Package 'swash'

June 3, 2025

Type Package
Title Swash-Backwash Model for the Single Epidemic Wave
Version 1.2.1
Date 2025-05-29
Author Thomas Wieland [aut, cre] (ORCID: https://orcid.org/0000-0001-5168-9846)
Maintainer Thomas Wieland < geowieland@googlemail.com>
Depends R ($>= 3.5.0$), lubridate
Description The Swash-Backwash Model for the Single Epidemic Wave was developed by Cliff and Haggett (2006) <doi:10.1007 s10109-006-0027-8=""> to model the velocity of spread of infectious diseases across space. This package enables the calculation of the Swash-Backwash Model for user-supplied panel data on regional infections. The package also provides additional functions for bootstrap confidence intervals, country comparison, visualization of results, and data management.</doi:10.1007>
License GPL (>= 2)
Imports methods
NeedsCompilation no
Repository CRAN
Date/Publication 2025-06-03 07:10:02 UTC
Contents
swash-package as_balanced compare_countries confint-methods countries-class COVID19Cases_geoRegion growth growth tigrowth-methods hist_ci is balanced as_balanced compare_countries countries-class
is_balanced

2 swash-package

swasł	n-package	Imp dem									100	dei	! fe	or	th	e i	Sin	ıgl	e .	Ept	i-
Index																					34
	swash		 •	 	•	 •	•	 ٠	•		 ٠	•		٠			٠	•		•	31
	summary-methods.																				
	show-methods			 																	30
	sbm_ci-class			 																	29
	sbm-class			 																	27
	R_t			 																	26
	quantile_ci																				
	print-methods																				
	plot_regions-method																				
	plot_regions																				
	plot-methods																				
	Oesterreich_Faelle																				
	logistic_growth																				
	loggrowth-class			 																	-18

Description

Swash-Backwash Model for the single epidemic wave (Cliff and Haggett 2006) with additional functions for bootstrap confidence intervals and data management

Details

The Swash-Backwash Model for the Single Epidemic Wave is the spatial equivalent of the classic epidemiological SIR (Susceptible-Infected-Recovered) model. It was developed by Cliff and Haggett (2006) to model the velocity of spread of infectious diseases across space. Current applications can be found, for example, in Smallman-Raynor et al. (2022a,b). This package enables the calculation of the Swash-Backwash Model for user-supplied panel data on regional infections. The core of this is the swash() function, which calculates the model and creates a model object of the sbm class defined in this package. This class can be used to visualize results (summary(), plot()) and calculate bootstrap confidence intervals for the model estimates (confint(sbm)). The package also contains additional helper functions.

Author(s)

Thomas Wieland

References

Swash-Backwash Model:

Cliff AD, Haggett P (2006) A swash-backwash model of the single epidemic wave. *Journal of Geographical Systems* 8(3), 227-252. doi:10.1007/s1010900600278

swash-package 3

Smallman-Raynor MR, Cliff AD, Stickler PJ (2022a) Meningococcal Meningitis and Coal Mining in Provincial England: Geographical Perspectives on a Major Epidemic, 1929–33. *Geographical Analysis* 54, 197–216. doi:10.1111/gean.12272

Smallman-Raynor MR, Cliff AD, The COVID-19 Genomics UK (COG-UK) Consortium (2022b) Spatial growth rate of emerging SARS-CoV-2 lineages in England, September 2020–December 2021. *Epidemiology and Infection* 150, e145. doi:10.1017/S0950268822001285.

Basics of epidemiological modeling:

Bonifazi G et al. (2021) A simplified estimate of the effective reproduction number Rt using its relation with the doubling time and application to Italian COVID-19 data. *The European Physical Journal Plus* 136, 386. doi:10.1140/epjp/s13360021013396

Li, MY (2018) An Introduction to Mathematical Modeling of Infectious Diseases. doi:10.1007/9783319721224

Nishiura H, Chowell G (2009) The effective reproduction number as a prelude to statistical estimation of time-dependent epidemic trends. In Chowell G, Hyman JM, Bettencourt LMA (eds.) Mathematical and statistical estimation approaches in epidemiology, 103–121. doi:10.1007/97890-48123131_5

Pell B, Kuang Y, Viboud C, Chowell G (2018) Using phenomenological models for forecasting the 2015 Ebola challenge. Epidemics 22, 62–70. doi:10.1016/j.epidem.2016.11.002

Spatio-temporal analysis and modeling of infectious diseases:

Bourdin S, Jeanne L, Nadou F, Noiret G (2021) Does lockdown work? A spatial analysis of the spread and concentration of Covid-19 in Italy. Regional Studies, 55, 1182–1193. doi:10.1080/00343404.2021.1887471

Chowell G, Viboud C, Hyman JM, Simonsen L (2015) The Western Africa ebola virus disease epidemic exhibits both global exponential and local polynomial growth rates. *PLOS Currents Outbreaks*, ecurrents.outbreaks.8b55f4bad99ac5c5db3663e916803261. doi:10.1371/currents.outbreaks.8b55f4bad99ac5c5db3663e916803261.

Viboud C, Bjørnstad ON, Smith DL, Simonsen L, Miller MA, Grenfell BT (2006) Synchrony, Waves, and Spatial Hierarchies in the Spread of Influenza. *Science* 312,447-451. doi:10.1126/science.1125237

Wieland T (2020) Flatten the Curve! Modeling SARS-CoV-2/COVID-19 Growth in Germany at the County Level. *REGION* 7(2), 43–83. doi:10.18335/region.v7i2.324

Wieland T (2020) A phenomenological approach to assessing the effectiveness of COVID-19 related nonpharmaceutical interventions in Germany. *Safety Science* 131, 104924. doi:10.1016/j.ssci.2020.104924

Panel data:

Greene, WH (2012) Econometric Analysis. Ch. 11.

Wooldridge, JM (2012) Introductory Econometrics. A Modern Approach. Ch. 13.

Bootstrapping und bootstrap confidence intervals:

Efron B, Tibshirani RJ (1993) An Introduction to the Bootstrap.

Ramachandran KM, Tsokos CP (2021) Mathematical Statistics with Applications in R (Third Edition). Ch. 13.3.1 (Bootstrap confidence intervals). doi:10.1016/B9780128178157.000130

4 as_balanced

Examples

```
data(COVID19Cases_geoRegion)
# Get SWISS COVID19 cases at NUTS 3 level
COVID19Cases_geoRegion <-
 COVID19Cases_geoRegion[!COVID19Cases_geoRegion$geoRegion %in% c("CH", "CHFL"),]
# Exclude CH = Switzerland total and CHFL = Switzerland and Liechtenstein total
COVID19Cases_geoRegion <-
 COVID19Cases_geoRegion[COVID19Cases_geoRegion$datum <= "2020-05-31",]</pre>
# Extract first COVID-19 wave
CH_covidwave1 <-
 swash (
   data = COVID19Cases_geoRegion,
   col_cases = "entries",
   col_date = "datum",
   col_region = "geoRegion"
# Swash-Backwash Model for Swiss COVID19 cases
# Spatial aggregate: NUTS 3 (cantons)
summary(CH_covidwave1)
# Summary of Swash-Backwash Model
plot(CH_covidwave1)
# Plot of Swash-Backwash Model edges and total epidemic curve
```

as_balanced

Correction of Non-balanced Panel Dataset with Regional Infection Data

Description

This function corrects non-balanced input panel data by replacing missing entries with a user-given constant (e.g., 0).

Usage

```
as_balanced(
  data,
  col_cases,
  col_date,
  col_region,
  fill_missing = 0
)
```

as_balanced 5

Arguments

data data.frame with regional infection data col_cases Column containing the cases (numeric)

col_date Column containing the time points (e.g., days)

col_region Column containing the unique identifier of the regions (e.g., name, NUTS 3

code)

fill_missing Constant to fill missing values (default and recommended: 0)

Details

The Swash-Backwash Model for the Single Epidemic Wave does not necessarily require balanced panel data in order for the calculations to be carried out. However, for a correct estimation it is implicitly assumed that the input data is balanced. The function corrects non-balanced panel data. It is executed automatically whithin the swash() function (when using the function is_balanced()), but can also be used separately.

Value

data Corrected input dataset (data.frame)

Author(s)

Thomas Wieland

References

Swash-Backwash Model:

Cliff AD, Haggett P (2006) A swash-backwash model of the single epidemic wave. *Journal of Geographical Systems* 8(3), 227-252. doi:10.1007/s1010900600278

Smallman-Raynor MR, Cliff AD, Stickler PJ (2022) Meningococcal Meningitis and Coal Mining in Provincial England: Geographical Perspectives on a Major Epidemic, 1929–33. *Geographical Analysis* 54, 197–216. doi:10.1111/gean.12272

Smallman-Raynor MR, Cliff AD, The COVID-19 Genomics UK (COG-UK) Consortium (2022) Spatial growth rate of emerging SARS-CoV-2 lineages in England, September 2020–December 2021. *Epidemiology and Infection* 150, e145. doi:10.1017/S0950268822001285.

Panel data:

Greene, WH (2012) Econometric Analysis. Ch. 11.

Wooldridge, JM (2012) Introductory Econometrics. A Modern Approach. Ch. 13.

See Also

is_balanced

6 compare_countries

Examples

```
data(COVID19Cases_geoRegion)
# Get SWISS COVID19 cases at NUTS 3 level
COVID19Cases_geoRegion <-
 COVID19Cases_geoRegion[!COVID19Cases_geoRegion %in% c("CH", "CHFL"),]
# Exclude CH = Switzerland total and CHFL = Switzerland and Liechtenstein total
COVID19Cases_geoRegion <-
 COVID19Cases_geoRegion[COVID19Cases_geoRegion$datum <= "2020-05-31",]
# Extract first COVID-19 wave
COVID19Cases_geoRegion_balanced <-
 is_balanced(
 data = COVID19Cases_geoRegion,
 col_cases = "entries",
 col_date = "datum",
 col_region = "geoRegion"
)
# Test whether "COVID19Cases_geoRegion" is balanced panel data
COVID19Cases_geoRegion_balanced$data_balanced
# Balanced? TRUE or FALSE
if (COVID19Cases_geoRegion_balanced$data_balanced == FALSE) {
 COVID19Cases_geoRegion <-
   as_balanced(
   COVID19Cases_geoRegion,
   col_cases = "entries",
   col_date = "datum",
   col_region = "geoRegion"
 )
# Correction of dataset "COVID19Cases_geoRegion"
# not necessary as parameter balance of is_balanced is set TRUE by default
```

compare_countries

Two-country Comparison of Swash-Backwash Model Parameters

Description

This function enables bootstrap estimates for the mean difference of Swash-Backwash Model parameters of two countries to be compared.

Usage

```
compare_countries(
  sbm1,
  sbm2,
```

compare_countries 7

```
country_names = c("Country 1", "Country 2"),
indicator = "R_0A",
iterations = 20,
samples_ratio = 0.8,
alpha = 0.05,
replace = TRUE
)
```

Arguments

sbm1 A sbm object for country 1 sbm2 A sbm object for country 2

country_names list with user-given country names (two entries)

indicator character, indicator to be analyzed ("S_A", "I_A", "R_A", "t_LE", "t_LE", or

"R_0A" (default and recommended: "R_0A"))

iterations Number of iterations for resampling (default: 100)

samples_ratio Proportion of regions included in each sample (default: 0.8)

alpha Significance level α for the confidence intervals (default: 0.05)

replace Resampling with replacement (TRUE or FALSE, default: TRUE = bootstrap resam-

pling)

Details

The combination of the Swash-Backwash Model and bootstrap resampling allows the estimation of mean differences of a user-specified model parameter (e.g., spatial reproduction number R_{OA}) between two countries. This makes it possible to check whether the spatial spread velocity of a communicable disease is significantly different in one country than in another country. Since the initial data in the Swash-Backwash Model should be balanced, entity-based bootstrap sampling is carried out in the compare_countries() function. This means that not, for example, 80% of all observations are included in each sample at a sample ratio equal to p = 0.8, but rather all observations for 80% of the regions. For both countries, B bootstrap samples (default: 100) are drawn for which the Swash-Backwash Model is calculated. Based on the distribution of indicators, confidence intervals are calculated at the user-specified significance level α . The compare_countries() function calculates the differences of the user's desired indicator between the two samples, D, and also calculates α confidence intervals for this.

Value

object of class countries, see countries-class

Author(s)

8 compare_countries

References

Swash-Backwash Model:

Cliff AD, Haggett P (2006) A swash-backwash model of the single epidemic wave. *Journal of Geographical Systems* 8(3), 227-252. doi:10.1007/s1010900600278

Smallman-Raynor MR, Cliff AD, Stickler PJ (2022) Meningococcal Meningitis and Coal Mining in Provincial England: Geographical Perspectives on a Major Epidemic, 1929–33. *Geographical Analysis* 54, 197–216. doi:10.1111/gean.12272

Smallman-Raynor MR, Cliff AD, The COVID-19 Genomics UK (COG-UK) Consortium (2022) Spatial growth rate of emerging SARS-CoV-2 lineages in England, September 2020–December 2021. *Epidemiology and Infection* 150, e145. doi:10.1017/S0950268822001285.

Bootstrapping und bootstrap confidence intervals:

Efron B, Tibshirani RJ (1993) An Introduction to the Bootstrap.

Ramachandran KM, Tsokos CP (2021) Mathematical Statistics with Applications in R (Third Edition). Ch. 13.3.1 (Bootstrap confidence intervals). doi:10.1016/B9780128178157.000130

See Also

```
swash, countries-class
```

Examples

```
data(COVID19Cases_geoRegion)
# Get Swiss COVID19 cases at NUTS 3 level
data(Oesterreich_Faelle)
# Get Austrian COVID19 cases at NUTS 3 level
# (first wave, same final date as in Swiss data: 2020-05-31)
COVID19Cases_geoRegion <-
  COVID19Cases_geoRegion[!COVID19Cases_geoRegion$geoRegion %in% c("CH", "CHFL"),]
# Exclude CH = Switzerland total and CHFL = Switzerland and Liechtenstein total
COVID19Cases_geoRegion <-
  COVID19Cases_geoRegion[COVID19Cases_geoRegion$datum <= "2020-05-31",]
# Extract first COVID-19 wave
CH_covidwave1 <-
  swash (
    data = COVID19Cases_geoRegion,
    col_cases = "entries",
   col_date = "datum",
    col_region = "geoRegion"
# Swash-Backwash Model for Swiss COVID19 cases
# Spatial aggregate: NUTS 3 (cantons)
AT covidwave1 <-
  swash (
   data = Oesterreich_Faelle,
```

confint-methods 9

```
col_cases = "Faelle",
    col_date = "Datum",
   col_region = "NUTS3"
# Swash-Backwash Model for Austrian COVID19 cases
# Spatial aggregate: NUTS 3
AT_vs_CH <-
 compare_countries(
   CH_covidwave1,
   AT_covidwave1,
   country_names = c("Switzerland", "Austria"))
# Country comparison Switzerland vs. Austria
# default config: 20 iterations, alpha = 0.05, sample ratio = 80%,
# indicator: R_0A
summary(AT_vs_CH)
# Summary of country comparison
plot(AT_vs_CH)
# Plot of country comparison
```

confint-methods

Methods for Function confint

Description

Methods for function confint

Methods

signature(object = "sbm", iterations = 100, samples_ratio = 0.8, alpha = 0.05, replace = TRUE) Creates bootstrap confidence intervals for sbm objects. The argument iterations indicates the number of bootstrap samples which are drawn. Since the initial data in the Swash-Backwash Model should be balanced, *entity-based bootstrap sampling* is carried out. This means that not, for example, 80% of all observations are included in each sample at a sample ratio equal to p = 0.8 (samples_ratio = 0.8), but rather all observations for 80% of the regions. The significance level for the confidence intervals α is set by the argument alpha (default: 0.05, which corresponds to a 95% confidence level).

Author(s)

Thomas Wieland

References

Swash-Backwash Model:

Cliff AD, Haggett P (2006) A swash-backwash model of the single epidemic wave. *Journal of Geographical Systems* 8(3), 227-252. doi:10.1007/s1010900600278

10 countries-class

Smallman-Raynor MR, Cliff AD, Stickler PJ (2022) Meningococcal Meningitis and Coal Mining in Provincial England: Geographical Perspectives on a Major Epidemic, 1929–33. *Geographical Analysis* 54, 197–216. doi:10.1111/gean.12272

Smallman-Raynor MR, Cliff AD, The COVID-19 Genomics UK (COG-UK) Consortium (2022) Spatial growth rate of emerging SARS-CoV-2 lineages in England, September 2020–December 2021. *Epidemiology and Infection* 150, e145. doi:10.1017/S0950268822001285.

Bootstrapping und bootstrap confidence intervals:

Efron B, Tibshirani RJ (1993) An Introduction to the Bootstrap.

Ramachandran KM, Tsokos CP (2021) Mathematical Statistics with Applications in R (Third Edition). Ch. 13.3.1 (Bootstrap confidence intervals). doi:10.1016/B9780128178157.000130

See Also

```
sbm_ci-class
```

countries-class

Class "countries"

Description

The class "countries" contains the results of a two-country comparison analysis using the Swash-Backwash Model, including two "sbm_ci" classes for each country. Use summary(countries) and plot(countries) for results summary and plotting, respectively.

Objects from the Class

Objects can be created by calls of the form new("countries", ...). Objects can be created by the function compare_countries(sbm1, sbm2).

Slots

```
sbm_ci1: Object of class "sbm_ci" Results of "confint(sbm1)" for country 1
sbm_ci2: Object of class "sbm_ci" Results of "confint(sbm1)" for country 2
```

D: Object of class "numeric" Results: Difference D between the samples with respect to the chosen indicator

```
D_ci: Object of class "numeric" Results: \alpha confidence intervals of D
```

config: Object of class "list" Configuration details for bootstrap sampling

country_names: Object of class "character" User-stated country names

indicator: Object of class "character" User-stated indicator to be tested

Methods

plot signature(x = "countries"): Plots the results of a two-country comparison with the Swash-Backwash Model

show signature(object = "countries"): Prints an countries object; use summary(sbm_ci)
for results

summary signature(object = "countries"): Prints a summary of a countries object (results
 of the two-country comparison)

Author(s)

Thomas Wieland

Examples

```
showClass("countries")
```

COVID19Cases_geoRegion

Switzerland Daily COVID-19 cases by region

Description

A dataset containing COVID-19 cases by region (NUTS 3 = cantons) and time periods (days) for Switzerland (Source: Federal Office of Public Health FOPH).

Usage

```
data(COVID19Cases_geoRegion)
```

Format

A data.frame with multiple columns:

geoRegion (character) Region for which the data was collected.

datum (Date) Date of record.

entries (integer) Number of reported cases on this date.

sumTotal (integer) Cumulative case numbers.

timeframe_14d (logical) Indicates whether the time period covers the last 14 days.

timeframe_all (logical) Indicates whether the time period covers all previous data.

offset_last7d (integer) Offset of the last 7 days.

sumTotal_last7d (integer) Cumulative case numbers of the last 7 days.

offset_last14d (integer) Offset of the last 14 days.

sumTotal_last14d (integer) Cumulative case numbers of the last 14 days.

offset_last28d (integer) Offset of the last 28 days.

```
sumTotal_last28d (integer) Cumulative case numbers of the last 28 days.
sum7d (numeric) Sum of the last 7 days.
sum14d (numeric) Sum of the last 14 days.
mean7d (numeric) Average of the last 7 days.
mean14d (numeric) Average of the last 14 days.
entries_diff_last_age (integer) Difference from the last age group.
pop (integer) Population of the region.
inz_entries (numeric) Incidence of the entries.
inzsumTotal (numeric) Incidence of cumulative cases.
inzmean7d (numeric) Incidence of the 7-day average.
inzmean14d (numeric) Incidence of the 14-day average.
inzsumTotal_last7d (numeric) Incidence of cumulative cases in the last 7 days.
inzsumTotal_last14d (numeric) Incidence of cumulative cases in the last 14 days.
inzsumTotal last28d (numeric) Incidence of cumulative cases in the last 28 days.
inzsum7d (numeric) Incidence of the last 7 days.
inzsum14d (numeric) Incidence of the last 14 days.
sumdelta7d (numeric) Difference in sums of the last 7 days.
inzdelta7d (numeric) Difference in incidence of the last 7 days.
type (character) Type of recorded data (e.g., COVID-19 cases).
type variant (character) Variant of the data type.
version (character) Version of the data collection.
datum_unit (character) Unit of date specification (e.g., day).
entries_letzter_stand (integer) Last known count of entries.
entries_neu_gemeldet (integer) Newly reported entries.
entries_diff_last (integer) Difference in last entries.
```

Details

The data is included as it was published in by the Swiss Federal Office of Public Health (Bundesamt fuer Gesundheit, BAG). Note that the reporting date equals the date of SARS-CoV-2 testing.

Source

Federal Office of Public Health FOPH (2023) COVID-19 Dashboard Source Data. https://www.covid19.admin.ch/api/data/documentation (retrieved 2023-06-28)

growth 13

Examples

```
data(COVID19Cases_geoRegion)
# Get SWISS COVID19 cases at NUTS 3 level
COVID19Cases_geoRegion <-
 COVID19Cases_geoRegion[!COVID19Cases_geoRegion$geoRegion %in% c("CH", "CHFL"),]
# Exclude CH = Switzerland total and CHFL = Switzerland and Liechtenstein total
COVID19Cases_geoRegion <-
 COVID19Cases_geoRegion[COVID19Cases_geoRegion$datum <= "2020-05-31",]
# Extract first COVID-19 wave
COVID19Cases_geoRegion_balanced <-
 is_balanced(
 data = COVID19Cases_geoRegion,
 col_cases = "entries",
 col_date = "datum",
 col_region = "geoRegion"
# Test whether "COVID19Cases_geoRegion" is balanced panel data
COVID19Cases_geoRegion_balanced$data_balanced
# Balanced? TRUE or FALSE
```

growth

Logistic Growth Models for Regional Infections

Description

Estimates N logistic growth models for N regions.

Usage

```
growth(
  object,
  S_iterations = 10,
  S_start_est_method = "bisect",
  seq_by = 10,
  nls = TRUE
)
```

Arguments

```
object of class sbm

S_iterations Number of iterations for saturation value search
S_start_est_method Method for saturation value search, either "bisect" or "trial_and_error"

seq_by No of segments for the "trial_and_error" estimation of the saturation value

nls Nonlinear estimation? TRUE or FALSE
```

14 growth

Details

The function estimates logistic growth models for regional infections based on a sbm object. See logistic_growth for further details.

Value

list with two entries:

results: Object of class "data.frame" Results of the logistic growth models (coefficients and derivates)
logistic_growth_models: Object of class "list" List with N entries for N growth models resp. loggrowth

·

objects

Author(s)

Thomas Wieland

References

Wieland T (2020) Flatten the Curve! Modeling SARS-CoV-2/COVID-19 Growth in Germany at the County Level. *REGION* 7(2), 43–83. doi:10.18335/region.v7i2.324

Examples

```
data(COVID19Cases_geoRegion)
# Get SWISS COVID19 cases at NUTS 3 level
COVID19Cases_geoRegion <-
 COVID19Cases_geoRegion[!COVID19Cases_geoRegion$geoRegion %in% c("CH", "CHFL"),]
# Exclude CH = Switzerland total and CHFL = Switzerland and Liechtenstein total
COVID19Cases_geoRegion <-
 COVID19Cases_geoRegion[COVID19Cases_geoRegion$datum <= "2020-05-31",]</pre>
# Extract first COVID-19 wave
CH_covidwave1 <-
 swash (
   data = COVID19Cases_geoRegion,
   col_cases = "entries",
   col_date = "datum",
   col_region = "geoRegion"
# Swash-Backwash Model for Swiss COVID19 cases
# Spatial aggregate: NUTS 3 (cantons)
CH_covidwave1_growth <- growth(CH_covidwave1)</pre>
CH_covidwave1_growth
# Logistic growth models for sbm object CH_covidwave1
```

growth-methods 15

|--|

Description

Methods for function growth

Methods

```
signature(object = "sbm", S_{iterations} = 10, S_{start_est_method} = "bisect", seq_by = 10, nls = TRUE) Estimation of N logistic growth models for N regions. Both OLS and NLS estimation are estimated by default (set nls = FALSE to skip NLS estimation). Parameters S_{iterations}, S_{start_est_method}, and seq_by are used to control the saturation value estimation (see logistic_{growth}).
```

Author(s)

Thomas Wieland

hist_ci

Creating Histograms with Confidence Intervals

Description

Plot of a histogram of a given vector x and the related confidence intervals (lower, upper).

Usage

```
hist_ci(
    x,
    alpha = 0.05,
    col_bars = "grey",
    col_ci = "red",
    ...
)
```

Arguments

```
x A numeric vector alpha Significance level \alpha for 1-\alpha*100 confidence intervals col_bars Color of bars in histogram col_ci Color of lines for confidence interval ... Additional arguments passed to barplot()
```

is_balanced

Details

Helper function for plot(sbm_ci), but may be used separately.

Value

Histogram plot, no returned value

Author(s)

Thomas Wieland

Examples

```
numeric_vector <- c(1,9,5,6,3,10,20,6,9,14,3,5,8,6,11)
# any numeric vector
hist_ci(numeric_vector)</pre>
```

is_balanced

Test whether Panel Dataset with Regional Infection Data is Balanced

Description

The function tests whether the input panel data with regional infections is balanced.

Usage

```
is_balanced(
  data,
  col_cases,
  col_date,
  col_region,
  as_balanced = TRUE,
  fill_missing = 0
)
```

Arguments

data	data.frame with regional infection data
col_cases	Column containing the cases (numeric)
col_date	Column containing the time points (e.g., days)
col_region	Column containing the unique identifier of the regions (e.g., name, NUTS 3 code)
as_balanced	Boolean argument which indicates whether non-balanced panel data shall be balanced (default: TRUE)
fill_missing	Constant to fill missing values (default and recommended: 0)

is_balanced 17

Details

The Swash-Backwash Model for the Single Epidemic Wave does not necessarily require balanced panel data in order for the calculations to be carried out. However, for a correct estimation it is implicitly assumed that the input data is balanced. The function tests whether the panel data is balanced. It is executed automatically whithin the swash() function (using automatic correction with as_balanced = TRUE), but can also be used separately.

Value

List with two entries:

```
data_balanced Result of test (TRUE or FALSE)
data Input dataset (data.frame)
```

Author(s)

Thomas Wieland

References

Swash-Backwash Model:

Cliff AD, Haggett P (2006) A swash-backwash model of the single epidemic wave. *Journal of Geographical Systems* 8(3), 227-252. doi:10.1007/s1010900600278

Smallman-Raynor MR, Cliff AD, Stickler PJ (2022) Meningococcal Meningitis and Coal Mining in Provincial England: Geographical Perspectives on a Major Epidemic, 1929–33. *Geographical Analysis* 54, 197–216. doi:10.1111/gean.12272

Smallman-Raynor MR, Cliff AD, The COVID-19 Genomics UK (COG-UK) Consortium (2022) Spatial growth rate of emerging SARS-CoV-2 lineages in England, September 2020–December 2021. *Epidemiology and Infection* 150, e145. doi:10.1017/S0950268822001285.

Panel data:

Greene, WH (2012) Econometric Analysis. Ch. 11.

Wooldridge, JM (2012) Introductory Econometrics. A Modern Approach. Ch. 13.

See Also

```
as_balanced
```

Examples

```
data(COVID19Cases_geoRegion)
# Get SWISS COVID19 cases at NUTS 3 level

COVID19Cases_geoRegion <-
    COVID19Cases_geoRegion[!COVID19Cases_geoRegion$geoRegion %in% c("CH", "CHFL"),]
# Exclude CH = Switzerland total and CHFL = Switzerland and Liechtenstein total

COVID19Cases_geoRegion <-
    COVID19Cases_geoRegion[COVID19Cases_geoRegion$datum <= "2020-05-31",]</pre>
```

18 loggrowth-class

```
# Extract first COVID-19 wave
COVID19Cases_geoRegion_balanced <-
 is_balanced(
 data = COVID19Cases_geoRegion,
 col_cases = "entries",
 col_date = "datum",
 col_region = "geoRegion"
)
# Test whether "COVID19Cases_geoRegion" is balanced panel data
COVID19Cases_geoRegion_balanced$data_balanced
# Balanced? TRUE or FALSE
if (COVID19Cases_geoRegion_balanced$data_balanced == FALSE) {
 COVID19Cases_geoRegion <-
   as_balanced(
   COVID19Cases_geoRegion,
   col_cases = "entries",
   col_date = "datum",
   col_region = "geoRegion"
 )
}
# Correction of dataset "COVID19Cases_geoRegion"
# not necessary as parameter balance of is_balanced is set TRUE by default
```

loggrowth-class

Class "loggrowth"

Description

The class "loggrowth" contains the results of the logistic_growth() function. Use summary(sbm) and plot(sbm) for results summary and plotting, respectively.

Objects from the Class

Objects can be created by the function logistic_growth.

Slots

```
LinModel: Object of class list Results of the OLS helper model
GrowthModel_OLS: Object of class list Results of the OLS fit (predicted, parameters, first derivative)
GrowthModel_NLS: Object of class list Results of the NLS fit (predicted, parameters, first derivative)
t: Object of class numeric Input time points data
y: Object of class numeric Input infections data
config: Object of class list Model fit configurations
```

logistic_growth 19

Methods

```
plot signature(x = "loggrowth"): Plots the results of the logistic growth model (observed, pre-
dicted, first derivative)
summary signature(object = "loggrowth"): Prints a summary of loggrowth objects
```

Author(s)

Thomas Wieland

References

Wieland T (2020) Flatten the Curve! Modeling SARS-CoV-2/COVID-19 Growth in Germany at the County Level. *REGION* 7(2), 43–83. doi:10.18335/region.v7i2.324

Examples

```
showClass("loggrowth")
```

logistic_growth

Logistic Growth Model for Epidemic Data

Description

Estimation of logistic growth models from cumulative infections data, linearized OLS and/or NLS

Usage

```
logistic_growth(
  y,
  t,
  S = NULL,
  S_start = NULL,
  S_end = NULL,
  S_iterations = 10,
  S_start_est_method = "bisect",
  seq_by = 10,
  nls = TRUE
)
```

Arguments

У	$\label{prop:continuous} \mbox{numeric vector with cumulative infections data over time}$
t	$\hbox{vector of class numeric or Date with time points or dates}\\$
S	Saturation value for the model
S_start	Start value of the saturation value for estimation
S_end	End value of the saturation value for estimation

20 logistic_growth

Details

This function allows the estimation of a logistic growth model. The user must specify the dependent variable (cumulative infections) and the time variable (time counter or date values). The estimation is performed using a linearized model as an OLS estimator and as an NLS estimator. For the former, the saturation value can either be specified by the user or found using a search algorithm. The parameters from the OLS fit are used as starting values for the NLS estimation.

Value

```
object of class loggrowth-class
```

Author(s)

Thomas Wieland

References

Wieland T (2020) Flatten the Curve! Modeling SARS-CoV-2/COVID-19 Growth in Germany at the County Level. *REGION* 7(2), 43–83. doi:10.18335/region.v7i2.324

See Also

loggrowth-class

Examples

Oesterreich_Faelle 21

```
t = COVID19Cases_BS$datum,
S = 5557,
S_start = NULL,
S_end = NULL,
S_iterations = 10,
S_start_est_method = "bisect",
seq_by = 10,
nls = TRUE
)
# Logistic growth model with stated saturation value
summary(loggrowth_BS)
# Summary of logistic growth model

plot(loggrowth_BS)
# Plot of logistic growth model
```

Oesterreich_Faelle

Austria Daily COVID-19 cases by region 2020-02-26 to 2020-05-31

Description

A dataset containing COVID-19 cases by region (NUTS 3) and time periods (days) for Austria (Source: BMSGPK).

Usage

```
data(Oesterreich_Faelle)
```

Format

A data.frame with multiple columns:

NUTS3 (character) Region for which the data was collected.

Datum (Date) Date of record.

Faelle (integer) Number of reported cases on this date.

Details

The original data was originally published by BMSGPK at a smaller spatial scale level (political districts, "Politische Bezirke"). The data was linked to a corresponding shapefile from Statistik Austria (2022), joined to the NUTS3 level via a spatial join, and summed over the Austrian NUTS3 regions. The spatial join is based on polygon centroids of the political districts level; in cases where the centroid was outside the polygon, it was placed inside the polygon manually.

22 plot-methods

Source

BMSGPK, Oesterreichisches COVID-19 Open Data Informationsportal (2022) COVID-19: Zeitliche Darstellung von Daten zu Covid19-Faellen je Bezirk. https://www.data.gv.at/katalog/dataset/4b71eb3d-7d55-4967-b80d-91a3f220b60c (retrieved 2022-06-23)

Statistik Austria (2022) Politische Bezirke. https://www.data.gv.at/katalog/dataset/stat_gliederung-osterreichs-in-politische-bezirke131e2 (retrieved 2022-06-27)

Wieland T (2022) C19dNUTS: Dataset of Regional COVID-19 Deaths per 100,000 Pop (NUTS). R package v1.0.1. doi:10.32614/CRAN.package.C19dNUTS

Examples

```
data(Oesterreich_Faelle)
# Get Austrian COVID19 cases at NUTS 3 level
# (first wave, same final date as in Swiss data: 2020-05-31)

AT_covidwave1 <-
    swash (
        data = Oesterreich_Faelle,
        col_cases = "Faelle",
        col_date = "Datum",
        col_region = "NUTS3"
    )
# Swash-Backwash Model for Austrian COVID19 cases
# Spatial aggregate: NUTS 3

summary(AT_covidwave1)
# Summary of model results</pre>
```

plot-methods

Methods for Function plot

Description

Methods for function plot

Methods

```
signature(x = "sbm") Plots the results of the Swash-Backwash Model; two plots: edges over
time, total infections per time unit
```

```
signature(x = "sbm_ci") Plots the results of bootstrap confidence intervals for the Swash-Backwash Model; one figure with six plots: S_A, I_A, R_A, t_{FE}, t_{LE}, and R_{0A}
```

Author(s)

plot_regions 23

plot_regions

Plots of Regional Infections Over Time

Description

Plots regional infection curves in N plots for N regions.

Usage

```
plot_regions(
  object,
  col = "red",
  scale = FALSE,
  normalize_by_col = NULL,
  normalize_factor = 1
)
```

Arguments

object of class sbm col Color of line plot

scale Set y axis of the plots uniformly based on the maximum value across all regions?

(boolean, default: FALSE)

normalize_by_col

Normalize infection numbers by stating a column in the input data frame (e.g.,

regional population)

normalize_factor

Multiply density/incidence with a factor (say, 100,000 inhabitants)

Details

Plots regional infection curves in N plots for N regions, with the number of columns equals 4 and the number of rows is calculated based the size of N.

Value

Plot, only no returned value

Author(s)

24 plot_regions-methods

Examples

```
data(COVID19Cases_geoRegion)
# Get SWISS COVID19 cases at NUTS 3 level
COVID19Cases_geoRegion <-
 COVID19Cases_geoRegion[!COVID19Cases_geoRegion$geoRegion %in% c("CH", "CHFL"),]
# Exclude CH = Switzerland total and CHFL = Switzerland and Liechtenstein total
COVID19Cases_geoRegion <-
 COVID19Cases_geoRegion[COVID19Cases_geoRegion$datum <= "2020-05-31",]
# Extract first COVID-19 wave
CH_covidwave1 <-
 swash (
   data = COVID19Cases_geoRegion,
   col_cases = "entries",
   col_date = "datum",
   col_region = "geoRegion"
# Swash-Backwash Model for Swiss COVID19 cases
# Spatial aggregate: NUTS 3 (cantons)
plot_regions(CH_covidwave1)
# Plot of regional infections
```

Description

Methods for function plot_regions

Methods

```
signature(object = "sbm", col = "red", scale = FALSE, normalize_by_col = NULL, normalize_factor = 1) Plots regional infection curves in N plots for N regions, with the number of columns equals 4 and the number of rows is calculated based the size of N. Set the color by the argument col. If scale is TRUE, the y axis of the plots is set uniformly based on the maximum value across all regions. If the input data contains a column to normalize the infection numbers (such as regional population), the user may use this data to normalize the infection numbers by setting normalize_by_col. If this density value should be multiplied by a factor (e.g. regional infections per 100,000 inhabitants), this can be set with the argument normalize_by_col (default: 1).
```

Author(s)

print-methods 25

print-methods

Methods for Function print

Description

Methods for function print

Methods

```
signature(x = "sbm") Prints an sbm object; use summary(sbm) for results
signature(x = "sbm_ci") Prints an sbm_ci object; use summary(sbm_ci) for results
```

quantile_ci

Computing Quantiles for a given Numeric Vector

Description

Computes quantiles for a given vector x and the related confidence intervals (lower, upper).

Usage

```
quantile_ci(
  x,
  alpha = 0.05
)
```

Arguments

x A numeric vector

alpha Significance level α for 1- α *100 confidence intervals

Details

Helper function for plot(sbm_ci), but may be used separately.

Value

A numeric vector with lower and upper quantile

Author(s)

 $R_{\underline{t}}$

Examples

```
numeric_vector <- c(1,9,5,6,3,10,20,6,9,14,3,5,8,6,11)
# any numeric vector
quantile_ci(numeric_vector)</pre>
```

R_t

Effective Reproduction Number for Epidemic Data

Description

Calculation of the effective reproduction number for infection/surveillance data

Usage

```
R_t(
  infections,
  GP = 4,
  correction = FALSE
)
```

Arguments

infections numeric vector with infection data

GP Generation period, in days

correction Correction of values equal to zero? (Recommended)

Details

The function calculates the effective reproduction number (=growth factor), R_t , of an infections time series.

Value

list with two entries:

```
R_t: Object of class "numeric" R_t values infections_data: Object of class "data.frame" Dataset with infections data and R_t
```

Author(s)

sbm-class 27

References

Bonifazi G et al. (2021) A simplified estimate of the effective reproduction number Rt using its relation with the doubling time and application to Italian COVID-19 data. *The European Physical Journal Plus* 136, 386. doi:10.1140/epjp/s13360021013396

Wieland T (2020) A phenomenological approach to assessing the effectiveness of COVID-19 related nonpharmaceutical interventions in Germany. *Safety Science* 131, 104924. doi:10.1016/j.ssci.2020.104924

See Also

```
logistic_growth
```

Examples

sbm-class

Class "sbm"

Description

The class "sbm" contains the results of the Swash-Backwash Model and the related input data as well as additional information. Use summary(sbm) and plot(sbm) for results summary and plotting, respectively.

Objects from the Class

Objects can be created by the function swash.

28 sbm-class

Slots

```
R_0A: Object of class "numeric" Model result: spatial reproduction number R_{0A} integrals: Object of class "numeric" Model result: integrals S_A, I_A, and R_A velocity: Object of class "numeric" Model result: velocity measures t_{FE} and t_{LE} occ_regions: Object of class "data.frame" Model result: Occurence at regional level SIR_regions: Object of class "data.frame" Model result: Susceptible, infected and recovered regions over time cases_by_date: Object of class "data.frame" Total cases by date cases_by_region: Object of class "data.frame" Cumulative cases by region input_data: Object of class "data.frame" Input data data_statistics: Object of class "numeric" Diagnostics of input data col_names: Object of class "character" Original column names in input data
```

Methods

```
confint signature(object = "sbm"): Creates bootstrap confidence intervals for sbm objects.
plot signature(x = "sbm"): Plots the results of the Swash-Backwash Model; two plots: edges
    over time, total infections per time unit

print signature(x = "sbm"): Prints an sbm object; use summary(sbm) for results
show signature(object = "sbm"): Prints an sbm object; use summary(sbm) for results
summary signature(object = "sbm"): Prints a summary of sbm objects (results of the Swash-Backwash Model)
growth signature(object = "sbm"): Estimates logistic growth models from sbm objects
```

Author(s)

Thomas Wieland

References

Cliff AD, Haggett P (2006) A swash-backwash model of the single epidemic wave. *Journal of Geographical Systems* 8(3), 227-252. doi:10.1007/s1010900600278

Smallman-Raynor MR, Cliff AD, Stickler PJ (2022) Meningococcal Meningitis and Coal Mining in Provincial England: Geographical Perspectives on a Major Epidemic, 1929–33. *Geographical Analysis* 54, 197–216. doi:10.1111/gean.12272

Smallman-Raynor MR, Cliff AD, The COVID-19 Genomics UK (COG-UK) Consortium (2022) Spatial growth rate of emerging SARS-CoV-2 lineages in England, September 2020–December 2021. *Epidemiology and Infection* 150, e145. doi:10.1017/S0950268822001285.

Wieland T (2020) Flatten the Curve! Modeling SARS-CoV-2/COVID-19 Growth in Germany at the County Level. *REGION* 7(2), 43–83. doi:10.18335/region.v7i2.324

Examples

```
showClass("sbm")
```

sbm_ci-class 29

Description

The class "sbm_ci" contains the results of the Swash-Backwash Model, confidence intervals for the model estimates, and the related input data as well as additional information. Use summary(sbm_ci) and plot(sbm_ci) for results summary and plotting, respectively.

Objects from the Class

Objects can be created by the function confint(sbm).

Slots

```
R_0A: Object of class "numeric" Model result: spatial reproduction number R_{0A} integrals: Object of class "numeric" Model result: integrals S_A, I_A, and R_A velocity: Object of class "numeric" Model result: velocity measures t_{FE} and t_{LE} occ_regions: Object of class "data.frame" Model result: Occurence at regional level cases_by_date: Object of class "data.frame" Total cases by date cases_by_region: Object of class "data.frame" Cumulative cases by region input_data: Object of class "data.frame" Input data data_statistics: Object of class "numeric" Diagnostics of input data col_names: Object of class "character" Column names in input data integrals_ci: Object of class "list" Confidence intervals for integrals S_A, I_A, and R_A velocity_ci: Object of class "list" Confidence intervals for velocity measures t_{FE} and t_{LE} R_0A_ci: Object of class "numeric" Confidence intervals for spatial reproduction number R_{0A} iterations: Object of class "data.frame" Results of bootstrap sampling iterations ci: Object of class "list" Configuration details for bootstrap sampling
```

Methods

```
plot signature(x = "sbm_ci"): Plots the results of bootstrap confidence intervals for the Swash-Backwash Model; one figure with six plots: S<sub>A</sub>, I<sub>A</sub>, R<sub>A</sub>, t<sub>FE</sub>, t<sub>LE</sub>, and R<sub>0A</sub>
print signature(x = "sbm_ci"): Prints an sbm_ci object; use summary(sbm_ci) for results
show signature(object = "sbm_ci"): Prints an sbm_ci object; use summary(sbm_ci) for results
summary signature(object = "sbm_ci"): Prints a summary of sbm_ci objects (bootstrap confidence intervals for Swash-Backwash Model estimates)
```

30 show-methods

Author(s)

Thomas Wieland

References

Swash-Backwash Model:

Cliff AD, Haggett P (2006) A swash-backwash model of the single epidemic wave. *Journal of Geographical Systems* 8(3), 227-252. doi:10.1007/s1010900600278

Smallman-Raynor MR, Cliff AD, Stickler PJ (2022) Meningococcal Meningitis and Coal Mining in Provincial England: Geographical Perspectives on a Major Epidemic, 1929–33. *Geographical Analysis* 54, 197–216. doi:10.1111/gean.12272

Smallman-Raynor MR, Cliff AD, The COVID-19 Genomics UK (COG-UK) Consortium (2022) Spatial growth rate of emerging SARS-CoV-2 lineages in England, September 2020–December 2021. *Epidemiology and Infection* 150, e145. doi:10.1017/S0950268822001285.

Bootstrapping und bootstrap confidence intervals:

Efron B, Tibshirani RJ (1993) An Introduction to the Bootstrap.

Ramachandran KM, Tsokos CP (2021) Mathematical Statistics with Applications in R (Third Edition). Ch. 13.3.1 (Bootstrap confidence intervals). doi:10.1016/B9780128178157.000130

Examples

```
showClass("sbm_ci")
```

show-methods

Methods for Function show

Description

Methods for function show

Methods

```
signature(object = "sbm") Prints an sbm object; use summary(sbm) for results
signature(object = "sbm_ci") Prints an sbm_ci object; use summary(sbm_ci) for results
```

summary-methods 31

SIIM	marv	-met	hods
Sull	IIIai v	-IIIe t	nous

Methods for Function summary

Description

Methods for function summary

Methods

signature(object = "countries") Prints a summary of a countries object built with the function compare_countries

swash

Swash-Backwash Model for the Single Epidemic Wave

Description

Analysis of regional infection/surveillance data using the Swash-Backwash Model for the single epidemic wave by Cliff and Haggett (2006)

Usage

```
swash(
  data,
  col_cases,
  col_date,
  col_region
)
```

Arguments

data	data. Frame with regional infection data
col_cases	Column containing the cases (numeric)
col_date	Column containing the time points (e.g., days)
col_region	Column containing the unique identifier of the regions (e.g., name, NUTS 3 code)

32 swash

Details

The function performs the analysis of the input panel data using the Swash-Backwash Model. The output is an object of class "sbm". The results can be viewed using summary(sbm). The user must state panel data with daily infections.

Value

```
object of class sbm-class
```

Author(s)

Thomas Wieland

References

Cliff AD, Haggett P (2006) A swash-backwash model of the single epidemic wave. *Journal of Geographical Systems* 8(3), 227-252. doi:10.1007/s1010900600278

Smallman-Raynor MR, Cliff AD, Stickler PJ (2022) Meningococcal Meningitis and Coal Mining in Provincial England: Geographical Perspectives on a Major Epidemic, 1929–33. *Geographical Analysis* 54, 197–216. doi:10.1111/gean.12272

Smallman-Raynor MR, Cliff AD, The COVID-19 Genomics UK (COG-UK) Consortium (2022) Spatial growth rate of emerging SARS-CoV-2 lineages in England, September 2020–December 2021. *Epidemiology and Infection* 150, e145. doi:10.1017/S0950268822001285.

See Also

```
sbm-class
```

Examples

```
data(COVID19Cases_geoRegion)
# Get SWISS COVID19 cases at NUTS 3 level
COVID19Cases_geoRegion <-
 COVID19Cases_geoRegion[!COVID19Cases_geoRegion$geoRegion %in% c("CH", "CHFL"),]
# Exclude CH = Switzerland total and CHFL = Switzerland and Liechtenstein total
COVID19Cases_geoRegion <-
 COVID19Cases_geoRegion[COVID19Cases_geoRegion$datum <= "2020-05-31",]
# Extract first COVID-19 wave
CH_covidwave1 <-
 swash (
   data = COVID19Cases_geoRegion,
   col_cases = "entries",
   col_date = "datum",
   col_region = "geoRegion"
# Swash-Backwash Model for Swiss COVID19 cases
# Spatial aggregate: NUTS 3 (cantons)
```

swash 33

```
summary(CH_covidwave1)
# Summary of Swash-Backwash Model

plot(CH_covidwave1)
# Plot of Swash-Backwash Model edges and total epidemic curve
```

Index

* classes	plot, sbm-method (sbm-class), 27
countries-class, 10	plot, sbm_ci-method (sbm_ci-class), 29
loggrowth-class, 18	plot-methods, 22
sbm-class, 27	plot_regions, 23
sbm_ci-class, 29	plot_regions,sbm-method
* methods	(plot_regions-methods), 24
confint-methods, 9	plot_regions-methods, 24
growth-methods, 15	print, sbm-method (sbm-class), 27
plot-methods, 22	<pre>print,sbm_ci-method(sbm_ci-class), 29</pre>
plot_regions-methods, 24	print-methods, 25
print-methods, 25	
show-methods, 30	quantile_ci, 25
summary-methods, 31	
* package	R_t, 26
swash-package, 2	-h
	sbm-class, 27
as_balanced, 4, <i>17</i>	sbm_ci-class, 29
	show, countries-method
compare_countries, 6, 31	(countries-class), 10
confint, sbm-method (sbm-class), 27	show, sbm-method (sbm-class), 27
confint-methods, 9	show, sbm_ci-method (sbm_ci-class), 29
countries-class, 10	show-methods, 30
COVID19Cases_geoRegion, 11	summary, countries-method
	(countries-class), 10
growth, 13	summary, loggrowth-method
growth, sbm-method (growth-methods), 15	(loggrowth-class), 18
growth-methods, 15	summary, sbm-method (sbm-class), 27
	summary, sbm_ci-method(sbm_ci-class), 29
hist_ci, 15	summary-methods, 31
to believed 5 16	swash, $8,31$
is_balanced, 5, 16	swash-package, 2
loggrowth-class, 18	
logistic_growth, <i>14</i> , <i>15</i> , 19, <i>27</i>	
10g15t1t_g1 0wt11, 14, 13, 19, 27	
Oesterreich_Faelle, 21	
plot,countries-method	
(countries-class), 10	
plot,loggrowth-method	
(loggrowth-class), 18	