Package 'spnaf'

March 2, 2024

```
Type Package
Title Spatial Network Autocorrelation for Flow Data
Version 0.3.1
Description Identify statistically significant flow clusters using the local spatial network autocorrela-
      tion statistic G_ij*
      proposed by 'Berglund' and 'Karlström' (1999) <doi:10.1007/s101090050013>.
      The metric, an extended statistic of 'Getis/Ord' G ('Getis' and 'Ord' 1992) <doi:10.1111/j.1538-
      4632.1992.tb00261.x>,
      detects a group of flows having similar traits in terms of directionality.
      You provide OD data and the associated polygon to get results
      with several parameters, some of which are defined by spdep package.
Depends R (>= 3.5.0)
License MIT + file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 7.2.1
Imports dplyr, magrittr, sf, spdep, tidyr, rlang
Suggests knitr, rmarkdown, tmap
VignetteBuilder knitr
NeedsCompilation no
Author Youngbin Lee [aut, cre] (<a href="https://orcid.org/0000-0003-3466-6495">https://orcid.org/0000-0003-3466-6495</a>),
      Hui Jeong Ha [aut] (<a href="https://orcid.org/0000-0002-5229-4528">https://orcid.org/0000-0002-5229-4528</a>),
      Sohyun Park [aut] (<a href="https://orcid.org/0000-0002-1231-5662">https://orcid.org/0000-0002-1231-5662</a>),
      Kyusik Kim [aut] (<a href="https://orcid.org/0000-0003-3753-3196">https://orcid.org/0000-0003-3753-3196</a>),
      Jinhyung Lee [aut] (<a href="https://orcid.org/0000-0003-1859-3441">https://orcid.org/0000-0003-1859-3441</a>)
Maintainer Youngbin Lee < youngbin@snu.ac.kr>
Repository CRAN
Date/Publication 2024-03-02 22:10:02 UTC
```

2 CA

R topics documented:

CA	Sample migration data by counties in California.	
Index		6
	CA_polygon	3
	CA	2

Description

A dataframe containing migration of CA counties with origins and destinations from US Census

Usage

CA

Format

A data. frame object with 2580 rows and 12 variables

State.Code.of.Geography.A Destinations' State code

FIPS.County.Code.of.Geography.A Destinations' FIPS County code

State.U.S..Island.Area.Foreign.Region.Code.of.Geography.B Destinations' State U.S. Island Area Foreign Region Code

FIPS.County.Code.of.Geography.B Origins' FIPS County code

State.Name.of.Geography.A Destinations' State name

County.Name.of.Geography.A Destinations' County name

State.U.S..Island.Area.Foreign.Region.of.Geography.B Origins' State U.S. Island Area Foreign Region Code

County.Name.of.Geography.B Origins' County name

Flow.from.Geography.B.to.Geography.A Flow count from the origin to the destination

Counterflow.from.Geography.A.to.Geography.B Counterflow count from the destination to the origin

Net.Migration.from.Geography.B.to.Geography.A Net migration count from the origin to the destination

Gross.Migration.between.Geography.A.and.Geography.B Gross migration count between counties

Source

Census.gov > Population > Migration/Geographic Mobility > Guidance for Data Users > County-to-County Migration Flows https://www.census.gov/topics/population/migration/guidance/county-to-county-migration-flows.html

CA_polygon 3

Examples

CA

CA_polygon	Sample polygon data of California counties.

Description

A sf(simple feature) containing geometric boundaries of CA counties with their codes.

Usage

CA_polygon

Format

A sf object with 58 rows and 2 variables

id FIPS County code of geography

geometry the geometry column for counties(CRS: NAD83)

Gij.polygon	Calculate spatial autocorrelation with OD data and corresponding
	polygons.

Description

Calculate spatial autocorrelation with OD data and corresponding polygons.

Usage

```
Gij.polygon(df, shape, queen = TRUE, snap = 1, method = "t", R = 1000)
```

Arguments

df	A data.frame that contains your Origin-Destination data. The df must consist of "oid" (origin id), "did" (destination id), "n" (flow weight).
shape	A shapefile (in a polygon type) that matches to your OD dataframe. The shape must have an "id" column to match your ids in df.
queen	A TRUE/FALSE input that is used to calculate spdep's spatial contingency (Please view documents of poly2nb for more information).
snap	A parameter that is also used to calculate spdep's spatial contingency (Please view documents of poly2nb for more information).
method	A string value among "o" (origin based), "d" (destination based), and "t" (both way) which determines the way to generate Spatial Weights. The default value is "t".
R	An integer value to define how many times you want to execute bootstrapping.

4 Networknb

Value

The result is in the form of a list which includes a dataframe and a sf object. Both contain Gij statistics and p-value columns merged to your input df. The geometry type of the latter is linestring.

References

Berglund, S., & Karlström, A. (1999). Identifying local spatial association in flow data, Journal of Geographical Systems, 1(3), 219-236. https://doi.org/10.1007/s101090050013

Examples

```
# Data manipulation
CA <- spnaf::CA
OD <- cbind(CA$FIPS.County.Code.of.Geography.B, CA$FIPS.County.Code.of.Geography.A)
OD <- cbind(OD, CA$Flow.from.Geography.B.to.Geography.A)</pre>
OD <- data.frame(OD)
names(OD) <- c("oid", "did", "n")
OD$n <- as.numeric(OD$n)
OD <- OD[order(OD[,1], OD[,2]),]</pre>
head(OD) # check the input df's format
# Load sf polygon
CA_polygon <- spnaf::CA_polygon
head(CA_polygon) # it has a geometry column
# Execution of Gij.polygon with data above and given parameters
result <- Gij.polygon(df = OD, shape = CA_polygon, queen = TRUE, snap = 1,
method = 't', R = 1000)
# check the results
head(result[[1]])
head(result[[2]])
```

Networknb

Calculate spatial weights for networks based on input polygons.

Description

Calculate spatial weights for networks based on input polygons.

Usage

```
Networknb(shape, snap = 1, queen = TRUE, method = "t")
```

Networknb 5

Arguments

shape	A shapefile (in a polygon type) that matches to your OD dataframe. The shape must have an "id" column to match your ids in df.
snap	A parameter that is also used to calculate spdep's spatial contingency (Please view documents of poly2nb for more information).
queen	A TRUE/FALSE input that is used to calculate spdep's spatial contingency (Please view documents of poly2nb for more information).
method	A string value among "o" (origin based), "d" (destination based), and "t" (both way) which determines the way to generate Spatial Weights. The default value is "t".

Value

The result is in the form of a list which includes combinations of origin ids and destination ids.

Examples

```
# Data manipulation
# Load sf polygon

CA_polygon <- spnaf::CA_polygon

# Execution of Networknb with data above and given parameters

nnb <- Networknb(shape = CA_polygon, queen = TRUE, snap = 1, method = 'o')

# check the results
head(nnb)</pre>
```

Index

```
* datasets
CA, 2
CA_polygon, 3

CA, 2
CA_polygon, 3

Gij.polygon, 3

Networknb, 4

poly2nb, 3, 5
```