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cat_magic_alias Display messages using interpolated strings

Description

Utilities to display messages using string_magic interpolation and operations to generate the mes-
sage.

Usage

cat_magic_alias(
.sep = "",
.end = "",
.width = FALSE,
.leader = "",
.delim = c("{", "}"),
.last = NULL,
.trigger = TRUE,
.check = TRUE,
.namespace = NULL

)

message_magic_alias(
.sep = "",
.end = "\n",
.width = ~min(100, .sw),
.leader = "",
.delim = c("{", "}"),
.last = NULL,
.trigger = TRUE,
.check = TRUE,
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.namespace = NULL
)

cat_magic(
...,
.sep = "",
.end = "",
.width = FALSE,
.leader = "",
.envir = parent.frame(),
.delim = c("{", "}"),
.last = NULL,
.trigger = TRUE,
.check = TRUE,
.help = NULL,
.namespace = NULL

)

catma(
...,
.sep = "",
.end = "",
.width = FALSE,
.leader = "",
.envir = parent.frame(),
.delim = c("{", "}"),
.last = NULL,
.trigger = TRUE,
.check = TRUE,
.help = NULL,
.namespace = NULL

)

message_magic(
...,
.sep = "",
.end = "\n",
.width = NULL,
.leader = "",
.envir = parent.frame(),
.delim = c("{", "}"),
.last = NULL,
.trigger = TRUE,
.check = TRUE,
.help = NULL,
.namespace = NULL

)
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mema(
...,
.sep = "",
.end = "\n",
.width = NULL,
.leader = "",
.envir = parent.frame(),
.delim = c("{", "}"),
.last = NULL,
.trigger = TRUE,
.check = TRUE,
.help = NULL,
.namespace = NULL

)

Arguments

.sep Character scalar, default is the empty string "". It is used to collapse all the
elements in ... before applying any operation.

.end Character scalar, default is "" (the empty string) for cat_magic, and "\n" (a
newline) for message_magic. This string will be collated at the end of the mes-
sage (a common alternative is "\n").

.width Can be 1) a positive integer, 2) a number in (0;1), 3) FALSE (default for cat_magic),
4) NULL (default for message_magic), or 5) a one-sided formula. It represents
the target width of the message on the user console. Newlines will be added
between words to fit the target width.

1. positive integer: number of characters
2. number (0;1): fraction of the screen
3. FALSE: does not add newlines
4. NULL: the min between 100 characters and 90% of the screen width
5. one-sided formula: an expression in which you can use the special variable

.sw which represents the current screen width

Note that the value NULL is equivalent to using ~min(100, 0.9*.sw).

.leader Character scalar, default is TRUE. Only used if argument .width is not FALSE.
Whether to add a leading character string right after the extra new lines.

.delim Character vector of length 1 or 2. Default is c("{", "}"). Defines the opening
and the closing delimiters for interpolation.
If of length 1, it must be of the form: 1) the opening delimiter, 2) a single space,
3) the closing delimiter. Ex: ".[ ]" is equivalent to c(".[", "]"). The default
value is equivalent to "{ }".
[ ]: R:%20 [", "]: R:%22,%20%22

.last Character scalar, a function, or NULL (default). If provided and character: it must
be an string_magic chain of operations of the form "'arg1'op1, op2, etc".
All these operations are applied just before returning the vector. If a function, it
will be applied to the resulting vector.



cat_magic_alias 5

.trigger Logical, default is TRUE. If FALSE, this function is not run. Can be useful in
debugging situations where we want conditional evaluations.

.check Logical scalar, default is TRUE. Whether to enable error-handling (i.e. human
readable error messages). Without error-handling you can save something of
the order of 40us. Useful only in long loops.

.namespace Character scalar or NULL (default). Only useful for package developers. As a
regular end-user you shouldn’t care! If your package uses string_magic, you
should care. It is useful only if your package uses ’custom’ string_magic oper-
ations, set with string_magic_register_fun() or string_magic_register_ops().

... Character scalars that will be collapsed with the argument sep. Note that named
arguments are used for substitution.
To interpolate, you can use "{x}" within each character string to insert the value
of x in the string. You can add string operations in each "{}" instance with the
syntax "'arg'op ? x" (resp. "'arg'op ! x") to apply the operation 'op' with
the argument 'arg' to x (resp. the verbatim of x). Otherwise, what to say? Ah,
nesting is enabled, and since there’s over 50 operators, it’s a bit complicated to
sort you out in this small space.
Use the argument .help = "keyword" (or .help = TRUE) to obtain a selective
help from the main documentation.
Note that in interpolations you have access to the special variables: .now and
.date to get the current time; and the special function .now("format") to for-
mat the time. Ex: .now('%Y-%m %H:%m').

.envir An environment used to evaluate the variables in "{}". By default the variables
are evaluated using the environment from where the function is called or using
the named arguments passed to the function.

.help Character scalar or TRUE, default is NULL. This argument is used to generate a
dynamic help on the console. If TRUE, the user can select which topic to read
from the main documentation, with the possibility to search for keywords and
navigate the help pages. If a character scalar, then a regex search is perfomed on
the main documentation and any section containining a match is displayed. The
user can easily navigate across matches.

Details

These functions are base::cat()/message() wrappers aroung string_magic(). There is one
notable difference with respect to cat/message. It’s the ability to add newlines after words for the
message to fit a target width. This is controlled with the argument .width. This is active by default
for message_magic (default is .width = NULL which leads to the minimum betwen 100 characters
and 90% of the screen width).

You can very easily change the default values with the alias generators cat_magic_alias and
message_magic_alias.
[Advanced] A note for package developers who would use these functions and also use custom
string_magic operations created with string_magic_register_fun() or string_magic_register_ops().
To ensure forward compatibility the new operations created should be defined in the package names-
pace (see the ad hoc section in string_magic_register_fun() help). To access these operators in
their specific namespaces, you must use an alias with cat_magic_alias or message_magic_alias
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with the argument .namespace = "myPackageName" (to avoid having to provide the .namespace
argument repeatedly).

Value

The functions cat_magic() and message_magic() do not return anything, they simply print on the
console.

The function cat_magic_alis() returns a function behaving identically to cat_magic() but for
which the default values have been altered. Same for message_magic_alias().

Functions

• cat_magic_alias(): Create an alias of cat_magic with custom defaults

• message_magic_alias(): Create an alias of message_magic with custom defaults

• catma(): Alias to cat_magic

• message_magic(): Display messages using interpolated strings

• mema(): Alias to message_magic

See Also

Other tools with aliases: string_clean_alias(), string_magic(), string_magic_alias(),
string_ops_alias(), string_vec_alias()

Examples

start = Sys.time()
Sys.sleep(0.05)
message_magic("This example has run in {difftime ? start}.")

cat_magic("Let's write a very long message to illustrate how .width work.",
.width = 40)

# Let's add a leader
cat_magic("Let's write a very long message to illustrate how `.width` work.",

"And now we add `.leader`.", .width = 40, .leader = "#> ")

# newlines respect the introductory spaces
cat_magic("Here's a list:",

" + short item",
" + this is a very long item that likely overflows",
.width = 30, .sep = "\n")
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get_interpolated_expr Lists the expressions used for interpolation in a string_magic call

Description

Tool intended for development: use get_interpolated_expr to obtain the list of expressions
which will be interpolated in a string_magic() call. The function get_interpolated_vars pro-
vides the variables instead.

Usage

get_interpolated_expr(x, parse = FALSE, delim = c("{", "}"))

get_interpolated_vars(x, delim = c("{", "}"))

Arguments

x A character scalar for which the variables will be recovered. For example x =
"Hi {person}" will return "person" (the variable that will be interpolated).

parse Logical scalar, default is FALSE. If TRUE, the result is a list of R expressions. If
FALSE (default), the result is a character vector of expressions.

delim Character vector of length 1 or 2. Default is c("{", "}"). Defines the opening
and the closing delimiters for interpolation.
If of length 1, it must be of the form: 1) the opening delimiter, 2) a single space,
3) the closing delimiter. Ex: ".[ ]" is equivalent to c(".[", "]"). The default
value is equivalent to "{ }".
[ ]: R:%20 [", "]: R:%22,%20%22

Details

Note that this function captures even deeply nested interpolations.

Value

If the argument parse = FALSE, the default, then this function returns a character vector containing
all the expressions that will be interpolated. This vector can be empty if there is no interpolation.

If the argument parse = TRUE, then a list is returned, containing the R expressions.

The function get_interpolated_vars always return a character vector.

Functions

• get_interpolated_vars(): Obtain the variables used in string_magic() interpolations
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See Also

String operations: string_is(), string_get(), string_clean(), string_split2df(). Chain
basic operations with string_ops(). Clean character vectors efficiently with string_clean().

Use string_vec() to create simple string vectors.

String interpolation combined with operation chaining: string_magic(). You can change string_magic
default values with string_magic_alias() and add custom operations with string_magic_register_fun().

Display messages while benefiting from string_magic interpolation with cat_magic() and message_magic().

Other tools with aliases: cat_magic_alias(), string_magic(), string_magic_alias(), string_ops_alias(),
string_vec_alias()

Examples

# let's create a simple interpolation
x = c("Ken", "Barbie")
sma_expr = "{' loves 'c ? x}. But does {' love 'c ? rev(x)}?"
string_magic(sma_expr)

# We recover the two expressions
(char = get_interpolated_expr(sma_expr))

# same with parsing
(expr = get_interpolated_expr(sma_expr, parse = TRUE))

# see the difference
eval(char[[1]])
eval(expr[[1]])

# and only the variables:
get_interpolated_vars(sma_expr)

parse_regex_pattern stringmagic’s regular expression parser

Description

Parse regular expression with custom flags and obtain the final pattern to be parsed as well as the
vector of flags

Usage

parse_regex_pattern(
pattern,
authorized_flags,
parse_flags = TRUE,
parse_logical = TRUE,
envir = parent.frame()

)
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Arguments

pattern Character scalar, the regular expression pattern to parse.

authorized_flags

Character vector representing the flags to be parsed. Use the empty string if no
flags are allowed.

parse_flags Logical scalar, default is TRUE. Whether to parse the optional regex flags.

parse_logical Logical scalar, default is TRUE. Whether to parse logical regex operations, simi-
larly to string_get().

envir An environment, default is parent.frame(). Only used if the flag magic is
present, it is used to find the variables to be interpolated.

Details

This is an internal tool that is exposed in order to facilitate checking what’s going on.

There is no error handling.

Value

This function always returns a list of 4 elements:

• flags: the character vector of flags. If no flags were found, this is the empty string.

• patterns: the vector of regex patterns.

• is_or: logical vector of the same length as patterns. Indicates for each pattern if it should
be attached to the previous patterns with a logical OR (FALSE means a logical AND).

• is_not: logical vector of the same length as patterns. Indicates for each pattern if it should
be negated.

Author(s)

Laurent Berge

See Also

String operations: string_is(), string_get(), string_clean(), string_split2df(). Chain
basic operations with string_ops(). Clean character vectors efficiently with string_clean().

Use string_vec() to create simple string vectors.

String interpolation combined with operation chaining: string_magic(). You can change string_magic
default values with string_magic_alias() and add custom operations with string_magic_register_fun().

Display messages while benefiting from string_magic interpolation with cat_magic() and message_magic().

Other tools with aliases: cat_magic_alias(), string_magic(), string_magic_alias(), string_ops_alias(),
string_vec_alias()
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Examples

parse_regex_pattern("f/hello", c("fixed", "ignore"))

x = "john"
parse_regex_pattern("fm/{x} | Doe", c("fixed", "ignore", "magic"))

paste_conditional Paste a string vector conditionally

Description

Easily reconstruct a string vector that has been split with string_split2df().

Usage

paste_conditional(x, id, sep = " ", names = TRUE, sort = TRUE)

Arguments

x A character vector or a formula. If a vector: it represents the values to be pasted
together. If a formula, it must be of the form my_string ~ id1 + id2 with on
the left the character vector and on the right the (possibly many) identifiers. If a
formula, the argument id must be a data frame.

id A vector of identifiers, a list of identifiers (can be a data frame), or a data.frame.
The identifiers can be a vector or a list of vectors. They represent which elements
of x are to be pasted together.

When x is a formula, then id must be a data.frame containing the variables in
the formula.

sep A character scalar, default is " ". The value used to paste together the elements
of x.

names Logical scalar, default is TRUE. Whether to add, as names, the values of the
identifiers.

sort Logical scalar, default is TRUE. Whether to sort the results according to the iden-
tifiers.

Value

Returns a character vector. If the argument names is TRUE (default), the vector will have names
equal to the values of the identifiers.
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Examples

#
# let's paste together the letters of the alphabet

# first we create the identifier
id = rep(1:2, each = 13)
setNames(id, letters)

# now we conditionally paste together the letters
paste_conditional(letters, id, "")

#
# using a formula

# we create a small data set based on mtcars
base_cars = within(mtcars, carname <- row.names(mtcars))
base_cars = head(base_cars, 10)

# we use two identifiers
paste_conditional(carname ~ gear + carb, base_cars, sep = ", ")

string_clean_alias Cleans a character vector from multiple patterns

Description

Recursively cleans a character vector from several patterns. Quickly handle the tedious task of data
cleaning by taking advantage of the syntax. You can also apply all sorts of cleaning operations by
summoning string_ops() operations.

Usage

string_clean_alias(
replacement = "",
pipe = " => ",
split = ",[ \n\t]+",
ignore.case = FALSE,
fixed = FALSE,
word = FALSE,
total = FALSE,
single = FALSE,
namespace = NULL

)

string_clean(
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x,
...,
replacement = "",
pipe = " => ",
split = ",[ \n\t]+",
ignore.case = FALSE,
fixed = FALSE,
word = FALSE,
total = FALSE,
single = FALSE,
envir = parent.frame(),
namespace = NULL

)

string_replace(
x,
pattern,
replacement = "",
pipe = " => ",
ignore.case = FALSE,
fixed = FALSE,
word = FALSE,
total = FALSE,
single = FALSE,
envir = parent.frame()

)

stclean(
x,
...,
replacement = "",
pipe = " => ",
split = ",[ \n\t]+",
ignore.case = FALSE,
fixed = FALSE,
word = FALSE,
total = FALSE,
single = FALSE,
envir = parent.frame(),
namespace = NULL

)

streplace(
x,
pattern,
replacement = "",
pipe = " => ",
ignore.case = FALSE,
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fixed = FALSE,
word = FALSE,
total = FALSE,
single = FALSE,
envir = parent.frame()

)

Arguments

replacement Character scalar, default is the empty string. It represents the default value by
which the patterns found in the character strings will be replaced. For example
string_clean(x, "e", replacement = "a") turn all letters "e" in x into "a".

pipe Character scalar, default is " => ". If thevalue of pipe is found in a pattern,
then the string is split w.r.t. the pipe and anything after the pipe becomes the
replacement.
For example in string_clean(x, "e => a") the default pipe is found in "e =>
a", so the pattern "e" will be replaced with "a". In other terms, this is equiv-
alent to string_clean(x, "e", replacement = "a"). Example changing the
pipe: you can obtain the previous result with string_clean(x, "e|>a", pipe
= "|>").

split Character scalar, default is ",[ \t\n]+" (which means a comma followed with
spaces and/or new lines). By default the patterns to be replaced are comma
separated, that is the pattern is split w.r.t. the argument split and a replacement
is done for each sub-pattern.
Use NULL or the empty string to disable pattern separation.
For example: let’s look at string_clean(x, "w/one, two => three"). First
the flag "word" is extracted from the pattern (see arg. ...) as well as the re-
placement (see arg. pipe), leading to "one, two" the pattern to be replaced.
Then the pattern is split w.r.t. split, leading to two patterns "one" and "two".
Hence the words (thanks to the flag "w") "one" and "two" from the string x will
be replaced with "three".

ignore.case Logical scalar, default is FALSE. If TRUE, then case insensitive search is triggered.
fixed Logical scalar, default is FALSE. Whether to trigger a fixed search instead of a

regular expression search (default).
word Logical scalar, default is FALSE. If TRUE then a) word boundaries are added to

the pattern, and b) patterns can be chained by separating them with a comma,
they are combined with an OR logical operation. Example: if word = TRUE, then
pattern = "The, mountain" will select strings containing either the word ’The’ or
the word ’mountain’.

total Logical scalar, default is FALSE. If TRUE, then when a pattern is found in a string,
the full string is replaced (instead of just the pattern). Note, importantly, that
when total = TRUE you can use logical operators in the patterns.
Example: string_clean(x, "wi/ & two, three & !four => ", total = TRUE)

single Logical scalar, default is FALSE. Whether, in substitutions, to stop at the first
match found. Ex: string_clean("abc", "[[:alpha:]] => _", single = TRUE)
leads to "_bc", while string_clean("abc", "[[:alpha:]] => _") leads to
"___".
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namespace Character scalar or NULL (default). Only useful for package developers. As a
regular end-user you shouldn’t care! If your package uses string_magic, you
should care. It is useful only if your package uses ’custom’ string_magic oper-
ations, set with string_magic_register_fun() or string_magic_register_ops().
If so pass the name of your package in this argument so that your function can
access the new string_magic operations defined within your package.

x A character vector.

... Character scalars representing patterns. A pattern is of the form "flags/pat1,
pat2 => replacement". This means that patterns ’pat1’ and ’pat2’ will be re-
placed with the string ’replacement’. By default patterns are comma separated
and the replacement comes after a ’ => ’ (see args split and pipe to change
this). By default the replacement is the empty string (so "pat1, pat2" removes
the patterns).
Available regex flags are: ’word’ (add word boundaries), ’ignore’ (the case),
’fixed’ (no regex), ’total’, ’single’ and ’magic’. The flag total leads to a total
replacement of the string if the pattern is found. The flag ’magic’ allows to in-
terpolate variables within the pattern. Use flags with comma separation ("word,
total/pat") or use only their initials ("wt/pat").
Starting with an ’@’ leads to operations in string_ops(). Ex: "@ascii, lower,
ws" turns the string into ASCII, lowers the case and normalizes white spaces
(see help of string_ops()).

envir Environment in which to evaluate the interpolations if the flag "magic" is pro-
vided. Default is parent.frame().

pattern A character scalar containing a regular expression pattern to be replaced. You
can write the replacement directly in the string after a pipe: ’ => ’ (see arg.
pipe to change this). By default the replacement is the empty string (so "pat1"
removes the pattern).
Available regex flags are: ’word’ (add word boundaries), ’ignore’ (the case),
’fixed’ (no regex), ’total’, ’single’ and ’magic’. The flag total leads to a total
replacement of the string if the pattern is found. The flag ’magic’ allows to in-
terpolate variables within the pattern. Use flags with comma separation ("word,
total/pat") or use only their initials ("wt/pat").

Value

The main usage returns a character vector of the same length as the vector in input. Note, however,
that since you can apply arbitrary string_ops() operations, the length and type of the final vector
may depend on those (if they are used).

Functions

• string_clean_alias(): Create a string_clean alias with custom defaults

• string_replace(): Simplified version of string_clean

• stclean(): Alias to string_clean

• streplace(): Alias to string_replace
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Regular expression flags specific to replacement

This function benefits from two specific regex flags: "total" and "single".

• "total" replaces the complete string if the pattern is found (remember that the default behavior
is to replace just the pattern).

• "single" performs a single substitution for each string element and stops there. Only the
first match of each string is replaced. Technically we use base::sub() internally instead
of base::gsub().

Generic regular expression flags

All stringmagic functions support generic flags in regular-expression patterns. The flags are useful
to quickly give extra instructions, similarly to usual regular expression flags.

Here the syntax is "flag1, flag2/pattern". That is: flags are a comma separated list of flag-names
separated from the pattern with a slash (/). Example: string_which(c("hello...", "world"),
"fixed/.") returns 1. Here the flag "fixed" removes the regular expression meaning of "." which
would have otherwise meant "any character". The no-flag verion string_which(c("hello...",
"world"), ".") returns 1:2.

Alternatively, and this is recommended, you can collate the initials of the flags instead of using a
comma separated list. For example: "if/dt[" will apply the flags "ignore" and "fixed" to the pattern
"dt[".

The four flags always available are: "ignore", "fixed", "word" and "magic".

• "ignore" instructs to ignore the case. Technically, it adds the perl-flag "(?i)" at the beginning
of the pattern.

• "fixed" removes the regular expression interpretation, so that the characters ".", "$", "^", "["
(among others) lose their special meaning and are treated for what they are: simple characters.

• "word" adds word boundaries ("\\b" in regex language) to the pattern. Further, the comma
(",") becomes a word separator. Technically, "word/one, two" is treated as "\b(one|two)\b".
Example: string_clean("Am I ambushed?", "wi/am") leads to " I ambushed?" thanks to
the flags "ignore" and "word".

• "magic" allows to interpolate variables inside the pattern before regex interpretation. For ex-
ample if letters = "aiou" then string_clean("My great goose!", "magic/[{letters}]
=> e") leads to "My greet geese!"

Author(s)

Laurent R. Berge

See Also

String operations: string_is(), string_get(), string_clean(), string_split2df(). Chain
basic operations with string_ops(). Clean character vectors efficiently with string_clean().

Use string_vec() to create simple string vectors.

String interpolation combined with operation chaining: string_magic(). You can change string_magic
default values with string_magic_alias() and add custom operations with string_magic_register_fun().

https://javascript.info/regexp-introduction
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Display messages while benefiting from string_magic interpolation with cat_magic() and message_magic().

Other tools with aliases: cat_magic_alias(), string_magic(), string_magic_alias(), string_ops_alias(),
string_vec_alias()

Examples

x = c("hello world ", "it's 5 am....")

# we clean the o's and the points (we use 'fixed' to trigger fixed-search)
string_clean(x, "o", "f/.")
# equivalently
string_clean(x, "fixed/o, .")
# equivalently
string_clean(x, "o, .", fixed = TRUE)
# equivalently
string_clean(x, "o", ".", fixed = TRUE)

#
# chaining operations: example using cars
#

cars = row.names(mtcars)
new = string_clean(cars,

# replace strings containing "Maz" with Mazda
"total/Maz => Mazda",
# replace the word 'Merc' with Mercedes
"wi/merc => Mercedes",
# replace strings containing "Merc" and a digit followed with an 'S'
"t/Merc & \\dS => Mercedes S!",
# put to lower case, remove isolated characters and normalize white spaces
"@lower, ws.isolated")

cbind(cars, new)

string_extract Extracts a pattern from a character vector

Description

Extracts the first, or several, patterns from a character vector.

Usage

string_extract(
x,
pattern,
single = FALSE,
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simplify = TRUE,
fixed = FALSE,
ignore.case = FALSE,
word = FALSE,
unlist = FALSE,
envir = parent.frame()

)

stextract(
x,
pattern,
single = FALSE,
simplify = TRUE,
fixed = FALSE,
ignore.case = FALSE,
word = FALSE,
unlist = FALSE,
envir = parent.frame()

)

Arguments

x A character vector.

pattern A character scalar. It represents the pattern to be extracted from x. By de-
fault this is a regular expression. You can use flags in the pattern in the form
flag1, flag2/pattern. Available flags are ignore (case), fixed (no regex),
word (add word boundaries), single (select only the first element), and magic
(add interpolation with {}) . Example: if "ignore/hello" and x = "Hello world
extracted text is "Hello". Shortcut: use the first letters of the flags. Ex: "iw/one"
will extract the word "one" (flags ’ignore’ + ’word’).

single Logical scalar, default is FALSE. If TRUE, only the first pattern that is detected
will be returned. Note that in that case, a character vector is returned of the
same length as the vector in input.

simplify Logical scalar, default is TRUE. If TRUE, then when the vector input x is of length
1, a character vector is returned instead of a list.

fixed Logical scalar, default is FALSE. Whether to trigger a fixed search instead of a
regular expression search (default).

ignore.case Logical scalar, default is FALSE. If TRUE, then case insensitive search is triggered.

word Logical scalar, default is FALSE. If TRUE then a) word boundaries are added to
the pattern, and b) patterns can be chained by separating them with a comma,
they are combined with an OR logical operation. Example: if word = TRUE, then
pattern = "The, mountain" will select strings containing either the word ’The’ or
the word ’mountain’.

unlist Logical scalar, default is FALSE. If TRUE, the function unlist is applied to the
resulting list, leading to a character vector in output (instead of a list).

envir Environment in which to evaluate the interpolations if the flag "magic" is pro-
vided. Default is parent.frame().
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Value

The object returned by this functions can be a list or a character vector.

If single = TRUE, a character vector is returned, containing the value of the first match. If no match
is found, an empty string is returned.

If single = FALSE (the default) and simplify = TRUE (default), the object returned is:

• a character vector if x, the vector in input, is of length 1: the character vector contains all the
matches and is of length 0 if no match is found.

• a list of the same length as x. The ith element of the list is a character vector of the matches
for the ith element of x.

If single = FALSE (default) and simplify = FALSE, the object returned is always a list.

Functions

• stextract(): Alias to string_extract

Generic regular expression flags

All stringmagic functions support generic flags in regular-expression patterns. The flags are useful
to quickly give extra instructions, similarly to usual regular expression flags.

Here the syntax is "flag1, flag2/pattern". That is: flags are a comma separated list of flag-names
separated from the pattern with a slash (/). Example: string_which(c("hello...", "world"),
"fixed/.") returns 1. Here the flag "fixed" removes the regular expression meaning of "." which
would have otherwise meant "any character". The no-flag verion string_which(c("hello...",
"world"), ".") returns 1:2.

Alternatively, and this is recommended, you can collate the initials of the flags instead of using a
comma separated list. For example: "if/dt[" will apply the flags "ignore" and "fixed" to the pattern
"dt[".

The four flags always available are: "ignore", "fixed", "word" and "magic".

• "ignore" instructs to ignore the case. Technically, it adds the perl-flag "(?i)" at the beginning
of the pattern.

• "fixed" removes the regular expression interpretation, so that the characters ".", "$", "^", "["
(among others) lose their special meaning and are treated for what they are: simple characters.

• "word" adds word boundaries ("\\b" in regex language) to the pattern. Further, the comma
(",") becomes a word separator. Technically, "word/one, two" is treated as "\b(one|two)\b".
Example: string_clean("Am I ambushed?", "wi/am") leads to " I ambushed?" thanks to
the flags "ignore" and "word".

• "magic" allows to interpolate variables inside the pattern before regex interpretation. For ex-
ample if letters = "aiou" then string_clean("My great goose!", "magic/[{letters}]
=> e") leads to "My greet geese!"

https://javascript.info/regexp-introduction
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Examples

cars = head(row.names(mtcars))

# Let's extract the first word:
string_extract(cars, "\\w+", single = TRUE)

# same using flags
string_extract(cars, "s/\\w+")

# extract all words composed on only letters
# NOTE: we use the flag word (`w/`)
string_extract(cars, "w/[[:alpha:]]+")

# version without flag:
string_extract(cars, "\\b[[:alpha:]]+\\b")

# If a vector of length 1 => a vector is returned
greet = "Hi Tom, how's Mary doing?"
string_extract(greet, "w/[[:upper:]]\\w+")

# version with simplify = FALSE => a list is returned
string_extract(greet, "w/[[:upper:]]\\w+", simplify = FALSE)

string_fill Fills a character string up to a size

Description

Fills a character string up to a size and handles multibyte encodings (differently from sprintf).

Usage

string_fill(
x = "",
n = NULL,
symbol = " ",
right = FALSE,
center = FALSE,
center.right = TRUE,
na = "NA"

)

Arguments

x A character vector.
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n Integer scalar, possibly equal to NULL (default). The size up to which the char-
acter vector will be filled. If NULL (default), it is set to the largest width in the
character vector x. To handle how the character is filled, see the arguments
symbol, right and center.

symbol Character scalar of length 1, default is a space (" "). It is the symbol with which
the string will be filled.

right Logical scalar, default is FALSE. If TRUE, then the filling of the string is done
from the left, leading to right-alignment.

center Logical scalar, default is FALSE. If TRUE, then the filling of the string will be
balanced so as to center the strings.

center.right Logical scalar, default is TRUE. Only used when center = TRUE, ignored other-
wise. If TRUE, then when the width is odd and the number of characters of the
string is even (or vice versa), the text is centered with one character on the right.
If FALSE, this is one character on the left.

na Character scalar or NA. Default is "NA" (a character string!). What happens to
NAs: by default they are replaced by the character string "NA".

Details

If you use character filling of the form sprintf("% 20s", x) with x``containing multibyte characters, you may be suprised that all character strings do not end up at the same lenght (the occurrence of this problem depends on many things: encodings are a mess). string_fill‘
uses only base R functions to compensate this. It is slightly slower but, in general, safer.

It also looks a bit like base::format(), but slightly different (and a bit faster, but more restrictive).

Value

This functions returns a character vector of the same lenght as the vector in input.

Author(s)

Laurent R. Berge

See Also

String operations: string_is(), string_get(), string_clean(), string_split2df(). Chain
basic operations with string_ops(). Clean character vectors efficiently with string_clean().

Use string_vec() to create simple string vectors.

String interpolation combined with operation chaining: string_magic(). You can change string_magic
default values with string_magic_alias() and add custom operations with string_magic_register_fun().

Display messages while benefiting from string_magic interpolation with cat_magic() and message_magic().

Other tools with aliases: cat_magic_alias(), string_magic(), string_magic_alias(), string_ops_alias(),
string_vec_alias()
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Examples

x = c("apple", "pineapple")

# simple fill with blank
cat(paste0(string_fill(x), ":", c(3, 7), "=C"), sep = "\n")

# center fill
cat(paste0(string_fill(x, center = TRUE), ":", c(3, 7), "=C"), sep = "\n")

# changing the length of the fill and the symbol used for filling
cat(paste0(string_fill(x), ":",

string_fill(c(3, 7), 3, "0", right = TRUE), "=C"), sep = "\n")

# na behavior: default/NA/other
x = c("hello", NA)
string_fill(x)
string_fill(x, na = NA)
string_fill(x, na = "(missing)")

string_get Gets elements of a character vector

Description

Convenient way to get elements from a character vector.

Usage

string_get(
x,
...,
fixed = FALSE,
ignore.case = FALSE,
word = FALSE,
or = FALSE,
seq = FALSE,
seq.unik = FALSE,
pattern = NULL,
envir = parent.frame()

)

stget(
x,
...,
fixed = FALSE,
ignore.case = FALSE,
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word = FALSE,
or = FALSE,
seq = FALSE,
seq.unik = FALSE,
pattern = NULL,
envir = parent.frame()

)

Arguments

x A character vector.

... Character scalars representing the patterns to be found. By default they are
(perl) regular-expressions. Use ’ & ’ or ’ | ’ to chain patterns and combine their
result logically (ex: '[[:alpha:]] & \\d' gets strings containing both letters
and numbers). You can negate by adding a ! first (ex: "!sepal$" will return
TRUE for strings that do not end with "sepal"). Add flags with the syntax ’flag1,
flag2/pattern’. Available flags are: ’fixed’, ’ignore’, ’word’ and ’magic’. Ex:
"ignore/sepal" would get "Sepal.Length" (wouldn’t be the case w/t ’ignore’).
Shortcut: use the first letters of the flags. Ex: "if/dt[" would get "DT[i = 5]"
(flags ’ignore’ + ’fixed’). For ’word’, it adds word boundaries to the pattern.
The magic flag first interpolates values directly into the pattern with "".

fixed Logical scalar, default is FALSE. Whether to trigger a fixed search instead of a
regular expression search (default).

ignore.case Logical scalar, default is FALSE. If TRUE, then case insensitive search is triggered.

word Logical scalar, default is FALSE. If TRUE then a) word boundaries are added to
the pattern, and b) patterns can be chained by separating them with a comma,
they are combined with an OR logical operation. Example: if word = TRUE, then
pattern = "The, mountain" will select strings containing either the word ’The’ or
the word ’mountain’.

or Logical, default is FALSE. In the presence of two or more patterns, whether to
combine them with a logical "or" (the default is to combine them with a logical
"and").

seq Logical, default is FALSE. The argument pattern accepts a vector of patterns
which are combined with an and by default. If seq = TRUE, then it is like if
string_get was called sequentially with its results stacked. See examples.

seq.unik Logical, default is FALSE. The argument ... (or the argument pattern) accepts
a vector of patterns which are combined with an and by default. If seq.unik
= TRUE, then string_get is called sequentially with its results stacked, and
unique() is applied in the end. See examples.

pattern (If provided, elements of ... are ignored.) A character vector representing
the patterns to be found. By default a (perl) regular-expression search is trig-
gered. Use ’ & ’ or ’ | ’ to chain patterns and combine their result logically
(ex: '[[:alpha:]] & \\d' gets strings containing both letters and numbers).
You can negate by adding a ! first (ex: "!sepal$" will return TRUE for strings
that do not end with "sepal"). Add flags with the syntax ’flag1, flag2/pattern’.
Available flags are: ’fixed’, ’ignore’, ’word’ and ’magic’. Ex: "ignore/sepal"
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would get "Sepal.Length" (wouldn’t be the case w/t ’ignore’). Shortcut: use the
first letters of the flags. Ex: "if/dt[" would get "DT[i = 5]" (flags ’ignore’ +
’fixed’). For ’word’, it adds word boundaries to the pattern. The magic flag first
interpolates values directly into the pattern with "".

envir Environment in which to evaluate the interpolations if the flag "magic" is pro-
vided. Default is parent.frame().

Details

This function is a wrapper to string_is().

Value

It always return a character vector.

Functions

• stget(): Alias to string_get

Caching

In an exploratory stage, it can be useful to quicky get values from a vector with the least hassle as
possible. Hence string_get implements caching, so that users do not need to repeat the value of
the argument x in successive function calls, and can concentrate only on the selection patterns.

Caching is a feature only available when the user calls string_get from the global environment.
If that feature were available in regular code, it would be too dangerous, likely leading to hard to
debug bugs. Hence caching is disabled when used within code (i.e. inside a function or inside an
automated script), and function calls without the main argument will lead to errors in such scripts.

Generic regular expression flags

All stringmagic functions support generic flags in regular-expression patterns. The flags are useful
to quickly give extra instructions, similarly to usual regular expression flags.

Here the syntax is "flag1, flag2/pattern". That is: flags are a comma separated list of flag-names
separated from the pattern with a slash (/). Example: string_which(c("hello...", "world"),
"fixed/.") returns 1. Here the flag "fixed" removes the regular expression meaning of "." which
would have otherwise meant "any character". The no-flag verion string_which(c("hello...",
"world"), ".") returns 1:2.

Alternatively, and this is recommended, you can collate the initials of the flags instead of using a
comma separated list. For example: "if/dt[" will apply the flags "ignore" and "fixed" to the pattern
"dt[".

The four flags always available are: "ignore", "fixed", "word" and "magic".

• "ignore" instructs to ignore the case. Technically, it adds the perl-flag "(?i)" at the beginning
of the pattern.

• "fixed" removes the regular expression interpretation, so that the characters ".", "$", "^", "["
(among others) lose their special meaning and are treated for what they are: simple characters.

https://javascript.info/regexp-introduction
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• "word" adds word boundaries ("\\b" in regex language) to the pattern. Further, the comma
(",") becomes a word separator. Technically, "word/one, two" is treated as "\b(one|two)\b".
Example: string_clean("Am I ambushed?", "wi/am") leads to " I ambushed?" thanks to
the flags "ignore" and "word".

• "magic" allows to interpolate variables inside the pattern before regex interpretation. For ex-
ample if letters = "aiou" then string_clean("My great goose!", "magic/[{letters}]
=> e") leads to "My greet geese!"

Author(s)

Laurent R. Berge

See Also

String operations: string_is(), string_get(), string_clean(), string_split2df(). Chain
basic operations with string_ops(). Clean character vectors efficiently with string_clean().

Use string_vec() to create simple string vectors.

String interpolation combined with operation chaining: string_magic(). You can change string_magic
default values with string_magic_alias() and add custom operations with string_magic_register_fun().

Display messages while benefiting from string_magic interpolation with cat_magic() and message_magic().

Other tools with aliases: cat_magic_alias(), string_magic(), string_magic_alias(), string_ops_alias(),
string_vec_alias()

Examples

x = rownames(mtcars)

# find all Mazda cars
string_get(x, "Mazda")
# same with ignore case flag
string_get(x, "i/mazda")

# all cars containing a single digit (we use the 'word' flag)
string_get(x, "w/\\d")

# finds car names without numbers AND containing `u`
string_get(x, "!\\d", "u")
# equivalently
string_get(x, "!\\d & u")

# Stacks all Mazda and Volvo cars. Mazda first
string_get(x, "Mazda", "Volvo", seq = TRUE)

# Stacks all Mazda and Volvo cars. Volvo first
string_get(x, "Volvo", "Mazda", seq = TRUE)

# let's get the first word of each car name
car_first = string_ops(x, "extract.first")
# we select car brands ending with 'a', then ending with 'i'
string_get(car_first, "a$", "i$", seq = TRUE)
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# seq.unik is similar to seq but applies unique()
string_get(car_first, "a$", "i$", seq.unik = TRUE)

#
# flags
#

# you can combine the flags
x = string_magic("/One, two, one... Two!, Microphone, check")
# regular
string_get(x, "one")
# ignore case
string_get(x, "i/one")
# + word boundaries
string_get(x, "iw/one")

# you can escape the meaning of ! with backslashes
string_get(x, "\\!")

#
# Caching
#

# Caching is enabled when the function is used interactively
# so you don't need to repeat the argument 'x'
# Mostly useful at an exploratory stage

if(interactive() && is.null(sys.calls())){

# first run, the data is cached
string_get(row.names(mtcars), "i/vol")

# now you don't need to specify the data
string_get("i/^m & 4")

}

string_is Detects whether a pattern is in a character string

Description

Function that detects if one or more patterns are in a string. The patterns can be chained, by default
this is a regex search but special flags be triggered with a specific syntax, supports negation.
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Usage

string_is(
x,
...,
fixed = FALSE,
ignore.case = FALSE,
word = FALSE,
or = FALSE,
pattern = NULL,
envir = parent.frame(),
last = NULL

)

string_any(
x,
...,
fixed = FALSE,
ignore.case = FALSE,
word = FALSE,
or = FALSE,
pattern = NULL,
envir = parent.frame()

)

string_all(
x,
...,
fixed = FALSE,
ignore.case = FALSE,
word = FALSE,
or = FALSE,
pattern = NULL,
envir = parent.frame()

)

string_which(
x,
...,
fixed = FALSE,
ignore.case = FALSE,
word = FALSE,
or = FALSE,
pattern = NULL,
envir = parent.frame()

)

stis(
x,
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...,
fixed = FALSE,
ignore.case = FALSE,
word = FALSE,
or = FALSE,
pattern = NULL,
envir = parent.frame(),
last = NULL

)

stany(
x,
...,
fixed = FALSE,
ignore.case = FALSE,
word = FALSE,
or = FALSE,
pattern = NULL,
envir = parent.frame()

)

stall(
x,
...,
fixed = FALSE,
ignore.case = FALSE,
word = FALSE,
or = FALSE,
pattern = NULL,
envir = parent.frame()

)

stwhich(
x,
...,
fixed = FALSE,
ignore.case = FALSE,
word = FALSE,
or = FALSE,
pattern = NULL,
envir = parent.frame()

)

Arguments

x A character vector.

... Character scalars representing the patterns to be found. By default they are
(perl) regular-expressions. Use ’ & ’ or ’ | ’ to chain patterns and combine their



28 string_is

result logically (ex: '[[:alpha:]] & \\d' gets strings containing both letters
and numbers). You can negate by adding a ! first (ex: "!sepal$" will return
TRUE for strings that do not end with "sepal"). Add flags with the syntax ’flag1,
flag2/pattern’. Available flags are: ’fixed’, ’ignore’, ’word’ and ’magic’. Ex:
"ignore/sepal" would get "Sepal.Length" (wouldn’t be the case w/t ’ignore’).
Shortcut: use the first letters of the flags. Ex: "if/dt[" would get "DT[i = 5]"
(flags ’ignore’ + ’fixed’). For ’word’, it adds word boundaries to the pattern.
The magic flag first interpolates values directly into the pattern with "".

fixed Logical scalar, default is FALSE. Whether to trigger a fixed search instead of a
regular expression search (default).

ignore.case Logical scalar, default is FALSE. If TRUE, then case insensitive search is triggered.

word Logical scalar, default is FALSE. If TRUE then a) word boundaries are added to
the pattern, and b) patterns can be chained by separating them with a comma,
they are combined with an OR logical operation. Example: if word = TRUE, then
pattern = "The, mountain" will select strings containing either the word ’The’ or
the word ’mountain’.

or Logical, default is FALSE. In the presence of two or more patterns, whether to
combine them with a logical "or" (the default is to combine them with a logical
"and").

pattern (If provided, elements of ... are ignored.) A character vector representing
the patterns to be found. By default a (perl) regular-expression search is trig-
gered. Use ’ & ’ or ’ | ’ to chain patterns and combine their result logically
(ex: '[[:alpha:]] & \\d' gets strings containing both letters and numbers).
You can negate by adding a ! first (ex: "!sepal$" will return TRUE for strings
that do not end with "sepal"). Add flags with the syntax ’flag1, flag2/pattern’.
Available flags are: ’fixed’, ’ignore’, ’word’ and ’magic’. Ex: "ignore/sepal"
would get "Sepal.Length" (wouldn’t be the case w/t ’ignore’). Shortcut: use the
first letters of the flags. Ex: "if/dt[" would get "DT[i = 5]" (flags ’ignore’ +
’fixed’). For ’word’, it adds word boundaries to the pattern. The magic flag first
interpolates values directly into the pattern with "".

envir Environment in which to evaluate the interpolations if the flag "magic" is pro-
vided. Default is parent.frame().

last A function or NULL (default). If a function, it will be applied to the vector just
before returning it.

Details

The internal function used to find the patterns is base::grepl() with perl = TRUE.

Value

It returns a logical vector of the same length as x.

The function string_which returns a numeric vector.

Functions

• string_any(): Detects if at least one element of a vector matches a regex pattern
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• string_all(): Detects if all elements of a vector match a regex pattern
• string_which(): Returns the indexes of the values in which a pattern is detected
• stis(): Alias to string_is

• stany(): Alias to string_any

• stall(): Alias to string_all

• stwhich(): Alias to string_which

Generic regular expression flags

All stringmagic functions support generic flags in regular-expression patterns. The flags are useful
to quickly give extra instructions, similarly to usual regular expression flags.
Here the syntax is "flag1, flag2/pattern". That is: flags are a comma separated list of flag-names
separated from the pattern with a slash (/). Example: string_which(c("hello...", "world"),
"fixed/.") returns 1. Here the flag "fixed" removes the regular expression meaning of "." which
would have otherwise meant "any character". The no-flag verion string_which(c("hello...",
"world"), ".") returns 1:2.

Alternatively, and this is recommended, you can collate the initials of the flags instead of using a
comma separated list. For example: "if/dt[" will apply the flags "ignore" and "fixed" to the pattern
"dt[".

The four flags always available are: "ignore", "fixed", "word" and "magic".

• "ignore" instructs to ignore the case. Technically, it adds the perl-flag "(?i)" at the beginning
of the pattern.

• "fixed" removes the regular expression interpretation, so that the characters ".", "$", "^", "["
(among others) lose their special meaning and are treated for what they are: simple characters.

• "word" adds word boundaries ("\\b" in regex language) to the pattern. Further, the comma
(",") becomes a word separator. Technically, "word/one, two" is treated as "\b(one|two)\b".
Example: string_clean("Am I ambushed?", "wi/am") leads to " I ambushed?" thanks to
the flags "ignore" and "word".

• "magic" allows to interpolate variables inside the pattern before regex interpretation. For ex-
ample if letters = "aiou" then string_clean("My great goose!", "magic/[{letters}]
=> e") leads to "My greet geese!"

Author(s)

Laurent R. Berge

See Also

String operations: string_is(), string_get(), string_clean(), string_split2df(). Chain
basic operations with string_ops(). Clean character vectors efficiently with string_clean().
Use string_vec() to create simple string vectors.
String interpolation combined with operation chaining: string_magic(). You can change string_magic
default values with string_magic_alias() and add custom operations with string_magic_register_fun().
Display messages while benefiting from string_magic interpolation with cat_magic() and message_magic().
Other tools with aliases: cat_magic_alias(), string_magic(), string_magic_alias(), string_ops_alias(),
string_vec_alias()

https://javascript.info/regexp-introduction
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Examples

# NOTA: using `string_get` instead of `string_is` may lead to a faster understanding
# of the examples

x = string_vec("One, two, one... two, microphone, check")

# default is regular expression search
# => 3 character items
string_is(x, "^...$")

# to trigger fixed search use the flag 'fixed'
string_is(x, "fixed/...")
# you can just use the first letter
string_is(x, "f/...")

# to negate, use '!' as the first element of the pattern
string_is(x, "f/!...")

# you can combine several patterns with " & " or " | "
string_is(x, "one & c")
string_is(x, "one | c")

#
# word: adds word boundaries
#

# compare
string_is(x, "one")
# with
string_is(x, "w/one")

# words can be chained with commas (it is like an OR logical operation)
string_is(x, "w/one, two")
# compare with
string_is(x, "w/one & two")
# remember that you can still negate
string_is(x, "w/one & !two")

# you can combine the flags
# compare
string_is(x, "w/one")
# with
string_is(x, "wi/one")

#
# the `magic` flag
#

p = "one"
string_is(x, "m/{p}")
# Explanation:
# - "p" is interpolated into "one"
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# - we get the equivalent: string_is(x, "one")

#
# string_which
#

# it works exactly the same way as string_is
# Which are the items containing an 'e' and an 'o'?
string_which(x, "e", "o")
# equivalently
string_which(x, "e & o")

string_magic String interpolation with operation chaining

Description

This is firstly a string interpolation tool. On top of this it can apply, and chain, over 50 basic string
operations to the interpolated variables. Advanced support for pluralization.

Usage

string_magic(
...,
.envir = parent.frame(),
.data = list(),
.sep = "",
.vectorize = FALSE,
.delim = c("{", "}"),
.last = NULL,
.post = NULL,
.nest = FALSE,
.collapse = NULL,
.invisible = FALSE,
.default = NULL,
.trigger = TRUE,
.check = TRUE,
.class = NULL,
.help = NULL,
.namespace = NULL

)

.string_magic(
...,
.envir = parent.frame(),
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.data = list(),

.sep = "",

.vectorize = FALSE,

.delim = c("{", "}"),

.collapse = NULL,

.last = NULL,

.nest = FALSE,

.trigger = TRUE,

.namespace = NULL
)

sma(
...,
.envir = parent.frame(),
.data = list(),
.sep = "",
.vectorize = FALSE,
.delim = c("{", "}"),
.last = NULL,
.post = NULL,
.nest = FALSE,
.collapse = NULL,
.invisible = FALSE,
.default = NULL,
.trigger = TRUE,
.check = TRUE,
.class = NULL,
.help = NULL,
.namespace = NULL

)

Arguments

... Character scalars that will be collapsed with the argument sep. Note that named
arguments are used for substitution.
To interpolate, you can use "{x}" within each character string to insert the value
of x in the string. You can add string operations in each "{}" instance with the
syntax "'arg'op ? x" (resp. "'arg'op ! x") to apply the operation 'op' with
the argument 'arg' to x (resp. the verbatim of x). Otherwise, what to say? Ah,
nesting is enabled, and since there’s over 50 operators, it’s a bit complicated to
sort you out in this small space.
Use the argument .help = "keyword" (or .help = TRUE) to obtain a selective
help from the main documentation.
Note that in interpolations you have access to the special variables: .now and
.date to get the current time; and the special function .now("format") to for-
mat the time. Ex: .now('%Y-%m %H:%m').

.envir An environment used to evaluate the variables in "{}". By default the variables
are evaluated using the environment from where the function is called or using
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the named arguments passed to the function.

.data A list used to evaluate the variables in "{}". Default is the empty list. By default
the variables are evaluated using the environment from where the function is
called or using the named arguments passed to the function.

.sep Character scalar, default is the empty string "". It is used to collapse all the
elements in ... before applying any operation.

.vectorize Logical scalar, default is FALSE. If TRUE, Further, elements in ... are NOT
collapsed together, but instead vectorised.

.delim Character vector of length 1 or 2. Default is c("{", "}"). Defines the opening
and the closing delimiters for interpolation.
If of length 1, it must be of the form: 1) the opening delimiter, 2) a single space,
3) the closing delimiter. Ex: ".[ ]" is equivalent to c(".[", "]"). The default
value is equivalent to "{ }".
[ ]: R:%20 [", "]: R:%22,%20%22

.last Character scalar, a function, or NULL (default). If provided and character: it must
be an string_magic chain of operations of the form "'arg1'op1, op2, etc".
All these operations are applied just before returning the vector. If a function, it
will be applied to the resulting vector.

.post Function or NULL (default). If not NULL, this function will be applied after all the
processing, just before returning the object. This function can have extra argu-
ments which will be caught directly in the ... argument of string_magic. For
example if .post = head, you can directly pass the argument n = 3 to string_magic’s
arguments.

.nest Logical, default is FALSE. If TRUE, it will nest the original string within in-
terpolation delimiters, so that you can apply operations directly on the string.
Example: string_magic("upper ! hello") returns "upper ! hello", while
string_magic("upper ! hello", .nest = TRUE) returns "HELLO".

.collapse Character scalar, default is NULL. If provided, the character vector that should
be returned is collapsed with the value of this argument. This leads to return a
string of length 1.

.invisible Logical scalar, default is FALSE. Whether the object returned should be invisible
(i.e. not printed on the console).

.default Character scalar or NULL (default). If provided, it must be a sequence of string_magic
operations. It will be applied as a default to any interpolation. Ex: if x = 1:2,
then string_magic("x = {x}", .default = "enum") leads to "x = 1 and 2",
and is equivalent to string_magic("x = {enum?x}"). Note that this default op-
erations does not apply to nested expressions. That is string_magic("{!x{1:2}}",
.default = "enum") leads to c("x1", "x2") and NOT "x1 and 2".

.trigger Logical, default is TRUE. If FALSE, this function is not run. Can be useful in
debugging situations where we want conditional evaluations.

.check Logical scalar, default is TRUE. Whether to enable error-handling (i.e. human
readable error messages). Without error-handling you can save something of
the order of 40us. Useful only in long loops.
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.class Character vector representing the class to give to the object returned. By de-
fault it is NULL. Note that the class string_magic has a specific print method,
usually nicer for small vectors (it base::cat()s the elements).

.help Character scalar or TRUE, default is NULL. This argument is used to generate a
dynamic help on the console. If TRUE, the user can select which topic to read
from the main documentation, with the possibility to search for keywords and
navigate the help pages. If a character scalar, then a regex search is perfomed on
the main documentation and any section containining a match is displayed. The
user can easily navigate across matches.

.namespace Character scalar or NULL (default). Only useful for package developers. As a
regular end-user you shouldn’t care! If your package uses string_magic, you
should care. It is useful only if your package uses ’custom’ string_magic oper-
ations, set with string_magic_register_fun() or string_magic_register_ops().

Details

There are over 50 basic string operations, it supports pluralization, string operations can be nested,
operations can be applied group-wise or conditionally and operators have sensible defaults. You can
also declare your own operations with string_magic_register_fun() or string_magic_register_ops().
They will be seamlessly integrated to string_magic.

The function .string_magic (prefixed with a dot) is a leaner version of the function string_magic.
It does the same operations but with the following differences:

• there is no error handling: meaning that the error messages, if any, will be poor and hard to
understand

• default options are not applied: hence the user must always explicitly provide the arguments

This leads to a faster processing time (of about 50 microseconds) at the cost of user experience.

If you want to change the default values of string_magic (like changing the delimiter), use the
function string_magic_alias().

Use the argument .help to which you can pass keywords or regular expressions and fecth select
pieces from the main documentation.

Value

It returns a character vector whose length depends on the elements and operations in the interpola-
tions.

Functions

• string_magic(): String interpolation with operation chaining

• .string_magic(): A simpler version of string_magic without any error handling to save a
few micro seconds

• sma(): Alias to string_magic
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Interpolation and string operations

Principle:

To interpolate a variable, say x, simply use {x}. For example x = "world"; string_magic("hello {x}")
leads to "hello world".

To any interpolation you can add operations. Taking the previous example, say we want to display
"hello W O R L D". This means upper casing all letters of the interpolated variable and adding a
space between each of them. Do you think we can do that? Of course yes: string_magic("hello
{upper, ''s, c ? x}"). And that’s it.

Now let’s explain what happened. Within the {} box, we first write a set of operations, here "upper,
”s, c", then add "?" and finally write the variable to interpolate, "x". The operations (explained
in more details below) are upper, upper-casing all letters, ”s: splitting with the empty string, ’c’:
concatenating with spaces the vector of string that was just split. The question mark means that
the expression coming after it is to be evaluated (this is opposed to the exclamation mark presented
next).

The syntax is always the same: {operations ? expression}, where the operations section is a
comma separated list of operations. These operations are of the form 'arg'op, with arg the argu-
ment to the operator code op. These operations are performed sequantially from left to right.

Some operations, like upper, accept options. You attach options to an operation with a dot followed
by the option name. Formally: op.option1.option2, etc. Example: x = "hi there. what's up? fine." ; string_magic("He said: {upper.sentence, Q ? x}").
Leads to: He said: "Hi there. What's up? Fine.".

Both operators and options are partially matched. So string_magic("He said: {up.s, Q ? x}")
would also work.

Verbatim interpolation and nesting

Principle:

Instead of interpolating a variable, say x, with {x}, you can use an exclamation mark to trigger
varbatim evaluation. For example string_magic("hello {!x}") would lead to "hello x". It’s a bit
disappointing, right? What’s the point of doing that? Wait until the next two paragraphs.

Verbatim evaluation is a powerful way to apply operations to plain text. For example: string_magic("hello
{upper, ''s, c ! world}") leads to "hello W O R L D".

(A note in passing. The spaces surrounding the exclamation mark are non necessary, but when
one space is present on both sides of the !, then the verbatim expression only begins after it. Ex:
"{upper! hi}" leads to " HI" while "{upper ! hi}" leads to "HI" and "{upper ! hi}" leads to "
HI".)

The second advantage of verbatim evaluations is nesting. Anything in a verbatim expression is
evaluated with the function string_magic. This means that any box will be evaluated as previously
described. Let’s give an example. You want to write the expression of a polynomial of order n: a +
bx + cx^2 + etc. You can do that with nesting. Assume we have n = 2.

Then string_magic("poly({n}): {' + 'c ! {letters[1 + 0:n]}x^{0:n}}") leads to "poly(2):
ax^0 + bx^1 + cx^2".

How does it work? The verbatim expression (the one following the exclamation mark), here
"{letters[1 + 0:n]}x^{0:n}", is evaluated with string_magic. string_magic("{letters[1
+ 0:n]}x^{0:n}") leads to the vector c("ax^0", "bx^1", "cx^2").
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The operation ' + 'c then concatenates (or collapses) that vector with ’ + ’. This value is then
appended to the previous string.

We could refine by adding a cleaning operation in which we replace "x^0" and "^1" by the empty
string. Let’s do it:

string_magic("poly({n}): {' + 'c, 'x\\^0|\\^1'r ! {letters[1 + 0:n]}x^{0:n}}") leads to
"poly(2): a + bx + cx^2", what we wanted.

You can try to write a function to express the polynomial as before: although it is a simple task, my
guess is that it will require more typing.

Operations

General syntax:

As seen in the previous sections, within a box (i.e. "{}"), multiple operations can be performed.
We can do so by stacking the operations codes and in a comma separated enumeration. Operations
can have arguments, and operations can also have options. The general syntax, with argument and
options, is:
{'arg1'op1.optionA.optionB, arg2 op2.optionC, arg3op3, 51op4 ? x}

The argument can appear in four forms: a) inside single or double quotes just before the operation
name (arg1 above), b) verbatim, separated with a space, just before the operation name (arg2
above), c) inside bactick quotes the argument is evaluated from the environment (arg3 above), or
d) when the argument is an integer it can be juxtaposed to the opeation name (like in op4 above).

The options are always dot separated and attached to the operation name, they are specific to each
operation.

Both the operation name and the option names are partially matched.

Basic string operations

This section describes some of the most common string operations: extracting, replacing, collaps-
ing, splitting, etc. These functions accept generic flags ("ignore", "fixed", "word") in their patterns
(syntax: "flags/pattern"). Please see the dedicated section for more information on flags.

• s, split, S, Split: splits the string according to a pattern. The operations have different de-
faults: ' ' for s and ’split’, and ',[ \t\n]*' for S and ’Split’ (i.e. comma separation).
Ex.1: string_magic("{S ! romeo, juliet}") leads to the vector c("romeo", "juliet"). Ex.2:
string_magic("{'f/+'s, '-'c ! 5 + 2} = 3") leads to "5 - 2 = 3" (note the flag "fixed" in
s’s pattern).

• c, C: to concatenate multiple strings into a single one. The two operations are identical, only
their default change. c: default is ' ', C: default is ', | and '. The syntax of the argument
is ’s1’ or ’s1|s2’. s1 is the string used to concatenate (think paste(x, collapse = s1)). In
arguments of the form 's1|s2', s2 will be used to concatenate the last two elements. Ex.1:
x = 1:4; string_magic("Et {' et 'c ? x}!") leads to "Et 1 et 2 et 3 et 4!". Ex.2:
string_magic("Choose: {', | or 'c ? 2:4}?") leads to "Choose: 2, 3 or 4?".

• x, X: extracts patterns from a string. Both have the same default: '[[:alnum:]]+'. x extracts
the first match while X extracts all the matches. Ex.1: x = c("6 feet under", "mahogany") ; string_magic("{'\\w{3}'x ? x}")
leads to the vector c("fee", "mah"). Ex2.: x = c("6 feet under", "mahogany") ; string_magic("{'\\w{3}'X ? x}")
leads to the vector c("fee", "und", "mah", "oga").
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• extract: extracts multiple patterns from a string, this is an alias to the operation X described
above. Use the option "first" to extract only the first match for each string (behavior becomes
like x). Ex: x = c("margo: 32, 1m75", "luke doe: 27, 1m71") ; string_magic("{'^\\w+'extract ? x} is {'\\d+'extract.first ? x}")
leads to c("margo is 32", "luke is 27").

• r, R: replacement within a string. The two operations are identical and have no default.
The syntax is 'old' or 'old => new' with 'old' the pattern to find and new the replace-
ment. If new is missing, it is considered the empty string. This operation also accepts
the flag "total" which instruct to replace the fulll string in case the pattern is found. Ex.1:
string_magic("{'e'r ! Where is the letter e?}") leads to "Whr is th lttr ?". Ex.2: string_magic("{'(?<!\\b)e
=> a'R ! Where is the letter e?}") leads to "Whara is tha lattar e?". Ex.3: string_magic("{'t/e
=> here'r ! Where is the letter e?}") leads to "here".

• clean: replacement with a string. Similar to the operation r, except that here the comma is a
pattern separator, see detailed explanations in string_clean(). Ex: string_magic("{'f/[,
]'clean ! x[a]}") leads to "xa".

• get: restricts the string only to values respecting a pattern. This operation has no default. Ac-
cepts the options "equal" and "in". By default it uses the same syntax as string_get() so that
you can use regex flags and include logical operations with ' & ' and ' | ' to detect patterns. If
the option "equal" is used, a simple string equality with the argument is tested (hence no flags
are accepted). If the option "in" is used, the argument is first split with respect to commas and
then set inclusion is tested. Example: x = row.names(mtcars) ; string_magic("Mercedes models: {'Merc & [[:alpha:]]$'get, '^.+ 'r, C ? x}")
leads to "Mercedes models: 240D, 280C, 450SE, 450SL and 450SLC".

• is: detects if a pattern is present in a string, returns a logical vector. This operation has no de-
fault. Accepts the options "equal" and "in". By default it uses the same syntax as string_is()
so that you can use regex flags and include logical operations with ' & ' and ' | ' to detect pat-
terns. If the option "equal" is used, a simple string equality with the argument is tested (hence
no flags are accepted). If the option "in" is used, the argument is first split with respect to com-
mas and then set inclusion is tested. Mostly useful as the final operation in a string_ops()
call. Example: x = c("Mark", "Lucas") ; string_magic("Mark? {'i/mark'is, C ? x}")
leads to "Mark? TRUE and FALSE".

• which: returns the index of string containing a specified pattern. With no default, can be
applied to a logical vector directly. By default it uses the same syntax as string_which() so that
you can use regex flags and include logical operations with ' & ' and ' | ' to detect patterns. If
the option "equal" is used, a simple string equality with the argument is tested (hence no flags
are accepted). If the option "in" is used, the argument is first split with respect to commas and
then set inclusion is tested. Mostly useful as the final operation in a string_ops() call. Ex.1:
x = c("Mark", "Lucas") ; string_magic("Mark is number {'i/mark'which ? x}.")
leads to "Mark is number 1.".

Operations changing the length or the order

• first: keeps only the first n elements. Example: string_magic("First 3 numbers: {3 first,
C ? mtcars$mpg}.") leads to "First 3 numbers: 21, 21 and 22.8.". Negative numbers as argu-
ment remove the first n values. You can add a second argument in the form 'n1|n2'first in
which case the first n1 and last n2 values are kept; n1 and n2 must be positive numbers.

• K, Ko, KO: keeps only the first n elements; has more options than first. The syntax is 'n'K,
'n|s'K, 'n||s'K. The values Ko and KO only accept the two first syntax (with n only). n
provides the number of elements to keep. If s is provided and the number of elements are
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greater than n, then in ’n|s’ the string s is added at the end, and if ’n||s’ the string s replaces
the nth element. The string s accepts specials values:

– :n: or :N: which gives the total number of items in digits or letters (N)
– :rest: or :REST: which gives the number of elements that have been truncated in digits

or letters (REST) Ex: string_magic("{'3|:rest: others'K ? 1:200}") leads to the
vector c("1", "2", "3", "197 others").

– The operator ’n’Ko is like 'n||:rest: others'K and ’n’KO is like 'n||:REST: others'K.

• last: keeps only the last n elements. Example: string_magic("Last 3 numbers: {3 last,
C ? mtcars$mpg}.") leads to "Last 3 numbers: 19.7, 15 and 21.4.". Negative numbers as
argument remove the last n values.

• sort: sorts the vector in increasing order. Accepts optional arguments and the option "num".
Example: x = c("sort", "me") ; string_magic("{sort, c ? x}") leads to "me
sort". If an argument is provided, it must be a regex pattern that will be applied to the vector
using string_clean(). The sorting will be applied to the modified version of the vector and
the original vector will be ordered according to this sorting. Ex: x = c("Jon Snow", "Khal
Drogo"); string_magic("{'.+ 'sort, C?x}") leads to "Khal Drogo and Jon Snow". The
option "num" sorts over a numeric version (with silent conversion) of the vector and reorders
the original vector accordingly. Values which could not be converted are last. Important
note: the sorting operation is applied before any character conversion. If previous operations
were applied, it is likely that numeric data were transformed to character. Note the difference:
x = c(20, 100, 10); string_magic("{sort, ' + 'c ? x}") leads to "10 + 20 +
100" while string_magic("{n, sort, ' + 'c ? x}") leads to "10 + 100 + 20" because the
operation "n" first transformed the numeric vector into character.

• dsort: sorts the vector in decreasing order. It accepts an optional argument and the option
"num". Example: string_magic("5 = {dsort, ' + 'c ? 2:3}") leads to "5 = 3 + 2". See the
operation "sort" for a description of the argument and the option.

• rev: reverses the vector. Example: string_magic("{rev, ''c ? 1:3}") leads to "321".

• unik: makes the string vector unique. Example: string_magic("Iris species: {unik, C ?
iris$Species}.") leads to "Iris species: setosa, versicolor and virginica.".

• table: computes the frequency of each element and attaches each element to its frequency.
Accepts an argument which must be a character string representing a string_magic interpo-
lation with the following variables: x (the element), n (its count) and s (its share). The default
is '{x} ({n ? n})'. By default the resulting string vector is sorted by decreasing frequency.
You can change how the vector is sorted with five options: sort (sorts on the elements),
dsort (decreasing sort), fsort (sorts on frequency), dfsort (decreasing sort on freq. – de-
fault), nosort (keeps the order of the first elements). Note that you can combine several sorts
(to resolve the ties of elements with same frequencies). Example: string_magic("Freq. of
months: {'{x} ({n})'table, enum ? month.name[airquality$Month]}.")

• each: repeats each element of the vector n times. Option "c" then collapses the full vector with
the empty string as a separator. Ex.1: string_magic("{/x, y}{2 each ? 1:2}") leads to the
vector c("x1", "y1", "x2", "y2"). Ex.2: string_magic("Large number: 1{5 each.c !
0}") leads to "Large number: 100000".

• times: repeats the vector sequence n times. Option "c" then collapses the full vector with
the empty string as a separator. Example: string_magic("What{6 times.c ! ?}") leads to
"What??????".
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• rm: removes elements from the vector. Options: "empty", "blank", "noalpha", "noalnum",
"all". The optional argument represents the pattern used to detect strings to be deleted. Ex.1:
x = c("Luke", "Charles"); string_magic("{'i/lu'rm ? x}") leads to "charles". By de-
fault it removes empty strings. Option "blank" removes strings containing only blank charac-
ters (spaces, tab, newline). Option "noalpha" removes strings not containing letters. Option
"noalnum" removes strings not containing alpha numeric characters. Option "all" removes
all strings (useful in conditions, see the dedicated section). If an argument is provided, only
the options "empty" and "blank" are available. Ex.2: x = c("I want to enter.", "Age?",
"21"); string_magic("Nightclub conversation: {rm.noalpha, c ! - {x}}") leads to "Night-
club conversation: - I want to enter. - Age?"

• nuke: removes all elements, equivalent to rm.all but possibly more explicit (not sure). Useful
in conditions, see the dedicated section. Example: x = c(5, 7, 453, 647); string_magic("Small numbers only: {if(.>20 ; nuke), C ? x}")
leads to "Small numbers only: 5 and 7";

• insert: inserts a new element to the vector. Options: "right" and "both". Option "right" adds
the new element to the right. Option "both" inserts the new element on the two sides of the
vector. Example: string_magic("{'3'insert.right, ' + 'c ? 1:2}") leads to "1 + 2 +
3".

• dp or deparse: Deparses an object and keeps only the first characters of the deparsed string.
Accepts a number as argument. In that case only the first n characters are kept. Accepts
option long: in that case all the lines of the deparsed object are first collapsed. Example:
fml = y ~ x1 + x2; string_magic("The estimated model is {dp ? fml}.")

Formatting operations

• lower: lower cases the full string.
• upper: upper cases the full string. Options: "first" and "sentence". Option "first" upper cases

only the first character. Option "sentence" upper cases the first letter after punctuation. Ex:
x = "hi. how are you? fine." ; string_magic("{upper.sentence ? x}") leads to
"Hi. How are you? Fine.".

• title: applies a title case to the string. Options: "force" and "ignore". Option "force" first puts
everything to lowercase before applying the title case. Option "ignore" ignores a few small
prepositions ("a", "the", "of", etc). Ex: x = "bryan is in the KITCHEN" ; string_magic("{title.force.ignore ? x}")
leads to "Bryan Is in the Kitchen".

• ws: normalizes whitespaces (WS). It trims the whitespaces on the edges and transforms any
succession of whitespaces into a single one. Can also be used to further clean the string with its
options. Options: "punct", "digit", "isolated". Option "punct" cleans the punctuation. Option
"digit" cleans digits. Option "isolated" cleans isolated letters. WS normalization always come
after any of these options. Important note: punctuation (or digits) are replaced with WS and
not the empty string. This means that string_magic("ws.punct ! Meg's car") will become
"Meg s car".

• trimws: trims the white spaces on both ends of the strings.
• q, Q, bq: to add quotes to the strings. q: single quotes, Q: double quotes, bq: back quotes.
x = c("Mark", "Pam"); string_magic("Hello {q, C ? x}!") leads to "Hello ’Mark’
and ’Pam’!".

• format, Format: applies the base R’s function base::format() to the string. By default, the
values are left aligned, even numbers (differently from base::format()’s behavior). The up-
per case command (Format) applies right alignment. Options: "0", "zero", "left", "right",
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"center". Options "0" or "zero" fills the blanks with 0s: useful to format numbers. Op-
tion "right" right aligns, and "center" centers the strings. Default is left alignment. Ex:
x = c(1, 12345); string_magic("left: {format.0, q, C ? x}, right: {Format, q, C ? x}")
leads to "left: ’000001’ and ’12,345’, right: ’ 1’ and ’12,345’".

• %: applies base::sprintf() formatting. The syntax is ’arg’% with arg an sprintf formatting,
or directly the sprint formatting, e.g. % 5s. Example: string_magic("pi = {%.3f ? pi}")
leads to "pi = 3.142".

• stopwords: removes basic English stopwords (the snowball list is used). The stopwords are re-
placed with an empty space but the left and right WS are untouched. So WS normalization may
be needed (see operation ws). x = c("He is tall", "He isn't young"); string_magic("Is he {stop, ws, C ? x}?")
leads to "Is he tall and young?".

• ascii: turns all letters into ASCII with transliteration. Failed translations are transformed into
question marks. Options: "silent", "utf8". By default, if some conversion fails a warning is
prompted. Option "silent" disables the warning in case of failed conversion. The conversion
is done with base::iconv(), option "utf8" indicates that the source endocing is UTF-8, can
be useful in some cases.

• round, r0 to r6: formats numbers by rounding at a given level. Options: 0 to 9, int, nocomma,
s0-s9. Option 0 to 9 controls the number of digits to round at. Option int is whether to
preserve integers from formattting. Option nocomma conrtols whether to drop the comma
separating the thousands. s0-s9 also keeps a given number of significant digits.

• signif, s0 to s6: formats numbers by displaying a certain number of significant digits. Options:
0 to 9, int, nocomma, r0-r9. Option 0 to 9 controls the number of significant digits to display.
Option int is whether to preserve integers from formattting. Option nocomma conrtols whether
to drop the comma separating the thousands. r0-r9 also rounds at a given number of decimals.

• n: formats integers by adding a comma to separate thousands. Options: "letter", "upper", "0",
"zero". The option "letter" writes the number in letters (large numbers keep their numeric for-
mat). The option "upper" is like the option "letter" but uppercases the first letter. Options "0" or
"zero" left pads numeric vectors with 0s. Ex.1: x = 5; string_magic("He's {N ? x} years old.")
leads to "He’s five years old.". Ex.2: x = c(5, 12, 52123); string_magic("She owes {n.0, '$'paste, C ? x}.")
leads to "She owes $5, $12 and $52,123.".

• N: same as n but automatically adds the option "letter".

• nth: when applied to a number, these operators write them as a rank. Options: "letter", "up-
per", "compact". Ex.1: n = c(3, 7); string_magic("They finished {nth, enum ? n}!")
leads to "They finished 3rd and 7th!". Option "letter" tries to write the numbers in let-
ters, but note that it stops at 20. Option "upper" is the same as "letter" but uppercases the
first letter. Option "compact" aggregates consecutive sequences in the form "start_n_th to
end_n_th". Ex.2: string_magic("They arrived {nth.compact ? 5:20}.") leads to "They
arrived 5th to 20th.". Nth: same as nth, but automatically adds the option "letter". Example:
n = c(3, 7); string_magic("They finished {Nth, enum ? n}!") leads to "They
finished third and seventh!".

• ntimes: write numbers in the form n times. Options: "letter", "upper". Option "letter"
writes the number in letters (up to 100). Option "upper" does the same as "letter" and up-
percases the first letter. Example: string_magic("They lost {C ! {ntimes ? c(1, 12)}
against {S!Real, Barcelona}}.") leads to "They lost once against Real and 12 times against
Barcelona.".
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• Ntimes: same as ntimes but automatically adds the option "letter". Example: x = 5; string_magic("This paper was rejected {Ntimes ? x}...")
leads to "This paper was rejected five times...".

• firstchar, lastchar: to select the first/last characters of each element. Ex: string_magic("{19
firstchar, 9 lastchar ! This is a very long sentence}") leads to "very long". Negative
numbers remove the first/last characters.

• k: to keep only the first n characters (like firstchar but with more options). The argu-
ment can be of the form 'n'k, 'n|s'k or 'n||s'k with n a number and s a string. n
provides the number of characters to keep. Optionnaly, only for strings whose length is
greater than n, after truncation, the string s can be appended at the end. The difference be-
tween ’n|s’ and ’n||s’ is that in the second case the strings will always be of maximum size
n, while in the first case they can be of length n + nchar(s). Ex: string_magic("{4k !
long sentence}") leads to "long", string_magic("{'4|..'k ! long sentence}") leads
to "long..", string_magic("{'4||..'k ! long sentence}") leads to "lo..".

• fill, align (alias), width (alias): fills the character strings up to a size in order to fit a given
width. Options: "left", "right", "center". Accepts arguments of the form 'n' or 'n|s', with
n a number and s a symbol. Default is left-alignment of the strings. Option "right" right
aligns and "center" centers the strings. When using 'n|s', the symbol s is used for the
filling. By default if no argument is provided, the maximum size of the character string is
used. See help for string_fill() for more information. Ex.1: string_magic("Numbers:
{'5|0'fill.right, C ? c(1, 55)}") leads to "Numbers: 00001 and 00055".

• paste, append: pastes some character to all elements of the string. This operation has no
default. Options: "left", "both", "right", "front", "back", "delete". By default, a string is pasted
on the left. By default, it pastes on the left. Option "right" pastes on the right and "both" pastes
on both sides. Option "front" only pastes on the first element while option "back" only pastes
on the last element. Option "delete" first replaces all elements with the empty string. Example:
string_magic("6 = {'|'paste.both, ' + 'c ? -3:-1}") leads to "6 = |-3| + |-2| + |-1|". The
argument can be of the form s or s1|s2. If of the second form, this is equivalent to chaining
two paste operations, once on the left and once on the right: 's1'paste, 's2'paste.right.

• join: joins lines ending with a double backslash. Ex: x = "the sun \\\n is shining"; string_magic("{join
? x}") leads to "the sun is shining".

• escape: adds backslashes in front of specific characters. Options "nl", "tab". Option "nl"
escapes the newlines (\n), leading them to be displayed as "\\\\n". Option "tab" does the
same for tabs ("\t"). This is useful to make the value free of space formatters. The default
behavior is to escape both newlines and tabs.

Other operations

• num: converts to numeric. Options: "warn", "soft", "rm", "clear". By default, the conversion
is performed silently and elements that failed to convert are turned into NA. Option "warns"
displays a warning if the conversion to numeric fails. Option "soft" does not convert if the con-
version of at least one element fails. Option "rm" converts and removes the elements that could
not be converted. Option "clear" turns failed conversions into the empty string, and hence lead
to a character vector. Example: x = c(5, "six"); string_magic("Compare {num, C, q ? x} with {num.rm, C, q ? x}.")
leads to "Compare ’5 and NA’ with ’5’.", and string_magic("Compare {num.soft, C, q ?
x} with {clear, C, q ? x}.") leads to "Compare ’5 and six’ with ’5 and ’.".

• enum: enumerates the elements. It creates a single string containing the comma separated list
of elements. If there are more than 7 elements, only the first 6 are shown and the number of
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items left is written. For example string_magic("enum ? 1:5") leads to "1, 2, 3, 4, and 5".
You can add the following options by appending the letter to enum after a dot:

– q, Q, or bq: to quote the elements
– or, nor: to finish with an ’or’ (or ’nor’) instead of an ’and’
– comma: to finish the enumeration with ", " instead of ", and".
– i, I, a, A, 1: to enumerate with this prefix, like in: i) one, and ii) two
– a number: to tell the number of items to display Ex.1: x = c("Marv", "Nancy"); string_magic("The main characters are {enum ? x}.")

leads to "The main characters are Marv and Nancy.". Ex.2: x = c("orange", "milk", "rice"); string_magic("Shopping list: {enum.i.q ? x}.")
leads to "Shopping list: i) ’orange’, ii) ’milk’, and iii) ’rice’."

• len: gives the length of the vector. Options "letter", "upper", "num". Option "letter" writes
the length in words (up to 100). Option "upper" is the same as letter but uppercases the first
letter. By default, commas are added to separate thousands. Use uption "num" to preserve a
regular numeric format. Example: string_magic("Size = {len ? 1:5000}") leads to "Size
= 5,000".

• swidth: stands for screen width. Formats the string to fit a given width by cutting at word
boundaries and adding newlines appropriately. Accepts arguments of the form 'n' or 'n|s',
with n a number and s a string. An argument of the form 'n|s' will add s at the beginning of
each line. Further, by default a trailing white space is added to s; to remove this behavior, add
an underscore at the end of it. The argument n is either an integer giving the target character
width (minimum is 15), or it can be a fraction expressing the target size as a fraction of the
current screen. Finally it can be an expression that uses the variable .sw which will capture
the value of the current screen width. Ex.1: string_magic("{15 swidth ! this is a long
sentence}") leads to "this is a long\nsentence". Ex.2: string_magic("{15 swidth.#> !
this is a long sentence}") leads to "#> this is a long\n#> sentence".

• difftime: displays a formatted time difference. Option "silent" does not report a warning
if the operation fails. It accepts either objects of class POSIXt or difftime. Example:
x = Sys.time() ; Sys.sleep(0.5) ; string_magic("Time: {difftime ? x}") leads
to something like "Time: 514ms".

Group-wise operations

In string_magic, the splitting operation s (or S) keeps a memory of the strings that were split. Use
the tilde operator, of the form ~(op1, op2), to apply operations group-wise, to each of the split
strings.

Better with an example. x = c("Oreste, Hermione", "Hermione, Pyrrhus", "Pyrrhus, Andromaque")
; string_magic("Troubles ahead: {S, ~(' loves 'c), C ? x}.") leads to "Troubles ahead: Oreste
loves Hermione, Hermione loves Pyrrhus and Pyrrhus loves Andromaque.".

Almost all operations can be applied group-wise (although only operations changing the order or
the length of the strings really matter).

Conditional operations

There are two operators to apply operations conditionally: if and vif, the latter standing for ver-
batim if.

The syntax of if is if(cond ; ops_true ; ops_false) with cond a condition (i.e. logical
operation) on the value being interpolated, ops_true a comma-separated sequence of operations if
the condition is TRUE and ops_false an optional a sequence of operations if the condition is FALSE.
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Ex.1: Let’s take a sentence, delete words of less than 4 characters, and trim words of 7+ char-
acters. x = "Songe Cephise a cette nuit cruelle qui fut pour tout un peuple une nuit eternelle"
string_magic("{' 's, if(.nchar<=4 ; nuke ; '7|..'k), c ? x}"). Let’s break it down. First
the sentence is split w.r.t. spaces, leading to a vector of words. Then we use the special variable
.nchar in if’s condition to refer to the number of characters of the current vector (the words). The
words with less than 4 characters are nuked (i.e. removed), and the other words are trimmed at 7
characters. Finally the modified vector of words is collapsed with the function c, leading to the
result.

The condition cond accepts the following special values: . (the dot), .nchar, .C, .len, .N. The
dot, ., refers to the current vector. .nchar represent the number of characters of the current vector
(equivalent to nchar(.)). .C is an alias to .nchar. .len represent the length of the current vector
(equivalent to length(.)). .N is an alias to .len.

If a condition leads to a result of length 1, then the operations are applied to the full string vector
and not element-wise (as was the case in Ex.1). Contrary to element-wise conditions for which
operations modifying the length of the vectors are forbidden (apart from nuking), such operations
are fine in full-string conditions.

Ex.2: x = string_magic("x{1:10}"); string_magic("y = {if(.N>4 ; 3 first, '...'insert.right),
' + 'c ? x}") leads to "y = x1 + x2 + x3 + ...". the same opration applied to x = string_magic("x{1:4}")
leads to "y = x1 + x2 + x3 + x4".

For vif, the syntax is vif(cond ; verb_true ; verb_false) with verb_true a verbatim value
with which the vector will be replaced if the condition is TRUE. This is similar for verb_false. The
condition works as in if.

Ex.3: x = c(1, 25, 12, 6) ; string_magic("Values: {vif(.<10 ; <10), C ? x}") leads to
"Values: <10, 25, 12 and <10". As we can see values lower than 10 are replaced with "<10" while
other values are not modified.

Ex.4: x = string_magic("x{1:10}"); string_magic("y = {vif(.N>4 ; {S!{x[1]}, ..., {last?x}}),
' + 'c ? x}") leads to "y = x1 + ... + x10". Let’s break it down. If the length of the vector is greater
than 4 (here it’s 10), then the full string is replaced with "{S!{x[1]}, ..., {last?x}}". Interpo-
lation applies to such string. Hence the split operation S breaks the string w.r.t. the commas (default
behavior), leading to the vector c("{x[1]}", "...", "{last?x}"). Since the string contains curly
brackets, interpolation is applied again. This leads to the vector c("x1", "...", "x10"). Finally,
this vector is collapsed with ’ + ’ leading to the final string. Note that there are many ways to
get to the same result. Here is another example: string_magic("y = {vif(.N>4 ; {x[1]} + ... +
{last?x} ; {' + 'c ? x}) ? x}").

The vif condition allows the use of ’.’ to refer to the current value in verb_true and verb_false,
as illustrated by the last example:

Ex.5: string_magic("{4 last, vif(. %% 2 ; x{.} ; y{rev?.}), C ? 1:11}") leads to "y10, x9,
y8 and x11".

Special interpolation

if-else:

Using an ampersand ("&") as the first character of an interpolation leads to an if-else operation.
Using two ampersands ("&&") leads to a slightly different operation described at the end of this
section.
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The syntax is as follows: {&cond ; verb_true ; verb_false} with cond a condition (i.e. logical
operation) on the value being interpolated, verb_true a verbatim value with which the vector will
be replaced if the condition is TRUE and verb_false an optional verbatim value with which the
vector will be replaced if the condition is FALSE. If not provided, verb_false is considered to be
the empty string unless the operator is the double ampersand described at the end of this section.

Note that in cond, you can use the function len, an alias to length.

Ex.1: x = 1:5; string_magic("x is {&len(x)<10 ; short ; {`log10(.N)-1`times, ''c ! very
}long}") leads to "x is short". With x = 1:50, it leads to "x is long", and to "x is very very long" if
x = 1:5000.

If a condition leads to a result of length 1, the full string is replaced by the verbatim expression. Fur-
ther, this expression will be interpolated if requested. This was the case in Ex.1 where verb_false
was interpolated.

If the condition’s length is greater than 1, then each logical values equal to TRUE is replaced by
verb_true, and FALSE or NA values are replaced with verb_false. Note, importantly, that no
interpolation is perfomed in that case.

Ex.2: x = 1:3 ; string_magic("x is {&x == 2 ; two ; not two}") leads to the vector c("x
is not two", "x is two", "x is not two").

In that example, when x is odd, it is replaced with "odd", and when even it is replaced with the
elements of y.

Using the two ampersand operator ("&&") is like the simple ampersand version but the default for
verb_false is the variable used in the condition itself. So the syntax is {&&cond ; verb_true}
and it does not accept verb_false.

Ex.3: i = 3 ; string_magic("i = {&&i == 3 ; three}") leads to "i = three", and to "i = 5"
if i = 5.

Pluralization:

There is advanced support for pluralization which greatly facilitates the writing of messages in
natural language.

There are two ways to pluralize: over length or over value. To trigger a "pluralization" interpolation
use as first character:

• $ to pluralize over the length of a variable (see Ex.2)
• # to pluralize over the value of a variable (see Ex.1)

Ex.1: x = 5; string_magic("I bought {N?x} book{#s}.") leads to "I bought five books.". If
x = 1, this leads to "I bought one book.".

The syntax is {#plural_ops ? variable} or {#plural_ops} where plural_ops are specific plu-
ralization operations which will be described below. The pluralization is perfomed always with re-
spect to the value of a variable. You can either add the variable explicitly ({#plural_ops ? variable})
or refer to it implicitly ({#plural_ops}). If implicit, then the algorithm will look at the previous
variable that was interpolated and pluralize over it. This is exaclty what happens in Ex.1 where x
was interpolated in {N?x} and plural operation s in {#s} then applied to x. It was equivalent to have
{#s ? x}. If a variable wasn’t interpolated before, then the next interpolated variable will be used
(see Ex.2). If no variable is interpolated at all, an error is thrown.

Ex.2: x = c("J.", "M."); string_magic("My BFF{$s, are} {C?x}!") leads to "My BFFs
are J. and M.!". If "x = "S.", this leads to "My BFF is S.!".
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Pluralizing accepts the following operations:

• s, es: adds an "s" (or "es") if it is plural (> 1), nothing otherwise. Accepts the option 0 or zero
which treats a 0-length or a 0-value as plural.

• y or ies: adds an ’y’ if singular and ’ies’ if plural (>1). Accepts the option 0 or zero which
treats a 0-length or a 0-value as plural.

• enum: enumerates the elements (see help for the regular operation enum)

• n, N, len, Len: add the number of elements ("len") or the value ("n") of the variable as a
formatted number or in letters (upper case versions). Accepts the options letter (to write in
letter) and upper (to uppercase the first letter).

• nth, ntimes: writes the value of the variable as an order (nth) or a frequence (ntimes). Accepts
the option letter to write the numbers in letters (uppercase version of the operator does the
same).

• is, or any verb: conjugates the verb appropriately

You can chain operations, in that case a whitespace is automatically added between them.

Ex.3: x = c(7, 3, 18); string_magic("The winning number{$s, is, enum ? sort(x)}.")
leads to "The winning numbers are 3, 7 and 18.". With x = 7 this leads to "The winning number is
7.".

On top of the previous operations, there is a special operation allowing to add verbatim text depend-
ing on the situation. The syntax is as follows:

• (s1;s2): adds verbatim ’s1’ if singular and ’s2’ if plural (>1)
• (s1;s2;s3): adds verbatim ’s1’ if zero, ’s2’ if singular (=1) and ’s3’ if plural
• (s1;;s3): adds verbatim ’s1’ if zero, ’s3’ if singular or plural (i.e. >=1)

These case-dependent verbatim values are interpolated (if appropriate). In these interpolations
you need not refer explicitly to the variable for pluralization interpolations.

Ex.4: x = 3; string_magic("{#(Sorry, nothing found.;;{#N.upper} match{#es, were} found.)?x}")
leads to "Three matches were found.". If "x = 1", this leads to "One match was found." and if "x =
0" this leads to "Sorry, nothing found.".

Escaping and special cases

The opening and closing brakets, {}, are special characters and cannot be used as regular text. To
bypass their special meaning, you need to escape them with a double backslash.

Ex.1: string_magic("open = \\\\{, close = }") leads to "open = {, close = }". Ex.2: string_magic("many
{5 times.c ! \\\\}}") leads to many }}}}}.

You only need to escape the special delimiters which the algorithm is currently looking for. As you
can see, you don’t need to escape the closing bracket in Ex.1 since no box was open. On the other
hand, you need to escape it in Ex.2.

Alternatively, use the argument .delim to set custom delimiters.

Ex.3: string_magic("I {'can {write} {{what}} I want'}") leads to "I can {write} {{what}}
I want".

Since {expr} evaluates expr, the stuff inside the box, you can pass a character string and it will
stay untouched.
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In the few operations expecting a semi-colon (if-else and pluralization), it can also be escaped with
a double backslash.

In interpolations, the exclamation mark (!) signals a verbatim expression. But what if you use it to
mean the logical operation not in an operation-free interpolation? In that case, you need a hack: use
a question mark (?) first to indicate to the algorithm that you want to evaluate the expression.

Ex.4: string_magic("{!TRUE} is {?!TRUE}") leads to "TRUE is FALSE". The first expression
is taken verbatim while the second is evaluated.

Generic regular expression flags

All stringmagic functions support generic flags in regular-expression patterns. The flags are useful
to quickly give extra instructions, similarly to usual regular expression flags.

Here the syntax is "flag1, flag2/pattern". That is: flags are a comma separated list of flag-names
separated from the pattern with a slash (/). Example: string_which(c("hello...", "world"),
"fixed/.") returns 1. Here the flag "fixed" removes the regular expression meaning of "." which
would have otherwise meant "any character". The no-flag verion string_which(c("hello...",
"world"), ".") returns 1:2.

Alternatively, and this is recommended, you can collate the initials of the flags instead of using a
comma separated list. For example: "if/dt[" will apply the flags "ignore" and "fixed" to the pattern
"dt[".

The four flags always available are: "ignore", "fixed", "word" and "magic".

• "ignore" instructs to ignore the case. Technically, it adds the perl-flag "(?i)" at the beginning
of the pattern.

• "fixed" removes the regular expression interpretation, so that the characters ".", "$", "^", "["
(among others) lose their special meaning and are treated for what they are: simple characters.

• "word" adds word boundaries ("\\b" in regex language) to the pattern. Further, the comma
(",") becomes a word separator. Technically, "word/one, two" is treated as "\b(one|two)\b".
Example: string_clean("Am I ambushed?", "wi/am") leads to " I ambushed?" thanks to
the flags "ignore" and "word".

• "magic" allows to interpolate variables inside the pattern before regex interpretation. For ex-
ample if letters = "aiou" then string_clean("My great goose!", "magic/[{letters}]
=> e") leads to "My greet geese!"

See Also

Other tools with aliases: cat_magic_alias(), string_clean_alias(), string_magic_alias(),
string_ops_alias(), string_vec_alias()

Examples

#
# BASIC USAGE ####
#

x = c("Romeo", "Juliet")

# {x} inserts x

https://javascript.info/regexp-introduction
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string_magic("Hello {x}!")

# elements in ... are collapsed with "" (default)
string_magic("Hello {x[1]}, ",

"how is {x[2]} doing?")

# Splitting a comma separated string
# The mechanism is explained later
string_vec("J. Mills, David, Agnes, Dr Strong")

# Nota: this is equivalent to (explained later)
string_magic("{', *'S ! J. Mills, David, Agnes, Dr Strong}")

#
# Applying low level operations to strings
#

# Two main syntax:

# A) expression evaluation
# {operation ? x}
# | |
# | \-> the expression to be evaluated
# \-> ? means that the expression will be evaluated

# B) verbatim
# {operation ! x}
# | |
# | \-> the expression taken as verbatim (here 'x')
# \-> ! means that the expression is taken as verbatim

# operation: usually 'arg'op with op an operation code.

# Example: splitting
x = "hello dear"
string_magic("{' 's ? x}")
# x is split by ' '

string_magic("{' 's ! hello dear}")
# 'hello dear' is split by ' '
# had we used ?, there would have been an error

# There are 50+ string operators
# Operators usually have a default value
# Operations can have options
# Operations can be chained by separating them with a comma

# Example: default of 's' is ' ' + chaining with collapse
string_magic("{s, ' my 'c ! hello dear}")

#
# Nesting
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#

# {operations ! s1{expr}s2}
# | |
# | \-> expr will be interpolated then added to the string
# \-> nesting requires verbatim evaluation: '!'

string_magic("The variables are: {C ! x{1:4}}.")

# This one is ugly but it shows triple nesting
string_magic("The variables are: {ws, C ! {2 times ! x{1:4}}{','s, 4 each ! ,_sq}}.")

#
# Splitting
#

# s: split with fixed pattern, default is ' '
string_magic("{s ! a b c}")
string_magic("{' b 's !a b c}")

# S: same as 's' but default is ',[ \t\n]*'
string_magic("{S !a, b, c}")
string_magic("{'[[:punct:] ]+'S ! a! b; c}")

# add regex flags: e.g. fixed search
string_magic("{'f/.'s ! hi.there}")

#
# Collapsing
#

# c and C do the same, their default is different
# syntax: 's1|s2' with
# - s1 the string used for collapsing
# - s2 (optional) the string used for the last collapse

# c: default is ' '
string_magic("{c ? 1:3}")

# C: default is ', | and '
string_magic("{C ? 1:3}")

string_magic("{', | or 'c ? 1:4}")

#
# Extraction
#

# extract: to extract patterns (option first)
# x: alias to extract.first
# X: alias to extract
# syntax: 'pattern'x
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# Default is '[[:alnum:]]+'

x = "This years is... 2020"
string_magic("{x ? x}") # similar to string_magic("{extract.first ? x}")
string_magic("{X ? x}") # similar to string_magic("{extract ? x}")

string_magic("{'\\d+'x ? x}")

#
# STRING FORMATTING ####
#

#
# upper, lower, title

# upper case the first letter
string_magic("{upper.first ! julia mills}")

# title case
string_magic("{title ! julia mills}")

# upper all letters
string_magic("{upper ! julia mills}")

# lower case
string_magic("{lower ! JULIA MILLS}")

#
# q, Q, bq: single, double, back quote

string_magic("{S, q, C ! Julia, David, Wilkins}")
string_magic("{S, Q, C ! Julia, David, Wilkins}")
string_magic("{S, bq, C ! Julia, David, Wilkins}")

#
# format, Format: formats the string to fit the same length

# format: the right side is filled with blanks
# Format: the left side is filled with blanks, the string is right aligned

score = c(-10, 2050)
nm = c("Wilkins", "David")
string_magic("Monopoly scores:\n{'\n'c ! - {format ? nm}: {Format ? score} US$}")

# OK that example may have been a bit too complex,
# let's make it simple:

string_magic("Scores: {format ? score}")
string_magic("Names: {Format ? nm}")

#
# ws: white space normalization
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# ws: suppresses trimming white spaces + normalizes successive white spaces
# Add the following options in any order to:
# - punct: remove punctuation
# - digit: remove digits
# - isolated: remove isolated characters

string_magic("{ws ! The white spaces are now clean. }")

string_magic("{ws.punct ! I, really -- truly; love punctuation!!!}")

string_magic("{ws.digit ! 1, 2, 12, a microphone check!}")

string_magic("{ws.i ! 1, 2, 12, a microphone check!}")

string_magic("{ws.d.i ! 1, 2, 12, a microphone check!}")

string_magic("{ws.p.d.i ! 1, 2, 12, a microphone check!}")

#
# %: applies sprintf formatting

# add the formatting as a regular argument
string_magic("pi = {'.2f'% ? pi}")
# or right after the %
string_magic("pi = {%.2f ? pi}")

#
# paste: appends text on each element
# Accepts the options: right, both, front and back
# It accepts the special values :1:, :i:, :I:, :a:, :A: to create enumerations

# adding '|' on both sides
string_magic("{'|'paste.both, ' + 'c ! x{1:4}}")

# Enumerations
acad = string_vec("you like admin, you enjoy working on weekends, you really love emails")
string_magic("Main reasons to pursue an academic career:\n {':i:) 'paste, C ? acad}.")

# You can also use the enum command
string_magic("Main reasons to pursue an academic career:\n {enum.i ? acad}.")

#
# stopwords: removes basic English stopwords
# the list is from the Snowball project:
# http://snowball.tartarus.org/algorithms/english/stop.txt

string_magic("{stop, ws ! It is a tale told by an idiot, ",
"full of sound and fury, signifying nothing.}")

#
# k: keeps the first n characters
# syntax: nk: keeps the first n characters
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# 'n|s'k: same + adds 's' at the end of shortened strings
# 'n||s'k: same but 's' counts in the n characters kept

words = string_vec("short, constitutional")
string_magic("{5k ? words}")

string_magic("{'5|..'k ? words}")

string_magic("{'5||..'k ? words}")

#
# K: keeps the first n elements
# syntax: nK: keeps the first n elements
# 'n|s'K: same + adds the element 's' at the end
# 'n||s'K: same but 's' counts in the n elements kept
#
# Special values :rest: and :REST:, give the number of items dropped

bx = string_vec("Pessac Leognan, Saint Emilion, Marguaux, Saint Julien, Pauillac")
string_magic("Bordeaux wines I like: {3K, ', 'C ? bx}.")

string_magic("Bordeaux wines I like: {'3|etc..'K, ', 'C ? bx}.")

string_magic("Bordeaux wines I like: {'3||etc..'K, ', 'C ? bx}.")

string_magic("Bordeaux wines I like: {'3|and at least :REST: others'K, ', 'C ? bx}.")

#
# Ko, KO: special operator which keeps the first n elements and adds "others"
# syntax: nKo
# KO gives the rest in letters

string_magic("Bordeaux wines I like: {4KO, C ? bx}.")

#
# r, R: string replacement
# syntax: 's'R: deletes the content in 's' (replaces with the empty string)
# 's1 => s2'R replaces s1 into s2

string_magic("{'e'r, ws ! The letter e is deleted}")

# adding a perl look-behind
string_magic("{'(?<! )e'r !The letter e is deleted}")

string_magic("{'e => a'r !The letter e becomes a}")

string_magic("{'([[:alpha:]]{3})[[:alpha:]]+ => \\1.'r ! Trimming the words}")

# Alternative way with simple operations: split, shorten, collapse
string_magic("{s, '3|.'k, c ! Trimming the words}")

#
# times, each
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# They accept the option c to collapse with the empty string

string_magic("N{10 times.c ! o}!")

string_magic("{3 times.c ? 1:3}")
string_magic("{3 each.c ? 1:3}")

#
# erase: replaces the items by the empty string
# -> useful in conditions

string_magic("{erase ! I am going to be annihilated}")

#
# ELEMENT MANIPULATION ####
#

#
# rm: removes the elements
# Its (optional) argument is a regular expression giving which element to remove
# Many options: "empty", "blank", "noalpha", "noalnum", "all"

x = c("Destroy", "All")
string_magic("{'A'rm ? x}")

string_magic("{rm.all ? x}")

x = string_vec("1, 12, 123, 1234, 123456, 1234567")
# we delete elements whose number of characters is lower or equal to 3
# => see later section CONDITIONS
string_magic("{if(.nchar > 3 ; nuke) ? x}")

#
# PLURALIZATION ####
#

# Two ways to enable pluralization:
# {$ command}: means the plural is decuced from the length of the variable
# {# command}: means the plural is decuced from the value of the variable

# Explanatory example
x = c("Eschyle", "Sophocle", "Euripide")
n = 37
string_magic("The author{$s, enum, have ? x} written {#N ? n} play{#s}.")

x = "Laurent Berge"
n = 0
string_magic("The author{$s, enum, have ? x} written {#N ? n} play{#s}.")

# How does it work?
# First is {$s, enum, have ? x}.
# The commands `s`, `enum` and `have` are applied to `x` which must come after a `?`
# => there the plural (whether an s is added and how to conjugate the verb have) depends
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# on the **length** of the vector `x`
#
# Second comes {#N ? n}.
# The double dollar sign means that the command `N` will be applied to the **value** n.
# The value must come after the `?`
#
# Third is {#s}.
# The object to which `s` should be applied is missing (there is no `? n`).
# The default is to apply the command to the previous object. In this case,
# this is `n`.

# Another similar example illustrating that we need not express the object several times:
x = c("Eschyle", "Sophocle", "Euripide")
string_magic("The {Len ? x} classic author{$s, are, enum}.")

#
# ARGUMENTS FROM THE ENVIRONMENT ####
#

# Arguments can be evaluated from the calling environment.
# Simply use backticks instead of quotes.

dollar = 6
reason = "glory"
string_magic("Why do you develop packages? For {`dollar`times.c ! $}?",

"For money? No... for {upper,''s, c ? reason}!", .sep = "\n")

#
# Alias generation
#

# Let's create a formula filler
# - we use .local_ops to create the ad hoc operation "add" which adds variables
# - we transform into a formula ex post

fml = string_magic_alias(.post = as.formula, .local_ops = list(add = "' + 'collapse"))

# example with mtcars
lhs = "mpg"
rhs = c("hp", "drat")
fml("{lhs} ~ {add?rhs} + am")

string_magic_alias Create string_magic aliases with custom defaults

Description

Utility to easily create string_magic aliases with custom default
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Usage

string_magic_alias(
.sep = "",
.vectorize = FALSE,
.delim = c("{", "}"),
.last = NULL,
.post = NULL,
.default = NULL,
.nest = FALSE,
.invisible = FALSE,
.local_ops = NULL,
.collapse = NULL,
.check = TRUE,
.class = NULL,
.namespace = NULL

)

Arguments

.sep Character scalar, default is the empty string "". It is used to collapse all the
elements in ... before applying any operation.

.vectorize Logical scalar, default is FALSE. If TRUE, Further, elements in ... are NOT
collapsed together, but instead vectorised.

.delim Character vector of length 1 or 2. Default is c("{", "}"). Defines the opening
and the closing delimiters for interpolation.
If of length 1, it must be of the form: 1) the opening delimiter, 2) a single space,
3) the closing delimiter. Ex: ".[ ]" is equivalent to c(".[", "]"). The default
value is equivalent to "{ }".
[ ]: R:%20 [", "]: R:%22,%20%22

.last Character scalar, a function, or NULL (default). If provided and character: it must
be an string_magic chain of operations of the form "'arg1'op1, op2, etc".
All these operations are applied just before returning the vector. If a function, it
will be applied to the resulting vector.

.post Function or NULL (default). If not NULL, this function will be applied after all the
processing, just before returning the object. This function can have extra argu-
ments which will be caught directly in the ... argument of string_magic. For
example if .post = head, you can directly pass the argument n = 3 to string_magic’s
arguments.

.default Character scalar or NULL (default). If provided, it must be a sequence of string_magic
operations. It will be applied as a default to any interpolation. Ex: if x = 1:2,
then string_magic("x = {x}", .default = "enum") leads to "x = 1 and 2",
and is equivalent to string_magic("x = {enum?x}"). Note that this default op-
erations does not apply to nested expressions. That is string_magic("{!x{1:2}}",
.default = "enum") leads to c("x1", "x2") and NOT "x1 and 2".

.nest Logical, default is FALSE. If TRUE, it will nest the original string within in-
terpolation delimiters, so that you can apply operations directly on the string.
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Example: string_magic("upper ! hello") returns "upper ! hello", while
string_magic("upper ! hello", .nest = TRUE) returns "HELLO".

.invisible Logical scalar, default is FALSE. Whether the object returned should be invisible
(i.e. not printed on the console).

.local_ops Named list or NULL (default). If provided, it must be a list of the form list(alias1
= ops1, alias2 = ops2) where alias is the name of the newly defined operator
an ops is a character scalar representing the associated string_magic operations.
Ex: list(add = "' + 'collapse") creates the operation add which collapses
the string with pluses. All operations created here are only available to the gen-
erated function.

.collapse Character scalar, default is NULL. If provided, the character vector that should
be returned is collapsed with the value of this argument. This leads to return a
string of length 1.

.check Logical scalar, default is TRUE. Whether to enable error-handling (i.e. human
readable error messages). Without error-handling you can save something of
the order of 40us. Useful only in long loops.

.class Character vector representing the class to give to the object returned. By de-
fault it is NULL. Note that the class string_magic has a specific print method,
usually nicer for small vectors (it base::cat()s the elements).

.namespace Character scalar or NULL (default). Only useful for package developers. As a
regular end-user you shouldn’t care! If your package uses string_magic, you
should care. It is useful only if your package uses ’custom’ string_magic oper-
ations, set with string_magic_register_fun() or string_magic_register_ops().

Details

Use this function if you want to change string_magic default values. For example, if you want the
interpolation to be done with "{{}}" (instead of {}) or if you want the default separation to be the
space (instead of the empty string). See the example.

Value

This function returns a function which will behave in the same way as string_magic()

Writing a package using string_magic

If you want to use string_magic in your package and want to make use of custom operations:

• place any string_magic_register_fun and string_magic_register_ops in your .onLoad
function (see help("onLoad")). The .onLoad function is run whenever the package is loaded
for the first time. It’s a function that you can place anywhere in your R/* files and which looks
like this:

.onLoad = function(libname, pkgname){
# string_magic custom operations
string_magic_register_ops("'80|-'fill", "h1")

invisible()
}
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• if you don’t want to place the string_magic_register_* functions in the .onLoad function,
you can, but then you must provide the argument namespace:

string_magic_register_ops("'80|-'fill", "h1", namespace = "myPackageName")

• you must create an string_magic_alias() to create an alias to string_magic() and use
the argument .namespace = "myPackageName". Use this opportunity to change the defaults
if you wish. You can even override the string_magic function:

# creating an alias with the same name + changing the delimiter
string_magic = stringmagic::string_magic_alias(.namespace = "myPackageName", .delim = "{{ }}")

Author(s)

Laurent Berge

See Also

Other related to string_magic: string_magic_register_fun()

Other tools with aliases: cat_magic_alias(), string_clean_alias(), string_magic(), string_ops_alias(),
string_vec_alias()

Examples

# we create the function sma2 with different defaults
sma2 = string_magic_alias(.delim = ".[ ]", .sep = " ", .class = "string_magic")

person = "john doe"
sma2("Hello", ".[title ? person]")

# you can use the arguments whose default has been changed
sma2("Hello", ".[title ? person]", .sep = ": ")

string_magic_register_fun

Register custom operations to apply them in string_magic

Description

Extends the capabilities of string_magic() by adding any custom operation

Usage

string_magic_register_fun(fun, alias, valid_options = NULL, namespace = NULL)

string_magic_register_ops(ops, alias, namespace = NULL)
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Arguments

fun A function which must have at least the arguments ’x’ and ’...’. Addition-
naly, it can have the arguments: ’argument’, ’options’, ’group’, ’group_flag’.
This function must return a vector. This function will be internally called by
string_magic in the form fun(x, argument, options, group, group_flag).x:
the value to which the operation applies. argument: the quoted string_magic
argument (always character). options: a character vector of string_magic op-
tions. The two last arguments are of use only in group-wise operations if fun
changes the lengths of vectors. group: an index of the group to which belongs
each observation (integer). group_flag: value between 0 and 2; 0: no grouping
operation requested; 1: keep track of groups; 2: apply grouping.

alias Character scalar, the name of the operation.

valid_options A character vector or NULL (default). Represents a list of valid options for
the operation. This is used: a) to enable auto-completion, b) for error-handling
purposes.

namespace Character scalar or NULL (default). Only useful for package developers. As
a regular end-user you shouldn’t care! If your package uses string_magic,
you should care. If the function string_magic_register_* is located in the
onLoad function (see help("onLoad")), there is nothing to do. Otherwise, pass
the name of your package in this argument to make all the new operation defini-
tions scoped (i.e. only your package can access it and it can’t be messed up by
end users).

ops Character scalar representing a valid chain of string_magic operations. It
should be of the form "op1, 'arg'op2, etc". For example "'80|-'fill" fills
the line with dashes up to 80 characters.

Details

We try to strongly check the new operations since it’s always better to find out problems sooner
than later. This means that when the function is defined, it is also tested.

If you pass a function, note that it should work for non-character arguments in x.

Value

These function do not return anything. They register new operations to be used in the string_magic
family of functions by placing them in the options (later fetched by string_magic() at run-time).

Functions

• string_magic_register_ops(): Create new combinations of string_magic operations

Writing a package using string_magic

If you want to use string_magic in your package and want to make use of custom operations:

• place any string_magic_register_fun and string_magic_register_ops in your .onLoad
function (see help("onLoad")). The .onLoad function is run whenever the package is loaded
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for the first time. It’s a function that you can place anywhere in your R/* files and which looks
like this:

.onLoad = function(libname, pkgname){
# string_magic custom operations
string_magic_register_ops("'80|-'fill", "h1")

invisible()
}

• if you don’t want to place the string_magic_register_* functions in the .onLoad function,
you can, but then you must provide the argument namespace:

string_magic_register_ops("'80|-'fill", "h1", namespace = "myPackageName")

• you must create an string_magic_alias() to create an alias to string_magic() and use
the argument .namespace = "myPackageName". Use this opportunity to change the defaults
if you wish. You can even override the string_magic function:

# creating an alias with the same name + changing the delimiter
string_magic = stringmagic::string_magic_alias(.namespace = "myPackageName", .delim = "{{ }}")

Author(s)

Laurent R. Berge

See Also

Other related to string_magic: string_magic_alias()

Examples

# let's create an operation that adds markdown emphasis
# to elements of a vector

# A) define the function
fun_emph = function(x, ...) paste0("*", x, "*")

# B) register it
string_magic_register_fun(fun_emph, "emph")

# C) use it
x = string_vec("right, now")
string_magic("Take heed, {emph, c? x}.")

#
# now let's add the option "strong"
fun_emph = function(x, options, ...) {

if("strong" %in% options){
paste0("***", x, "***")

} else {
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paste0("*", x, "*")
}

}

string_magic_register_fun(fun_emph, "emph", "strong")

x = string_vec("right, now")
string_magic("Take heed, {emph.strong, c? x}.")

#
# now let's add an argument
fun_emph = function(x, argument, options, ...){

arg = argument
if(nchar(arg) == 0) arg = "*"

if("strong" %in% options){
arg = paste0(rep(arg, 3), collapse = "")

}

paste0(arg, x, arg)
}

string_magic_register_fun(fun_emph, "emph", "strong")

x = string_vec("right, now")
string_magic("Take heed, {'_'emph.s, c? x}.")

#
# using string_magic_register_ops
#

# create a 'header' maker
string_magic_register_ops("tws, '# 'paste, ' 'paste.right, '40|-'fill", "h1")
cat_magic("{h1 ! My title}\n my content")

string_ops_alias Chains basic operations to character vectors

Description

Simple tool to perform multiple operations to character vectors.

Usage

string_ops_alias(op = NULL, pre_unik = NULL, namespace = NULL)
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string_ops(
x,
...,
op = NULL,
pre_unik = NULL,
namespace = NULL,
envir = parent.frame()

)

stops(
x,
...,
op = NULL,
pre_unik = NULL,
namespace = NULL,
envir = parent.frame()

)

Arguments

op Character vector or NULL (default). Character scalar containing the comma sep-
arated values of operations to perform to the vector. The 50+ operations are
detailed in the help page of string_magic(). Note that if this argument is pro-
vided, then the values in ... are ignored.

pre_unik Logical scalar, default is NULL. Whether to first unique the vector before apply-
ing the possibly costly string operations, and merging back the result. For very
large vectors with repeated values the time gained can be substantial. By default,
this is TRUE for vector of length 1M or more.

namespace Character scalar or NULL (default). Only useful for package developers. As a
regular end-user you shouldn’t care! If your package uses string_magic, you
should care. It is useful only if your package uses ’custom’ string_magic oper-
ations, set with string_magic_register_fun() or string_magic_register_ops().
If so pass the name of your package in this argument so that your function can
access the new string_magic operations defined within your package.

x A character vector. If not a character vector but atomistic (i.e. not a list), it will
be converted to a character vector.

... Character scalars. Character scalar containing the comma separated values of
operations to perform to the vector. The 50+ operations are detailed in the help
page of string_magic().

envir Environment in which to evaluate the interpolations if the flag "magic" is pro-
vided. Default is parent.frame().

Details

This function is a simple wrapper around string_magic. Formally, string_ops(x, "op1, op2") is
equivalent to string_magic("{op1, op2 ? x}").
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Value

In general it returns a character vector. It may be of a length different from the original one, de-
pending on the operations performed.

Functions

• string_ops_alias(): string_ops alias with custom defaults

• stops(): Alias to string_ops

Author(s)

Laurent R. Berge

See Also

Other tools with aliases: cat_magic_alias(), string_clean_alias(), string_magic(), string_magic_alias(),
string_vec_alias()

Examples

# data on car models
cars = row.names(mtcars)

# let's get the brands starting with an "m"
string_ops(cars, "'i/^m'get, x, unik")

# Explainer:
# 'i/^m'get: keeps only the elements starting with an m,
# i/ is the 'regex-flag' "ignore" to ignore the case
# ^m means "starts with an m" in regex language
# x: extracts the first pattern. The default pattern is "[[:alnum:]]+"
# which means an alpha-numeric word
# unik: applies unique() to the vector
# => see help in ?string_magic for more details on the operations

# let's get the 3 largest numbers appearing in the car models
string_ops(cars, "'\\d+'x, rm, unik, num, dsort, 3 first")

# Explainer:
# '\d+'x: extracts the first pattern, the pattern meaning "a succession"
# of digits in regex language
# rm: removes elements equal to the empty string (default behavior)
# unik: applies unique() to the vector
# num: converts to numeric
# dsort: sorts in decreasing order
# 3 first: keeps only the first three elements

# You can use several character vectors as operations:
string_ops(cars,

"'\\d+'x, rm, unik",
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"num, dsort, 3 first")

string_split Splits a character string wrt a pattern

Description

Splits a character string with respect to pattern

Usage

string_split(
x,
split,
simplify = TRUE,
fixed = FALSE,
ignore.case = FALSE,
word = FALSE,
envir = parent.frame()

)

stsplit(
x,
split,
simplify = TRUE,
fixed = FALSE,
ignore.case = FALSE,
word = FALSE,
envir = parent.frame()

)

Arguments

x A character vector.

split A character scalar. Used to split the character vectors. By default this is a regular
expression. You can use flags in the pattern in the form flag1, flag2/pattern.
Available flags are ignore (case), fixed (no regex), word (add word bound-
aries), magic (add interpolation with "{}"). Example: if "ignore/hello" and the
text contains "Hello", it will be split at "Hello". Shortcut: use the first letters of
the flags. Ex: "iw/one" will split at the word "one" (flags ’ignore’ + ’word’).

simplify Logical scalar, default is TRUE. If TRUE, then when the vector input x is of length
1, a character vector is returned instead of a list.

fixed Logical, default is FALSE. Whether to consider the argument split as fixed (and
not as a regular expression).

ignore.case Logical scalar, default is FALSE. If TRUE, then case insensitive search is triggered.
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word Logical scalar, default is FALSE. If TRUE then a) word boundaries are added to
the pattern, and b) patterns can be chained by separating them with a comma,
they are combined with an OR logical operation. Example: if word = TRUE, then
pattern = "The, mountain" will select strings containing either the word ’The’ or
the word ’mountain’.

envir Environment in which to evaluate the interpolations if the flag "magic" is pro-
vided. Default is parent.frame().

Value

If simplify = TRUE (default), the object returned is:

• a character vector if x, the vector in input, is of length 1: the character vector contains the
result of the split.

• a list of the same length as x. The ith element of the list is a character vector containing the
result of the split of the ith element of x.

If simplify = FALSE, the object returned is always a list.

Functions

• stsplit(): Alias to string_split

Generic regular expression flags

All stringmagic functions support generic flags in regular-expression patterns. The flags are useful
to quickly give extra instructions, similarly to usual regular expression flags.

Here the syntax is "flag1, flag2/pattern". That is: flags are a comma separated list of flag-names
separated from the pattern with a slash (/). Example: string_which(c("hello...", "world"),
"fixed/.") returns 1. Here the flag "fixed" removes the regular expression meaning of "." which
would have otherwise meant "any character". The no-flag verion string_which(c("hello...",
"world"), ".") returns 1:2.

Alternatively, and this is recommended, you can collate the initials of the flags instead of using a
comma separated list. For example: "if/dt[" will apply the flags "ignore" and "fixed" to the pattern
"dt[".

The four flags always available are: "ignore", "fixed", "word" and "magic".

• "ignore" instructs to ignore the case. Technically, it adds the perl-flag "(?i)" at the beginning
of the pattern.

• "fixed" removes the regular expression interpretation, so that the characters ".", "$", "^", "["
(among others) lose their special meaning and are treated for what they are: simple characters.

• "word" adds word boundaries ("\\b" in regex language) to the pattern. Further, the comma
(",") becomes a word separator. Technically, "word/one, two" is treated as "\b(one|two)\b".
Example: string_clean("Am I ambushed?", "wi/am") leads to " I ambushed?" thanks to
the flags "ignore" and "word".

• "magic" allows to interpolate variables inside the pattern before regex interpretation. For ex-
ample if letters = "aiou" then string_clean("My great goose!", "magic/[{letters}]
=> e") leads to "My greet geese!"

https://javascript.info/regexp-introduction
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Examples

time = "This is the year 2024."

# we break the sentence
string_split(time, " ")

# simplify = FALSE leads to a list
string_split(time, " ", simplify = FALSE)

# let's break at "is"
string_split(time, "is")

# now breaking at the word "is"
# NOTE: we use the flag `word` (`w/`)
string_split(time, "w/is")

# same but using a pattern from a variable
# NOTE: we use the `magic` flag
pat = "is"
string_split(time, "mw/{pat}")

string_split2df Splits a character vector into a data frame

Description

Splits a character vector and formats the resulting substrings into a data.frame

Usage

string_split2df(
x,
data = NULL,
split = NULL,
id = NULL,
add.pos = FALSE,
id_unik = TRUE,
fixed = FALSE,
ignore.case = FALSE,
word = FALSE,
envir = parent.frame(),
dt = FALSE,
...

)

string_split2dt(
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x,
data = NULL,
split = NULL,
id = NULL,
add.pos = FALSE,
id_unik = TRUE,
fixed = FALSE

)

Arguments

x A character vector or a two-sided formula. If a two-sided formula, then the
argument data must be provided since the variables will be fetched in there.
A formula is of the form char_var ~ id1 + id2 where char_var on the left is
a character variable and on the right id1 and id2 are identifiers which will be
included in the resulting table. Alternatively, you can provide identifiers via the
argument id.

data Optional, only used if the argument x is a formula. It should contain the variables
of the formula.

split A character scalar. Used to split the character vectors. By default this is a regular
expression. You can use flags in the pattern in the form flag1, flag2/pattern.
Available flags are ignore (case), fixed (no regex), word (add word bound-
aries), magic (add interpolation with "{}"). Example: if "ignore/hello" and the
text contains "Hello", it will be split at "Hello". Shortcut: use the first letters of
the flags. Ex: "iw/one" will split at the word "one" (flags ’ignore’ + ’word’).

id Optional. A character vector or a list of vectors. If provided, the values of id
are considered as identifiers that will be included in the resulting table.

add.pos Logical, default is FALSE. Whether to include the position of each split element.

id_unik Logical, default is TRUE. In the case identifiers are provided, whether to trigger a
message if the identifiers are not unique. Indeed, if the identifiers are not unique,
it is not possible to reconstruct the original texts.

fixed Logical, default is FALSE. Whether to consider the argument split as fixed (and
not as a regular expression).

ignore.case Logical scalar, default is FALSE. If TRUE, then case insensitive search is triggered.

word Logical scalar, default is FALSE. If TRUE then a) word boundaries are added to
the pattern, and b) patterns can be chained by separating them with a comma,
they are combined with an OR logical operation. Example: if word = TRUE, then
pattern = "The, mountain" will select strings containing either the word ’The’ or
the word ’mountain’.

envir Environment in which to evaluate the interpolations if the flag "magic" is pro-
vided. Default is parent.frame().

dt Logical, default is FALSE. Whether to return a data.table. See also the function
string_split2dt.

... Not currently used.
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Value

It returns a data.frame or a data.table which will contain: i) obs: the observation index, ii) pos:
the position of the text element in the initial string (optional, via add.pos), iii) the text element, iv)
the identifier(s) (optional, only if id was provided).

Functions

• string_split2dt(): Splits a string vector and returns a data.table

See Also

String operations: string_is(), string_get(), string_clean(), string_split2df(). Chain
basic operations with string_ops(). Clean character vectors efficiently with string_clean().

Use string_vec() to create simple string vectors.

String interpolation combined with operation chaining: string_magic(). You can change string_magic
default values with string_magic_alias() and add custom operations with string_magic_register_fun().

Display messages while benefiting from string_magic interpolation with cat_magic() and message_magic().

Other tools with aliases: cat_magic_alias(), string_magic(), string_magic_alias(), string_ops_alias(),
string_vec_alias()

Examples

x = c("Nor rain, wind, thunder, fire are my daughters.",
"When my information changes, I alter my conclusions.")

id = c("ws", "jmk")

# we split at each word
string_split2df(x, "[[:punct:] ]+")

# we add the 'id'
string_split2df(x, "[[:punct:] ]+", id = id)

# TO NOTE:
# - the second argument is `data`
# - when it is missing, the argument `split` becomes implicitly the second
# - ex: above we did not use `split = "[[:punct:] ]+"`

#
# using the formula

base = data.frame(text = x, my_id = id)
string_split2df(text ~ my_id, base, "[[:punct:] ]+")

#
# with 2+ identifiers

base = within(mtcars, carname <- rownames(mtcars))

# we have a message because the identifiers are not unique
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string_split2df(carname ~ am + gear + carb, base, " +")

# adding the position of the words & removing the message
string_split2df(carname ~ am + gear + carb, base, " +", id_unik = FALSE, add.pos = TRUE)

string_vec_alias Efficient creation of string vectors with optional interpolation

Description

Create string vectors in multiple ways: 1) add successive string elements (like in c()), or 2) write
a character string that will be broken with respect to commas ("hi, there" becomes c("hi",
"there")), or 3) interpolate variables in character strings ("x{1:2}" becomes c("x1", "x2"))
with full access to string_magic() operations, or any combination of the three.

Usage

string_vec_alias(
.cmat = FALSE,
.nmat = FALSE,
.df = FALSE,
.df.convert = TRUE,
.last = NULL,
.delim = c("{", "}"),
.split = TRUE,
.protect.vars = FALSE,
.check = TRUE,
.sep = NULL,
.collapse = NULL,
.namespace = NULL

)

string_vec(
...,
.cmat = FALSE,
.nmat = FALSE,
.df = FALSE,
.df.convert = TRUE,
.delim = c("{", "}"),
.envir = parent.frame(),
.split = TRUE,
.protect.vars = FALSE,
.sep = NULL,
.last = NULL,
.check = TRUE,
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.help = NULL,

.collapse = NULL,

.namespace = NULL
)

stvec(
...,
.cmat = FALSE,
.nmat = FALSE,
.df = FALSE,
.df.convert = TRUE,
.delim = c("{", "}"),
.envir = parent.frame(),
.split = TRUE,
.protect.vars = FALSE,
.sep = NULL,
.last = NULL,
.check = TRUE,
.help = NULL,
.collapse = NULL,
.namespace = NULL

)

Arguments

.cmat Logical scalar (default is FALSE), integer or complex with integer values. If
TRUE, we try to coerce the result into a character matrix. The number of rows
and columns is deduced from the look of the arguments. An integer indicates
the number of rows. If a complex, the imaginary part represents the number of
columns. Ex: 5i means 5 columns, 3 + 2i means 3 rows and 2 columns.
The matrix is always filled by row.

.nmat Logical scalar (default is FALSE), integer or complex with integer values. If
TRUE, we try to coerce the result into a numeric matrix. The number of rows
and columns is deduced from the look of the arguments. An integer indicates
the number of rows. If a complex, the imaginary part represents the number of
columns. Ex: 5i means 5 columns, 3 + 2i means 3 rows and 2 columns.
The matrix is always filled by row. Non numbers are silently turned to NA.

.df Logical scalar (default is FALSE), integer, complex with integer values, or char-
acter vector. If TRUE, we try to coerce the result into a data.frame. The number
of rows and columns is deduced from the look of the arguments. An integer
indicates the number of rows. If a complex, the imaginary part represents the
number of columns. Ex: 5i means 5 columns, 3 + 2i means 3 rows and 2
columns.
If a character vector: it should give the column names. Note that if the vector
is of length 1, its values are comma separated (i.e. the value "id, name" is
identical to c("id", "name")).
Note that the columns that can be converted to numeric are converted to numeric.
The other columns are in string form. Monitor this behavior with .df.convert.
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.df.convert Logical scalar, default is TRUE. Only used when the result is to be converted to a
data frame (with the argument .df). If TRUE, any column looking like a numeric
vector is converted to numeric. Otherwise all columns are character strings.

.last Character scalar, a function, or NULL (default). If provided and character: it must
be an string_magic chain of operations of the form "'arg1'op1, op2, etc".
All these operations are applied just before returning the vector. If a function, it
will be applied to the resulting vector.

.delim Character vector of length 1 or 2. Default is c("{", "}"). Defines the opening
and the closing delimiters for interpolation.
If of length 1, it must be of the form: 1) the opening delimiter, 2) a single space,
3) the closing delimiter. Ex: ".[ ]" is equivalent to c(".[", "]"). The default
value is equivalent to "{ }".
[ ]: R:%20 [", "]: R:%22,%20%22

.split Logical or a character symbol, default is TRUE. If TRUE, the character vectors are
split with respect to commas (default). If FALSE, no splitting is performed. If a
character symbol, the string vector will be split according to this symbol. Note
that any space after the symbol (including tabs and newlines) is discarded. You
can escape the splitting symbol with a backslash right before it.
Ex: by default string_vec("hi, there") leads to the vector c("hi", "there").

.protect.vars Logical scalar, default is FALSE. If TRUE, then only arguments equal to a "natu-
ral" character scalar are comma-split and interpolated, other arguments are not
touched. Ex: string_vec("x{1:5}") will lead to a vector of length 5 ("x1"
to "x5"), while z = "x{1:5}" followed by string_vec(z) leads to a vector of
length 1: "x{1:5}". If FALSE, comma-splitting and interpolation is performed
on all variables.

.check Logical scalar, default is TRUE. Whether to enable error-handling (i.e. human
readable error messages). Without error-handling you can save something of
the order of 40us. Useful only in long loops.

.sep Character scalar or NULL (default). If not NULL, the function base::paste() is
applied to the resulting vector with sep = .sep.

.collapse Character scalar or NULL (default). If not NULL, the function base::paste() is
applied to the resulting vector with collapse = .collapse.
If so, pass the name of your package in this argument so that your function can
access the new string_magic operations defined within your package.

.namespace Character scalar or NULL (default). Only useful for package developers. As a
regular end-user you shouldn’t care! If your package uses string_magic, you
should care. It is useful only if your package uses ’custom’ string_magic oper-
ations, set with string_magic_register_fun() or string_magic_register_ops().

... Character vectors that will be vectorized. If commas are present in the character
vector, it will be split with respect to commas and following blanks. The vectors
can contain any interpolation in the form "{var}" and any string_magic()
operation can be applied. To change the delimiters for interpolation, see .delim.
Named arguments are used in priority for variable substitution, otherwise the
value of the variables to be interpolated are fetched in the calling environment
(see argument .envir).
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.envir An environment used to evaluate the variables in "{}". By default the variables
are evaluated using the environment from where the function is called or using
the named arguments passed to the function.

.help Character scalar or TRUE, default is NULL. This argument is used to generate a
dynamic help on the console. If TRUE, the user can select which topic to read
from the main documentation, with the possibility to search for keywords and
navigate the help pages. If a character scalar, then a regex search is perfomed on
the main documentation and any section containining a match is displayed. The
user can easily navigate across matches.

Details

The main objective of this function is to simplify the creation of small character vectors. By default,
you can pass a character string of length 1 with values separated with commas and a character vector
will be returned.

You can use interpolation using curly brackets (see string_magic()). You can pass values for the
interpolation directly in the arguments (this is why all arguments start with a dot).

By default character values containing commas are split with respect to the commas to create vec-
tors. To change this behavior, see the argument .split.

The default of the argument .protect.vars is FALSE. To avoid unwanted comma-splitting and
interpolations on variables, set it to TRUE. The main use case of this function is the creation of small
string vectors, which can be written directly at function call.

Customize the default of this function with string_vec_alias().

Value

By default this function returns a string vector, the length of which depends on the arguments.

This result can be processed with the arguments cmat, nmat and .df which will try to coerce the
result into a character matrix, a numeric matrix , or a data frame, respectively.

Functions

• string_vec_alias(): Create string_vec aliases with custom defaults

• stvec(): Alias to string_vec

Author(s)

Laurent Berge

See Also

Other tools with aliases: cat_magic_alias(), string_clean_alias(), string_magic(), string_magic_alias(),
string_ops_alias()
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Examples

# illustrating comma-splitting and interpolation
string_vec("x1, y2, z{4:5}")

# variable protection
x = "x{1:5}"
# without protection (default) => interpolation takes place
string_vec(x, "y{1:2}")

# with protection => no interpolation for x
string_vec(x, "y{1:2}", .protect.vars = TRUE)

# removing comma splitting
string_vec("Hi, said Charles.", "Hi, said {girl}.", girl = "Julia", .split = FALSE)

# changing the delimiters for interpolation
pkg = "\\usepackage[usenames,dvipsnames]{xcolor}"
string_vec("\\usepackage{.[S!graphicx, fourier, standalone]}",

pkg, .delim = ".[ ]")

#
# Customization
#

# Unhappy about the defaults? Create an alias!

# we create a "matrix generator"
matgen = string_vec_alias(.nmat = TRUE, .last = "'\n'split")

matgen("5, 4, 3
8, 6, 2")

timer_magic Sets up a timer that can be used within _magic functions

Description

Sets up a timer which can later be summoned by string_magic() functions via the .timer,
.timer_lap and .timer_total variables. Useful to report timings within functions with the func-
tion cat_magic() or message_magic().

Usage

timer_magic()
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Details

This functions sets up a timer with base::Sys.time(). This timer can then be tracked and modified
with the .timer, .timer_lap and .timer_total variables within cat_magic() or message_magic().

Note that the timer is precise at +/- 1ms, hence it should not be used to time algorithms with very
short execution times.

It works by saving the current system time in R options (stringmagic_timer and stringmagic_timer_origin).
Hence, since it uses options, it should not be used in parallel processes.

Value

This function does not return anything and is only intended to be used in conjunction with future
calls of string_magic().

Author(s)

Laurent Berge

See Also

Other tools with aliases: string_clean_alias(), string_magic(), string_magic_alias(),
string_ops_alias(), string_vec_alias()

Examples

# simple example where we time the execution of some elements in a function
# we trigger the message conditionally on the value of the argument `debug`.
rnorm_crossprod = function(n, mean = 0, sd = 1, debug = FALSE){

# we set the timer
timer_magic()
# we compute some stuff
x = rnorm(n, mean, sd)
# we can report the time with .timer
message_magic("{15 align ! Generation}: {.timer}", .trigger = debug)

res = x %*% x
message_magic("{15 align ! Product}: {.timer}",

"{15 align ! Total}: {.timer_total}",
.sep = "\n", .trigger = debug)

res
}

rnorm_crossprod(1e5, TRUE)
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