePortrait have in common. This guarantees that no temporary files will be confounded
by the function, even if undeleted temporary files from previous runs are still present.

HSV color model For color-coding the argument of a complex number, phasePortrait uses the
hsv (hue, saturation, value) color model. Hereby, the argument is mapped to a position on
the chromatic circle, where the fundamental colors red, green, and blue relate to the argu-
ments (angles) of 0, 2/3pi, and 4/3pi, respectively. This affects only the hue component of the
color model. The value component is used for shading modulus and/or argument zones. The
saturation component for all colors can be defined with the parameter stdSaturation.

Zone definitions and shading In addition to displaying colors for the arguments of complex num-
bers, zones for the modulus and/or the argument are shaded for pType other than "p". The
modulus zones are defined in a way that each zone covers moduli whose logarithms to the
base logBase have the same integer part. Thus, from the lower edge of one modulus zone to
its upper edge, the modulus multiplies with the value of logBase. The shading of a modulus
zone depends on the fractional parts x of the above-mentioned logarithms, which cover the
interval [0, 1[. This translates into the value component v of the hsv color model as follows:

v = darkestShade + (1 - darkestShade) * x^(1/lambda)

where darkestShade and lambda are parameters that can be defined by the user. Modify-
ing the parameters lambda and darkestShade is useful for adjusting contrasts in the phase
portraits. The argument zone definition is somewhat simpler: Each zone covers an angle
domain of 2*pi / pi2Div, the "zero reference" for all zones being argOffset. The angle do-
main of one zone is linearly mapped to a value x from the range [0, 1[. The value component
of the color to be displayed is calculated as a function of x with the same equation as shown
above. In case the user has chosen pType = "pma", x-values xMod and xArg are calculated sep-
arately for the modulus and the argument, respectively. They are transformed into preliminary
v-values as follows:

vMod = xMod^(1/lambda) and vArg = xArg^(1/lambda)

From these, the final v value results as

phasePortrait 13

v = darkestShade + (1-darkestShade) * (gamma * vMod * vArg + (1-gamma) * (1 - (1-vMod)
* (1-vArg)))

The parameter gamma (range [0, 1]) determines they way how vMod and vArg are combined.
The closer gamma is to one, the more the smaller of both values will dominate the outcome and
vice versa.

Defining more complicated functions as strings with vapply You might want to write and use
functions which require more code than a single statement like (z-3)^2+1i*z. As mentioned
in the description of the parameter FUN, we recommend to define such functions as separate
objects and hand them over as such. There might be, however, cases, where it is more conve-
nient, to define a function as a single long string, and pass this string to FUN. In order to make
this work, vapply should be be used for wrapping the actual code of the function. This is prob-
ably not the use of vapply intended by its developers, but it works nicely and performs well.
The character string has to have the following structure "vapply(z, function(z, other argu-
ments if required) {define function code in here}, define other arguments here, FUN.VALUE
= complex(1))". See examples.

References

Wegert E (2012). Visual Complex Functions. An Introduction with Phase Portraits. Springer, Basel
Heidelberg New York Dordrecht London. ISBN 978-3-0348-0179-9.

Examples

Map the complex plane on itself

x11(width = 8, height = 8) # Screen device commented out
due to CRAN test requirements.
Use it when trying this example

phasePortrait("z", xlim = c(-2, 2), ylim = c(-2, 2),
xlab = "real", ylab = "imaginary",
verbose = FALSE, # Suppress progress messages
nCores = 2) # Max. two cores allowed on CRAN

not a limit for your own use

A rational function

x11(width = 10, height = 8) # Screen device commented out
due to CRAN test requirements.
Use it when trying this example

phasePortrait("(2-z)^2*(-1i+z)^3*(4-3i-z)/((2+2i+z)^4)",
xlim = c(-8, 8), ylim = c(-6.3, 4.3),
xlab = "real", ylab = "imaginary",
nCores = 2) # Max. two cores allowed on CRAN

not a limit for your own use

14 phasePortrait

Different pType options by example of the sine function.
Note the different equivalent definitions of the sine
function in the calls to phasePortrait

x11(width = 9, height = 9) # Screen device commented out
due to CRAN test requirements.
Use it when trying this example

op <- par(mfrow = c(2, 2), mar = c(2.1, 2.1, 2.1, 2.1))
phasePortrait("sin(z)", xlim = c(-pi, pi), ylim = c(-pi, pi),

pType = "p", main = "pType = 'p'", axes = FALSE,
nCores = 2) # Max. two cores on CRAN, not a limit for your use

phasePortrait("sin(z)", xlim = c(-pi, pi), ylim = c(-pi, pi),
pType = "pm", main = "pType = 'pm'", axes = FALSE,
nCores = 2)

phasePortrait("sin", xlim = c(-pi, pi), ylim = c(-pi, pi),
pType = "pa", main = "pType = 'pa'", axes = FALSE,
nCores = 2)

phasePortrait(sin, xlim = c(-pi, pi), ylim = c(-pi, pi),
pType = "pma", main = "pType = 'pma'", axes = FALSE,
nCores = 2)

par(op)

I called this one 'nuclear fusion'

x11(width = 16/9*8, height = 8) # Screen device commented out
due to CRAN test requirements.
Use it when trying this example

op <- par(mar = c(0, 0, 0, 0), omi = c(0.2, 0.2, 0.2, 0.2), bg = "black")
phasePortrait("cos((z + 1/z)/(1i/2 * (z-1)^10))",

xlim = 16/9*c(-2, 2), ylim = c(-2, 2),
axes = FALSE, xaxs = "i", yaxs = "i",
nCores = 2) # Max. two cores allowed on CRAN

not a limit for your own use

par(op)

Passing function objects to phasePortrait:
Two mathematical celebrities - Riemann's zeta function
and the gamma function, both from the package pracma.
R's built-in gamma is not useful, as it does not work
with complex input values.

if(requireNamespace("pracma", quietly = TRUE)) {
x11(width = 16, height = 8) # Screen device commented out

due to CRAN test requirements.
Use it when trying this example

phasePortrait 15

op <- par(mfrow = c(1, 2))
phasePortrait(pracma::zeta, xlim = c(-35, 15), ylim = c(-25, 25),

xlab = "real", ylab = "imaginary",
main = expression(zeta(z)), cex.main = 2,
nCores = 2) # Max. two cores on CRAN, not a limit for your use

phasePortrait(pracma::gammaz, xlim = c(-10, 10), ylim = c(-10, 10),
xlab = "real", ylab = "imaginary",
main = expression(Gamma(z)), cex.main = 2,
nCores = 2) # Max. two cores allowed on CRAN

not a limit for your own use

}

Using vapply for defining a whole function as a string.
This is a Blaschke product with a sequence a of twenty numbers.
See the documentation of the function vector2String for a more
convenient space-saving definition of a.
But note that a C++ version of the Blaschke product is available
in this package (function blaschkeProd()).

x11(width = 10, height = 8) # Screen device commented out
due to CRAN test requirements.
Use it when trying this example

phasePortrait("vapply(z, function(z, a) {
fct <- ifelse(abs(a) != 0,

abs(a)/a * (a-z)/(1-Conj(a)*z), z)
return(prod(fct))

},
a = c(0.12152611+0.06171533i, 0.53730315+0.32797530i,

0.35269601-0.53259644i, -0.57862039+0.33328986i,
-0.94623221+0.06869166i, -0.02392968-0.21993132i,
0.04060671+0.05644165i, 0.15534449-0.14559097i,
0.32884452-0.19524764i, 0.58631745+0.05218419i,
0.02562213+0.36822933i, -0.80418478+0.58621875i,
-0.15296208-0.94175193i, -0.02942663+0.38039250i,
-0.35184130-0.24438324i, -0.09048155+0.18131963i,
0.63791697+0.47284679i, 0.25651928-0.46341192i,
0.04353117-0.73472528i, -0.04606189+0.76068461i),

FUN.VALUE = complex(1))",
pType = "p",
xlim = c(-4, 2), ylim = c(-2, 2),
xlab = "real", ylab = "imaginary",
nCores = 2) # Max. two cores allowed on CRAN

not a limit for your own use

Much more elegant: Define the function outside.
Here comes a Blaschke product with 200 random points.

16 phasePortrait

define function for calculating blaschke products, even
possible as a one-liner
blaschke <- function(z, a) {

return(prod(ifelse(abs(a) != 0, abs(a)/a * (a-z)/(1-Conj(a)*z), z)))
}
define 200 random numbers inside the unit circle
n <- 200
a <- complex(modulus = runif(n), argument = runif(n)*2*pi)
Plot it
x11(width = 10, height = 8) # Screen device commented out

due to CRAN test requirements.
Use it when trying this example

phasePortrait(blaschke,
moreArgs = list(a = a),
pType = "p",
xlim = c(-2.5, 2.5), ylim = c(-1.7, 1.7),
xlab = "real", ylab = "imaginary",
nCores = 2) # Max. two cores allowed on CRAN

not a limit for your own use

A hybrid solution: A one-liner expression given as a character string
can be provided additional arguments with moreArgs

n <- 73
a <- complex(modulus = runif(n), argument = runif(n)*2*pi)
x11(width = 10, height = 8) # Screen device commented out

due to CRAN test requirements.
Use it when trying this example

phasePortrait("prod(ifelse(abs(a) != 0,
abs(a)/a * (a-z)/(1-Conj(a)*z), z))",
moreArgs = list(a = a),
pType = "p",
xlim = c(-2.5, 2.5), ylim = c(-1.7, 1.7),
xlab = "real", ylab = "imaginary",
nCores = 1) # Max. two cores allowed on CRAN

not a limit for your own use

Note the difference in performance when using the C++ defined
function blaschkeProd() provided in this package

n <- 73
a <- complex(modulus = runif(n), argument = runif(n)*2*pi)
Plot it
x11(width = 10, height = 8) # Screen device commented out

due to CRAN test requirements.
Use it when trying this example

phasePortrait 17

phasePortrait(blaschkeProd,
moreArgs = list(a = a),
pType = "p",
xlim = c(-2.5, 2.5), ylim = c(-1.7, 1.7),
xlab = "real", ylab = "imaginary",
nCores = 1) # Max. two cores allowed on CRAN

not a limit for your own use

Interesting reunion with Benoit Mandelbrot.
The function mandelbrot() is part of this package (defined
in C++ for performance)

x11(width = 11.7, height = 9/16*11.7) # Screen device commented out
due to CRAN test requirements.
Use it when trying this example

op <- par(mar = c(0, 0, 0, 0), bg = "black")
phasePortrait(mandelbrot,

moreArgs = list(itDepth = 100),
xlim = c(-0.847, -0.403), ylim = c(0.25, 0.50),
axes = TRUE, pType = "pma",
hsvNaN = c(0, 0, 0), xaxs = "i", yaxs = "i",
nCores = 1) # Max. two cores allowed on CRAN

not a limit for your own use
par(op)

Here comes a Julia set.
The function juliaNormal() is part of this package (defined
in C++ for performance)

x11(width = 11.7, height = 9/16*11.7) # Screen device commented out
due to CRAN test requirements.
Use it when trying this example

op <- par(mar = c(0, 0, 0, 0), bg = "black")
phasePortrait(juliaNormal,

moreArgs = list(c = -0.09 - 0.649i, R_esc = 2),
xlim = c(-2, 2),
ylim = c(-1.3, 1.3),
hsvNaN = c(0, 0, 0),
nCores = 1) # Max. two cores allowed on CRAN

not a limit for your own use
par(op)

18 phasePortraitBw

phasePortraitBw Create two-color phase portraits of complex functions

Description

phasePortraitBw allows for creating two-color phase portraits of complex functions based on a
polar chessboard grid (cf. Wegert (2012), p. 35). Compared to the full phase portraits that can be
made with phasePortrait, two-color portraits omit information. Especially in combination with
full phase portraits they can be, however, very helpful tools for interpretation. Besides, two-color
phase portraits have a special aesthetic appeal which is worth exploring for itself. In its parameters
and its mode of operation, phasePortraitBw is very similar to phasePortrait.

Usage

phasePortraitBw(
FUN,
moreArgs = NULL,
xlim,
ylim,
invertFlip = FALSE,
res = 150,
blockSizePx = 2250000,
tempDir = NULL,
nCores = max(1, parallel::detectCores() - 1),
bwType = "ma",
pi2Div = 18,
logBase = exp(2 * pi/pi2Div),
argOffset = 0,
bwCols = c("black", "gray95", "gray"),
asp = 1,
deleteTempFiles = TRUE,
noScreenDevice = FALSE,
autoDereg = FALSE,
verbose = TRUE,
...

)

Arguments

FUN The function to be visualized. There are two possibilities to provide it, a quoted
character string, or a function object. The quoted character string must contain
an expression that can be interpreted by R as a function of a complex number
z (like e.g. "sin(z)", "(z^2 - 1i)/(tan(z))", "1/4*z^2 - 10*z/(z^4+4)"). See the
documentation of phasePortrait for a complete presentation of all options.

moreArgs A named list of other arguments to FUN. The names must match the names of
the arguments in FUN’s definition.

phasePortraitBw 19

xlim The x limits (x1, x2) of the plot as a two-element numeric vector. Follows ex-
actly the same definition as in plot.default. Here, xlim has to be interpreted
as the plot limits on the real axis.

ylim The y limits of the plot (y1, y2) to be used in the same way as xlim. Evidently,
ylim indicates the plot limits on the imaginary axis.

invertFlip If TRUE, the function is mapped over a z plane, which has been transformed to
1/z * exp(1i*pi). This is the projection required to plot the north Riemann
hemisphere in the way proposed by Wegert (2012), p. 41. Defaults to FALSE. If
this option is chosen, the numbers at the axis ticks have another meaning than
in the normal case. Along the real axis, they represent the real part of 1/z,
and along the imaginary axis, they represent the imaginary part of 1/z. Thus,
if you want annotation, you should choose appropriate axis labels like xlab =
Re(1/z), and ylab = Im(1/z).

res Desired resolution of the plot in dots per inch (dpi). Default is 150 dpi. All
other things being equal, res has a strong influence on computing times (double
res means fourfold number of pixels to compute). A good approach could be to
make a plot with low resolution (e.g. the default 150 dpi) first, adjust whatever
required, and plot into a graphics file with high resolution after that.

blockSizePx Number of pixels and corresponding complex values to be processed at the same
time (see Details). Default is 2250000. This value gave good performance on
older systems as well as on a high-end gaming machine, but some tweaking for
your individual system might even improve things.

tempDir NULL or a character string, specifying the name of the directory where the tempo-
rary files written by phasePortrait are stored. Default is NULL, which makes
phasePortrait use the current R session’s temporary directory. Note that if
you specify another directory, it will be created if it does not exist already. Even
though the temporary files are deleted after completing a phase portrait (unless
the user specifies deleteTempFiles = FALSE, see below), the directory will re-
main alive even if has been created by phasePortrait.

nCores Number of processor cores to be used in the parallel computing tasks. Defaults
to the maximum number of cores available minus 1. Any number between 1
(serial computation) and the maximum number of cores available as indicated
by parallel::detectCores() is accepted. If nCores is set to a value greater
than the available number of cores, the function will use one core less than
available.

bwType One of the three options for plotting, "m", "a", and "ma", to be provided as
a character string. Defaults to "ma". This parameter has a comparable role
to the parameter pType in phasePortrait. Option "m" produces a plot that
colors modulus zones only. In more detail, for each input number’s modulus,
the logarithm with base logBase (see below) is calculated and cut down to the
next lower integer value. If this is an even number, the first color given in bwCols
(see below) is taken. In case of an odd number, the second color is used. Option
"a" produces a plot that exclusively colors argument (phase angle) zones. To
that end, the full angle (2*pi) is divided into p2Div (see below) zones, which are
numbered from 0 to pi2Div - 1 with increasing angle. Such an integer number is
attributed to the complex number of interest according to the zone it falls into.
Even and odd zone numbers are mapped to the first and the second color in

20 phasePortraitBw

bwCols, respectively. For normal purposes, the input parameter pi2Div should
be an even number in order to avoid the first and the last zone having the same
color. With option "ma", a chessboard-like alternation of colors is displayed
over the tiles formed by the intersecting modulus and argument zones (both
determined separately as with the options "m" and "a").

pi2Div Angle distance for the argument reference zones added for pType = "pma" or
pType = "pa". The value has to be given as an integer (reasonably) fraction of
2*pi (i.e. 360 degrees). Unlike with phasePortrait, the default is 18; thus,
reference zones are delineated by default in distances of 2*pi/18, i.e. (20 de-
grees), starting with 0 if not defined otherwise with the parameter argOffset.
While the default of pi2Div is 9 with phasePortrait for good reasons (see
there), setting pi2Div to an odd number is usually not a good choice with two-
color phase portraits, because the first and the last phase angle zone would get
the same color. However, as pi2Div here defaults to double the value as with
phasePortrait, both plot types can be nicely compared even when using their
specific defaults of pi2Div.

logBase Modulus ratio between the edges of the modulus zones in bwType "m" and
"ma". As recommended by Wegert (2012), the default setting is logBase =
exp(2*pi/pi2Div). This relation between the parameters logBase and pi2Div
ensures an analogue scaling of the modulus and argument reference zones (see
Details section in the documentation of phasePortrait). Conveniently, for the
default pi2Div = 18, we obtain logBase == 1.4177..., which is very close to
the square root of 2. Thus, when crossing two modulus zones, the modulus at
the higher edge of the second zone is almost exactly two times the value at the
lower edge of the first zone.

argOffset The (complex number) argument in radians counterclockwise, at which the ar-
gument (phase angle) reference zones are fixed, i.e. the lower angle of the first
zone. Default is 0.

bwCols Color definition for the plot provided as a character vector of length 3. Each
element of the vector must be either a color name R recognizes, or a hexadec-
imal color string like e.g. "#00FF11". The first and the second color make the
appearance of two-color phase portraits (see bwType above for details), while
the third color is reserved for special cases, where the input value cannot suf-
ficiently evaluated (NaNs, partly Inf). Defaults to c("black", "gray95", "gray"),
which leads to an alternation of black and very light gray zones or tiles, and uses
a neutral gray in special cases.

asp Aspect ratio y/x as defined in plot.window. Default is 1, ensuring an accurate
representation of distances between points on the screen.

deleteTempFiles

If TRUE (default), all temporary files are deleted after the plot is completed. Set
it on FALSE only, if you know exactly what you are doing - the temporary files
can occupy large amounts of hard disk space (see details).

noScreenDevice Suppresses any graphical output if TRUE. This is only intended for test purposes
and makes probably only sense together with deleteTempFiles == FALSE. For
dimensioning purposes, phasePortraitBw will use a 1 x 1 inch pseudo graphics
device in this case. The default for this parameter is FALSE, and you should
change it only if you really know what you are doing.

phasePortraitBw 21

autoDereg if TRUE, automatically register sequential backend after the plot is completed.
Default is FALSE, because registering a parallel backend can be time consum-
ing. Thus, if you want to make several phase portraits in succession, you should
set autoDereg only for the last one, or simply type foreach::registerDoSEQ
after you are done. In any case, you don’t want to have an unused parallel back-
end lying about.

verbose if TRUE (default), phasePortraitBw will continuously write progress mes-
sages to the console. This is convenient for normal purposes, as calculating
larger phase portraits in higher resolution may take several minutes. The setting
verbose = FALSE, will suppress any output to the console.

... All parameters accepted by the plot.default function.

Details

This function is intended to be used inside the framework of R base graphics. It plots into the active
open graphics device where it will display the phase plot of a user defined function as a raster image.
If no graphics device is open when called, the function will plot into the default graphics device.
This principle allows to utilize the full functionality of R base graphics. All graphics parameters
(par) can be freely set and the function phasePortrait accepts all parameters that can be passed
to the plot.default function. This allows all kinds of plots - from scientific representations with
annotated axes and auxiliary lines, notation, etc. to poster-like artistic pictures. The general mode
of operation, including the usage of parallel processing is exactly the same as with phasePortrait,
see details section there.

References

Wegert E (2012). Visual Complex Functions. An Introduction with Phase Portraits. Springer, Basel
Heidelberg New York Dordrecht London. ISBN 978-3-0348-0179-9.

Examples

Map the complex plane on itself

x11(width = 8, height = 8) # Screen device commented out
due to CRAN test requirements.
Use it when trying this example

phasePortraitBw("z", xlim = c(-2, 2), ylim = c(-2, 2),
xlab = "real", ylab = "imaginary",
verbose = FALSE, # Suppress progress messages
nCores = 2) # Max. two cores allowed on CRAN

not a limit for your own use

Sinus with default colors and default bwType ("ma")

x11(width = 8, height = 8) # Screen device commented out
due to CRAN test requirements.
Use it when trying this example

22 phasePortraitBw

phasePortraitBw("sin(z)",
xlim = c(-pi, pi),
ylim = c(-pi, pi),
verbose = FALSE,
nCores = 2) # Max. two cores allowed on CRAN

not a limit for your own use

Sinus with custom colors and bwType "a"

x11(width = 8, height = 8) # Screen device commented out
due to CRAN test requirements.
Use it when trying this example

phasePortraitBw("sin(z)",
xlim = c(-pi, pi),
ylim = c(-pi, pi),
bwType = "a",
bwCols = c("darkgreen", "green", "gray"),
verbose = FALSE,
nCores = 2) # Max. two cores allowed on CRAN

not a limit for your own use

Sinus with custom colors and bwType "m"

x11(width = 8, height = 8) # Screen device commented out
due to CRAN test requirements.
Use it when trying this example

phasePortraitBw("sin(z)",
xlim = c(-pi, pi),
ylim = c(-pi, pi),
bwType = "m",
bwCols = c("darkblue", "skyblue", "gray"),
verbose = FALSE,
nCores = 2) # Max. two cores allowed on CRAN

not a limit for your own use

Map the complex plane on itself, show all bwType options

x11(width = 8, height = 8) # Screen device commented out
due to CRAN test requirements.
Use it when trying this example

op <- par(mfrow = c(2, 2), mar = c(4.1, 4.1, 1.1, 1.1))

riemannMask 23

for(bwType in c("ma", "a", "m")) {
phasePortraitBw("z", xlim = c(-2, 2), ylim = c(-2, 2),

bwType = bwType,
xlab = "real", ylab = "imaginary",
verbose = FALSE, # Suppress progress messages
nCores = 2) # Max. two cores allowed on CRAN

not a limit for your own use
}
Add normal phase portrait for comparison
phasePortrait("z", xlim = c(-2, 2), ylim = c(-2, 2),

xlab = "real", ylab = "imaginary",
verbose = FALSE,
pi2Div = 18, # Use same angular division as default

in phasePortraitBw
nCores = 2)

par(op)

A rational function, show all bwType options

x11(width = 8, height = 8) # Screen device commented out
due to CRAN test requirements.
Use it when trying this example

funString <- "(z + 1.4i - 1.4)^2/(z^3 + 2)"
op <- par(mfrow = c(2, 2), mar = c(4.1, 4.1, 1.1, 1.1))
for(bwType in c("ma", "a", "m")) {

phasePortraitBw(funString, xlim = c(-2, 2), ylim = c(-2, 2),
bwType = bwType,
xlab = "real", ylab = "imaginary",
verbose = FALSE, # Suppress progress messages
nCores = 2) # Max. two cores allowed on CRAN

not a limit for your own use
}
Add normal phase portrait for comparison
phasePortrait(funString, xlim = c(-2, 2), ylim = c(-2, 2),

xlab = "real", ylab = "imaginary",
verbose = FALSE,
pi2Div = 18, # Use same angular division as default

in phasePortraitBw
nCores = 2)

par(op)

riemannMask Plot a Riemann sphere mask over a phase portrait

24 riemannMask

Description

The function riemannMask can be used for laying a circular mask over an existing phasePortrait
(as generated with the function phasePortrait). This mask shades the plot region outside the unit
circle. The unshaded area is a projection on the southern or northern Riemann hemisphere. The
standard projection used by phasePortrait, i.e. invertFlip = FALSE hereby corresponds to the
southern Riemann hemisphere with the origin being the south pole. If phasePortrait was called
with invertFlip = TRUE, then the unit circle contains the northern Riemann hemisphere with the
point at infinity in the center (see the vignette for more details). Options for adding annotation,
landmark points are available (see Wegert (2012), p. 41). Several parameters are on hand for
adjusting the mask’s transparency, color, and similar features. some details, this function behaves
less nicely under Windows than under Linux (see Details).

Usage

riemannMask(
colMask = "white",
alphaMask = 0.5,
circOutline = TRUE,
circLwd = 1,
circleSteps = 360,
circleCol = par("fg"),
gridCross = FALSE,
annotSouth = FALSE,
annotNorth = FALSE,
xlim = NULL,
ylim = NULL

)

Arguments

colMask Color for the shaded area outside the unit circle. Defaults to "white". Can be
any kind of color definition R accepts. I recommend, however, to use a color
definition without a transparency value, because this would be overridden by
the parameter alphaMask.

alphaMask Transparency value for the color defined with colMask. Has to be a value be-
tween 0 (fully transparent) and 1 (totally opaque). Defaults to 0.5.

circOutline Boolean - if TRUE, the outline of the unit circle is drawn. Defaults to TRUE.

circLwd Line width of the unit circle outline. Obviously relevant only when circOutline
== TRUE. Defaults to 1.

circleSteps Number of vertices to draw the circle. Defaults to 360 (one degree between two
vertices).

circleCol Color of the unit circle, default is the default foreground color (par("fg")).

gridCross Boolean - if TRUE, a horizontal and a vertical gray line will be drawn over the
plot region, intersection in the center of the unit circle. Defaults to FALSE.

annotSouth Boolean - add landmark points and annotation for a southern Riemann hemi-
sphere, defaults to FALSE. This annotation fits to an image that has been created
with phasePortrait and the option invertFlip = FALSE.

riemannMask 25

annotNorth Boolean - add landmark points and annotation for a northern Riemann hemi-
sphere, defaults to FALSE. This annotation fits to an image that has been created
with phasePortrait and the option invertFlip = TRUE.

xlim, ylim optional, if provided must by numeric vectors of length 2 defining plot limits as
usual. They define the outer rectangle of the Riemann mask. If xlim or ylim is
not provided (the standard case), the coordinates of the plot window as given by
par("usr") will be used for the missing component.

Details

There is, unfortunately, a somewhat different behavior of this function under Linux and Windows
systems. Under Windows, the region outside the unit circle is only shaded if the whole unit circle
fits into the plot region. If only a part of the unit circle is to be displayed, the shading is completely
omitted under Windows (annotation etc. works correctly, however), while it works properly on
Linux systems. Obviously, the function polypath, which we are using for creating the unit circle
template, is interpreted differently on both systems.

References

Wegert E (2012). Visual Complex Functions. An Introduction with Phase Portraits. Springer, Basel
Heidelberg New York Dordrecht London. ISBN 978-3-0348-0179-9.

Examples

Tangent with fully annotated Riemann masks.
The axis tick marks on the second diagram (Northern hemisphere)
have to be interpreted as the real and imaginary parts of 1/z
(see vignette). The axis labels in this example have been adapted
accordingly.

x11(width = 16, height = 8) # Screen device commented out
due to CRAN test requirements.
Use it when trying this example

op <- par(mfrow = c(1, 2), mar = c(4.7, 4.7, 3.5, 3.5))
phasePortrait("tan(z)", pType = "pma",

main = "Southern Riemann Hemisphere",
xlim = c(-1.2, 1.2), ylim = c(-1.2, 1.2),
xlab = "real", ylab = "imaginary",
xaxs = "i", yaxs = "i",
nCores = 2) # Max. two cores on CRAN, not a limit for your use

riemannMask(annotSouth = TRUE, gridCross = TRUE)

phasePortrait("tan(z)", pType = "pma",
main = "Northern Riemann Hemisphere",
invertFlip = TRUE,
xlim = c(-1.2, 1.2), ylim = c(-1.2, 1.2),
xlab = "real (1/z)", ylab = "imaginary (1/z)",
xaxs = "i", yaxs = "i",
nCores = 2) # Max. two cores on CRAN, not a limit for your use

26 vector2String

riemannMask(annotNorth = TRUE, gridCross = TRUE)
par(op)

Rational function with Riemann masks without annotation.
The axis tick marks on the second diagram (Northern hemisphere)
have to be interpreted as the real and imaginary parts of 1/z
(see vignette). The axis labels in this example have been adapted
accordingly.

x11(width = 16, height = 8) # Screen device commented out
due to CRAN test requirements.
Use it when trying this example

op <- par(mfrow = c(1, 2), mar = c(4.7, 4.7, 3.5, 3.5))
phasePortrait("(-z^17 - z^15 - z^9 - z^7 - z^2 - z + 1)/(1i*z - 1)",

pType = "pma",
main = "Southern Riemann Hemisphere",
xlim = c(-1.2, 1.2), ylim = c(-1.2, 1.2),
xlab = "real", ylab = "imaginary",
xaxs = "i", yaxs = "i",
nCores = 2) # Max. two cores on CRAN, not a limit for your use

riemannMask(annotSouth = FALSE, gridCross = FALSE, circOutline = FALSE,
alphaMask = 0.7)

phasePortrait("(-z^17 - z^15 - z^9 - z^7 - z^2 - z + 1)/(1i*z - 1)",
pType = "pma",
main = "Northern Riemann Hemisphere",
invertFlip = TRUE,
xlim = c(-1.2, 1.2), ylim = c(-1.2, 1.2),
xlab = "real (1/z)", ylab = "imaginary (1/z)",
xaxs = "i", yaxs = "i",
nCores = 2) # Max. two cores on CRAN, not a limit for your use

riemannMask(annotNorth = FALSE, gridCross = FALSE, circOutline = FALSE,
alphaMask = 0.7)

par(op)

vector2String Convert a vector into a comma-separated string

Description

A simple utility function that transforms any vector into a single character string, where the former
vector elements are separated by commas. This is can be useful, in some circumstances, for feeding
a series of constant numeric values to phasePortrait (see examples). For most applications we
recommend, however, to use phasePortrait’s parameter moreArgs instead.

vector2String 27

Usage

vector2String(vec)

Arguments

vec The (usually real or complex valued) vector to be converted.

Value

A string, where the former vector elements are separated by commas, enclosed between "c(" and
")".

See Also

Other helpers: xlimFromYlim(), ylimFromXlim()

Examples

Make a vector of 77 complex random numbers inside the unit circle
n <- 77
a <- complex(n, modulus = runif(n), argument = 2*pi*runif(n))
a <- vector2String(a)
print(a)

Use this for portraying a Blaschke product

x11(width = 9.45, height = 6.30) # Screen device commented out
due to CRAN test requirements.
Use it when trying this example

op <- par(mar = c(1, 1, 1, 1), bg = "black")
n <- 77
a <- complex(n, modulus = runif(n), argument = 2*pi*runif(n))
a <- vector2String(a)
FUN <- paste("vapply(z, function(z, a){

return(prod(abs(a)/a * (a-z)/(1-Conj(a)*z)))
}, a =", a,

", FUN.VALUE = complex(1))", sep = "")
phasePortrait(FUN, pType = "p", axes = FALSE,

xlim = c(-3, 3), ylim = c(-2.0, 2.0),
nCores = 2) # Max. two cores allowed on CRAN

not a limit for your own use
par(op)

28 xlimFromYlim

xlimFromYlim Adjust xlim to ylim

Description

This simple function is useful for adjusting x and y coordinate ranges xlim and ylim in order to
maintain a desired display ratio. The latter must be given, the former will be adjusted.

Usage

xlimFromYlim(ylim, centerX = 0, x_to_y = 16/9)

Arguments

ylim Numeric vector of length 2; the fixed lower and upper boundary of the vertical
coordinate range

centerX The horizontal coordinate which the output range is to be centered around (de-
fault = 0)

x_to_y The desired ratio of the horizontal (x) to the vertical (y) range. Default is 16/9,
a display ratio frequently used for computer or mobile screens

Details

For certain purposes, e.g. producing a graph that exactly matches a screen, the x and y coordinates
must be adjusted to match a given display ratio. If the vertical range, ylim, the desired ratio, x_to_y
and the desired center of the x-range, centerX, are provided, this function returns an adpated verti-
cal range, that can be used as ylim in any plot including phasePortrait.

Value

A numeric vector of length 2; the lower and upper boundary of the resulting vertical coordinate
range

See Also

Other helpers: vector2String(), ylimFromXlim()

Examples

Make a phase portrait of a pretty function that fully covers a
plot with a display aspect ratio of 5/4.

9 inch wide window with 5/4 display ratio (x/y)

x11(width = 9, height = 9 * 4/5) # Screen device commented out
due to CRAN test requirements.
Use it when trying this example

ylim <- c(-8, 7)

ylimFromXlim 29

xlim <- xlimFromYlim(ylim, centerX = 0, x_to_y = 5/4)
op <- par(mar = c(0, 0, 0, 0), bg = "black") # Omit all plot margins
phasePortrait("exp(cosh(1/(z - 2i + 2)^2 * (1/2i - 1/4 + z)^3))", pType = "pm",
xlim = xlim, ylim = ylim, # Apply the coordinate ranges
xaxs = "i", yaxs = "i", # Allow for now room between plot and axes
nCores = 2) # Max. two cores allowed on CRAN

not a limit for your own use
par(op)

ylimFromXlim Adjust ylim to xlim

Description

This simple function is useful for adjusting x and y coordinate ranges xlim and ylim in order to
maintain a desired display ratio. The former must be given, the latter will be adjusted.

Usage

ylimFromXlim(xlim, centerY = 0, x_to_y = 16/9)

Arguments

xlim Numeric vector of length 2; the fixed lower and upper boundary of the horizontal
coordinate range

centerY The vertical coordinate which the output range is to be centered around (default
= 0)

x_to_y The desired ratio of the horizontal (x) to the vertical (y) range. Default is 16/9,
a display ratio frequently used for computer or mobile screens

Details

For certain purposes, e.g. producing a graph that exactly matches a screen, the x and y coordinates
must be adjusted to match a given display ratio. If the horizontal range, xlim, the desired ratio,
x_to_y and the desired center of the y-range, centerY are provided, this function returns an adapted
vertical range, that can be used as ylim in any plot including phasePortrait.

Value

A numeric vector of length 2; the lower and upper boundary of the resulting vertical coordinate
range

See Also

Other helpers: vector2String(), xlimFromYlim()

30 ylimFromXlim

Examples

Make a phase portrait of a Jacobi theta function that fully covers a
plot with a display aspect ratio of 4/3.
10 inch wide window with 4/3 display ratio (x/y)

x11(width = 10, height = 10 * 3/4) # Screen device commented out
due to CRAN test requirements.
Use it when trying this example

xlim <- c(-3, 3)
ylim <- ylimFromXlim(xlim, centerY = -0.3, x_to_y = 4/3)
op <- par(mar = c(0, 0, 0, 0), bg = "black") # Omit all plot margins
phasePortrait(jacobiTheta, moreArgs = list(tau = 1i/2 - 1/3),

xlim = xlim, ylim = ylim, # Apply the coordinate ranges
xaxs = "i", yaxs = "i", # Allow for now room between plot and axes
nCores = 1) # Max. two cores allowed on CRAN

not a limit for your own use
par(op)

Index

∗ fractals
juliaNormal, 4
mandelbrot, 6

∗ helpers
vector2String, 26
xlimFromYlim, 28
ylimFromXlim, 29

∗ maths
blaschkeProd, 2
jacobiTheta, 3
juliaNormal, 4
mandelbrot, 6

Arg, 7

blaschkeProd, 2, 3, 5, 6

hsv, 10, 12

jacobiTheta, 2, 3, 5, 6
juliaNormal, 2, 3, 4, 6

mandelbrot, 2, 3, 5, 6
match.fun, 8
Mod, 7

par, 11, 21
phasePortrait, 4–6, 7, 18–21, 24–26, 28, 29
phasePortraitBw, 18
plot.default, 9, 11, 19, 21
plot.window, 10, 20
polypath, 25

riemannMask, 23

vapply, 8, 13
vector2String, 8, 26, 28, 29

xlimFromYlim, 27, 28, 29

ylimFromXlim, 27, 28, 29

31

	blaschkeProd
	jacobiTheta
	juliaNormal
	mandelbrot
	phasePortrait
	phasePortraitBw
	riemannMask
	vector2String
	xlimFromYlim
	ylimFromXlim
	Index

