
Package ‘sevenbridges2’
February 3, 2024

Type Package

Title The 'Seven Bridges Platform' API Client

Version 0.1.0

Maintainer Marija Gacic <marija.jovanovic@velsera.com>

Description R client and utilities for 'Seven Bridges Platform' API, from 'Cancer Genomics Cloud'
to other 'Seven Bridges' supported platforms. API documentation is hosted publicly
at <https://docs.sevenbridges.com/docs/the-api>.

License Apache License 2.0

Encoding UTF-8

VignetteBuilder knitr

URL https://www.sevenbridges.com,

https://sbg.github.io/sevenbridges2/,

https://github.com/sbg/sevenbridges2

Depends R (>= 4.2.0)

RoxygenNote 7.2.3

Imports httr, R6, purrr, jsonlite, cli, rlang, curl, glue, stringr,
utils, checkmate, DescTools, yaml, readr, data.table

Suggests knitr, rmarkdown, testthat (>= 3.0.0), stringi, withr,
remotes, pkgdown

Config/testthat/edition 3

Config/testthat/parallel true

BugReports https://github.com/sbg/sevenbridges2/issues

NeedsCompilation no

Author Marija Gacic [aut, cre],
Marko Trifunovic [aut],
Vladimir Obucina [aut],
Velsera [cph, fnd]

Repository CRAN

Date/Publication 2024-02-03 12:20:02 UTC

1

https://docs.sevenbridges.com/docs/the-api
https://www.sevenbridges.com
https://sbg.github.io/sevenbridges2/
https://github.com/sbg/sevenbridges2
https://github.com/sbg/sevenbridges2/issues

2 api

R topics documented:

api . 2
App . 4
Apps . 14
Auth . 19
Billing . 30
Billing_groups . 36
Collection . 39
Export . 43
Exports . 46
File . 51
Files . 66
Import . 71
Imports . 74
Invoice . 79
Invoices . 81
Item . 84
Member . 85
Part . 87
Permission . 91
Project . 94
Projects . 117
Rate . 122
Resource . 123
Task . 124
Tasks . 138
Upload . 144
User . 149
Volume . 150
VolumeContentCollection . 167
VolumeFile . 171
VolumePrefix . 175
Volumes . 180

Index 195

api Core HTTP logic for Seven Bridges API

Description

Used for advanced users and the core method for higher level API in this package.

api 3

Usage

api(
token = NULL,
path = NULL,
method = c("GET", "POST", "PUT", "DELETE", "PATCH"),
query = NULL,
body = list(),
encode = c("json", "form", "multipart"),
limit = getOption("sevenbridges2")$limit,
offset = getOption("sevenbridges2")$offset,
advance_access = getOption("sevenbridges2")$advance_access,
authorization = FALSE,
fields = "_all",
base_url = NULL,
url = NULL,
...

)

Arguments

token API authentication token or access_token for Seven Bridges single sign-on.
Authentication token uniquely identifies you on the Seven Bridges Platform and
has all your data access, app management and task execution permissions. Read
more about its usage here.

path Path connected with base_url.

method One of "GET", "POST", "PUT", "DELETE", or "PATCH".

query Query parameters passed to httr package GET/POST call.

body Body content passed to httr package GET/POST/PUT/DELETE/PATCH call.

encode If the body is a named list, how should it be encoded? Can be one of "json" (ap-
plication/json), "form" (application/x-www-form-urlencoded), or "multipart"
(multipart/form-data). Default is "json". For "multipart", list elements can
be strings or objects created by httr::upload_file(). For "form", elements
are coerced to strings and escaped, use I() to prevent double-escaping. For
"json", parameters are automatically "unboxed" (i.e. length 1 vectors are con-
verted to scalars). To preserve a length 1 vector as a vector, wrap in I().

limit The maximum number of collection items to return for a single request. Mini-
mum value is 1. The maximum value is 100 and the default value is 50. This is
a pagination-specific attribute.

offset The zero-based starting index in the entire collection of the first item to return.
The default value is 0. This is a pagination-specific attribute.

advance_access Enable advance access features? Default is FALSE.

authorization Is the token an API authentication token (FALSE) or an access token from the
Seven Bridges single sign-on (TRUE)?

fields Selector specifying a subset of fields to include in the response. All API calls
take this optional query parameter. This parameter enables you to specify the

https://docs.sevenbridges.com/docs/get-your-authentication-token

4 App

fields you want to be returned when listing resources (e.g. all your projects) or
getting details of a specific resource (e.g. a given project).

For example, fields="id,name,size" to return the fields id, name and size
for files. Default value is set to _all, so all fields are always returned for each
resource. More details please check here.

base_url Platform URL, default is NULL.

url Full url of the resource. If url is provided, other parameters like base_url,
path, query, limit, offset and fields will be ignored.

... Other arguments passed to GET/POST/PUT/DELETE/PATCH call.

Value

Response in form of a list.

References

https://docs.sevenbridges.com/page/api

Examples

token <- "your_token"
list projects
Not run:
api(token = token, path = "projects", method = "GET")

End(Not run)

App R6 Class representing an app

Description

R6 Class representing a resource for managing apps.

Super class

sevenbridges2::Item -> App

Public fields

URL List of URL endpoints for this resource.

id Character used as an app ID - short app name.

project Project ID if any, when returned by an API call.

name App name.

https://docs.sevenbridges.com/docs/the-api#section-general-api-information
https://docs.sevenbridges.com/page/api

App 5

revision App’s revision number.

copy_of The original application of which this is a copy.

latest_revision App’s latest revision number.

raw App’s raw CWL (JSON or YAML).

Methods

Public methods:
• App$new()

• App$print()

• App$reload()

• App$copy()

• App$get_revision()

• App$create_revision()

• App$sync()

• App$input_matrix()

• App$output_matrix()

• App$create_task()

• App$clone()

Method new(): Create a new App object.

Usage:
App$new(res = NA, ...)

Arguments:
res Response containing App object information.
... Other response arguments.

Returns: A new App object.

Method print(): Print method for App class.

Usage:
App$print()

Examples:
\dontrun{
x is API response when app is requested
app_object <- App$new(
res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)
app_object$print()

}

Method reload(): Reload App object information. Suitable also for loading raw CWL in the
’raw’ field, if it’s not already populated.

6 App

Usage:
App$reload(...)

Arguments:
... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: App object.

Examples:
\dontrun{
x is API response when app is requested
app_object <- App$new(
res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)
app_object$reload()

}

Method copy(): A method that copies the current app to the specified project.

Usage:
App$copy(project, name = NULL, strategy = "clone", use_revision = FALSE, ...)

Arguments:
project Project object or project ID. If you opt for the latter, remember that the project ID

should be specified in <project_owner>/<project-name> format, e.g.
rfranklin/my-project, or as <division>/<project-name> depending on the account
type.

name The new name the app will have in the target project. Optional.
strategy The method for copying the app. Supported strategies:

• clone - copy all revisions; get updates from the same app as the copied app (default)
• direct: copy latest revision; get updates from the copied app
• clone_direct: copy all revisions; get updates from the copied app
• transient: copy latest revision; get updates from the same app as the copied app.

use_revision Parameter specifying which app’s revision should be copied. If set to FALSE
(default), the latest revision of the app will be copied.

... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Copied App object.

Examples:
\dontrun{
x is API response when app is requested
app_object <- App$new(
res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

App 7

app_object$copy(project)
}

Method get_revision(): Get app’s revision.

Usage:
App$get_revision(revision = self$revision, in_place = FALSE, ...)

Arguments:
revision Revision of the app.
in_place If TRUE, replace current app object with new for specified app revision.
... Other arguments that can be passed to core api() function like ’fields’, etc.

Details: This call allows you to obtain a particular revision of an app, which is not necessarily
the most recent version.

Returns: App object.

Examples:
\dontrun{
x is API response when app is requested
app_object <- App$new(
res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)
app_object$get_revision()

}

Method create_revision(): Create a new app revision.

Usage:
App$create_revision(
raw = NULL,
from_path = NULL,
raw_format = c("JSON", "YAML"),
in_place = FALSE,
...

)

Arguments:
raw A list containing a raw CWL for the app revision you are about to create. To generate such

a list, you might want to load some existing JSON / YAML file. In case that your CWL
file is in JSON format, please use the fromJSON function from the jsonlite package to
minimize potential problems with parsing the JSON file. If you want to load a CWL file
in YAML format, it is highly recommended to use the read_yaml function from the yaml
package. Keep in mind that this parameter should not be used together with the file_path
parameter.

from_path A path to a file containing the raw CWL for the app (JSON or YAML). This param-
eter should not be used together with the raw parameter.

8 App

raw_format The type of format used (JSON or YAML).
in_place If TRUE, replace current app object with newly created revision.
... Other arguments that can be passed to core api() function like ’fields’, etc.

Details: This call creates a new revision for an existing app. It adds a new CWL app descrip-
tion, and stores it as the named revision for the specified app. The revision number must not
already exist and should follow the sequence of previously created revisions.

More documentation about how to create the app via API can be found here.

Returns: App object.

Examples:
\dontrun{
x is API response when app is requested
app_object <- App$new(
res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)
Create App object using raw CWL
app_object$create_revision(raw)

}

Method sync(): Synchronize a copied app with its parent app.

Usage:
App$sync(...)

Arguments:
... Other arguments that can be passed to core api() function like ’fields’, etc.

Details: This call synchronizes a copied app with the source app from which it has been copied.

Returns: App object.

Examples:
\dontrun{
x is API response when app is requested
app_object <- App$new(
res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

app_object$sync()
}

Method input_matrix(): Get inputs matrix for the app - what are expected inputs required or
not, with their details about the expected types, descriptions etc.

https://docs.sevenbridges.com/reference/add-an-app-using-raw-cwl

App 9

Usage:
App$input_matrix()

Returns: Data frame.

Method output_matrix(): Get outputs matrix for the app - what are the expected outputs of
the task running this app, with their details about the expected types, descriptions etc.

Usage:
App$output_matrix()

Returns: Data frame.

Method create_task(): This call creates a new task. You can create either a single task or a
batch task by using the app’s default batching, override batching, or disable batching completely.
A parent task is a task that specifies criteria by which to batch its inputs into a series of further
sub-tasks, called child tasks. The documentation on batching tasks for more details on batching
criteria.

Usage:
App$create_task(
project,
revision = NULL,
name = NULL,
description = NULL,
execution_settings = NULL,
inputs = NULL,
output_location = output_location,
batch = NULL,
batch_input = NULL,
batch_by = NULL,
use_interruptible_instances = NULL,
action = NULL,
...

)

Arguments:

project The ID string of a project or a Project object where you want to create the task in.
revision The app revision (version) number.
name The name of the task.
description An optional description of the task.
execution_settings Named list with detailed task execution parameters. Detailed task exe-

cution parameters:
• instance_type: Possible value is the specific instance type, e.g. "instance_type" =
"c4.2xlarge;ebs-gp2;2000";

• max_parallel_instances: Maximum number of instances running at the same time.
Takes any integer value equal to or greater than 1, e.g. "max_parallel_instances" =
2.;

• use_memoization: Set to FALSE by default. Set to TRUE to enable memoization;
• use_elastic_disk: Set to TRUE to enable Elastic Disk.

https://docs.sevenbridges.com/docs/about-batch-analyses
https://docs.sevenbridges.com/docs/app-versions
https://docs.sevenbridges.com/docs/about-memoization
https://docs.sevenbridges.com/page/elastic-disk

10 App

Here is an example:

execution_settings <- list(
"instance_type" = "c4.2xlarge;ebs-gp2;2000",
"max_parallel_instances" = 2,
"use_memoization" = TRUE,
"use_elastic_disk" = TRUE
)

inputs List of objects. See the section on specifying task inputs for information on creating
task input objects. Here is an example with various input types:

inputs <- list(
"input_file"= "<file_id/file_object>",
"input_directory" = "<folder_id/folder_object>",
"input_array_string" = list("<string_elem_1>", "<string_elem_2>"),
"input_boolean" = TRUE,
"input_double" = 54.6,
"input_enum" = "enum_1",
"input_float" = 11.2,
"input_integer" = "asdf",
"input_long" = 4212,
"input_string" = "test_string",
"input_record" = list(
"input_record_field_file" = "<file_id/file_object>",
"input_record_field_integer" = 42
)

)

output_location The output location list allows you to define the exact location where your
task outputs will be stored. The location can either be defined for the entire project using the
main_location parameter, or individually per each output node, by setting the nodes_override
parameter to true and defining individual output node locations within nodes_location. See
below for more details.
• main_location - Defines the output location for all output nodes in the task. Can be a

string path within the project in which the task is created, for example
/Analysis/<task_id>_<task_name>/ or a path on an attached volume,
such as volumes://volume_name/<project_id>/html. Parts of the path enclosed in
angle brackets <> are tokens that are dynamically replaced with corresponding values
during task execution.

• main_location_alias: The string location (path) in the project that will point to the
actual location where the outputs are stored. Used if main_location is defined as a volume
path (starting with volumes://), to provide an easy way of accessing output data directly
from project files.

• nodes_override: Enables defining of output locations for output nodes individually
through nodes_location (see below). Set to TRUE to be able to define individual locations
per output node. Default: FALSE. Even if nodes_override is set to TRUE, it is not necessary
to define output locations for each of the output nodes individually. Data from those
output nodes that don’t have their locations explicitly defined through nodes_location is
either placed in main_location (if defined) or at the project files root if a main output
location is not defined for the task.

https://docs.sevenbridges.com/docs/the-api#section-inputs

App 11

• nodes_location: List of output paths for individual task output nodes in the following
format for each output node:
<output-node-id> = list(
"output_location" = "<output-path>",
"output_location_alias" = "<alias-path>"
)
Example:
b64html = list(
"output_location" = "volumes://outputs/tasks/mar-19",
"output_location_alias" = "/rfranklin/tasks/picard"

)

In the example above, b64html is the ID of the output node for which
you want to define the output location, while the parameters are
defined as follows:

– output_location - Can be a path within the project in which the task is created, for
example
/Analysis/<task_id>_<task_name>/ or a path on an attached volume,
such as volumes://volume_name/<project_id>/html. Also accepts tokens.

– output_location_alias - The location (path) in the project that will point to the ex-
act location where the output is stored. Used if output_location is defined as a volume
path (starting with volumes://).

batch This is set to FALSE by default. Set to TRUE to create a batch task and specify the
batch_input and batch-by criteria as described below.

batch_input The ID of the input on which you wish to batch. You would typically batch on
the input consisting of a list of files. If this parameter is omitted, the default batching criteria
defined for the app will be used.

batch_by Batching criteria in form of list. For example:
batch_by = list(
type = "CRITERIA",
criteria = list("metadata.condition")

)

use_interruptible_instances This field can be TRUE or FALSE. Set this field to TRUE to
allow the use of spot instances.

action If set to run, the task will be run immediately upon creation.
... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Task object.

Examples:
\dontrun{
x is API response when app is requested
app_object <- App$new(
res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)
Create a DRAFT task

https://docs.sevenbridges.com/docs/about-spot-instances

12 App

app_object$create_task(project = project)
}

Method clone(): The objects of this class are cloneable with this method.

Usage:
App$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

--
Method `App$print`
--

Not run:
x is API response when app is requested
app_object <- App$new(
res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)
app_object$print()

End(Not run)

--
Method `App$reload`
--

Not run:
x is API response when app is requested
app_object <- App$new(
res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)
app_object$reload()

End(Not run)

--
Method `App$copy`
--

Not run:
x is API response when app is requested

App 13

app_object <- App$new(
res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)
app_object$copy(project)

End(Not run)

--
Method `App$get_revision`
--

Not run:
x is API response when app is requested
app_object <- App$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)
app_object$get_revision()

End(Not run)

--
Method `App$create_revision`
--

Not run:
x is API response when app is requested
app_object <- App$new(
res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)
Create App object using raw CWL
app_object$create_revision(raw)

End(Not run)

--
Method `App$sync`
--

Not run:
x is API response when app is requested
app_object <- App$new(

14 Apps

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

app_object$sync()

End(Not run)

--
Method `App$create_task`
--

Not run:
x is API response when app is requested
app_object <- App$new(
res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)
Create a DRAFT task
app_object$create_task(project = project)

End(Not run)

Apps R6 Class representing apps endpoint

Description

R6 Class representing apps resource endpoint.

Super class

sevenbridges2::Resource -> Apps

Public fields

URL List of URL endpoints for this resource.

Methods

Public methods:
• Apps$new()

• Apps$query()

Apps 15

• Apps$get()

• Apps$copy()

• Apps$create()

• Apps$clone()

Method new(): Create new Apps resource object.

Usage:
Apps$new(...)

Arguments:

... Other response arguments.

Method query(): This call lists all the apps available to you.

Usage:
Apps$query(
project = NULL,
visibility = c("private", "public"),
query_terms = NULL,
id = NULL,
limit = getOption("sevenbridges2")$limit,
offset = getOption("sevenbridges2")$offset,
fields = "!raw",
...

)

Arguments:

project Project ID string in the form <project_owner>/<project_short_name> or
<division_name>/<project_short_name> or Project object,
to restrict the results to apps from that project only.

visibility Set this to public to see all public apps on the Seven Bridges Platform.
query_terms Enter one or more search terms to query apps. Read more about how to use the

query_terms parameter in our API documentation.
id Use this parameter to query apps based on their ID.
limit The maximum number of collection items to return for a single request. Minimum value

is 1. The maximum value is 100 and the default value is 50. This is a pagination-specific
attribute.

offset The zero-based starting index in the entire collection of the first item to return. The
default value is 0. This is a pagination-specific attribute.

fields Selector specifying a subset of fields to include in the response. For querying apps
it is set to return all fields except ’raw’ which stores CWL in form of a list. Please, be
careful when setting to return all fields, since the execution of this API request could be
time-consuming.

... Other arguments that can be passed to core api() function.

Returns: Collection containing App objects.

Examples:

https://docs.sevenbridges.com/reference/list-all-apps-available-to-you#query-apps

16 Apps

\dontrun{
apps_object <- Apps$new(
auth = auth

)

List public apps
apps_object$query(visibility = "public")

}

Method get(): This call returns information about the specified app. The app should be one in
a project that you can access; this could be an app that has been uploaded to the Seven Bridges
Platform by a project member, or a publicly available app that has been copied to the project.
More about this operation you can find in our API documentation.

Usage:
Apps$get(id, revision = NULL, ...)

Arguments:
id The full <project_id>/<app_short_name> path for this API call is known as App ID. You

can also get the App ID for an app by making the call to list all apps available to you.
revision The number of the app revision you want to get.
... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: App object.

Examples:
\dontrun{
apps_object <- Apps$new(
auth = auth

)

Get app object
apps_object$get(id = "<some_id>")

}

Method copy(): This call copies the specified app to the specified project. The app should be
one in a project that you can access; this could be an app that has been uploaded to the Seven
Bridges Platform by a project member, or a publicly available app that has been copied to the
project.

Usage:
Apps$copy(
app,
project,
name = NULL,
strategy = c("clone", "direct", "clone_direct", "transient"),
...

)

Arguments:

https://docs.sevenbridges.com/reference/get-details-of-an-app

Apps 17

app App object or the short name of the app you are copying. Optionally, to copy a specific
revision of the app, use the <app_short_name>/<revision_number> format, for example
rfranklin/my-project/bamtools-index-2-4-0/1

project The Project object or project ID you want to copy the app to.
name The new name the app will have in the target project. If its name will not change, omit

this key.
strategy The method for copying the app. Can be one of:

• clone : copy all revisions; get updates from the same app as the copied app (default);
• direct: copy latest revision; get updates from the copied app;
• clone_direct: copy all revisions; get updates from the copied app;
• transient: copy latest revision; get updates from the same app as the copied app.
Read more about the strategies here.

... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Copied App object.

Examples:

\dontrun{
apps_object <- Apps$new(
auth = auth

)
Copy app object to a project
apps_object$copy(app = app, project = project)

}

Method create(): This call allows you to add an app using raw CWL.

Usage:
Apps$create(
raw = NULL,
from_path = NULL,
project,
name,
raw_format = c("JSON", "YAML"),
...

)

Arguments:

raw The body of the request should be a CWL app description saved as a JSON or YAML file. For
a template of this description, try making the call to get raw CWL for an app about an app
already in one of your projects. Shouldn’t be used together with from_path parameter.

from_path File containing CWL app description. Shouldn’t be used together with raw param-
eter.

project String project ID or Project object in which you want to store the app.
name A short name for the app (without any non-alphanumeric characters or spaces)
raw_format The type of format used (JSON or YAML).
... Other arguments that can be passed to core api() function like ’fields’, etc.

https://docs.sevenbridges.com/reference/copy-an-app#methods-for-copying-an-app

18 Apps

Returns: App object.

Examples:

\dontrun{
apps_object <- Apps$new(
auth = auth

)

Create new app object
apps_object$create(
raw = raw,
project = project,
name = name,
raw_format = "YAML"
)

}

Method clone(): The objects of this class are cloneable with this method.

Usage:
Apps$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

--
Method `Apps$query`
--

Not run:
apps_object <- Apps$new(
auth = auth

)

List public apps
apps_object$query(visibility = "public")

End(Not run)

--
Method `Apps$get`
--

Not run:
apps_object <- Apps$new(
auth = auth

)

Auth 19

Get app object
apps_object$get(id = "<some_id>")

End(Not run)

--
Method `Apps$copy`
--

Not run:
apps_object <- Apps$new(
auth = auth

)
Copy app object to a project
apps_object$copy(app = app, project = project)

End(Not run)

--
Method `Apps$create`
--

Not run:
apps_object <- Apps$new(
auth = auth

)

Create new app object
apps_object$create(
raw = raw,
project = project,
name = name,
raw_format = "YAML"
)

End(Not run)

Auth R6 Class Representing Authentication Object

Description

Authentication object with methods to access API endpoints. Every object could be requested from
this Auth object and any action could start from this object using cascading style. Please check
vignette("Authentication_and_Billing", package = "sevenbridges2") for more informa-
tion.

20 Auth

Details

This is the main object for authentication to platforms powered by Seven Bridges.

Public fields

from Authentication method.

platform The platform to use.

url Base URL for API.

sysenv_url Name of the system environment variable storing the API base URL.

sysenv_token Name of the system environment variable storing the auth token.

config_file Location of the user configuration file.

profile_name Profile name in the user configuration file.

fs FS (FileSystem) object, for mount and unmount file system.

authorization Is the token an API authentication token (FALSE) or an access token from the
Seven Bridges single sign-on (TRUE)?

projects Projects object, for accessing projects resources on the platform.

files Files object, for accessing files resources on the platform.

apps Apps object, for accessing apps resources on the platform.

volumes Volumes object, for accessing volumes resources on the platform.

tasks Tasks object, for accessing volumes resources on the platform.

imports Storage imports object, for accessing volume imports resources on the platform.

exports Storage exports object, for accessing volume exports resources on the platform.

invoices Invoices object, for accessing invoice resources on the platform.

billing_groups Billing_groups object, for accessing billing groups resources on the platform.

Methods

Public methods:
• Auth$new()

• Auth$get_token()

• Auth$api()

• Auth$user()

• Auth$rate_limit()

• Auth$upload()

• Auth$list_ongoing_uploads()

• Auth$upload_abort()

• Auth$send_feedback()

• Auth$clone()

Method new(): Create a new Seven Bridges API Authentication object. All methods can be
accessed through this object.

Auth 21

Usage:
Auth$new(
from = c("direct", "env", "file"),
platform = NA,
url = NA,
token = NA,
sysenv_url = NA,
sysenv_token = NA,
config_file = NA,
profile_name = NA,
fs = NA,
authorization = FALSE

)

Arguments:

from Authentication method. Could be:
• "direct" - pass the credential information to the arguments directly,
• "env" - read from pre-set system environment variables, or
• "file" - read configurations from a credentials file.
Default is "direct".

platform The platform to use. If platform and url are both not specified, the default is
"aws-us" (Seven Bridges Platform - US). Other possible values include:
• "aws-eu" - Seven Bridges Platform - EU,
• "cgc" - Cancer Genomics Cloud,
• "ali-cn" - Seven Bridges Platform - China,
• "cavatica" - Cavatica, and
• "f4c" - BioData Catalyst Powered by Seven Bridges.

url Base URL for API. Please only use this when you want to specify a platform that is not in
the platform list above, and also leaving platform unspecified.

token API authentication token or access_token for Seven Bridges single sign-on. Authen-
tication token uniquely identifies you on the Seven Bridges Platform and has all your data
access, app management and task execution permissions. Read more about its usage here.

sysenv_url Name of the system environment variable storing the API base URL. By default:
"SB_API_ENDPOINT".

sysenv_token Name of the system environment variable storing the auth token. By default:
"SB_AUTH_TOKEN".

config_file Location of the user configuration file.
By default: "~/.sevenbridges/credentials".

profile_name Profile name in the user configuration file. The default value is "default".
fs FS (FileSystem) object, for mount and unmount file system.
authorization Is the token an API authentication token (FALSE) or an access token from the

Seven Bridges single sign-on (TRUE)?

Returns: Auth class object.

Examples:

https://docs.sevenbridges.com/docs/get-your-authentication-token

22 Auth

\dontrun{
Multiple ways to create Auth object

Using authentication token
a <- Auth$new(
token = "<your_token>",
platform = "aws-us"
)

Authenticate using environment variables
a <- Auth$new(from = "env")

Authenticate using file configuration
a <- Auth$new(from = "file")

}

Method get_token(): Returns the authentication token read from system environment variable.

Usage:
Auth$get_token()

Returns: An API authentication token in form of a string.

Examples:

\dontrun{
Authenticate using authentication token
a <- Auth$new(
token = "<your_token>",
platform = "aws-us"
)

Get that same token
a$get_token()

}

Method api(): This method returns all API paths and pass arguments to core api() function.

Usage:
Auth$api(
...,
limit = getOption("sevenbridges2")$limit,
offset = getOption("sevenbridges2")$offset,
fields = NULL

)

Arguments:

... Other arguments passed to core api() function, like path, query parameters or full url to
some resource.

Auth 23

limit The maximum number of collection items to return for a single request. Minimum value
is 1. The maximum value is 100 and the default value is 50. This is a pagination-specific
attribute.

offset The zero-based starting index in the entire collection of the first item to return. The
default value is 0. This is a pagination-specific attribute.

fields Selector specifying a subset of fields to include in the response. This parameter en-
ables you to specify the fields you want to be returned when listing resources (e.g. all your
projects) or getting details of a specific resource (e.g. a given project).

For example, fields="id,name,size" to return the fields id, name and size for files. De-
fault value is set to _all, so all fields are always returned for each resource. More details
please check general API documentation.

Examples:

\dontrun{
Authenticate using authentication token
a <- Auth$new(
token = "<your_token>",
platform = "aws-us"
)

Create API request using request parameters directly
a$api(params)

}

Method user(): Get details about the authenticated user.

Usage:
Auth$user(username = NULL)

Arguments:

username The username of a user for whom you want to get basic account information. If not
provided, information about the currently authenticated user will be returned.

Returns: User class object.

Examples:

\dontrun{
Authenticate using authentication token
a <- Auth$new(
token = "<your_token>",
platform = "aws-us"
)

Get information about the currently authenticated user
a$user()

}

Method rate_limit(): Get information about current rate limit.

https://docs.sevenbridges.com/docs/the-api#section-general-api-information

24 Auth

This call returns information about your current rate limit. This is the number of API calls you
can make in one hour. This call also returns information about your current instance limit.

Usage:
Auth$rate_limit()

Examples:
\dontrun{
Authenticate using authentication token
a <- Auth$new(
token = "<your_token>",
platform = "aws-us"
)

Get current rate limit
a$rate_limit()

}

Method upload(): This method allows you to upload a single file from your local computer to
the Platform.

Usage:
Auth$upload(
path,
project = NULL,
parent = NULL,
filename = NULL,
overwrite = FALSE,
part_size = getOption("sevenbridges2")$RECOMMENDED_PART_SIZE,
init = FALSE

)

Arguments:
path File path on local disk.
project Project object or its ID. Project should not be used together with parent. If parent

is used, the call will upload the file to the specified Platform folder, within the project to
which the folder belongs. If project is used, the call will upload the file to the root of the
project’s files.

parent Parent folder object (of File class) or its ID. Should not be used together with project.
If parent is used, the call will upload the file to the specified Platform folder, within the
project to which the folder belongs. If project is used, the call will upload the file to the root
of the project’s files.

filename Optional new file name. By default the uploaded file will have the same name as the
original file provided with the path parameter. If its name will not change, omit this key.

overwrite In case there is already a file with the same name in the selected platform project
or folder, this option allows you to control whether that file will be overwritten or not. If
overwrite is set to TRUE and a file already exists under the name specified in the request, the
existing file will be deleted and a new one created in its place.

part_size The preferred size for upload parts in bytes. If omitted or set to a value that is
incompatible with the cloud storage provider, a default value will be used.

Auth 25

init If TRUE, the method will initialize and return the Upload object and stop. If FALSE, the
method will return the Upload object and start the upload process immediately.

Examples:
\dontrun{
Authenticate using authentication token
a <- Auth$new(
token = "<your_token>",
platform = "aws-us"
)

Create upload job and set destination project
upload_job <- a$upload(
path = "/path/to/your/file.txt",
project = destination_project,
overwrite = TRUE,
init = TRUE

)
}

Method list_ongoing_uploads(): This method returns the list of all ongoing uploads.

Usage:
Auth$list_ongoing_uploads()

Examples:
\dontrun{
Authenticate using authentication token
a <- Auth$new(
token = "<your_token>",
platform = "aws-us"
)

List ongoing uploads
a$list_ongoing_uploads()

}

Method upload_abort(): This call aborts an ongoing multipart upload.

Usage:
Auth$upload_abort(upload_id)

Arguments:
upload_id Upload object or ID of the upload process that you want to abort.

Examples:
\dontrun{
Authenticate using authentication token
a <- Auth$new(
token = "<your_token>",
platform = "aws-us"
)

26 Auth

Abort upload
a$abort_upload(upload_id = "<id_of_the_upload_process>")

}

Method send_feedback(): Send feedback to Seven Bridges.

Send feedback on ideas, thoughts, and problems via the sevenbridges2 API package with three
available types: idea, thought, and problem. You can send one feedback item per minute.

Usage:
Auth$send_feedback(
text,
type = c("idea", "thought", "problem"),
referrer = NULL

)

Arguments:

text Specifies the content for the feedback i.e. feedback text.
type Specifies the type of feedback. The following are available: idea, thought and problem.
referrer The name of the person submitting the feedback.

Examples:

\dontrun{
Authenticate using authentication token
a <- Auth$new(
token = "<your_token>",
platform = "aws-us"
)

Send feedback
a$send_feedback(
"This is a test for sending feedback via API.",
type = "thought"
)

}

Method clone(): The objects of this class are cloneable with this method.

Usage:
Auth$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

--
Method `Auth$new`
--

Auth 27

Not run:
Multiple ways to create Auth object

Using authentication token
a <- Auth$new(
token = "<your_token>",
platform = "aws-us"
)

Authenticate using environment variables
a <- Auth$new(from = "env")

Authenticate using file configuration
a <- Auth$new(from = "file")

End(Not run)

--
Method `Auth$get_token`
--

Not run:
Authenticate using authentication token
a <- Auth$new(
token = "<your_token>",
platform = "aws-us"
)

Get that same token
a$get_token()

End(Not run)

--
Method `Auth$api`
--

Not run:
Authenticate using authentication token
a <- Auth$new(
token = "<your_token>",
platform = "aws-us"
)

Create API request using request parameters directly
a$api(params)

End(Not run)

28 Auth

--
Method `Auth$user`
--

Not run:
Authenticate using authentication token
a <- Auth$new(
token = "<your_token>",
platform = "aws-us"
)

Get information about the currently authenticated user
a$user()

End(Not run)

--
Method `Auth$rate_limit`
--

Not run:
Authenticate using authentication token
a <- Auth$new(
token = "<your_token>",
platform = "aws-us"
)

Get current rate limit
a$rate_limit()

End(Not run)

--
Method `Auth$upload`
--

Not run:
Authenticate using authentication token
a <- Auth$new(
token = "<your_token>",
platform = "aws-us"
)

Create upload job and set destination project
upload_job <- a$upload(
path = "/path/to/your/file.txt",
project = destination_project,
overwrite = TRUE,
init = TRUE

)

End(Not run)

Auth 29

--
Method `Auth$list_ongoing_uploads`
--

Not run:
Authenticate using authentication token
a <- Auth$new(
token = "<your_token>",
platform = "aws-us"
)

List ongoing uploads
a$list_ongoing_uploads()

End(Not run)

--
Method `Auth$upload_abort`
--

Not run:
Authenticate using authentication token
a <- Auth$new(
token = "<your_token>",
platform = "aws-us"
)

Abort upload
a$abort_upload(upload_id = "<id_of_the_upload_process>")

End(Not run)

--
Method `Auth$send_feedback`
--

Not run:
Authenticate using authentication token
a <- Auth$new(
token = "<your_token>",
platform = "aws-us"
)

Send feedback
a$send_feedback(
"This is a test for sending feedback via API.",
type = "thought"
)

End(Not run)

30 Billing

Billing R6 Class representing billing information.

Description

R6 Class representing a central resource for managing billing groups.

Details

This is main object for Billing

Super class

sevenbridges2::Item -> Billing

Public fields

URL List of URL endpoints for this resource.

id Billing group identifier.

owner Username of the user that owns the billing group.

name Billing group name.

type Billing group type

pending Billing group approval status.

disabled Indicator of whether the billing group is disabled.

balance Billing group balance.

Methods

Public methods:
• Billing$new()

• Billing$print()

• Billing$reload()

• Billing$analysis_breakdown()

• Billing$storage_breakdown()

• Billing$egress_breakdown()

• Billing$clone()

Method new(): Create a new Billing object.

Usage:
Billing$new(res = NA, ...)

Arguments:
res Response containing Billing object information.
... Other response arguments.

Billing 31

Method print(): Print billing group information as a bullet list.

Usage:
Billing$print()

Examples:

\dontrun{
x is API response when billing group is requested
billing_object <- Billing$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Print billing group
billing_object$print()

}

Method reload(): Reload Billing group object.

Usage:
Billing$reload(...)

Arguments:

... Other arguments that can be passed to core api() function like ’limit’, ’offset’, ’fields’,
etc.

Returns: Billing object.

Examples:

\dontrun{
x is API response when billing group is requested
billing_object <- Billing$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Reload billing group
billing_object$reload()

}

Method analysis_breakdown(): Method for getting a analysis breakdown for a billing group.

Usage:
Billing$analysis_breakdown(
date_from = NULL,
date_to = NULL,

32 Billing

invoice = NULL,
fields = NULL,
limit = getOption("sevenbridges2")$limit,
offset = getOption("sevenbridges2")$offset,
...

)

Arguments:

date_from A string representing the starting date for retrieving transactions analysis in the
following format: mm-dd-yyyy.

date_to A string representing the ending date for retrieving transactions analysis in the follow-
ing format: mm-dd-yyyy.

invoice A string representing invoice ID or Invoice object to show a breakdown for the specific
invoice. If omitted, the current spending breakdown is returned.

fields Selector specifying a subset of fields to include in the response.
limit The maximum number of collection items to return for a single request. Minimum value

is 1. The maximum value is 100 and the default value is 50. This is a pagination-specific
attribute.

offset The zero-based starting index in the entire collection of the first item to return. The
default value is 0. This is a pagination-specific attribute.

... Other arguments that can be passed to core api() function.

Examples:

\dontrun{
x is API response when billing group is requested
billing_object <- Billing$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Get analysis breakdown
billing_object$analysis_breakdown()

}

Method storage_breakdown(): Method for getting a storage breakdown for a billing group.

Usage:
Billing$storage_breakdown(
date_from = NULL,
date_to = NULL,
invoice = NULL,
fields = NULL,
limit = getOption("sevenbridges2")$limit,
offset = getOption("sevenbridges2")$offset,
...

)

Billing 33

Arguments:

date_from A string representing the starting date for retrieving storage analysis in the follow-
ing format: mm-dd-yyyy.

date_to A string representing the ending date for retrieving storage analysis in the following
format: mm-dd-yyyy.

invoice A string representing invoice ID or Invoice object to show a breakdown for the specific
invoice. If omitted, the current spending breakdown is returned.

fields Selector specifying a subset of fields to include in the response.
limit The maximum number of collection items to return for a single request. Minimum value

is 1. The maximum value is 100 and the default value is 50. This is a pagination-specific
attribute.

offset The zero-based starting index in the entire collection of the first item to return. The
default value is 0. This is a pagination-specific attribute.

... Other arguments that can be passed to core api() function.

Examples:

\dontrun{
x is API response when billing group is requested
billing_object <- Billing$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Get storage breakdown
billing_object$storage_breakdown()

}

Method egress_breakdown(): Method for getting a egress breakdown for a billing group.

Usage:
Billing$egress_breakdown(
date_from = NULL,
date_to = NULL,
invoice = NULL,
fields = NULL,
limit = getOption("sevenbridges2")$limit,
offset = getOption("sevenbridges2")$offset,
...

)

Arguments:

date_from A string representing the starting date for retrieving egress analysis in the following
format: mm-dd-yyyy.

date_to A string representing the ending date for retrieving egress analysis in the following
format: mm-dd-yyyy.

34 Billing

invoice A string representing invoice ID or Invoice object to show a breakdown for the specific
invoice. If omitted, the current spending breakdown is returned.

fields Selector specifying a subset of fields to include in the response.
limit The maximum number of collection items to return for a single request. Minimum value

is 1. The maximum value is 100 and the default value is 50. This is a pagination-specific
attribute.

offset The zero-based starting index in the entire collection of the first item to return. The
default value is 0. This is a pagination-specific attribute.

... Other arguments that can be passed to core api() function.

Examples:

\dontrun{
x is API response when billing group is requested
billing_object <- Billing$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Get egress breakdown
billing_object$egress_breakdown()

}

Method clone(): The objects of this class are cloneable with this method.

Usage:
Billing$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

--
Method `Billing$print`
--

Not run:
x is API response when billing group is requested
billing_object <- Billing$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Print billing group
billing_object$print()

Billing 35

End(Not run)

--
Method `Billing$reload`
--

Not run:
x is API response when billing group is requested
billing_object <- Billing$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Reload billing group
billing_object$reload()

End(Not run)

--
Method `Billing$analysis_breakdown`
--

Not run:
x is API response when billing group is requested
billing_object <- Billing$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Get analysis breakdown
billing_object$analysis_breakdown()

End(Not run)

--
Method `Billing$storage_breakdown`
--

Not run:
x is API response when billing group is requested
billing_object <- Billing$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

36 Billing_groups

)

Get storage breakdown
billing_object$storage_breakdown()

End(Not run)

--
Method `Billing$egress_breakdown`
--

Not run:
x is API response when billing group is requested
billing_object <- Billing$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Get egress breakdown
billing_object$egress_breakdown()

End(Not run)

Billing_groups R6 Class representing billing groups endpoints

Description

R6 Class representing billing groups resource endpoints.

Super class

sevenbridges2::Resource -> Billing_groups

Public fields

URL List of URL endpoints for this resource.

Methods

Public methods:
• Billing_groups$new()

• Billing_groups$query()

• Billing_groups$get()

• Billing_groups$clone()

Billing_groups 37

Method new(): Create a new Billing_groups object.

Usage:
Billing_groups$new(...)

Arguments:
... Other response arguments.

Method query(): List all your billing groups, including groups that are pending or have been
disabled.

Usage:
Billing_groups$query(
limit = getOption("sevenbridges2")$limit,
offset = getOption("sevenbridges2")$offset,
...

)

Arguments:
limit The maximum number of collection items to return for a single request. Minimum value

is 1. The maximum value is 100 and the default value is 50. This is a pagination-specific
attribute.

offset The zero-based starting index in the entire collection of the first item to return. The
default value is 0. This is a pagination-specific attribute.

... Other arguments that can be passed to core api() function like query parameters, ’fields’,
etc.

Returns: Collection of Billing groups.

Examples:
\dontrun{
billing_groups_object <- Billing_groups$new(
auth = auth

)

List all your billing groups
billing_groups_object$query()

}

Method get(): Retrieve a single billing group, specified by its id. To find the billing_group,
use the call Billing_groups$query() to list all your billing groups. The information returned
includes the billing group owner, the total balance, and the status of the billing group (pending or
confirmed).

Usage:
Billing_groups$get(id, ...)

Arguments:
id The ID of the billing group you are querying.
... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Billing object.

38 Billing_groups

Examples:

\dontrun{
billing_groups_object <- Billing_groups$new(
auth = auth

)

Get single billing group
billing_groups_object$get(id = id)

}

Method clone(): The objects of this class are cloneable with this method.

Usage:
Billing_groups$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

--
Method `Billing_groups$query`
--

Not run:
billing_groups_object <- Billing_groups$new(
auth = auth

)

List all your billing groups
billing_groups_object$query()

End(Not run)

--
Method `Billing_groups$get`
--

Not run:
billing_groups_object <- Billing_groups$new(
auth = auth

)

Get single billing group
billing_groups_object$get(id = id)

End(Not run)

Collection 39

Collection R6 Class representing a Collection of objects

Description

R6 Class representing a resource for managing collections. Wrapper for Seven Bridges pageable
resources. Among the actual collection items it contains information regarding the total number of
entries available on the server and resource API request URL (href).

Public fields

href API request URL.

items Items returned in API response.

links List of links (hrefs) for next and/or previous page resources.

total Total number of items available on the server.

response Raw API response.

auth Seven Bridges Authentication object.

Methods

Public methods:
• Collection$new()

• Collection$print()

• Collection$next_page()

• Collection$prev_page()

• Collection$all()

• Collection$clone()

Method new(): Create a new Collection object.

Usage:
Collection$new(
href = NA,
items = NA,
links = NA,
total = NA,
response = NA,
auth = NA

)

Arguments:
href API request URL.
items Items returned in API response.
links List of links (hrefs) for next and/or previous page resources.
total Total number of items available on the server.

40 Collection

response Raw API response.
auth Seven Bridges Authentication object.

Method print(): Print method for Collection class.
Usage:
Collection$print(n = 10)

Arguments:
n Number of items to print in console.

Examples:
\dontrun{
x is API response when collection object is requested
collection_object <- Collection$new(

href = x$href,
items = x$items,
links = x$links,
total = x$total,
auth = auth,
response = attr(x, "response")

)

Print collection object
collection_object$print()

}

Method next_page(): Return next page of results.
Usage:
Collection$next_page(...)

Arguments:
... Other arguments that can be passed to core api() function like ’advanced_access’, ’fields’,

etc.

Examples:
\dontrun{
x is API response when collection object is requested
collection_object <- Collection$new(

href = x$href,
items = x$items,
links = x$links,
total = x$total,
auth = auth,
response = attr(x, "response")

)

Get next page of collection results
collection_object$next_page()

}

Collection 41

Method prev_page(): Return previous page of results.

Usage:
Collection$prev_page(...)

Arguments:
... Other arguments that can be passed to core api() function like ’advanced_access’, ’fields’,

etc.

Examples:
\dontrun{
x is API response when collection object is requested
collection_object <- Collection$new(

href = x$href,
items = x$items,
links = x$links,
total = x$total,
auth = auth,
response = attr(x, "response")

)

Get previous page of collection results
collection_object$prev_page()

}

Method all(): Fetches all available items by iterating through all pages. Please, be aware of
the API rate limit for your request.

Usage:
Collection$all(...)

Arguments:
... Other arguments that can be passed to core api() function like ’advanced_access’, ’fields’,

etc.

Examples:
\dontrun{
x is API response when collection object is requested
collection_object <- Collection$new(

href = x$href,
items = x$items,
links = x$links,
total = x$total,
auth = auth,
response = attr(x, "response")

)

Get all results of collection
collection_object$all()

}

42 Collection

Method clone(): The objects of this class are cloneable with this method.

Usage:
Collection$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

--
Method `Collection$print`
--

Not run:
x is API response when collection object is requested
collection_object <- Collection$new(

href = x$href,
items = x$items,
links = x$links,
total = x$total,
auth = auth,
response = attr(x, "response")

)

Print collection object
collection_object$print()

End(Not run)

--
Method `Collection$next_page`
--

Not run:
x is API response when collection object is requested
collection_object <- Collection$new(

href = x$href,
items = x$items,
links = x$links,
total = x$total,
auth = auth,
response = attr(x, "response")

)

Get next page of collection results
collection_object$next_page()

End(Not run)

Export 43

--
Method `Collection$prev_page`
--

Not run:
x is API response when collection object is requested
collection_object <- Collection$new(

href = x$href,
items = x$items,
links = x$links,
total = x$total,
auth = auth,
response = attr(x, "response")

)

Get previous page of collection results
collection_object$prev_page()

End(Not run)

--
Method `Collection$all`
--

Not run:
x is API response when collection object is requested
collection_object <- Collection$new(

href = x$href,
items = x$items,
links = x$links,
total = x$total,
auth = auth,
response = attr(x, "response")

)

Get all results of collection
collection_object$all()

End(Not run)

Export R6 Class representing an Export

Description

R6 Class representing a resource for managing volume export jobs.

44 Export

Super class

sevenbridges2::Item -> Export

Public fields

URL List of URL endpoints for this resource.

id Export job string identifier.

state The state of the export job. Possible values are:

• PENDING: the export is queued;
• RUNNING: the export is running;
• COMPLETED: the export has completed successfully;
• FAILED: the export has failed.

source List containing source file id that is being exported to the volume.

destination List containing destination volume id and location (file name) on the volume where
the file is being exported.

overwrite Whether the exported file name was overwritten or not, if another one with the same
name had already existed on the volume.

started_on Time when the export job started.

finished_on Time when the export job ended.

properties List of volume properties set.

error In case of error in the export job, standard API error is returned here.

result File object that was exported.

Methods

Public methods:
• Export$new()

• Export$print()

• Export$reload()

• Export$clone()

Method new(): Create a new Export object.

Usage:
Export$new(res = NA, ...)

Arguments:
res Response containing Export job information.
... Other response arguments.

Method print(): Print method for Export class.

Usage:
Export$print()

Examples:

Export 45

\dontrun{
x is API response when export is requested
export_object <- Export$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Print export object
export_object$print()

}

Method reload(): Reload Export object information.

Usage:
Export$reload(...)

Arguments:

... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Export object.

Examples:

\dontrun{
x is API response when export is requested
export_object <- Export$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Reload export object
export_object$reload()

}

Method clone(): The objects of this class are cloneable with this method.

Usage:
Export$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

--
Method `Export$print`

46 Exports

--

Not run:
x is API response when export is requested
export_object <- Export$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Print export object
export_object$print()

End(Not run)

--
Method `Export$reload`
--

Not run:
x is API response when export is requested
export_object <- Export$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Reload export object
export_object$reload()

End(Not run)

Exports R6 Class representing storage exports endpoints

Description

R6 Class representing storage exports resource endpoints.

Super class

sevenbridges2::Resource -> Exports

Public fields

URL List of URL endpoints for this resource.

Exports 47

Methods

Public methods:
• Exports$new()

• Exports$query()

• Exports$get()

• Exports$submit_export()

• Exports$delete()

• Exports$clone()

Method new(): Create a new Exports object.

Usage:
Exports$new(...)

Arguments:

... Other response arguments.

Method query(): This call lists export jobs initiated by particular user. Note that when you
export a file from a project on the Platform into a volume, you write to your cloud storage bucket.

Usage:
Exports$query(
volume = NULL,
state = NULL,
limit = getOption("sevenbridges2")$limit,
offset = getOption("sevenbridges2")$offset,
...

)

Arguments:

volume Volume id or Volume object. List all exports into this particular volume. Optional.
state The state of the export job. Possible values are:

• PENDING: the export is queued;
• RUNNING: the export is running;
• COMPLETED: the export has completed successfully;
• FAILED: the export has failed.
Example:

state = c("RUNNING", "FAILED")

limit The maximum number of collection items to return for a single request. Minimum value
is 1. The maximum value is 100 and the default value is 50. This is a pagination-specific
attribute.

offset The zero-based starting index in the entire collection of the first item to return. The
default value is 0. This is a pagination-specific attribute.

... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Collection of Export objects.

Examples:

48 Exports

\dontrun{
exports_object <- Exports$new(
auth = auth

)

List all your running or failed export jobs on the volume
exports_object$query(volume = volume, state = c("RUNNING", "FAILED"))

}

Method get(): This call will return the details of an export job.

Usage:
Exports$get(id, ...)

Arguments:

id The export job identifier (id).
... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Export object.

Examples:

\dontrun{
exports_object <- Exports$new(
auth = auth

)

Get export job by ID
exports_object$get(id = id)

}

Method submit_export(): This call lets you queue a job to export a file from a project on the
Platform into a volume. The file selected for export must not be a public file or an alias. Aliases
are objects stored in your cloud storage bucket which have been made available on the Platform.
The volume you are exporting to must be configured for read-write access. To do this, set the
access_mode parameter to RW when creating or modifying a volume.

Essentially, the call writes to your cloud storage bucket via the volume. If this call is successful,
the original project file will become an alias to the newly exported object on the volume. The
source file will be deleted from the Platform and, if no more copies of this file exist, it will no
longer count towards your total storage price on the Platform.
In summary, once you export a file from the Platform to a volume, it is no longer part of the
storage on the Platform and cannot be exported again.

Read more about this operation in our documentation here.

If you want to export multiple files, the recommended way is to do it in bulk considering the API
rate limit (learn more). Bulk operations will be implemented in next releases.

Usage:

https://docs.sevenbridges.com/reference/start-an-export-job-v2
https://docs.sevenbridges.com/docs/api-rate-limit

Exports 49

Exports$submit_export(
source_file,
destination_volume,
destination_location,
overwrite = FALSE,
copy_only = FALSE,
properties = NULL,
...

)

Arguments:
source_file File id or File object you want to export to the volume.
destination_volume Volume id or Volume object you want to export files into.
destination_location Volume-specific location to which the file will be exported. This lo-

cation should be recognizable to the underlying cloud service as a valid key or path to a new
file. Please note that if this volume has been configured with a prefix parameter, the value
of prefix will be prepended to location before attempting to create the file on the volume.
If you would like to export the file into some folder on the volume, please add folder name
as prefix before file name in form <folder-name>/<file-name>.

overwrite Set to TRUE if you want to overwrite the item if another one with the same name
already exists at the destination.

copy_only If TRUE, file will be copied to a volume but source file will remain on the Platform.
properties Named list of additional volume properties, like:

• sse_algorithm - S3 server-side encryption to use when exporting to this bucket. Sup-
ported values: AES256 (SSE-S3 encryption), aws:kms, null (no server-side encryption).
Default: AES256.

• sse_aws_kms_key_id: Applies to type: s3. If AWS KMS encryption is used, this should
be set to the required KMS key. If not set and aws:kms is set as sse_algorithm, default
KMS key is used.

• aws_canned_acl: S3 canned ACL to apply on the object on during export. Supported
values: any one of S3 canned ACLs; null (do not apply canned ACLs). Default: null.

... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Export object.

Examples:
\dontrun{
exports_object <- Exports$new(
auth = auth

)

Submit export job
exp_job1 <- exports_object$submit_export(

source_file = test_file,
destination_volume = vol1,
destination_location = "new_volume_file.txt"

)
}

https://docs.aws.amazon.com/AmazonS3/latest/userguide/acl-overview.html#canned-acl

50 Exports

Method delete(): Deleting export jobs is not possible.

Usage:
Exports$delete()

Method clone(): The objects of this class are cloneable with this method.

Usage:
Exports$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Examples

--
Method `Exports$query`
--

Not run:
exports_object <- Exports$new(
auth = auth

)

List all your running or failed export jobs on the volume
exports_object$query(volume = volume, state = c("RUNNING", "FAILED"))

End(Not run)

--
Method `Exports$get`
--

Not run:
exports_object <- Exports$new(
auth = auth

)

Get export job by ID
exports_object$get(id = id)

End(Not run)

--
Method `Exports$submit_export`
--

Not run:
exports_object <- Exports$new(
auth = auth

)

File 51

Submit export job
exp_job1 <- exports_object$submit_export(

source_file = test_file,
destination_volume = vol1,
destination_location = "new_volume_file.txt"

)

End(Not run)

File R6 Class representing a File

Description

R6 Class representing a resource for managing files and folders.

Super class

sevenbridges2::Item -> File

Public fields

URL List of URL endpoints for this resource.

id File ID.

name File name.

size File size.

project Project ID if any, where file/folder is located.

created_on Date file/folder was created on.

modified_on Date file/folder was modified on.

storage File/folder’s storage type.

origin Task ID if file/folder is produced by some task execution.

tags List of tags associated with the file.

metadata List for metadata associated with the file.

url File download URL.

parent Parent folder ID.

type This can be of type file or folder.

secondary_files Secondary files linked to the file if exist.

52 File

Methods

Public methods:
• File$new()

• File$print()

• File$detailed_print()

• File$reload()

• File$update()

• File$add_tag()

• File$copy_to()

• File$get_download_url()

• File$get_metadata()

• File$set_metadata()

• File$move_to_folder()

• File$list_contents()

• File$delete()

• File$download()

• File$submit_export()

• File$clone()

Method new(): Create a new File object.

Usage:
File$new(res = NA, ...)

Arguments:

res Response containing File object information.
... Other response arguments.

Method print(): Print method for File class.

Usage:
File$print()

Examples:

\dontrun{
x is API response when file is requested
file_object <- File$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Print file object
file_object$print()

}

File 53

Method detailed_print(): Detailed print method for File class.
Usage:
File$detailed_print()

Details: The call returns the file’s name, its tags, and all of its metadata. Apart from regular
file fields there are some additional fields:

• storage field denotes the type of storage for the file which can be either PLATFORM or
VOLUME depending on where the file is stored.

• origin field denotes the task that produced the file, if it was created by a task on the Seven
Bridges Platform.

• metadata field lists the metadata fields and values for the file.
• tags field lists the tags for the file. Learn more about tagging your files on the Platform.

Examples:
\dontrun{
x is API response when file is requested
file_object <- File$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Detailed print of file object
file_object$detailed_print()

}

Method reload(): Reload File object information.
Usage:
File$reload(...)

Arguments:
... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: File object.

Examples:
\dontrun{
x is API response when file is requested
file_object <- File$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Reload file object
file_object$reload()

}

https://docs.sevenbridges.com/docs/tag-your-files

54 File

Method update(): Updates the name, the full set metadata, and tags for a specified file. .

Usage:
File$update(name = NULL, metadata = NULL, tags = NULL, ...)

Arguments:

name The new name of the file.
metadata The metadata fields and their values that you want to update. This is a named list of

key-value pairs. The keys and values are strings.
tags The tags you want to update, represented as unnamed list of values to add as tags.
... Other arguments that can be passed to core api() function like ’limit’, ’offset’, ’fields’,

etc.

Returns: Updated File object.

Examples:

\dontrun{
x is API response when file is requested
file_object <- File$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Update file object
file_object$update(name = "new_name")

}

Method add_tag(): This method allows you to tag files on the Platform. You can tag your files
on the Platform with keywords to make it easier to identify and organize files you’ve imported
from public datasets or copied between projects.
More details on how to use this call can be found here.

Usage:
File$add_tag(tags, overwrite = FALSE, ...)

Arguments:

tags The tags you want to update, represented as unnamed list of values to add as tags.
overwrite Set to TRUE if you want to overwrite existing tags. Default: FALSE.
... Additional parameters that can be passed to the method.

Examples:

\dontrun{
x is API response when file is requested
file_object <- File$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

https://docs.sevenbridges.com/reference/add-tags-to-a-file

File 55

)

Add new tag to file object
file_object$add_tag(tags = c("new_tag"))

}

Method copy_to(): This call copies the specified file to a new project. Files retain their meta-
data when copied, but may be assigned new names in their target project. To make this call, you
should have copy permission within the project you are copying from.
Note: If you want to copy multiple files, the recommended way is to do it in bulk considering the
API rate limit (learn more). You can do that using Auth$copy_files() operation.

Usage:
File$copy_to(project, name = NULL, ...)

Arguments:
project The ID of the project or a Project object where you want to copy the file to.
name The new name the file will have in the target project. If its name will not change, omit

this key.
... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Copied File object.

Examples:
\dontrun{
x is API response when file is requested
file_object <- File$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Copy file object to project
file_object$copy_to(project = project)

}

Method get_download_url(): This method returns a URL that you can use to download the
specified file.

Usage:
File$get_download_url(...)

Arguments:
... Other arguments that can be passed to core api() function like ’fields’, etc.

Examples:
\dontrun{
x is API response when file is requested
file_object <- File$new(

https://docs.sevenbridges.com/docs/set-permissions
https://docs.sevenbridges.com/docs/api-rate-limit

56 File

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Get download url for file object
file_object$get_download_url()

}

Method get_metadata(): This call returns the metadata values for the specified file.

Usage:
File$get_metadata(...)

Arguments:

... Other arguments that can be passed to core api() function like ’fields’, etc.

Examples:

\dontrun{
x is API response when file is requested
file_object <- File$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Get metadata for file object
file_object$get_metadata()

}

Method set_metadata(): This call changes the metadata values for the specified file.
More details about how to modify metadata, you can find in the API documentation.

Usage:
File$set_metadata(metadata_fields, overwrite = FALSE, ...)

Arguments:

metadata_fields Enter a list of key-value pairs of metadata fields and metadata values.
overwrite Set to TRUE if you want to overwrite existing tags. Default: FALSE.
... Other arguments that can be passed to core api() function like ’fields’, etc.

Examples:

\dontrun{
x is API response when file is requested
file_object <- File$new(

res = x,
href = x$href,

https://docs.sevenbridges.com/reference/modify-a-files-metadata

File 57

auth = auth,
response = attr(x, "response")

)

Set metadata for file object
file_object$set_metadata(metadata_fields = list("field_1" = "value_1"))

}

Method move_to_folder(): This call moves a file from one folder to another. Moving of files
is only allowed within the same project.

Usage:
File$move_to_folder(parent, name = NULL)

Arguments:
parent The ID of target folder or a File object which must be of type FOLDER.
name Specify a new name for a file in case you want to rename it. If you want to use the same

name, omit this key.

Returns: Moved File object.

Examples:
\dontrun{
x is API response when file is requested
file_object <- File$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Move file object to a project
file_object$move_to_folder(parent = "parent-folder-id")

}

Method list_contents(): List folder contents.

Usage:
File$list_contents(
limit = getOption("sevenbridges2")$limit,
offset = getOption("sevenbridges2")$offset,
...

)

Arguments:
limit The maximum number of collection items to return for a single request. Minimum value

is 1. The maximum value is 100 and the default value is 50. This is a pagination-specific
attribute.

offset The zero-based starting index in the entire collection of the first item to return. The
default value is 0. This is a pagination-specific attribute.

58 File

... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Collection of File objects.

Examples:

\dontrun{
x is API response when file is requested
file_object <- File$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

List folder's content
file_object$list_contents()

}

Method delete(): Delete method for File objects.

Usage:
File$delete()

Examples:

\dontrun{
x is API response when file is requested
file_object <- File$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Delete file object
file_object$delete()

}

Method download(): Download method for File objects. It allows download a platform file to
your local computer. To specify the destination for your download, you should provide the path
to the destination directory as directory_path parameter.

Usage:
File$download(
directory_path,
filename = self$name,
method = "curl",
retry_count = getOption("sevenbridges2")$default_retry_count,
retry_timeout = getOption("sevenbridges2")$default_retry_timeout

)

File 59

Arguments:
directory_path Path to the destination directory of a new file.
filename Full name for the new file, including its extension. By default, the name field of File

object will be used.
method Method to be used for downloading files. By default, this parameter is set to curl.
retry_count Number of retries if error occurs during download.
retry_timeout Number of seconds between two retries.

Examples:
\dontrun{
x is API response when file is requested
file_object <- File$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Download file object
file_object$download(directory_path = ".")

}

Method submit_export(): This call lets you queue a job to export this file from a project on the
Platform into a volume. The file selected for export must not be a public file or an alias. Aliases
are objects stored in your cloud storage bucket which have been made available on the Platform.
The volume you are exporting to must be configured for read-write access. To do this, set the
access_mode parameter to RW when creating or modifying a volume.

Essentially, the call writes to your cloud storage bucket via the volume. If this call is successful,
the original project file will become an alias to the newly exported object on the volume. The
source file will be deleted from the Platform and, if no more copies of this file exist, it will no
longer count towards your total storage price on the Platform.
In summary, once you export a file from the Platform to a volume, it is no longer part of the
storage on the Platform and cannot be exported again.

Read more about this operation in our documentation here.
If you want to export multiple files, the recommended way is to do it in bulk considering the API
rate limit (learn more) (bulk operations will be implemented in next releases).

Usage:
File$submit_export(
destination_volume,
destination_location,
overwrite = FALSE,
copy_only = FALSE,
properties = NULL,
...

)

https://docs.sevenbridges.com/reference/start-an-export-job-v2
https://docs.sevenbridges.com/docs/api-rate-limit

60 File

Arguments:

destination_volume Volume id or Volume object you want to export files into. Required.
destination_location Volume-specific location to which the file will be exported. This lo-

cation should be recognizable to the underlying cloud service as a valid key or path to a new
file. Please note that if this volume has been configured with a prefix parameter, the value
of prefix will be prepended to location before attempting to create the file on the volume.
If you would like to export the file into some folder on the volume, please add folder name
as prefix before file name in form <folder-name>/<file-name>.

overwrite Set to TRUE of you want to overwrite the item that already exists at the destination.
Default: FALSE.

copy_only If TRUE, file will be copied to a volume but source file will remain on the Platform.
properties Named list of additional volume properties, like:

• sse_algorithm - S3 server-side encryption to use when exporting to this bucket. Sup-
ported values: AES256 (SSE-S3 encryption), aws:kms, null (no server-side encryption).
Default: AES256.

• sse_aws_kms_key_id: Applies to type: s3. If AWS KMS encryption is used, this should
be set to the required KMS key. If not set and aws:kms is set as sse_algorithm, default
KMS key is used.

• aws_canned_acl: S3 canned ACL to apply on the object on during export. Supported
values: any one of S3 canned ACLs; null (do not apply canned ACLs). Default: null.

... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Export object.

Examples:

\dontrun{
x is API response when file is requested
file_object <- File$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Export file object to a volume
file_object$submit_export(

destination_volume = volume,
destination_location = location

)
}

Method clone(): The objects of this class are cloneable with this method.

Usage:
File$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

https://docs.aws.amazon.com/AmazonS3/latest/userguide/acl-overview.html#canned-acl

File 61

Examples

--
Method `File$print`
--

Not run:
x is API response when file is requested
file_object <- File$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Print file object
file_object$print()

End(Not run)

--
Method `File$detailed_print`
--

Not run:
x is API response when file is requested
file_object <- File$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Detailed print of file object
file_object$detailed_print()

End(Not run)

--
Method `File$reload`
--

Not run:
x is API response when file is requested
file_object <- File$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

62 File

Reload file object
file_object$reload()

End(Not run)

--
Method `File$update`
--

Not run:
x is API response when file is requested
file_object <- File$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Update file object
file_object$update(name = "new_name")

End(Not run)

--
Method `File$add_tag`
--

Not run:
x is API response when file is requested
file_object <- File$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Add new tag to file object
file_object$add_tag(tags = c("new_tag"))

End(Not run)

--
Method `File$copy_to`
--

Not run:
x is API response when file is requested
file_object <- File$new(

res = x,

File 63

href = x$href,
auth = auth,
response = attr(x, "response")
)

Copy file object to project
file_object$copy_to(project = project)

End(Not run)

--
Method `File$get_download_url`
--

Not run:
x is API response when file is requested
file_object <- File$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Get download url for file object
file_object$get_download_url()

End(Not run)

--
Method `File$get_metadata`
--

Not run:
x is API response when file is requested
file_object <- File$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Get metadata for file object
file_object$get_metadata()

End(Not run)

--
Method `File$set_metadata`
--

64 File

Not run:
x is API response when file is requested
file_object <- File$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Set metadata for file object
file_object$set_metadata(metadata_fields = list("field_1" = "value_1"))

End(Not run)

--
Method `File$move_to_folder`
--

Not run:
x is API response when file is requested
file_object <- File$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Move file object to a project
file_object$move_to_folder(parent = "parent-folder-id")

End(Not run)

--
Method `File$list_contents`
--

Not run:
x is API response when file is requested
file_object <- File$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

List folder's content
file_object$list_contents()

End(Not run)

File 65

--
Method `File$delete`
--

Not run:
x is API response when file is requested
file_object <- File$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Delete file object
file_object$delete()

End(Not run)

--
Method `File$download`
--

Not run:
x is API response when file is requested
file_object <- File$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Download file object
file_object$download(directory_path = ".")

End(Not run)

--
Method `File$submit_export`
--

Not run:
x is API response when file is requested
file_object <- File$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Export file object to a volume
file_object$submit_export(

66 Files

destination_volume = volume,
destination_location = location

)

End(Not run)

Files R6 Class representing files endpoints.

Description

R6 Class representing Files resource.

Super class

sevenbridges2::Resource -> Files

Public fields

URL List of URL endpoints for this resource.

Methods

Public methods:
• Files$new()

• Files$query()

• Files$get()

• Files$delete()

• Files$copy()

• Files$create_folder()

• Files$clone()

Method new(): Create new Files resource object.

Usage:
Files$new(...)

Arguments:
... Other response arguments.

Method query(): This call returns a list of files and subdirectories in a specified project or
directory within a project, with specified properties that you can access. The project or directory
whose contents you want to list is specified as a query parameter in the call. Further properties to
filter by can also be specified as query parameters.

Note that this call lists both files and subdirectories in the specified project or directory within
a project, but not the contents of the subdirectories.

Files 67

To list the contents of a subdirectory, make a new call and specify the subdirectory ID as the
parent parameter.
More information you can find in our API documentation.

Usage:
Files$query(
project = NULL,
parent = NULL,
name = NULL,
metadata = NULL,
origin = NULL,
tag = NULL,
limit = getOption("sevenbridges2")$limit,
offset = getOption("sevenbridges2")$offset,
...

)

Arguments:

project Project identifier (ID) as string or a Project object. Project should not be used together
with parent. If parent is used, the call will list the content of the specified folder, within the
project to which the folder belongs. If project is used, the call will list the content at the
root of the project’s files.

parent The parent folder identifier as string or a File object which must be of type FOLDER.
Should not be used together with project. If parent is used, the call will list the content of
the specified folder, within the project to which the folder belongs. If project is used, the
call will list the content at the root of the project’s files.

name Name of the file. List files with this name. Note that the name must be an exact complete
string for the results to match. Multiple names can be represented as a vector.

metadata List file with this metadata field values. List only files that have the specified value
in metadata field. Different metadata fields are represented as a named list. You can also
define multiple instances of the same metadata field.

origin Task object. List only files produced by task.
tag List files containing this tag. Note that the tag must be an exact complete string for the

results to match. Multiple tags can be represented by vector of values.
limit The maximum number of collection items to return for a single request. Minimum value

is 1. The maximum value is 100 and the default value is 50. This is a pagination-specific
attribute.

offset The zero-based starting index in the entire collection of the first item to return. The
default value is 0. This is a pagination-specific attribute.

... Other arguments that can be passed to core api() function as ’fields’, etc.

Returns: Collection of File objects.

Examples:

\dontrun{
files_object <- Files$new(auth = auth)

Query files in a project
files_object$query(project = project)

https://docs.sevenbridges.com/reference/list-files-primary-method

68 Files

}

Method get(): This call returns a single File object with its details. The call returns the file’s
name, its tags, and all of its metadata. Files are specified by their IDs, which you can obtain by
making the API call to list all files in a project.

Usage:
Files$get(id, ...)

Arguments:

id The file ID.
... Other arguments that can be passed to core api() function as ’fields’, etc.

Returns: File object.

Examples:

\dontrun{
files_object <- Files$new(auth = auth)

Get file using id
files_object$get(id = id)

}

Method delete(): This call removes a file from the Seven Bridges Platform. Files are specified
by their IDs, which you can obtain by using Files$query() to list files or by getting a single file
using Files$get().

Usage:
Files$delete(file, ...)

Arguments:

file File object or file ID.
... Other arguments that can be passed to core api() function as ’fields’, etc.

Examples:

\dontrun{
files_object <- Files$new(auth = auth)

Delete a file
files_object$delete(file = file)

}

Method copy(): Copy file/files to the specified project. This call allows you to copy files
between projects. Unlike the call to copy a file between projects, this call lets you batch the copy
operation and copy a list of files at a time.
More information you may find here.

Usage:
Files$copy(files, destination_project)

https://docs.sevenbridges.com/reference/copy-files-between-projects

Files 69

Arguments:

files The list of files’ IDs or list of File object to copy.
destination_project Project object or project ID. where you want to copy files into.

Examples:

\dontrun{
files_object <- Files$new(auth = auth)

Copy files to a project
files_object$copy(

file = file,
destination_project = project
)

}

Method create_folder(): A method for creating a new folder. It allows you to create a new
folder on the Platform within the root folder of a specified project or the provided parent folder.
Remember that you should provide either the destination project (as the project parameter) or
the destination folder (as the parent parameter), not both.
More information you may find here.

Usage:
Files$create_folder(name, parent = NULL, project = NULL)

Arguments:

name The name of the folder you are about to create.
parent The ID of the parent destination folder or a File object which must be of type FOLDER.
project The ID of the destination project, or a Project object.

Examples:

\dontrun{
files_object <- Files$new(auth = auth)

Create folder in a project
files_object$create_folder(

name = name,
project = project
)

}

Method clone(): The objects of this class are cloneable with this method.

Usage:
Files$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

https://docs.sevenbridges.com/reference/create-a-folder

70 Files

Examples

--
Method `Files$query`
--

Not run:
files_object <- Files$new(auth = auth)

Query files in a project
files_object$query(project = project)

End(Not run)

--
Method `Files$get`
--

Not run:
files_object <- Files$new(auth = auth)

Get file using id
files_object$get(id = id)

End(Not run)

--
Method `Files$delete`
--

Not run:
files_object <- Files$new(auth = auth)

Delete a file
files_object$delete(file = file)

End(Not run)

--
Method `Files$copy`
--

Not run:
files_object <- Files$new(auth = auth)

Copy files to a project
files_object$copy(

file = file,
destination_project = project

Import 71

)

End(Not run)

--
Method `Files$create_folder`
--

Not run:
files_object <- Files$new(auth = auth)

Create folder in a project
files_object$create_folder(

name = name,
project = project
)

End(Not run)

Import R6 Class representing an Import

Description

R6 Class representing a resource for managing volume import jobs.

Super class

sevenbridges2::Item -> Import

Public fields

URL List of URL endpoints for this resource.

id Import job string identifier.

state The state of the import job. Possible values are:

• PENDING: the import is queued;
• RUNNING: the import is running;
• COMPLETED: the import has completed successfully;
• FAILED: the import has failed.

overwrite Whether the imported file/folder name was overwritten or not, if another one with the
same name had already existed.

autorename Whether the imported file/folder name was automatically renamed (by prefixing its
name with an underscore and number) if another one with the same name had already existed.

preserve_folder_structure Whether the imported folder structure was preserved or not.

72 Import

source List containing source volume id and source location of the file/folder is being imported to
the platform.

destination List containing destination project id or parent directory id where the file/folder is
being imported, together with its name.

started_on Time when the import job started.

finished_on Time when the import job ended.

error In case of error in the import job, standard API error is returned here.

result File object that was imported.

Methods

Public methods:
• Import$new()

• Import$print()

• Import$reload()

• Import$clone()

Method new(): Create a new Import object.

Usage:
Import$new(res = NA, ...)

Arguments:

res Response containing Import object information.
... Other response arguments.

Method print(): Print method for Import class.

Usage:
Import$print()

Examples:

\dontrun{
x is API response when import is requested
import_object <- Import$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Print import object
import_object$print()

}

Method reload(): Reload Import object information.

Usage:

Import 73

Import$reload(...)

Arguments:

... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Import object.

Examples:

\dontrun{
x is API response when import is requested
import_object <- Import$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Reload import object
import_object$reload()

}

Method clone(): The objects of this class are cloneable with this method.

Usage:
Import$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

--
Method `Import$print`
--

Not run:
x is API response when import is requested
import_object <- Import$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Print import object
import_object$print()

End(Not run)

--

74 Imports

Method `Import$reload`
--

Not run:
x is API response when import is requested
import_object <- Import$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Reload import object
import_object$reload()

End(Not run)

Imports R6 Class representing storage imports endpoints

Description

R6 Class representing storage imports resource endpoints.

Super class

sevenbridges2::Resource -> Imports

Public fields

URL List of URL endpoints for this resource.

Methods

Public methods:
• Imports$new()

• Imports$query()

• Imports$get()

• Imports$submit_import()

• Imports$delete()

• Imports$clone()

Method new(): Create a new Imports object.

Usage:
Imports$new(...)

Arguments:

Imports 75

... Other response arguments.

Method query(): This call lists import jobs initiated by particular user. Note that when you
import a file from your volume on your cloud storage provider (Amazon Web Services or Google
Cloud Storage), you are creating an alias on the Platform which points to the file in your cloud
storage bucket. Aliases appear as files on the Platform and can be copied, executed, and modified
as such. They refer back to the respective file on the given volume.

Usage:
Imports$query(
volume = NULL,
project = NULL,
state = NULL,
limit = getOption("sevenbridges2")$limit,
offset = getOption("sevenbridges2")$offset,
...

)

Arguments:

volume Volume id or Volume object. List all imports from this particular volume. Optional.
project Project id or Project object. List all volume imports to this particular project. Optional.
state The state of the import job. Possible values are:

• PENDING: the import is queued;
• RUNNING: the import is running;
• COMPLETED: the import has completed successfully;
• FAILED: the import has failed.
Example:
state = c("RUNNING", "FAILED")

limit The maximum number of collection items to return for a single request. Minimum value
is 1. The maximum value is 100 and the default value is 50. This is a pagination-specific
attribute.

offset The zero-based starting index in the entire collection of the first item to return. The
default value is 0. This is a pagination-specific attribute.

... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Collection of Import objects.

Examples:

\dontrun{
imports_object <- Imports$new(

auth = auth
)

List import job
imports_object$query()

}

Method get(): This call will return the details of an import job.

76 Imports

Usage:
Imports$get(id, ...)

Arguments:
id The import job identifier (id).
... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Import object.

Examples:
\dontrun{
imports_object <- Imports$new(

auth = auth,
)

List import job
imports_object$get(id = id)

}

Method submit_import(): This call lets you queue a job to import a file or folder from a vol-
ume into a project on the Platform. Essentially, you are importing an item from your cloud storage
provider (Amazon Web Services, Google Cloud Storage, Azure or Ali Cloud) via the volume onto
the Platform.
If successful, an alias will be created on the Platform. Aliases appear on the Platform and can
be copied, executed, and modified as such. They refer back to the respective item on the given
volume.

If you want to import multiple files, the recommended way is to do it in bulk considering the API
rate limit (learn more). Bulk operations will be implemented in next releases.

Usage:
Imports$submit_import(
source_volume = NULL,
source_location,
destination_project = NULL,
destination_parent = NULL,
name = NULL,
overwrite = FALSE,
autorename = FALSE,
preserve_folder_structure = NULL,
...

)

Arguments:
source_volume Volume id or Volume object you want to import files or folders from. Required

if source_location parameter is provided as a string.
source_location File/folder location name on the volume or VolumeFile object you would

like to import into some project/folder on the platform.
destination_project Destination project id or Project object. Not required, but either destination_project

or destination_parent directory must be provided.

https://docs.sevenbridges.com/docs/api-rate-limit

Imports 77

destination_parent Folder id or File object (with type = 'FOLDER'). Not required, but either
destination_project or destination_parent directory must be provided.

name The name of the alias to create. This name should be unique to the project.
If the name is already in use in the project, you should use the overwrite query parameter
in this call to force any item with that name to be deleted before the alias is created. If
name is omitted, the alias name will default to the last segment of the complete location
(including the prefix) on the volume.

Segments are considered to be separated with forward slashes /. Allowed characters in
file names are all alphanumeric and special characters except forward slash /, while folder
names can contain alphanumeric and special characters _, - and ..

overwrite Set to TRUE if you want to overwrite the item if another one with the same name
already exists at the destination. Bear in mind that if used with folders import, the folder’s
content (files with the same name) will be overwritten, not the whole folder.

autorename Set to TRUE if you want to automatically rename the item (by prefixing its name
with an underscore and number) if another one with the same name already exists at the des-
tination. Bear in mind that if used with folders import, the folder content will be renamed,
not the whole folder.

preserve_folder_structure Set to TRUE if you want to keep the exact source folder struc-
ture. The default value is TRUE if the item being imported is a folder. Should not be used
if you are importing a file. Bear in mind that if you use preserve_folder_structure =
FALSE, that the response will be the parent folder object containing imported files alongside
with other files if they exist.

... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Import object.

Examples:

\dontrun{
imports_object <- Imports$new(

auth = auth
)

Submit new import into a project
imports_object$submit_import(
source_location = volume_file_object,
destination_project = test_project_object,
autorename = TRUE
)

}

Method delete(): Deleting import jobs is not possible.

Usage:
Imports$delete()

Method clone(): The objects of this class are cloneable with this method.

Usage:

78 Imports

Imports$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

--
Method `Imports$query`
--

Not run:
imports_object <- Imports$new(

auth = auth
)

List import job
imports_object$query()

End(Not run)

--
Method `Imports$get`
--

Not run:
imports_object <- Imports$new(

auth = auth,
)

List import job
imports_object$get(id = id)

End(Not run)

--
Method `Imports$submit_import`
--

Not run:
imports_object <- Imports$new(

auth = auth
)

Submit new import into a project
imports_object$submit_import(
source_location = volume_file_object,
destination_project = test_project_object,
autorename = TRUE
)

Invoice 79

End(Not run)

Invoice R6 Class representing invoice information.

Description

R6 Class representing invoice information.

Details

This object contains information about a selected invoice, including the costs for analysis and stor-
age, and the invoice period.

Super class

sevenbridges2::Item -> Invoice

Public fields

URL List of URL endpoints for this resource.

id Invoice identifier.

pending Invoice approval status.

approval_date Invoice approval date.

invoice_period Invoicing period (from-to).

analysis_costs Costs of your analysis.

storage_costs Storage costs.

total Total costs.

Methods

Public methods:
• Invoice$new()

• Invoice$print()

• Invoice$reload()

• Invoice$clone()

Method new(): Create new Invoice object.

Usage:
Invoice$new(res = NA, ...)

Arguments:
res Response containing Invoice object information.

80 Invoice

... Other response arguments.

Method print(): Print invoice information as a bullet list.

Usage:
Invoice$print()

Examples:
\dontrun{
x is API response when invoice is requested
invoice_object <- Invoice$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Print invoice object
invoice_object$print()

}

Method reload(): Reload Invoice.

Usage:
Invoice$reload(...)

Arguments:
... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Invoice object.

Examples:
\dontrun{
x is API response when invoice is requested
invoice_object <- Invoice$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Reload invoice object
invoice_object$reload()

}

Method clone(): The objects of this class are cloneable with this method.

Usage:
Invoice$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Invoices 81

Examples

--
Method `Invoice$print`
--

Not run:
x is API response when invoice is requested
invoice_object <- Invoice$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Print invoice object
invoice_object$print()

End(Not run)

--
Method `Invoice$reload`
--

Not run:
x is API response when invoice is requested
invoice_object <- Invoice$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Reload invoice object
invoice_object$reload()

End(Not run)

Invoices R6 Class representing invoices endpoints

Description

R6 Class representing invoice resource endpoints

Super class

sevenbridges2::Resource -> Invoices

82 Invoices

Public fields

URL List of URL endpoints for this resource.

Methods

Public methods:
• Invoices$new()

• Invoices$query()

• Invoices$get()

• Invoices$clone()

Method new(): Create a new Invoices object.

Usage:
Invoices$new(...)

Arguments:

... Other response arguments.

Method query(): The call returns information about all your available invoices, unless you use
the billing_group query parameter to specify the ID of a particular billing group, in which case
it will return the invoice incurred by that billing group only.

Usage:
Invoices$query(
billing_group = NULL,
limit = getOption("sevenbridges2")$limit,
offset = getOption("sevenbridges2")$offset,
...

)

Arguments:

billing_group ID of a billing group or billing group object you want to list invoices for.
Optional.

limit The maximum number of collection items to return for a single request. Minimum value
is 1. The maximum value is 100 and the default value is 50. This is a pagination-specific
attribute.

offset The zero-based starting index in the entire collection of the first item to return. The
default value is 0. This is a pagination-specific attribute.

... Other arguments that can be passed to core api() function like query parameters or ’fields’,
etc.

Returns: Collection of Invoice objects.

Examples:

\dontrun{
invoices_object <- Invoices$new(
auth = auth

)

Invoices 83

List all your invoices
invoices_object$query(billing_group = billing_group)

}

Method get(): This call retrieves information about a selected invoice, including the costs
for analysis and storage, and the invoice period. Use the call to list invoices to retrieve the
invoice_ids for a specified billing group.

Usage:
Invoices$get(id, ...)

Arguments:

id The ID of the invoice you are querying.
... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Invoice object.

Examples:

\dontrun{
invoices_object <- Invoices$new(
auth = auth

)

Get single invoice by id
invoices_object$get(id = id)

}

Method clone(): The objects of this class are cloneable with this method.

Usage:
Invoices$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

--
Method `Invoices$query`
--

Not run:
invoices_object <- Invoices$new(
auth = auth

)

List all your invoices
invoices_object$query(billing_group = billing_group)

End(Not run)

84 Item

--
Method `Invoices$get`
--

Not run:
invoices_object <- Invoices$new(
auth = auth

)

Get single invoice by id
invoices_object$get(id = id)

End(Not run)

Item R6 Class Representing an Item

Description

Base class for describing objects: Project, Task, App, File, etc.

Public fields

response Raw response from the request.

href Item’s API request URL.

auth Seven Bridges Authentication object.

Methods

Public methods:
• Item$new()

• Item$reload()

• Item$clone()

Method new(): Create a new Item object.

Usage:
Item$new(href = NA, response = NA, auth = NA)

Arguments:

href Item’s API request URL.
response Raw API response.
auth Seven Bridges Authentication object.

Method reload(): Reload the Item (resource).

Member 85

Usage:
Item$reload(cls, ...)

Arguments:

cls Item class object.
... Other arguments that can be passed to core api() function like ’limit’, ’offset’, ’fields’,

etc.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Item$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Member R6 Class representing a project member

Description

R6 Class representing a resource for managing project members.

Super class

sevenbridges2::Item -> Member

Public fields

id Member’s id.

username Member’s username.

email Member’s email.

type Member’s type.

permissions Member’s permissions.

Methods

Public methods:
• Member$new()

• Member$print()

• Member$reload()

• Member$clone()

Method new(): Create a new Member object.

Usage:
Member$new(res = NA, ...)

86 Member

Arguments:

res Response containing Member object information.
... Other response arguments.

Method print(): Print method for Member class.

Usage:
Member$print()

Examples:

\dontrun{
x is API response when member is requested
member_object <- Member$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Print member object
member_object$print()

}

Method reload(): Reload Member object information.

Usage:
Member$reload()

Examples:

\dontrun{
x is API response when member is requested
member_object <- Member$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Reload member object
member_object$reload()

}

Method clone(): The objects of this class are cloneable with this method.

Usage:
Member$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Part 87

Examples

--
Method `Member$print`
--

Not run:
x is API response when member is requested
member_object <- Member$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Print member object
member_object$print()

End(Not run)

--
Method `Member$reload`
--

Not run:
x is API response when member is requested
member_object <- Member$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Reload member object
member_object$reload()

End(Not run)

Part R6 Class representing a part of the uploading file

Description

R6 Class representing a resource for managing parts of the files’ uploads.

Public fields

URL List of URL endpoints for this resource.

88 Part

part_number Part number.

part_size Part size.

url The URL to which to make the HTTP part upload request.

expires ISO 8601 combined date and time representation in Coordinated Universal Time (UTC)
by when the HTTP part upload request should be made.

headers A map of headers and values that should be set when making the HTTP part upload
request.

success_codes A list of status codes returned by the HTTP part upload request that should be
recognized as success. A successful part upload request should be reported back to the API
in a call to report an uploaded file part by passing the information collected from the report
object.

report Report object.

etag ETag received after starting a part upload.

auth Authentication object.

response Response object.

Methods

Public methods:
• Part$new()

• Part$print()

• Part$upload_info_part()

• Part$upload_complete_part()

• Part$clone()

Method new(): Create a new Part object.

Usage:
Part$new(
part_number = NA,
part_size = NA,
url = NA,
expires = NA,
headers = NA,
success_codes = NA,
report = NA,
etag = NA,
auth = NA

)

Arguments:
part_number Part number.
part_size Part size.
url The URL to which to make the HTTP part upload request.
expires Combined date and time representation in UTC by when the HTTP part upload request

should be made.

Part 89

headers A map of headers and values that should be set when making the HTTP part upload
request.

success_codes A list of status codes returned by the HTTP part upload request that should be
recognized as success.

report Report object.
etag ETag received after starting a part upload.
auth Seven Bridges Authentication object.

Method print(): Print method for Part class.

Usage:
Part$print()

Examples:
\dontrun{
upload_part_object <- Part$new(

part_number = part_number,
part_size = part_size,
auth = auth

)

Print upload part information
upload_part_object$print()

}

Method upload_info_part(): Get upload part info.

Usage:
Part$upload_info_part(upload_id)

Arguments:
upload_id Upload object or ID of the upload process that part. belongs to.

Examples:
\dontrun{
upload_part_object <- Part$new(

part_number = part_number,
part_size = part_size,
auth = auth

)

Get upload part status information
upload_part_object$upload_info_part(upload_id = upload_id)

}

Method upload_complete_part(): Report an uploaded part.

Usage:
Part$upload_complete_part(upload_id)

Arguments:
upload_id Upload object or ID of the upload process that part belongs to.

90 Part

Examples:

\dontrun{
upload_part_object <- Part$new(

part_number = part_number,
part_size = part_size,
auth = auth

)

Report an uploaded part
upload_part_object$upload_complete_part(upload_id = upload_id)

}

Method clone(): The objects of this class are cloneable with this method.

Usage:
Part$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

--
Method `Part$print`
--

Not run:
upload_part_object <- Part$new(

part_number = part_number,
part_size = part_size,
auth = auth

)

Print upload part information
upload_part_object$print()

End(Not run)

--
Method `Part$upload_info_part`
--

Not run:
upload_part_object <- Part$new(

part_number = part_number,
part_size = part_size,
auth = auth

)

Get upload part status information
upload_part_object$upload_info_part(upload_id = upload_id)

Permission 91

End(Not run)

--
Method `Part$upload_complete_part`
--

Not run:
upload_part_object <- Part$new(

part_number = part_number,
part_size = part_size,
auth = auth

)

Report an uploaded part
upload_part_object$upload_complete_part(upload_id = upload_id)

End(Not run)

Permission R6 Class representing member’s permissions

Description

R6 Class representing member’s permissions.

Super class

sevenbridges2::Item -> Permission

Public fields

write Write permission.

read Read permission.

copy Copy permission.

execute Execute permission.

admin Admin permission.

Methods

Public methods:
• Permission$new()

• Permission$print()

• Permission$reload()

• Permission$clone()

Method new(): Create a new Permission object.

92 Permission

Usage:
Permission$new(
read = TRUE,
copy = FALSE,
write = FALSE,
execute = FALSE,
admin = FALSE,
...

)

Arguments:

read User can view file names, metadata, and workflows. They cannot view file contents.
All members of a project have read permissions by default. Even if you try setting read
permissions to FALSE, they will still default to TRUE

copy User can view file content, copy, and download files from a project. Set value to TRUE to
assign the user copy permission. Set to FALSE to remove copy permission.

write User can add, modify, and remove files and workflows in a project. Set value to TRUE to
assign the user write permission. Set to FALSE to remove write permission.

execute User can execute workflows and abort tasks in a project. Set value to TRUE to assign
the user execute permission. Set to FALSE to remove execute permission.

admin User can modify another user’s permissions on a project, add or remove people from the
project and manage funding sources. They also have all of the above permissions. Set value
to TRUE to assign the user admin permission. Set to FALSE to remove admin permission.

... Other response arguments.

Method print(): Print method for Permission class.

Usage:
Permission$print()

Examples:

\dontrun{
x is API response when permission is requested
permission_object <- Permission$new(

write = x$write,
read = x$read,
copy = x$copy,
execute = x$execute,
admin = x$admin,
href = x$href,
auth = auth,
response = attr(x, "response")

)
Print permission object
permission_object$print()

}

Method reload(): Reload Permission object information.

Permission 93

Usage:
Permission$reload()

Examples:
\dontrun{
x is API response when permission is requested
permission_object <- Permission$new(

write = x$write,
read = x$read,
copy = x$copy,
execute = x$execute,
admin = x$admin,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Reload permission object
permission_object$reload()

}

Method clone(): The objects of this class are cloneable with this method.

Usage:
Permission$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Examples

--
Method `Permission$print`
--

Not run:
x is API response when permission is requested
permission_object <- Permission$new(

write = x$write,
read = x$read,
copy = x$copy,
execute = x$execute,
admin = x$admin,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Print permission object
permission_object$print()

94 Project

End(Not run)

--
Method `Permission$reload`
--

Not run:
x is API response when permission is requested
permission_object <- Permission$new(

write = x$write,
read = x$read,
copy = x$copy,
execute = x$execute,
admin = x$admin,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Reload permission object
permission_object$reload()

End(Not run)

Project R6 Class representing a project.

Description

R6 Class representing a central resource for managing projects.

Super class

sevenbridges2::Item -> Project

Public fields

URL List of URL endpoints for this resource.

id Project identifier. It consists of project owner’s username or if you are using Enterprise, then the
Division name and project’s short name in form of <owner_username>/<project-short-name>
or <division-name>/<project-short-name>.

name Project’s name.

billing_group The ID of the billing group for the project.

description Project’s description.

type Project’s type. All projects have type v2.

Project 95

tags The list of project tags.

settings A list which contains detailed project settings. The following fields are part of the set-
tings object:

• locked - If set TRUE, the project is locked down. Locking down a project prevents any
Seven Bridges team member from viewing any information about the task.

• use_interruptible_instances - Defines the use of spot instances. If not included in
the request, spot instances are enabled by default.

• use_memoization - Set to FALSE by default. If set to TRUE memoization is enabled.
• use_elastic_disk - If set to TRUE Elastic disk is enabled.
• intermediate_files (list) - Contains the following subfields:

– retention - Specifies that intermediate files should be retained for a limited amount
of time. The value is always LIMITED.

– duration - Specifies intermediate files retention period in hours. The minimum
value is 1. The maximum value is 120 and the default value is 24.

root_folder ID for of the project’s root folder.

created_by Username of the person who created the project.

created_on Date and time of project creation.

modified_on Date and time describing when the project was last modified.

permissions An object containing the information about user’s permissions within the project.

category Project’s category. By default projects are PRIVATE.

Methods

Public methods:
• Project$new()

• Project$print()

• Project$detailed_print()

• Project$reload()

• Project$update()

• Project$delete()

• Project$list_members()

• Project$add_member()

• Project$remove_member()

• Project$get_member()

• Project$modify_member_permissions()

• Project$list_files()

• Project$create_folder()

• Project$get_root_folder()

• Project$list_apps()

• Project$create_app()

• Project$list_tasks()

• Project$list_imports()

https://docs.sevenbridges.com/docs/about-spot-instances
https://docs.sevenbridges.com/docs/about-memoization
https://docs.sevenbridges.com/page/elastic-disk

96 Project

• Project$create_task()

• Project$clone()

Method new(): Create a new Project object.
Usage:
Project$new(res = NA, ...)

Arguments:
res Response containing Project object information.
... Other response arguments.

Method print(): Basic print method for Project class.
Usage:
Project$print()

Examples:
\dontrun{
x is API response when project is requested
project_object <- Project$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Print project object
project_object$print()

}

Method detailed_print(): Detailed print method for Project class.
Usage:
Project$detailed_print()

Details: This method allows users to print all the fields from the Project object more descrip-
tively.

Examples:
\dontrun{
x is API response when project is requested
project_object <- Project$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Print project object in detail
project_object$detailed_print()

}

Project 97

Method reload(): Reload Project object information.

Usage:
Project$reload(...)

Arguments:
... Other arguments that can be passed to core api() function like ’fields’, etc.

Examples:
\dontrun{
x is API response when project is requested
project_object <- Project$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Reload project object
project_object$reload()

}

Method update(): Method that allows you to edit an already existing project. As a project
Admin you can use it to change the name, settings, tags or billing group of the project.
Users with write permissions in the project can change the project description.

Usage:
Project$update(
name = NULL,
description = NULL,
billing_group = NULL,
settings = NULL,
tags = NULL,
...

)

Arguments:
name New name of the project you are updating.
description New description of the project you are updating.
billing_group Billing object or ID of a particular billing group you want to set to the project.
settings Contains detailed project settings as explained in previous methods. Check our API

documentation.
tags The list of project tags you want to update.
... Other arguments that can be passed to core api() function like ’limit’, ’offset’, ’fields’,

etc.

Examples:
\dontrun{
x is API response when project is requested
project_object <- Project$new(

https://docs.sevenbridges.com/reference/edit-a-project
https://docs.sevenbridges.com/reference/edit-a-project

98 Project

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Change project object name
project_object$update(name = name)

}

Method delete(): Method that allows you to delete project from a platform. It can only be
successfully made if you have admin status for the project.
Please be careful when using this method and note that calling it will permanently delete the
project from the platform.

Usage:
Project$delete()

Examples:

\dontrun{
x is API response when project is requested
project_object <- Project$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Delete project object
project_object$delete()

}

Method list_members(): Method for listing all the project members.

Usage:
Project$list_members(
limit = getOption("sevenbridges2")$limit,
offset = getOption("sevenbridges2")$offset,
...

)

Arguments:

limit The maximum number of collection items to return for a single request. Minimum value
is 1. The maximum value is 100 and the default value is 50. This is a pagination-specific
attribute.

offset The zero-based starting index in the entire collection of the first item to return. The
default value is 0. This is a pagination-specific attribute.

... Other arguments that can be passed to core api() function like ’fields’, etc.

Project 99

Returns: Collection of Member objects.

Examples:

\dontrun{
x is API response when project is requested
project_object <- Project$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

List members in a project
project_object$list_members()

}

Method add_member(): Method for adding new members to a specified project. The call can
only be successfully made by a user who has admin permissions in the project.

Usage:
Project$add_member(
user = NULL,
email = NULL,
permissions = list(read = TRUE, copy = FALSE, write = FALSE, execute = FALSE, admin =

FALSE)
)

Arguments:

user The Seven Bridges Platform username of the person you want to add to the project or
object of class Member containing user’s username.

email The email address of the person you want to add to the project. This has to be the email
address that the person used when registering for an account on the Seven Bridges Platform.

permissions List of permissions that will be associated with the project’s member. It can
contain fields: read, copy, write, execute and admin with logical fields - TRUE if certain
permission is allowed to the user, or FALSE if it’s not. Requests to add a project member
must include the key permissions. However, if you do not include a value for some permis-
sion, it will be set to FALSE by default. The exception to this rule is the read permission,
which is the default permission on a project. It enables a user to read project data, including
file names, but access file contents.
Example:

permissions = list(
read = TRUE,
copy = TRUE,
write = FALSE,
execute = FALSE,
admin = FALSE

)

Returns: Member object.

100 Project

Examples:
\dontrun{
x is API response when project is requested
project_object <- Project$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Add member to a project
project_object$add_member(

user = "<username_of_a_user_you_want_to_add>",
permissions = list(write = TRUE, execute = TRUE)

)
}

Method remove_member(): A method for removing members from the project. It can only be
successfully run by a user who has admin privileges in the project.

Usage:
Project$remove_member(user)

Arguments:
user The Seven Bridges Platform username of the person you want to remove from the project

or object of class Member containing user’s username.

Examples:
\dontrun{
x is API response when project is requested
project_object <- Project$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Remove member from a project
project_object$remove_member(user = user)

}

Method get_member(): This method returns the information about the member of the specified
project.

Usage:
Project$get_member(user, ...)

Arguments:
user The Seven Bridges Platform username of the project member you want to get information

about or object of class Member containing user’s username.

Project 101

... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Member object.

Examples:

\dontrun{
x is API response when project is requested
project_object <- Project$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Get member from a project
project_object$get_member(user = user)

}

Method modify_member_permissions(): This method can be used to edit a user’s permissions
in a specified project. It can only be successfully made by a user who has admin permissions in
the project.

Usage:
Project$modify_member_permissions(
user = NULL,
permissions = list(read = TRUE, copy = FALSE, write = FALSE, execute = FALSE, admin =

FALSE)
)

Arguments:

user The Seven Bridges Platform username of the person you want to modify permissions on
the volume for or object of class Member containing user’s username.

permissions List of permissions that will be associated with the project’s member. It can
contain fields: read, copy, write, execute and admin with logical fields - TRUE if certain
permission is allowed to the user, or FALSE if it’s not. Requests to add a project member
must include the key permissions. However, if you do not include a value for some permis-
sion, it will be set to FALSE by default. The exception to this rule is the read permission,
which is the default permission on a project. It enables a user to read project data, including
file names, but access file contents.

Example:

permissions = list(read = TRUE, copy = TRUE)

Returns: Permission object.

Examples:

\dontrun{
x is API response when project is requested
project_object <- Project$new(

res = x,

102 Project

href = x$href,
auth = auth,
response = attr(x, "response")

)

Modify member permissions in a project
project_object$modify_member_permissions(

user = user,
permission = list(read = TRUE, copy = FALSE)
)

}

Method list_files(): List all project’s files and folders.

Usage:
Project$list_files(
limit = getOption("sevenbridges2")$limit,
offset = getOption("sevenbridges2")$offset,
...

)

Arguments:
limit The maximum number of collection items to return for a single request. Minimum value

is 1. The maximum value is 100 and the default value is 50. This is a pagination-specific
attribute.

offset The zero-based starting index in the entire collection of the first item to return. The
default value is 0. This is a pagination-specific attribute.

... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Collection of File objects.

Examples:
\dontrun{
x is API response when project is requested
project_object <- Project$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

List files in a project
project_object$list_files()

}

Method create_folder(): Create a new folder under the project’s root directory. Every project
on the Seven Bridges Platform is represented by a root folder which contains all the files associated
with a particular project. You can create first level folders within this root folder by using this
function.

Project 103

Usage:
Project$create_folder(name)

Arguments:

name Folder name.

Returns: File object of type ’FOLDER’.

Examples:

\dontrun{
x is API response when project is requested
project_object <- Project$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

List files in a project
project_object$create_folder(name = "new_folder")

}

Method get_root_folder(): Get project’s root folder object

Usage:
Project$get_root_folder()

Returns: File object of type ’FOLDER’.

Examples:

\dontrun{
x is API response when project is requested
project_object <- Project$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Get root folder in a project
project_object$get_root_folder()

}

Method list_apps(): This call lists all apps in project.

Usage:
Project$list_apps(
query_terms = NULL,
id = NULL,
limit = getOption("sevenbridges2")$limit,

104 Project

offset = getOption("sevenbridges2")$offset,
...

)

Arguments:

query_terms Enter one or more search terms to query Project’s apps.
id Use this parameter to query Project’s apps based on their ID.
limit The maximum number of collection items to return for a single request. Minimum value

is 1. The maximum value is 100 and the default value is 50. This is a pagination-specific
attribute.

offset The zero-based starting index in the entire collection of the first item to return. The
default value is 0. This is a pagination-specific attribute.

... Other arguments that can be passed to core api() function like other query parameters or
’fields’, etc.

Returns: Collection of App objects.

Examples:

\dontrun{
x is API response when project is requested
project_object <- Project$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

List apps in a project
project_object$list_apps(query_terms = query_term)

}

Method create_app(): This call creates app in project.

Usage:
Project$create_app(
raw = NULL,
from_path = NULL,
name,
raw_format = c("JSON", "YAML")

)

Arguments:

raw The body of the request should be a CWL app description saved as a JSON or YAML file. For
a template of this description, try making the call to get raw CWL for an app about an app
already in one of your projects. Shouldn’t be used together with from_path parameter.

from_path File containing CWL app description. Shouldn’t be used together with raw param-
eter.

name A short name for the app (without any non-alphanumeric characters or spaces).
raw_format The type of format used (JSON or YAML).

Project 105

Returns: App object.

Examples:

\dontrun{
x is API response when project is requested
project_object <- Project$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Create app in a project
project_object$create_app(raw = raw)

}

Method list_tasks(): This call lists all tasks from project you can access.
Read more about how to use query parameters properly here.

Usage:
Project$list_tasks(
status = NULL,
parent = NULL,
created_from = NULL,
created_to = NULL,
started_from = NULL,
started_to = NULL,
ended_from = NULL,
ended_to = NULL,
order_by = c("created_time", "start_time", "name", "end_time", "created_by"),
order = c("asc", "desc"),
origin_id = NULL,
limit = getOption("sevenbridges2")$limit,
offset = getOption("sevenbridges2")$offset,
...

)

Arguments:

status You can filter the returned tasks by their status. Set the value of status to one of the
following values:
• QUEUED
• DRAFT
• RUNNING
• COMPLETED
• ABORTED
• FAILED.

parent Provide task ID or task object of the parent task to return all child tasks from that parent.
A parent task is a task that specifies the criteria by which to batch its inputs into a series

https://docs.sevenbridges.com/reference/list-tasks-you-can-access

106 Project

of further sub-tasks, called child tasks. See the documentation on batching tasks for more
details on how to run tasks in batches.

created_from Enter the starting date string for querying tasks created on the specified date and
onwards.

created_to Enter the ending date string for querying tasks created until the specified date. You
can use it in combination with created_from to specify a time interval.

started_from Enter the starting date string for querying tasks started on the specified date and
onwards.

started_to Enter the ending date string for querying tasks started until the specified date.
ended_from Enter the starting date string for querying tasks that ended on a specified date.
ended_to Enter the ending date string for querying tasks that ended until a specified date.
order_by Order returned results by the specified field. Allowed values:

created_time, start_time, name, end_time and created_by.
Sort can be done only by one column. The default value is created_time.

order Sort results in ascending or descending order by specifying asc or desc, respectively.
Only taken into account if order_by is explicitly specified. The default value is asc.

origin_id Enter an automation run ID to list all tasks created from the specified automation
run.

limit The maximum number of collection items to return for a single request. Minimum value
is 1. The maximum value is 100 and the default value is 50. This is a pagination-specific
attribute.

offset The zero-based starting index in the entire collection of the first item to return. The
default value is 0. This is a pagination-specific attribute.

... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Collection of Task objects.

Examples:

\dontrun{
x is API response when project is requested
project_object <- Project$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

List tasks in a project
project_object$list_tasks()

}

Method list_imports(): This call lists imports initiated by particular user into this destination
project.

Usage:
Project$list_imports(
volume = NULL,

https://docs.sevenbridges.com/docs/about-batch-analyses

Project 107

state = NULL,
limit = getOption("sevenbridges2")$limit,
offset = getOption("sevenbridges2")$offset,
...

)

Arguments:

volume Volume id or Volume object. List all imports from particular volume. Optional.
state The state of the import job. Possible values are:

• PENDING: the import is queued;
• RUNNING: the import is running;
• COMPLETED: the import has completed successfully;
• FAILED: the import has failed.
Example:
state = c("RUNNING", "FAILED")

limit The maximum number of collection items to return for a single request. Minimum value
is 1. The maximum value is 100 and the default value is 50. This is a pagination-specific
attribute.

offset The zero-based starting index in the entire collection of the first item to return. The
default value is 0. This is a pagination-specific attribute.

... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Collection of Import objects.

Examples:

\dontrun{
x is API response when project is requested
project_object <- Project$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

List import jobs in a project
project_object$list_imports()

}

Method create_task(): This call creates a new task. You can create either a single task or a
batch task by using the app’s default batching, override batching, or disable batching completely.
A parent task is a task that specifies criteria by which to batch its inputs into a series of further
sub-tasks, called child tasks. the documentation on batching tasks for more details on batching
criteria.

Usage:
Project$create_task(
app,
revision = NULL,

https://docs.sevenbridges.com/docs/about-batch-analyses

108 Project

name = NULL,
description = NULL,
execution_settings = NULL,
inputs = NULL,
output_location = NULL,
batch = NULL,
batch_input = NULL,
batch_by = NULL,
use_interruptible_instances = NULL,
action = NULL,
...

)

Arguments:
app The ID of an app or an App object you want to run. Recall that apps are specified by their

projects, in the form <project_id>/<app_name>.
revision The app revision (version) number.
name The name of the task.
description An optional description of the task.
execution_settings Named list with detailed task execution parameters. Detailed task exe-

cution parameters:
• instance_type: Possible value is the specific instance type, e.g. "instance_type" =
"c4.2xlarge;ebs-gp2;2000";

• max_parallel_instances: Maximum number of instances running at the same time.
Takes any integer value equal to or greater than 1, e.g. "max_parallel_instances" =
2.;

• use_memoization: Set to FALSE by default. Set to TRUE to enable memoization;
• use_elastic_disk: Set to TRUE to enable Elastic Disk.
Here is an example:
execution_settings <- list(
"instance_type" = "c4.2xlarge;ebs-gp2;2000",
"max_parallel_instances" = 2,
"use_memoization" = TRUE,
"use_elastic_disk" = TRUE
)

inputs List of objects. See the section on specifying task inputs for information on creating
task input objects. Here is an example with various input types:
inputs <- list(
"input_file"= "<file_id/file_object>",
"input_directory" = "<folder_id/folder_object>",
"input_array_string" = list("<string_elem_1>", "<string_elem_2>"),
"input_boolean" = TRUE,
"input_double" = 54.6,
"input_enum" = "enum_1",
"input_float" = 11.2,
"input_integer" = "asdf",
"input_long" = 4212,

https://docs.sevenbridges.com/docs/app-versions
https://docs.sevenbridges.com/docs/about-memoization
https://docs.sevenbridges.com/page/elastic-disk
https://docs.sevenbridges.com/docs/the-api#section-inputs

Project 109

"input_string" = "test_string",
"input_record" = list(
"input_record_field_file" = "<file_id/file_object>",
"input_record_field_integer" = 42
)

)

output_location The output location list allows you to define the exact location where your
task outputs will be stored. The location can either be defined for the entire project using the
main_location parameter, or individually per each output node, by setting the nodes_override
parameter to true and defining individual output node locations within nodes_location. See
below for more details.
• main_location - Defines the output location for all output nodes in the task. Can be a

string path within the project in which the task is created, for example /Analysis/<task_id>_<task_name>/
or a path on an attached volume, such as volumes://volume_name/<project_id>/html.
Parts of the path enclosed in angle brackets <> are tokens that are dynamically replaced
with corresponding values during task execution.

• main_location_alias: The string location (path) in the project that will point to the
actual location where the outputs are stored. Used if main_location is defined as a volume
path (starting with volumes://), to provide an easy way of accessing output data directly
from project files.

• nodes_override: Enables defining of output locations for output nodes individually
through nodes_location (see below). Set to TRUE to be able to define individual locations
per output node. Default: FALSE. Even if nodes_override is set to TRUE, it is not necessary
to define output locations for each of the output nodes individually. Data from those
output nodes that don’t have their locations explicitly defined through nodes_location is
either placed in main_location (if defined) or at the project files root if a main output
location is not defined for the task.

• nodes_location: List of output paths for individual task output nodes in the following
format for each output node:
<output-node-id> = list(
"output_location" = "<output-path>",
"output_location_alias" = "<alias-path>"
)
Example:
b64html = list(
"output_location" = "volumes://outputs/tasks/mar-19",
"output_location_alias" = "/rfranklin/tasks/picard"

)

In the example above, b64html is the ID of the output node for which
you want to define the output location, while the parameters are
defined as follows:

– output_location - Can be a path within the project in which the task is created,
for example /Analysis/<task_id>_<task_name>/ or a path on an attached volume,
such as volumes://volume_name/<project_id>/html. Also accepts tokens.

– output_location_alias - The location (path) in the project that will point to the ex-
act location where the output is stored. Used if output_location is defined as a volume
path (starting with volumes://).

110 Project

batch This is set to FALSE by default. Set to TRUE to create a batch task and specify the
batch_input and batch-by criteria as described below.

batch_input The ID of the input on which you wish to batch. You would typically batch on
the input consisting of a list of files. If this parameter is omitted, the default batching criteria
defined for the app will be used.

batch_by Batching criteria in form of list. For example:
batch_by = list(
type = "CRITERIA",
criteria = list("metadata.condition")

)

use_interruptible_instances This field can be TRUE or FALSE. Set this field to TRUE to
allow the use of spot instances.

action If set to run, the task will be run immediately upon creation.
... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Task object.

Examples:
\dontrun{
x is API response when project is requested
project_object <- Project$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Create a task in a project
project_object$create_task(app = app)

}

Method clone(): The objects of this class are cloneable with this method.

Usage:
Project$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Examples

--
Method `Project$print`
--

Not run:
x is API response when project is requested
project_object <- Project$new(

res = x,

https://docs.sevenbridges.com/docs/about-spot-instances

Project 111

href = x$href,
auth = auth,
response = attr(x, "response")
)

Print project object
project_object$print()

End(Not run)

--
Method `Project$detailed_print`
--

Not run:
x is API response when project is requested
project_object <- Project$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Print project object in detail
project_object$detailed_print()

End(Not run)

--
Method `Project$reload`
--

Not run:
x is API response when project is requested
project_object <- Project$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Reload project object
project_object$reload()

End(Not run)

--
Method `Project$update`
--

112 Project

Not run:
x is API response when project is requested
project_object <- Project$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Change project object name
project_object$update(name = name)

End(Not run)

--
Method `Project$delete`
--

Not run:
x is API response when project is requested
project_object <- Project$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Delete project object
project_object$delete()

End(Not run)

--
Method `Project$list_members`
--

Not run:
x is API response when project is requested
project_object <- Project$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

List members in a project
project_object$list_members()

End(Not run)

Project 113

--
Method `Project$add_member`
--

Not run:
x is API response when project is requested
project_object <- Project$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Add member to a project
project_object$add_member(

user = "<username_of_a_user_you_want_to_add>",
permissions = list(write = TRUE, execute = TRUE)

)

End(Not run)

--
Method `Project$remove_member`
--

Not run:
x is API response when project is requested
project_object <- Project$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Remove member from a project
project_object$remove_member(user = user)

End(Not run)

--
Method `Project$get_member`
--

Not run:
x is API response when project is requested
project_object <- Project$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

114 Project

Get member from a project
project_object$get_member(user = user)

End(Not run)

--
Method `Project$modify_member_permissions`
--

Not run:
x is API response when project is requested
project_object <- Project$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Modify member permissions in a project
project_object$modify_member_permissions(

user = user,
permission = list(read = TRUE, copy = FALSE)
)

End(Not run)

--
Method `Project$list_files`
--

Not run:
x is API response when project is requested
project_object <- Project$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

List files in a project
project_object$list_files()

End(Not run)

--
Method `Project$create_folder`
--

Not run:

Project 115

x is API response when project is requested
project_object <- Project$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

List files in a project
project_object$create_folder(name = "new_folder")

End(Not run)

--
Method `Project$get_root_folder`
--

Not run:
x is API response when project is requested
project_object <- Project$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Get root folder in a project
project_object$get_root_folder()

End(Not run)

--
Method `Project$list_apps`
--

Not run:
x is API response when project is requested
project_object <- Project$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

List apps in a project
project_object$list_apps(query_terms = query_term)

End(Not run)

--

116 Project

Method `Project$create_app`
--

Not run:
x is API response when project is requested
project_object <- Project$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Create app in a project
project_object$create_app(raw = raw)

End(Not run)

--
Method `Project$list_tasks`
--

Not run:
x is API response when project is requested
project_object <- Project$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

List tasks in a project
project_object$list_tasks()

End(Not run)

--
Method `Project$list_imports`
--

Not run:
x is API response when project is requested
project_object <- Project$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

List import jobs in a project
project_object$list_imports()

Projects 117

End(Not run)

--
Method `Project$create_task`
--

Not run:
x is API response when project is requested
project_object <- Project$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Create a task in a project
project_object$create_task(app = app)

End(Not run)

Projects R6 Class representing a projects endpoints.

Description

R6 Class representing Projects resource.

Super class

sevenbridges2::Resource -> Projects

Public fields

URL List of URL endpoints for this resource.

Methods

Public methods:
• Projects$new()

• Projects$query()

• Projects$get()

• Projects$delete()

• Projects$create()

• Projects$clone()

Method new(): Create new Projects resource object.

118 Projects

Usage:
Projects$new(...)

Arguments:
... Other response arguments.

Method query(): A method to list all projects available to particular user. If the username is
not provided, all projects available to the currently authenticated user will be listed. Otherwise,
projects will be listed for the user whose username is provided. Please keep in mind that this way
you will only be able to list projects you are a member of.

More details on how to query projects, you can find in our documentation.

Usage:
Projects$query(
name = NULL,
owner = NULL,
tags = NULL,
limit = getOption("sevenbridges2")$limit,
offset = getOption("sevenbridges2")$offset,
...

)

Arguments:
name Project’s name.
owner The username of the owner whose projects you want to query.
tags The list of project tags.
limit The maximum number of collection items to return for a single request. Minimum value

is 1. The maximum value is 100 and the default value is 50. This is a pagination-specific
attribute.

offset The zero-based starting index in the entire collection of the first item to return. The
default value is 0. This is a pagination-specific attribute.

... Other arguments that can be passed to core api() function like other query parameters or
’fields’, etc.

Returns: Collection of Project objects.

Examples:
\dontrun{
projects_object <- Projects$new(auth = auth)

Query projects
projects_object$query(name = name)

}

Method get(): This call creates Project object containing the details of a specified project.

Usage:
Projects$get(id, ...)

Arguments:

https://docs.sevenbridges.com/reference/list-all-your-projects

Projects 119

id Project ID. It consists of project owner’s username or if you are using Enterprise, then the Di-
vision name and project’s short name in form of <owner_username>/<project-short-name>
or <division-name>/<project-short-name>.

... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Project object.

Examples:
\dontrun{
projects_object <- Projects$new(auth = auth)

Get project by id
projects_object$get(id = id)

}

Method delete(): Method that allows you to delete project from a platform. It can only be
successfully made if you have admin status for the project.
Projects are specified by their IDs, which you can obtain by using Projects$query() to list
projects or by getting a single project using Projects$get(). Please be careful when using this
method and note that calling it will permanently delete the project from the platform.

Usage:
Projects$delete(project, ...)

Arguments:
project Project object or project ID.
... Other arguments that can be passed to core api() function as ’fields’, etc.

Examples:
\dontrun{
projects_object <- Projects$new(auth = auth)

Delete a project
projects_object$delete(project = project)

}

Method create(): A method for creating a new project.

Usage:
Projects$create(
name,
billing_group = NULL,
description = name,
tags = NULL,
locked = FALSE,
controlled = FALSE,
location = NULL,
use_interruptible_instances = TRUE,
use_memoization = FALSE,
use_elastic_disk = FALSE,

120 Projects

intermediate_files = list(retention = "LIMITED", duration = 24),
...

)

Arguments:

name The name of the project you are creating.
billing_group The Billing object or ID of the billing group for the project.
description Description of the project.
tags The list of project tags.
locked Set this field to TRUE to lock down a project. Locking down a project prevents any

Seven Bridges team member from viewing any information about the task.
controlled Set this field to TRUE to define this project as controlled i.e. one which will contain

controlled data. Set FALSE to define the project as open i.e. one which will contain open
data.

location Specify the location for this project: aws:us-east-1 or aws:us-west-2.
use_interruptible_instances Defines the use of spot instances.
use_memoization Set to FALSE by default. Set to TRUE to enable memoization.
use_elastic_disk Set to TRUE to enable Elastic disk.
intermediate_files A list defining the retention period for intermediate files. Expected ele-

ments:
• retention - Specifies that intermediate files should be retained for a limited amount of

time. The value is always LIMITED.
• duration - Specifies intermediate files retention period in hours. The minimum value is
1. The maximum value is 120 and the default value is 24.

... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Project object.

Examples:

\dontrun{
projects_object <- Projects$new(auth = auth)

Create a project
projects_object$create(

name = name,
billing_group = billing_group,
description = description

)
}

Method clone(): The objects of this class are cloneable with this method.

Usage:
Projects$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

https://docs.sevenbridges.com/docs/about-spot-instances
https://docs.sevenbridges.com/docs/about-memoization
https://docs.sevenbridges.com/page/elastic-disk

Projects 121

Examples

--
Method `Projects$query`
--

Not run:
projects_object <- Projects$new(auth = auth)

Query projects
projects_object$query(name = name)

End(Not run)

--
Method `Projects$get`
--

Not run:
projects_object <- Projects$new(auth = auth)

Get project by id
projects_object$get(id = id)

End(Not run)

--
Method `Projects$delete`
--

Not run:
projects_object <- Projects$new(auth = auth)

Delete a project
projects_object$delete(project = project)

End(Not run)

--
Method `Projects$create`
--

Not run:
projects_object <- Projects$new(auth = auth)

Create a project
projects_object$create(

name = name,
billing_group = billing_group,

122 Rate

description = description
)

End(Not run)

Rate R6 Class Representing a Rate Limit for a user

Description

Rate object containing information about user’s rate limit.

Details

This is main object for Rate Limit.

Super class

sevenbridges2::Item -> Rate

Public fields

rate A list containing the information about user’s current rate limit. It consists of the following
fields:

• limit Indicates how many requests can be made in five minutes.
• remaining Indicates how many requests remain.
• reset Indicates the time when the request rate limit will be reset.

instance A list containing the information about user’s current instance limit. It consists of the
following fields:

• limit Indicates the total number of instances available to the user. For the first few
months, instance limits are unlimited. This is indicated by a special limit of -1. Corre-
spondingly, the remaining value is high.

• remaining Indicates the number of the instances that are available at the moment. For
the first few months, instance limits are unlimited. This is indicated by a high remaining
value. Correspondingly, the limit is set to a special value of -1.

Methods

Public methods:
• Rate$new()

• Rate$print()

• Rate$clone()

Method new(): Create a new Rate limit object.

Usage:

Resource 123

Rate$new(res = NA, ...)

Arguments:
res Response containing Rate limit object info.
... Other response arguments.

Method print(): Print rate limit information as a bullet list.

Usage:
Rate$print()

Method clone(): The objects of this class are cloneable with this method.

Usage:
Rate$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Resource R6 Class Representing a Resource

Description

Base class for describing a resource.

Details

This is a base class for describing a resource on the platform: Projects, Tasks, Volumes, Files, Apps
etc.

Public fields

auth Seven Bridges Authentication object.

URL List of URL endpoints for this resource.

Methods

Public methods:
• Resource$new()

• Resource$query()

• Resource$get()

• Resource$delete()

• Resource$clone()

Method new(): Create a new Resource object.

Usage:
Resource$new(auth = NA)

124 Task

Arguments:

auth Seven Bridges Authentication object.

Method query(): Generic query implementation that is used by the resources.

Usage:
Resource$query(...)

Arguments:

... Parameters that will be passed to core api() function.

Method get(): Generic get implementation that fetches single resource from the server.

Usage:
Resource$get(cls, id, ...)

Arguments:

cls Resource class object.
id Object id.
... Other arguments that can be passed to core api() function like ’fields’, etc.

Method delete(): Generic implementation that deletes the resource from the server.

Usage:
Resource$delete(id, ...)

Arguments:

id Object id.
... Other arguments that can be passed to core api() function.
cls Resource class object.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Resource$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Task R6 Class representing a Task

Description

R6 Class representing a resource for managing tasks.

Super class

sevenbridges2::Item -> Task

Task 125

Public fields

URL List of URL endpoints for this resource.

id The ID of the task.

name The name of the task.

status Task status (different from execution_status). Allowed values:

• QUEUED
• DRAFT
• RUNNING
• COMPLETED
• ABORTED
• FAILED

description An optional description of a task.

project Identifier of the project that the task is located in.

app The identifier of the app that was used for the task.

created_by Username of the task creator.

executed_by Username of the task executor.

created_on The time in form of string when the task was created.

start_time Task start time in form of string.

end_time Task end time in form of string .

origin Id of the entity that created the task, e.g. automation run, if task was created by an automa-
tion run.

use_interruptable_instances This field can be TRUE or FALSE. Set this field to TRUE to allow
the use of spot instances.

batch TRUE for batch tasks, FALSE for regular and child tasks (batch this task; if FALSE, will not
create a batch task).

batch_by Batching criteria (list).

batch_group Batch group for a batch task (list). Represents the group that is assigned to the child
task from the batching criteria that was used when the task was started.

batch_input Input identifier on to which to apply batching.

batch_parent Parent task ID for a batch child. (batch task which is the parent of this task).

execution_settings Execution settings list for the task.

execution_status Task execution status list - info about current execution status.

errors Validations errors list stored as a high-level errors array property in the API response.

warnings Validation warnings list from API response.

price Task cost (list) - contains amount and currency.

inputs List of inputs that were submitted to the task.

outputs List of generated outputs from the task.

output_location List of locations where task outputs will be stored.

126 Task

Methods

Public methods:

• Task$new()

• Task$print()

• Task$reload()

• Task$run()

• Task$abort()

• Task$clone_task()

• Task$get_execution_details()

• Task$list_batch_children()

• Task$delete()

• Task$rerun()

• Task$update()

• Task$clone()

Method new(): Create new Task object.

Usage:
Task$new(res = NA, ...)

Arguments:

res Response containing Task object information.
... Other response arguments.

Method print(): Print method for Task class.

Usage:
Task$print()

Examples:

\dontrun{
x is API response when task is requested
task_object <- Task$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Print task object
task_object$print()

}

Method reload(): Reload Task object information.

Usage:
Task$reload(...)

Task 127

Arguments:

... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Task object.

Examples:

\dontrun{
x is API response when task is requested
task_object <- Task$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Reload task object
task_object$reload()

}

Method run(): This call runs (executes) the task. Only tasks whose status is DRAFT can be run.

Usage:
Task$run(
batch = NULL,
use_interruptible_instances = NULL,
in_place = TRUE,
...

)

Arguments:

batch Set this to FALSE to disable the default batching for this task. Running a batch task is a
recommended way to run multiple tasks considering the API rate limit (learn more).

use_interruptible_instances This field can be TRUE or FALSE. Set this field to TRUE to
allow the use of spot instances.

in_place Default TRUE. Should the new object of Task class be returned or the current to be
reinitialized.

... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Task object.

Examples:

\dontrun{
x is API response when task is requested
task_object <- Task$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

https://docs.sevenbridges.com/docs/api-rate-limit
https://docs.sevenbridges.com/docs/about-spot-instances

128 Task

Run task
task_object$run()

}

Method abort(): This call aborts the specified task. Only tasks whose status is RUNNING or
QUEUED may be aborted.

Usage:
Task$abort(in_place = TRUE, ...)

Arguments:

in_place Default TRUE. Should the new object of Task class be returned or the current to be
reinitialized.

... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Task object.

Examples:

\dontrun{
x is API response when task is requested
task_object <- Task$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

. # Run task
task_object$run()

Then abort task
task_object$abort()

}

Method clone_task(): This call clones the specified task. Once cloned, the task can either be
in DRAFT mode or immediately ran, by setting the run parameter to TRUE.

Usage:
Task$clone_task(run = FALSE, ...)

Arguments:

run Set this to TRUE in order to create a draft task and execute it immediately. Default: FALSE.
... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Task object.

Examples:

\dontrun{
x is API response when task is requested
task_object <- Task$new(

Task 129

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Clone task object
task_object$clone_task()

}

Method get_execution_details(): This call returns execution details of the specified task.
The task is referred to by its ID, which you can obtain by making the call to list all tasks you
can access. The call breaks down the information into the task’s distinct jobs. A job is a single
subprocess carried out in a task. The information returned by this call is broadly similar to that
which can be found in the task stats and logs provided on the Platform. The task execution details
include the following information:

• The name of the command line job that executed
• The start time of the job
• End time of the job (if it completed)
• The status of the job (DONE, FAILED, or RUNNING)
• Information on the computational instance that the job was run on, including the provider ID,

the type of instance used and the cloud service provider
• A link that can be used to download the standard error logs for the job.
• SHA hash of the Docker image (’checksum’).

Usage:
Task$get_execution_details(...)

Arguments:
... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: List of execution details.

Examples:
\dontrun{
x is API response when task is requested
task_object <- Task$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Get task execution details
task_object$get_execution_details()

}

Method list_batch_children(): This call retrieves batch child tasks for this task if its a batch
task.

130 Task

Usage:
Task$list_batch_children(
status = NULL,
project = NULL,
created_from = NULL,
created_to = NULL,
started_from = NULL,
started_to = NULL,
ended_from = NULL,
ended_to = NULL,
order_by = NULL,
order = NULL,
origin_id = NULL,
limit = getOption("sevenbridges2")$limit,
offset = getOption("sevenbridges2")$offset,
...

)

Arguments:
status You can filter the returned tasks by their status. Set the value of status to one of the

following values:
• QUEUED
• DRAFT
• RUNNING
• COMPLETED
• ABORTED
• FAILED.

project Provide the project ID or Project object you wish to list the tasks from.
created_from Enter the starting date string for querying tasks created on the specified date and

onwards.
created_to Enter the ending date string for querying tasks created until the specified date. You

can use it in combination with created_from to specify a time interval.
started_from Enter the starting date string for querying tasks started on the specified date and

onwards.
started_to Enter the ending date string for querying tasks started until the specified date.
ended_from Enter the starting date string for querying tasks that ended on a specified date.
ended_to Enter the ending date string for querying tasks that ended until a specified date.
order_by Order returned results by the specified field. Allowed values:

created_time, start_time, name, end_time and created_by.
Sort can be done only by one column. The default value is created_time.

order Sort results in ascending or descending order by specifying asc or desc, respectively.
Only taken into account if order_by is explicitly specified. The default value is asc.

origin_id Enter an automation run ID to list all tasks created from the specified automation
run.

limit The maximum number of collection items to return for a single request. Minimum value
is 1. The maximum value is 100 and the default value is 50. This is a pagination-specific
attribute.

Task 131

offset The zero-based starting index in the entire collection of the first item to return. The
default value is 0. This is a pagination-specific attribute.

... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Collection of Task objects.

Examples:

\dontrun{
x is API response when task is requested
task_object <- Task$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

List batch children of a task
task_object$list_batch_children()

}

Method delete(): This call deletes the specified task. The task is referred to by its ID, which
you can obtain by making the call to list all tasks you can access.

Usage:
Task$delete(...)

Arguments:

... Other arguments that can be passed to core api() function like ’fields’, etc.

Examples:

\dontrun{
x is API response when task is requested
task_object <- Task$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Delete task
task_object$delete()

}

Method rerun(): This call reruns (executes) the specified task.

Usage:
Task$rerun(...)

Arguments:

... Other arguments that can be passed to core api() function like ’fields’, etc.

132 Task

Returns: Task object.

Examples:
\dontrun{
x is API response when task is requested
task_object <- Task$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Rerun task
task_object$rerun()

}

Method update(): Change the details of the specified task, including its name, description, and
inputs. Note that you can only modify tasks with a task status of DRAFT. Tasks which are RUNNING,
QUEUED, ABORTED, COMPLETED or FAILED cannot be modified in order to enable the reproducibility
of analyses which have been queued for execution or has initiated executing. There are two things
to note if you are editing a batch task:

• 1 If you want to change the input on which to batch and the batch criteria, you need to specify
the batch_input and batch_by parameters together in the same function call.

• 2 If you want to disable batching on a task, set batch to false. Or, you can also set the
parameters batch_input and batch_by to NULL.

Usage:
Task$update(
name = NULL,
description = NULL,
execution_settings = NULL,
inputs = NULL,
output_location = NULL,
batch = NULL,
batch_input = NULL,
batch_by = NULL,
...

)

Arguments:
name The name of the task.
description An optional description of the task.
execution_settings Named list with detailed task execution parameters. Detailed task exe-

cution parameters:
• instance_type: Possible value is the specific instance type, e.g. "instance_type" =
"c4.2xlarge;ebs-gp2;2000";

• max_parallel_instances: Maximum number of instances running at the same time.
Takes any integer value equal to or greater than 1, e.g. "max_parallel_instances" =
2.;

Task 133

• use_memoization: Set to FALSE by default. Set to TRUE to enable memoization;
• use_elastic_disk: Set to TRUE to enable Elastic Disk.
Here is an example:
execution_settings <- list(
"instance_type" = "c4.2xlarge;ebs-gp2;2000",
"max_parallel_instances" = 2,
"use_memoization" = TRUE,
"use_elastic_disk" = TRUE
)

inputs List of objects. See the section on specifying task inputs for information on creating
task input objects. Here is an example with various input types:
inputs <- list(
"input_file"= "<file_id/file_object>",
"input_directory" = "<folder_id/folder_object>",
"input_array_string" = list("<string_elem_1>", "<string_elem_2>"),
"input_boolean" = TRUE,
"input_double" = 54.6,
"input_enum" = "enum_1",
"input_float" = 11.2,
"input_integer" = "asdf",
"input_long" = 4212,
"input_string" = "test_string",
"input_record" = list(
"input_record_field_file" = "<file_id/file_object>",
"input_record_field_integer" = 42
)

)

output_location The output location list allows you to define the exact location where your
task outputs will be stored. The location can either be defined for the entire project using the
main_location parameter, or individually per each output node, by setting the nodes_override
parameter to true and defining individual output node locations within nodes_location. See
below for more details.
• main_location - Defines the output location for all output nodes in the task. Can be a

string path within the project in which the task is created, for example /Analysis/<task_id>_<task_name>/
or a path on an attached volume, such as volumes://volume_name/<project_id>/html.
Parts of the path enclosed in angle brackets <> are tokens that are dynamically replaced
with corresponding values during task execution.

• main_location_alias: The string location (path) in the project that will point to the
actual location where the outputs are stored. Used if main_location is defined as a volume
path (starting with volumes://), to provide an easy way of accessing output data directly
from project files.

• nodes_override: Enables defining of output locations for output nodes individually
through nodes_location (see below). Set to TRUE to be able to define individual locations
per output node. Default: FALSE. Even if nodes_override is set to TRUE, it is not necessary
to define output locations for each of the output nodes individually. Data from those
output nodes that don’t have their locations explicitly defined through nodes_location is
either placed in main_location (if defined) or at the project files root if a main output
location is not defined for the task.

https://docs.sevenbridges.com/docs/about-memoization
https://docs.sevenbridges.com/page/elastic-disk
https://docs.sevenbridges.com/docs/the-api#section-inputs

134 Task

• nodes_location: List of output paths for individual task output nodes in the following
format for each output node:
<output-node-id> = list(
"output_location" = "<output-path>",
"output_location_alias" = "<alias-path>"
)
Example:
b64html = list(
"output_location" = "volumes://outputs/tasks/mar-19",
"output_location_alias" = "/rfranklin/tasks/picard"

)

In the example above, b64html is the ID of the output node for which
you want to define the output location, while the parameters are
defined as follows:

– output_location - Can be a path within the project in which the task is created,
for example /Analysis/<task_id>_<task_name>/ or a path on an attached volume,
such as volumes://volume_name/<project_id>/html. Also accepts tokens.

– output_location_alias - The location (path) in the project that will point to the ex-
act location where the output is stored. Used if output_location is defined as a volume
path (starting with volumes://).

batch This is set to FALSE by default. Set to TRUE to create a batch task and specify the
batch_input and batch-by criteria as described below.

batch_input The ID of the input on which you wish to batch. You would typically batch on
the input consisting of a list of files. If this parameter is omitted, the default batching criteria
defined for the app will be used.

batch_by Batching criteria in form of list. For example:
batch_by = list(
type = "CRITERIA",
criteria = list("metadata.condition")

)

... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Task object.

Examples:
\dontrun{
x is API response when task is requested
task_object <- Task$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Update task
task_object$update(name = new_name)

}

Task 135

Method clone(): The objects of this class are cloneable with this method.

Usage:
Task$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

--
Method `Task$print`
--

Not run:
x is API response when task is requested
task_object <- Task$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Print task object
task_object$print()

End(Not run)

--
Method `Task$reload`
--

Not run:
x is API response when task is requested
task_object <- Task$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Reload task object
task_object$reload()

End(Not run)

--
Method `Task$run`
--

136 Task

Not run:
x is API response when task is requested
task_object <- Task$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Run task
task_object$run()

End(Not run)

--
Method `Task$abort`
--

Not run:
x is API response when task is requested
task_object <- Task$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

. # Run task
task_object$run()

Then abort task
task_object$abort()

End(Not run)

--
Method `Task$clone_task`
--

Not run:
x is API response when task is requested
task_object <- Task$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Clone task object
task_object$clone_task()

Task 137

End(Not run)

--
Method `Task$get_execution_details`
--

Not run:
x is API response when task is requested
task_object <- Task$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Get task execution details
task_object$get_execution_details()

End(Not run)

--
Method `Task$list_batch_children`
--

Not run:
x is API response when task is requested
task_object <- Task$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

List batch children of a task
task_object$list_batch_children()

End(Not run)

--
Method `Task$delete`
--

Not run:
x is API response when task is requested
task_object <- Task$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

138 Tasks

Delete task
task_object$delete()

End(Not run)

--
Method `Task$rerun`
--

Not run:
x is API response when task is requested
task_object <- Task$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Rerun task
task_object$rerun()

End(Not run)

--
Method `Task$update`
--

Not run:
x is API response when task is requested
task_object <- Task$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Update task
task_object$update(name = new_name)

End(Not run)

Tasks R6 Class representing tasks endpoints

Description

R6 Class representing tasks resource endpoints.

Tasks 139

Super class

sevenbridges2::Resource -> Tasks

Public fields

URL List of URL endpoints for this resource.

Methods

Public methods:

• Tasks$new()

• Tasks$query()

• Tasks$get()

• Tasks$delete()

• Tasks$create()

• Tasks$clone()

Method new(): Create new Tasks resource object.

Usage:
Tasks$new(...)

Arguments:

... Other response arguments.

Method query(): This call lists all tasks you can access.

Read more about how to use query parameters properly here.

Usage:
Tasks$query(
status = NULL,
parent = NULL,
project = NULL,
created_from = NULL,
created_to = NULL,
started_from = NULL,
started_to = NULL,
ended_from = NULL,
ended_to = NULL,
order_by = c("created_time", "start_time", "name", "end_time", "created_by"),
order = c("asc", "desc"),
origin_id = NULL,
limit = getOption("sevenbridges2")$limit,
offset = getOption("sevenbridges2")$offset,
...

)

Arguments:

https://docs.sevenbridges.com/reference/list-tasks-you-can-access

140 Tasks

status You can filter the returned tasks by their status. Set the value of status to one of the
following values: QUEUED, DRAFT, RUNNING, COMPLETED, ABORTED, FAILED.

parent Provide task ID or Task object of the parent task to return all child tasks from that
parent. A parent task is a task that specifies criteria by which to batch its inputs into a series
of further sub-tasks, called child tasks. See the documentation on batching tasks for more
details on how to run tasks in batches.

project Provide the project ID or Project object you wish to list the tasks from.
created_from Enter the starting date string for querying tasks created on the specified date and

onwards.
created_to Enter the ending date string for querying tasks created until the specified date. You

can use it in combination with created_from to specify a time interval.
started_from Enter the starting date string for querying tasks started on the specified date and

onwards.
started_to Enter the ending date string for querying tasks started until the specified date.
ended_from Enter the starting date string for querying tasks that ended on a specified date.
ended_to Enter the ending date string for querying tasks that ended until a specified date.
order_by Order returned results by the specified field. Allowed values:

created_time, start_time, name, end_time and created_by.
Sort can be done only by one column. The default value is created_time.

order Sort results in ascending or descending order by specifying asc or desc, respectively.
Only taken into account if order_by is explicitly specified. The default value is asc.

origin_id Enter an automation run ID to list all tasks created from the specified automation
run.

limit The maximum number of collection items to return for a single request. Minimum value
is 1. The maximum value is 100 and the default value is 50. This is a pagination-specific
attribute.

offset The zero-based starting index in the entire collection of the first item to return. The
default value is 0. This is a pagination-specific attribute.

... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Collection of Task objects.

Method get(): This call returns details of the specified task. The task is referred to by its ID,
which you can obtain by making the call to list all tasks you can access. The task details include
its creator, its start and end time, the number of jobs completed in it, and its input and output files.
You can also see the status of the task.

Usage:
Tasks$get(id, ...)

Arguments:
id The ID of the task you are querying.
... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Task object.

Method delete(): This call deletes a task from the Seven Bridges Platform. Tasks are specified
by their IDs, which you can obtain by using Tasks$query() to list tasks or by getting a single
task using Tasks$get().

https://docs.sevenbridges.com/docs/about-batch-analyses

Tasks 141

Usage:
Tasks$delete(task, ...)

Arguments:

task Task object or task ID.
... Other arguments that can be passed to core api() function as ’fields’, etc.

Method create(): This call creates a new task. You can create either a single task or a batch
task by using the app’s default batching, override batching, or disable batching completely. A
parent task is a task that specifies criteria by which to batch its inputs into a series of further
sub-tasks, called child tasks. the documentation on batching tasks for more details on batching
criteria.

Usage:
Tasks$create(
project,
app,
revision = NULL,
name = NULL,
description = NULL,
execution_settings = NULL,
inputs = NULL,
output_location = NULL,
batch = NULL,
batch_input = NULL,
batch_by = NULL,
use_interruptible_instances = NULL,
action = NULL,
...

)

Arguments:

project The ID of a project or a Project object where you want to create the task in.
app The ID of an app or an App object you want to run. Recall that apps are specified by their

projects, in the form <project_id>/<app_name>.
revision The app revision (version) number.
name The name of the task.
description An optional description of the task.
execution_settings Named list with detailed task execution parameters. Detailed task exe-

cution parameters:
• instance_type: Possible value is the specific instance type, e.g. "instance_type" =
"c4.2xlarge;ebs-gp2;2000";

• max_parallel_instances: Maximum number of instances running at the same time.
Takes any integer value equal to or greater than 1, e.g. "max_parallel_instances" =
2.;

• use_memoization: Set to FALSE by default. Set to TRUE to enable memoization;
• use_elastic_disk: Set to TRUE to enable Elastic Disk.
Here is an example:

https://docs.sevenbridges.com/docs/about-batch-analyses
https://docs.sevenbridges.com/docs/app-versions
https://docs.sevenbridges.com/docs/about-memoization
https://docs.sevenbridges.com/page/elastic-disk

142 Tasks

execution_settings <- list(
"instance_type" = "c4.2xlarge;ebs-gp2;2000",
"max_parallel_instances" = 2,
"use_memoization" = TRUE,
"use_elastic_disk" = TRUE
)

inputs List of objects. See the section on specifying task inputs for information on creating
task input objects. Here is an example with various input types:
inputs <- list(
"input_file"= "<file_id/file_object>",
"input_directory" = "<folder_id/folder_object>",
"input_array_string" = list("<string_elem_1>", "<string_elem_2>"),
"input_boolean" = TRUE,
"input_double" = 54.6,
"input_enum" = "enum_1",
"input_float" = 11.2,
"input_integer" = "asdf",
"input_long" = 4212,
"input_string" = "test_string",
"input_record" = list(
"input_record_field_file" = "<file_id/file_object>",
"input_record_field_integer" = 42
)

)

output_location The output location list allows you to define the exact location where your
task outputs will be stored. The location can either be defined for the entire project using the
main_location parameter, or individually per each output node, by setting the nodes_override
parameter to true and defining individual output node locations within nodes_location. See
below for more details.
• main_location - Defines the output location for all output nodes in the task. Can be a

string path within the project in which the task is created, for example /Analysis/<task_id>_<task_name>/
or a path on an attached volume, such as volumes://volume_name/<project_id>/html.
Parts of the path enclosed in angle brackets <> are tokens that are dynamically replaced
with corresponding values during task execution.

• main_location_alias: The string location (path) in the project that will point to the
actual location where the outputs are stored. Used if main_location is defined as a volume
path (starting with volumes://), to provide an easy way of accessing output data directly
from project files.

• nodes_override: Enables defining of output locations for output nodes individually
through nodes_location (see below). Set to TRUE to be able to define individual locations
per output node. Default: FALSE. Even if nodes_override is set to TRUE, it is not necessary
to define output locations for each of the output nodes individually. Data from those
output nodes that don’t have their locations explicitly defined through nodes_location is
either placed in main_location (if defined) or at the project files root if a main output
location is not defined for the task.

• nodes_location: List of output paths for individual task output nodes in the following
format for each output node:
<output-node-id> = list(

https://docs.sevenbridges.com/docs/the-api#section-inputs

Tasks 143

"output_location" = "<output-path>",
"output_location_alias" = "<alias-path>"
)
Example:

b64html = list(
"output_location" = "volumes://outputs/tasks/mar-19",
"output_location_alias" = "/rfranklin/tasks/picard"

)

In the example above, b64html is the ID of the output node for which
you want to define the output location, while the parameters are
defined as follows:

– output_location - Can be a path within the project in which the task is created,
for example /Analysis/<task_id>_<task_name>/ or a path on an attached volume,
such as volumes://volume_name/<project_id>/html. Also accepts tokens.

– output_location_alias - The location (path) in the project that will point to the ex-
act location where the output is stored. Used if output_location is defined as a volume
path (starting with volumes://).

batch This is set to FALSE by default. Set to TRUE to create a batch task and specify the
batch_input and batch-by criteria as described below.

batch_input The ID of the input on which you wish to batch. You would typically batch on
the input consisting of a list of files. If this parameter is omitted, the default batching criteria
defined for the app will be used.

batch_by Batching criteria in form of list. For example:

batch_by = list(
type = "CRITERIA",
criteria = list("metadata.condition")

)

use_interruptible_instances This field can be TRUE or FALSE. Set this field to TRUE to
allow the use of spot instances.

action If set to run, the task will be run immediately upon creation.

... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Task object.

Method clone(): The objects of this class are cloneable with this method.

Usage:

Tasks$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

https://docs.sevenbridges.com/docs/about-spot-instances

144 Upload

Upload R6 Class representing an Upload job

Description

R6 Class representing a resource for managing files’ uploads.

Public fields

URL List of URL endpoints for this resource.

upload_id Upload ID received after upload initialization.

path Relative or absolute path to the file on the local disc.

project Project’s identifier (character).

parent The ID of the folder to which the item is being uploaded. Should not be used together with
’project’.

filename File name. By default it will be the same as the name of the file you want to upload.
However, it can be changed to new name.

overwrite If TRUE will overwrite file on the server.

file_size File size.

part_size Size of part in bytes.

part_length Number of parts to upload.

parts List of parts to be uploaded (class Part).

initialized If TRUE, upload has been initialized.

auth Authentication object.

Methods

Public methods:

• Upload$new()

• Upload$print()

• Upload$init()

• Upload$info()

• Upload$start()

• Upload$abort()

• Upload$clone()

Method new(): Create a new Upload object.

Usage:

Upload 145

Upload$new(
path = NA,
project = NA,
parent = NA,
filename = NA,
overwrite = FALSE,
file_size = NA,
part_size = getOption("sevenbridges2")$RECOMMENDED_PART_SIZE,
initialized = FALSE,
auth = NA

)

Arguments:
path Path to the file on the local disc.
project Project’s identifier (character).
parent The ID of the folder to which the item is being uploaded.
filename New file name. Optional.
overwrite If true will overwrite file on the server.
file_size File size.
part_size Size of a single part in bytes.
initialized If TRUE, upload has been initialized.
auth Seven Bridges Authentication object.

Method print(): Print method for Upload class.

Usage:
Upload$print()

Examples:
\dontrun{
upload_object <- Upload$new(

path = "path/to/my/file.txt",
project = project_object,
auth = auth

)

Print upload object information
upload_object$print(name = name)

}

Method init(): Initialize new multipart file upload.

Usage:
Upload$init()

Examples:
\dontrun{
upload_object <- Upload$new(

path = "path/to/my/file.txt",

146 Upload

project = project_object,
auth = auth

)

Initialize multipart file upload object
upload_object$init()

}

Method info(): Get the details of an active multipart upload.

Usage:
Upload$info(list_parts = FALSE)

Arguments:
list_parts If TRUE, also return a list of parts that have been reported as completed for this

multipart upload. Please, bear in mind that the output could be heavy for printing if there
are lot of parts.

Examples:
\dontrun{
upload_object <- Upload$new(

path = "path/to/my/file.txt",
project = project_object,
auth = auth

)

Get upload job status information
upload_object$info()

}

Method start(): Start the file upload

Usage:
Upload$start()

Returns: File object.

Examples:
\dontrun{
upload_object <- Upload$new(

path = "path/to/my/file.txt",
project = project_object,
auth = auth

)

Initialize multipart file upload object
upload_object$init()

Start upload process
upload_object$start()

}

Upload 147

Method abort(): Abort the multipart upload This call aborts an ongoing upload.

Usage:
Upload$abort()

Examples:

\dontrun{
upload_object <- Upload$new(

path = "path/to/my/file.txt",
project = project_object,
auth = auth

)

Abort upload process
upload_object$abort()

}

Method clone(): The objects of this class are cloneable with this method.

Usage:
Upload$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

--
Method `Upload$print`
--

Not run:
upload_object <- Upload$new(

path = "path/to/my/file.txt",
project = project_object,
auth = auth
)

Print upload object information
upload_object$print(name = name)

End(Not run)

--
Method `Upload$init`
--

Not run:
upload_object <- Upload$new(

path = "path/to/my/file.txt",
project = project_object,

148 Upload

auth = auth
)

Initialize multipart file upload object
upload_object$init()

End(Not run)

--
Method `Upload$info`
--

Not run:
upload_object <- Upload$new(

path = "path/to/my/file.txt",
project = project_object,
auth = auth
)

Get upload job status information
upload_object$info()

End(Not run)

--
Method `Upload$start`
--

Not run:
upload_object <- Upload$new(

path = "path/to/my/file.txt",
project = project_object,
auth = auth
)

Initialize multipart file upload object
upload_object$init()

Start upload process
upload_object$start()

End(Not run)

--
Method `Upload$abort`
--

Not run:
upload_object <- Upload$new(

path = "path/to/my/file.txt",
project = project_object,
auth = auth

User 149

)

Abort upload process
upload_object$abort()

End(Not run)

User R6 Class Representing a platform User

Description

User object containing user information.

Details

This is main object for Users.

Super class

sevenbridges2::Item -> User

Public fields

URL List of URL endpoints for this resource.

username User name.

email User’s email address.

first_name User’s first name.

last_name User’s last name.

affiliation The company or the institute the user is affiliated with.

phone User’s phone number.

address User’s residential address.

city User’s city of residence.

state User’s state of residence.

country User’s country of residence.

zip_code Zip code for the user’s residence.

role User’s role.

tags Platform tags associated with the user.

150 Volume

Methods

Public methods:
• User$new()

• User$print()

• User$reload()

• User$clone()

Method new(): Create a new User object.

Usage:
User$new(res = NA, ...)

Arguments:

res Response containing User object information.
... Other response arguments.

Method print(): Print user information as bullet list.

Usage:
User$print()

Method reload(): Reload User object information.

Usage:
User$reload(...)

Arguments:

... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: User object.

Method clone(): The objects of this class are cloneable with this method.

Usage:
User$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Volume R6 Class representing a Volume

Description

R6 Class representing a resource for managing volumes.

Super class

sevenbridges2::Item -> Volume

Volume 151

Public fields

URL List of URL endpoints for this resource.

id Volume ID, constructed from {division}/{volume_name} or {volume_owner}/{volume_name}.

name The name of the volume. It must be unique from all other volumes for this user. Required if
from_path parameter is not provided.

description The description of the volume.

access_mode Signifies whether this volume should be used for read-write (RW) or read-only (RO)
operations. The access mode is consulted independently of the credentials granted to Seven
Bridges when the volume was created, so it is possible to use a read-write credentials to
register both read-write and read-only volumes using it. Default: "RW".

service This object in form of string more closely describes the mapping of the volume to the
cloud service where the data is stored.

created_on The date and time this volume was created.

modified_on The date and time this volume was last modified.

active If a volume is deactivated, this field will be set to FALSE.

Methods

Public methods:
• Volume$new()

• Volume$print()

• Volume$reload()

• Volume$update()

• Volume$deactivate()

• Volume$reactivate()

• Volume$delete()

• Volume$list_contents()

• Volume$get_file()

• Volume$list_members()

• Volume$add_member()

• Volume$remove_member()

• Volume$get_member()

• Volume$modify_member_permissions()

• Volume$list_imports()

• Volume$list_exports()

• Volume$clone()

Method new(): Create a new Volume object.

Usage:
Volume$new(res = NA, ...)

Arguments:
res Response containing Volume object info.

152 Volume

... Other response arguments.

Method print(): Print method for Volume class.

Usage:
Volume$print()

Examples:

\dontrun{
x is API response when volume is requested
volume_object <- Volume$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Print volume object
volume_object$print()

}

Method reload(): Reload Volume object information.

Usage:
Volume$reload(...)

Arguments:

... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Volume object.

Examples:

\dontrun{
x is API response when volume is requested
volume_object <- Volume$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Reload volume object
volume_object$reload()

}

Method update(): Update a volume. This function updates the details of a specific volume.

Usage:
Volume$update(description = NULL, access_mode = NULL, service = NULL)

Arguments:

Volume 153

description The new description of the volume.
access_mode Signifies whether this volume should be used for read-write (RW) or read-only

(RO) operations. The access mode is consulted independently of the credentials granted to
Seven Bridges when the volume was created, so it is possible to use a read-write credentials
to register both read-write and read-only volumes using it. Default: "RW".

service This object in form of string more closely describes the mapping of the volume to the
cloud service where the data is stored.

Returns: Volume object.

Examples:
\dontrun{
x is API response when volume is requested
volume_object <- Volume$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Update volume object
volume_object$update(description = description)

}

Method deactivate(): Deactivate volume. Once deactivated, you cannot import from, export
to, or browse within a volume. As such, the content of the files imported from this volume will no
longer be accessible on the Platform. However, you can update the volume and manage members.
Note that you cannot deactivate the volume if you have running imports or exports unless you
force the operation using the query parameter force=TRUE. Note that to delete a volume, first you
must deactivate it and delete all files which have been imported from the volume to the Platform.

Usage:
Volume$deactivate(...)

Arguments:
... Other query parameters or arguments that can be passed to core api() function like ’force’.

Use it within query parameter, like query = list(force = TRUE).

Examples:
\dontrun{
x is API response when volume is requested
volume_object <- Volume$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Deactivate volume
volume_object$deactivate()

154 Volume

}

Method reactivate(): Reactivate volume. This function reactivates the previously deactivated
volume by updating the active field of the volume to TRUE.

Usage:
Volume$reactivate(...)

Arguments:
... Other query parameters or arguments that can be passed to core api() function like ’force’.

Use it within query parameter, like query = list(force = TRUE).

Returns: Volume object.

Examples:
\dontrun{
x is API response when volume is requested
volume_object <- Volume$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Deactivate volume
volume_object$deactivate()

Reactivate volume
volume_object$reactivate()

}

Method delete(): Delete volume. This call deletes a volume you’ve created to refer to storage
on Amazon Web Services, Google Cloud Storage, Azure or Ali cloud. To be able to delete a
volume, you first need to deactivate it and then delete all files on the Platform that were previously
imported from the volume.

Usage:
Volume$delete()

Examples:
\dontrun{
x is API response when volume is requested
volume_object <- Volume$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Delete volume

Volume 155

volume_object$delete()
}

Method list_contents(): List volume contents. This call lists the contents of a specific
volume.

Usage:
Volume$list_contents(
prefix = NULL,
limit = getOption("sevenbridges2")$limit,
link = NULL,
continuation_token = NULL,
...

)

Arguments:

prefix This is parent parameter in volume context. If specified, the content of the parent
directory on the current volume is listed.

limit The maximum number of collection items to return for a single request. Minimum value
is 1. The maximum value is 100 and the default value is 50. This is a pagination-specific
attribute.

link Link to use in the next chunk of results. Contains limit and continuation_token. If pro-
vided it will overwrite other arguments’ values passed.

continuation_token Continuation token received to use for next chunk of results. Behaves
similarly like offset parameter.

... Other arguments that can be passed to core api() function like ’fields’ for example. With
fields parameter you can specify a subset of fields to include in the response. You can use:
href, location, volume, type, metadata, _all. Default: _all.

Returns: VolumeContentCollection object containing list of VolumeFile and VolumePrefix
objects.

Examples:

\dontrun{
x is API response when volume is requested
volume_object <- Volume$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

List volume contents
volume_object$list_contents()

}

Method get_file(): Get volume file information. This function returns the specific Volume
File.

156 Volume

Usage:
Volume$get_file(location = NULL, link = NULL, ...)

Arguments:

location Volume file id, which is represented as file location.
link Link to the file resource received from listing volume’s contents. Cannot be used together

with location.
... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: VolumeFile object.

Examples:

\dontrun{
x is API response when volume is requested
volume_object <- Volume$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Get volume file
volume_object$get_file(location = location)

}

Method list_members(): List members of a volume. This function returns the members of a
specific volume.

Usage:
Volume$list_members(
limit = getOption("sevenbridges2")$limit,
offset = getOption("sevenbridges2")$offset,
...

)

Arguments:

limit The maximum number of collection items to return for a single request. Minimum value
is 1. The maximum value is 100 and the default value is 50. This is a pagination-specific
attribute.

offset The zero-based starting index in the entire collection of the first item to return. The
default value is 0. This is a pagination-specific attribute.

... Other parameters that can be passed to core api() function like ’fields’, etc.

Returns: Collection containing Member objects.

Examples:

\dontrun{
x is API response when volume is requested
volume_object <- Volume$new(

res = x,

Volume 157

href = x$href,
auth = auth,
response = attr(x, "response")

)

List volume members
volume_object$list_members()

}

Method add_member(): Add member to a volume. This function adds members to the specified
volume.

Usage:
Volume$add_member(
user,
permissions = list(read = TRUE, copy = FALSE, write = FALSE, admin = FALSE)

)

Arguments:
user The Seven Bridges Platform username of the person you want to add to the volume or

object of class Member containing user’s username.
permissions List of permissions granted to the user being added. Permissions include listing

the contents of a volume, importing files from the volume to the Platform, exporting files
from the Platform to the volume, and admin privileges.
It can contain fields: ’read’, ’copy’, ’write’ and ’admin’ with logical fields - TRUE if certain
permission is allowed to the user, or FALSE if it’s not. Example:
permissions = list(read = TRUE, copy = TRUE, write = FALSE,
admin = FALSE)

Returns: Member object.
Examples:
\dontrun{
x is API response when volume is requested
volume_object <- Volume$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Add volume member
volume_object$add_member(

user = user,
permissions = list(read = TRUE, copy = FALSE)

)
}

Method remove_member(): Remove member from a volume. This function removes members
from the specified volume.

158 Volume

Usage:
Volume$remove_member(user)

Arguments:
user The Seven Bridges Platform username of the person you want to remove from the volume

or object of class Member containing user’s username.

Examples:
\dontrun{
x is API response when volume is requested
volume_object <- Volume$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Remove volume member
volume_object$remove_member(user = user)

}

Method get_member(): Get member’s details. This function returns member’s information.

Usage:
Volume$get_member(user, ...)

Arguments:
user The Seven Bridges Platform username of the person you want to get information about or

object of class Member containing user’s username.
... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Member object.

Examples:
\dontrun{
x is API response when volume is requested
volume_object <- Volume$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Get volume member
volume_object$get_member(user = user)

}

Method modify_member_permissions(): Modify volume member’s permissions. This func-
tion modifies the permissions for a member of a specific volume. Note that this does not overwrite
all previously set permissions for the member.

Volume 159

Usage:
Volume$modify_member_permissions(
user,
permissions = list(read = TRUE, copy = FALSE, write = FALSE, admin = FALSE)

)

Arguments:
user The Seven Bridges Platform username of the person you want to modify permissions for

or object of class Member containing user’s username.
permissions List of specific (or all) permissions you want to update for the member of the vol-

ume. Permissions include listing the contents of a volume, importing files from the volume
to the Platform, exporting files from the Platform to the volume, and admin privileges. It
can contain fields: ’read’, ’copy’, ’write’ and ’admin’ with logical fields - TRUE if certain
permission is allowed to the user, or FALSE if it’s not. Example:
permissions = list(read = TRUE, copy = TRUE, write = FALSE,
admin = FALSE)

Returns: Permission object.

Examples:
\dontrun{
x is API response when volume is requested
volume_object <- Volume$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Modify volume member permissions
volume_object$modify_member_permissions(

user = user,
permission = list(read = TRUE, copy = TRUE)

)
}

Method list_imports(): This call lists import jobs initiated by particular user from this vol-
ume.

Usage:
Volume$list_imports(
project = NULL,
state = NULL,
limit = getOption("sevenbridges2")$limit,
offset = getOption("sevenbridges2")$offset,
...

)

Arguments:
project String project id or Project object. List all volume imports to this project. Optional.

160 Volume

state String. The state of the import job. Possible values are:
• PENDING: the import is queued;
• RUNNING: the import is running;
• COMPLETED: the import has completed successfully;
• FAILED: the import has failed.
Example: state = c("RUNNING", "FAILED")

limit The maximum number of collection items to return for a single request. Minimum value
is 1. The maximum value is 100 and the default value is 50. This is a pagination-specific
attribute.

offset The zero-based starting index in the entire collection of the first item to return. The
default value is 0. This is a pagination-specific attribute.

... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Collection containing list of Import job objects.

Examples:

\dontrun{
x is API response when volume is requested
volume_object <- Volume$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

List volume imports
volume_object$list_imports(

project = project,
state = c("RUNNING", "FAILED")

)
}

Method list_exports(): This call lists export jobs initiated by a user into this volume. Note
that when you export a file from a project on the Platform into a volume, you write to your cloud
storage bucket.

Usage:
Volume$list_exports(
state = NULL,
limit = getOption("sevenbridges2")$limit,
offset = getOption("sevenbridges2")$offset,
...

)

Arguments:

state The state of the export job. Possible values are:
• PENDING: the export is queued;
• RUNNING: the export is running;

Volume 161

• COMPLETED: the export has completed successfully;
• FAILED: the export has failed.
Example: state = c("RUNNING", "FAILED")

limit The maximum number of collection items to return for a single request. Minimum value
is 1. The maximum value is 100 and the default value is 50. This is a pagination-specific
attribute.

offset The zero-based starting index in the entire collection of the first item to return. The
default value is 0. This is a pagination-specific attribute.

... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Collection containing list of Export job objects.

Examples:

\dontrun{
x is API response when volume is requested
volume_object <- Volume$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

List volume exports
volume_object$list_exports(state = c("RUNNING", "FAILED"))

}

Method clone(): The objects of this class are cloneable with this method.

Usage:
Volume$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

--
Method `Volume$print`
--

Not run:
x is API response when volume is requested
volume_object <- Volume$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

162 Volume

Print volume object
volume_object$print()

End(Not run)

--
Method `Volume$reload`
--

Not run:
x is API response when volume is requested
volume_object <- Volume$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Reload volume object
volume_object$reload()

End(Not run)

--
Method `Volume$update`
--

Not run:
x is API response when volume is requested
volume_object <- Volume$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Update volume object
volume_object$update(description = description)

End(Not run)

--
Method `Volume$deactivate`
--

Not run:
x is API response when volume is requested
volume_object <- Volume$new(

res = x,
href = x$href,

Volume 163

auth = auth,
response = attr(x, "response")
)

Deactivate volume
volume_object$deactivate()

End(Not run)

--
Method `Volume$reactivate`
--

Not run:
x is API response when volume is requested
volume_object <- Volume$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Deactivate volume
volume_object$deactivate()

Reactivate volume
volume_object$reactivate()

End(Not run)

--
Method `Volume$delete`
--

Not run:
x is API response when volume is requested
volume_object <- Volume$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Delete volume
volume_object$delete()

End(Not run)

--
Method `Volume$list_contents`

164 Volume

--

Not run:
x is API response when volume is requested
volume_object <- Volume$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

List volume contents
volume_object$list_contents()

End(Not run)

--
Method `Volume$get_file`
--

Not run:
x is API response when volume is requested
volume_object <- Volume$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Get volume file
volume_object$get_file(location = location)

End(Not run)

--
Method `Volume$list_members`
--

Not run:
x is API response when volume is requested
volume_object <- Volume$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

List volume members
volume_object$list_members()

End(Not run)

Volume 165

--
Method `Volume$add_member`
--

Not run:
x is API response when volume is requested
volume_object <- Volume$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Add volume member
volume_object$add_member(

user = user,
permissions = list(read = TRUE, copy = FALSE)

)

End(Not run)

--
Method `Volume$remove_member`
--

Not run:
x is API response when volume is requested
volume_object <- Volume$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Remove volume member
volume_object$remove_member(user = user)

End(Not run)

--
Method `Volume$get_member`
--

Not run:
x is API response when volume is requested
volume_object <- Volume$new(

res = x,
href = x$href,
auth = auth,

166 Volume

response = attr(x, "response")
)

Get volume member
volume_object$get_member(user = user)

End(Not run)

--
Method `Volume$modify_member_permissions`
--

Not run:
x is API response when volume is requested
volume_object <- Volume$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Modify volume member permissions
volume_object$modify_member_permissions(

user = user,
permission = list(read = TRUE, copy = TRUE)

)

End(Not run)

--
Method `Volume$list_imports`
--

Not run:
x is API response when volume is requested
volume_object <- Volume$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

List volume imports
volume_object$list_imports(

project = project,
state = c("RUNNING", "FAILED")

)

End(Not run)

VolumeContentCollection 167

--
Method `Volume$list_exports`
--

Not run:
x is API response when volume is requested
volume_object <- Volume$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

List volume exports
volume_object$list_exports(state = c("RUNNING", "FAILED"))

End(Not run)

VolumeContentCollection

R6 Class representing a VolumeContentCollection

Description

R6 Class representing a resource for managing volume content collections.

Super class

sevenbridges2::Collection -> VolumeContentCollection

Public fields

prefixes Prefixes on the volume, returned in API response.

Methods

Public methods:
• VolumeContentCollection$new()

• VolumeContentCollection$print()

• VolumeContentCollection$next_page()

• VolumeContentCollection$prev_page()

• VolumeContentCollection$all()

• VolumeContentCollection$clone()

Method new(): Create new VolumeContentCollection object.

Usage:

168 VolumeContentCollection

VolumeContentCollection$new(res = NA, ...)

Arguments:
res Response containing VolumeContentCollection object fields.
... Other response arguments.

Method print(): Print method for VolumeContentCollection class.
Usage:
VolumeContentCollection$print(n = 10)

Arguments:
n Number of items to print in console.
Examples:
\dontrun{
x is API response when volume content collection is requested
vol_con_col_object <- VolumeContentCollection$new(

res = x,
href = x$href,
links = x$links,
auth = auth,
response = attr(x, "response")

)

Print volume content collection object
vol_con_col_object$print()

}

Method next_page(): Return next page of results.
Usage:
VolumeContentCollection$next_page(...)

Arguments:
... Other arguments or query parameters that can be passed to core api() function like ’ad-

vance_access’, ’fields’ etc.
Examples:
\dontrun{
x is API response when volume content collection is requested
vol_con_col_object <- VolumeContentCollection$new(

res = x,
href = x$href,
links = x$links,
auth = auth,
response = attr(x, "response")

)

Get next page of results
vol_con_col_object$next_page()

}

VolumeContentCollection 169

Method prev_page(): Return previous page of results.

Usage:
VolumeContentCollection$prev_page()

Examples:
\dontrun{
x is API response when volume content collection is requested
vol_con_col_object <- VolumeContentCollection$new(

res = x,
href = x$href,
links = x$links,
auth = auth,
response = attr(x, "response")

)

Get previous page of results
vol_con_col_object$prev_page()

}

Method all(): Fetches all available items.

Usage:
VolumeContentCollection$all(...)

Arguments:
... Other arguments or query parameters that can be passed to core api() function like ’ad-

vance_access’, ’fields’ etc.

Examples:
\dontrun{
x is API response when volume content collection is requested
vol_con_col_object <- VolumeContentCollection$new(

res = x,
href = x$href,
links = x$links,
auth = auth,
response = attr(x, "response")

)

Get all results
vol_con_col_object$all()

}

Method clone(): The objects of this class are cloneable with this method.

Usage:
VolumeContentCollection$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

170 VolumeContentCollection

Examples

--
Method `VolumeContentCollection$print`
--

Not run:
x is API response when volume content collection is requested
vol_con_col_object <- VolumeContentCollection$new(

res = x,
href = x$href,
links = x$links,
auth = auth,
response = attr(x, "response")
)

Print volume content collection object
vol_con_col_object$print()

End(Not run)

--
Method `VolumeContentCollection$next_page`
--

Not run:
x is API response when volume content collection is requested
vol_con_col_object <- VolumeContentCollection$new(

res = x,
href = x$href,
links = x$links,
auth = auth,
response = attr(x, "response")
)

Get next page of results
vol_con_col_object$next_page()

End(Not run)

--
Method `VolumeContentCollection$prev_page`
--

Not run:
x is API response when volume content collection is requested
vol_con_col_object <- VolumeContentCollection$new(

res = x,
href = x$href,
links = x$links,

VolumeFile 171

auth = auth,
response = attr(x, "response")
)

Get previous page of results
vol_con_col_object$prev_page()

End(Not run)

--
Method `VolumeContentCollection$all`
--

Not run:
x is API response when volume content collection is requested
vol_con_col_object <- VolumeContentCollection$new(

res = x,
href = x$href,
links = x$links,
auth = auth,
response = attr(x, "response")
)

Get all results
vol_con_col_object$all()

End(Not run)

VolumeFile R6 Class representing a VolumeFile

Description

R6 Class representing a resource for managing VolumeFile objects.

Super class

sevenbridges2::Item -> VolumeFile

Public fields

URL List of URL endpoints for this resource.

location File location on the volume.

type Type of storage (cloud provider). Can be one of: s3, gcs, azure, OSS.

volume Volume id.

metadata File’s metadata if exists.

172 VolumeFile

Methods

Public methods:
• VolumeFile$new()

• VolumeFile$print()

• VolumeFile$reload()

• VolumeFile$import()

• VolumeFile$clone()

Method new(): Create a new VolumeFile object.

Usage:
VolumeFile$new(res = NA, ...)

Arguments:

res Response containing VolumeFile object info.
... Other response arguments.

Method print(): Print method for VolumeFile class.

Usage:
VolumeFile$print()

Examples:

\dontrun{
x is API response when volume file is requested
volume_file_object <- VolumeFile$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Print volume file object
volume_file_object$print()

}

Method reload(): Reload VolumeFile object information.

Usage:
VolumeFile$reload(...)

Arguments:

... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: VolumeFile object.

Examples:

\dontrun{
x is API response when volume file is requested
volume_file_object <- VolumeFile$new(

VolumeFile 173

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Reload volume file object
volume_file_object$reload()

}

Method import(): This call lets you queue a job to import this file or folder from a volume into
a project on the Platform.
Essentially, you are importing an item from your cloud storage provider (Amazon Web Services,
Google Cloud Storage, Azure or Ali Cloud) via the volume onto the Platform.
If successful, an alias will be created on the Platform. Aliases appear on the Platform and can
be copied, executed, and modified as such. They refer back to the respective item on the given
volume.

Usage:
VolumeFile$import(
destination_project = NULL,
destination_parent = NULL,
name = NULL,
overwrite = FALSE,
autorename = FALSE,
...

)

Arguments:
destination_project String destination project id or Project object. Not required, but either

destination_project or destination_parent directory must be provided.
destination_parent String folder id or File object (with type = 'FOLDER'). Not required, but

either destination_project or destination_parent directory must be provided.
name The name of the alias to create. This name should be unique to the project.

If the name is already in use in the project, you should use the overwrite query parameter
in this call to force any item with that name to be deleted before the alias is created. If
name is omitted, the alias name will default to the last segment of the complete location
(including the prefix) on the volume.

Segments are considered to be separated with forward slashes /. Allowed characters in
file names are all alphanumeric and special characters except forward slash /, while folder
names can contain alphanumeric and special characters _, - and ..

overwrite Set to TRUE if you want to overwrite the item if another one with the same name
already exists at the destination. Bear in mind that if used with folders import, the folder’s
content (files with the same name) will be overwritten, not the whole folder.

autorename Set to TRUE if you want to automatically rename the item (by prefixing its name
with an underscore and number) if another one with the same name already exists at the des-
tination. Bear in mind that if used with folders import, the folder content will be renamed,
not the whole folder.

174 VolumeFile

... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Import object.

Examples:

\dontrun{
x is API response when volume file is requested
volume_file_object <- VolumeFile$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Import volume file object
volume_file_object$import(destination_project = destination_project)

}

Method clone(): The objects of this class are cloneable with this method.

Usage:
VolumeFile$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

--
Method `VolumeFile$print`
--

Not run:
x is API response when volume file is requested
volume_file_object <- VolumeFile$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Print volume file object
volume_file_object$print()

End(Not run)

--
Method `VolumeFile$reload`
--

VolumePrefix 175

Not run:
x is API response when volume file is requested
volume_file_object <- VolumeFile$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Reload volume file object
volume_file_object$reload()

End(Not run)

--
Method `VolumeFile$import`
--

Not run:
x is API response when volume file is requested
volume_file_object <- VolumeFile$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Import volume file object
volume_file_object$import(destination_project = destination_project)

End(Not run)

VolumePrefix R6 Class representing a VolumePrefix

Description

R6 Class representing a resource for managing VolumePrefix objects.

Super class

sevenbridges2::Item -> VolumePrefix

Public fields

URL List of URL endpoints for this resource.

prefix File/prefix name on the volume.

volume Volume id.

176 VolumePrefix

Methods

Public methods:
• VolumePrefix$new()

• VolumePrefix$print()

• VolumePrefix$reload()

• VolumePrefix$list_contents()

• VolumePrefix$import()

• VolumePrefix$clone()

Method new(): Create a new VolumePrefix object.

Usage:
VolumePrefix$new(res = NA, ...)

Arguments:

res Response containing VolumePrefix object info.
... Other response arguments.

Method print(): Print method for VolumePrefix class.

Usage:
VolumePrefix$print()

Examples:

\dontrun{
x is API response when volume prefix is requested
volume_prefix_object <- VolumePrefix$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Print volume prefix object
volume_prefix_object$print()

}

Method reload(): Reload VolumePrefix object information.

Usage:
VolumePrefix$reload()

Examples:

\dontrun{
x is API response when volume prefix is requested
volume_prefix_object <- VolumePrefix$new(

res = x,
href = x$href,
auth = auth,

VolumePrefix 177

response = attr(x, "response")
)

Reload volume prefix object
volume_prefix_object$reload()

}

Method list_contents(): List volume folder contents. This call lists the contents of a specific
volume folder.

Usage:
VolumePrefix$list_contents(
limit = getOption("sevenbridges2")$limit,
continuation_token = NULL,
...

)

Arguments:
limit The maximum number of collection items to return for a single request. Minimum value

is 1. The maximum value is 100 and the default value is 50. This is a pagination-specific
attribute.

continuation_token Continuation token received to use for next chunk of results. Behaves
similarly like offset parameter.

... Other arguments that can be passed to core api() function, like ’fields’ for example. With
fields parameter you can specify a subset of fields to include in the response. You can use:
href, location, volume, type, metadata, _all. Default: _all.

Returns: VolumeContentCollection object containing list of VolumeFile and VolumePrefix
objects.

Examples:
\dontrun{
x is API response when volume prefix is requested
volume_prefix_object <- VolumePrefix$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

List volume prefix object contents
volume_prefix_object$list_contents()

}

Method import(): This call lets you queue a job to import this file or folder from a volume into
a project on the Platform.
Essentially, you are importing an item from your cloud storage provider (Amazon Web Services,
Google Cloud Storage, Azure or Ali Cloud) via the volume onto the Platform.
If successful, an alias will be created on the Platform. Aliases appear on the Platform and can

178 VolumePrefix

be copied, executed, and modified as such. They refer back to the respective item on the given
volume.

Usage:
VolumePrefix$import(
destination_project = NULL,
destination_parent = NULL,
name = NULL,
overwrite = FALSE,
autorename = FALSE,
preserve_folder_structure = NULL,
...

)

Arguments:
destination_project String destination project id or Project object. Not required, but either

destination_project or destination_parent directory must be provided.
destination_parent String folder id or File object (with type = 'FOLDER'). Not required, but

either destination_project or destination_parent directory must be provided.
name The name of the alias to create. This name should be unique to the project. If the name is

already in use in the project, you should use the overwrite query parameter in this call to
force any item with that name to be deleted before the alias is created. If name is omitted,
the alias name will default to the last segment of the complete location (including the prefix)
on the volume.

Segments are considered to be separated with forward slashes /. Allowed characters in
file names are all alphanumeric and special characters except forward slash /, while folder
names can contain alphanumeric and special characters _, - and ..

overwrite Set to TRUE if you want to overwrite the item if another one with the same name
already exists at the destination. Bear in mind that if used with folders import, the folder’s
content (files with the same name) will be overwritten, not the whole folder.

autorename Set to TRUE if you want to automatically rename the item (by prefixing its name
with an underscore and number) if another one with the same name already exists at the des-
tination. Bear in mind that if used with folders import, the folder content will be renamed,
not the whole folder.

preserve_folder_structure Set to TRUE if you want to keep the exact source folder struc-
ture. The default value is TRUE if the item being imported is a folder. Should not be used
if you are importing a file. Bear in mind that if you use preserve_folder_structure =
FALSE, that the response will be the parent folder object containing imported files alongside
with other files if they exist.

... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Import object.

Examples:
\dontrun{
x is API response when volume prefix is requested
volume_prefix_object <- VolumePrefix$new(

res = x,
href = x$href,

VolumePrefix 179

auth = auth,
response = attr(x, "response")

)

List volume prefix object contents
volume_prefix_object$import(destination_project = destination_project)

}

Method clone(): The objects of this class are cloneable with this method.

Usage:
VolumePrefix$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Examples

--
Method `VolumePrefix$print`
--

Not run:
x is API response when volume prefix is requested
volume_prefix_object <- VolumePrefix$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Print volume prefix object
volume_prefix_object$print()

End(Not run)

--
Method `VolumePrefix$reload`
--

Not run:
x is API response when volume prefix is requested
volume_prefix_object <- VolumePrefix$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Reload volume prefix object

180 Volumes

volume_prefix_object$reload()

End(Not run)

--
Method `VolumePrefix$list_contents`
--

Not run:
x is API response when volume prefix is requested
volume_prefix_object <- VolumePrefix$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

List volume prefix object contents
volume_prefix_object$list_contents()

End(Not run)

--
Method `VolumePrefix$import`
--

Not run:
x is API response when volume prefix is requested
volume_prefix_object <- VolumePrefix$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

List volume prefix object contents
volume_prefix_object$import(destination_project = destination_project)

End(Not run)

Volumes R6 Class representing volumes endpoints

Description

R6 Class representing volumes resource endpoints.

Volumes 181

Super class

sevenbridges2::Resource -> Volumes

Public fields

URL List of URL endpoints for this resource.

Methods

Public methods:

• Volumes$new()

• Volumes$query()

• Volumes$get()

• Volumes$delete()

• Volumes$create_s3_using_iam_user()

• Volumes$create_s3_using_iam_role()

• Volumes$create_google_using_iam_user()

• Volumes$create_google_using_iam_role()

• Volumes$create_azure()

• Volumes$create_ali_oss()

• Volumes$clone()

Method new(): Create a new Volumes object.

Usage:
Volumes$new(...)

Arguments:

... Other response arguments.

Method query(): This call lists all the volumes you’ve registered.

Usage:
Volumes$query(...)

Arguments:

... Other arguments that can be passed to core api() function like ’limit’, ’offset’, ’fields’,
etc.

Returns: Collection of Volume objects.

Examples:

\dontrun{
volumes_object <- Volumes$new(auth = auth)

Query volumes
volumes_object$query()

}

182 Volumes

Method get(): This call returns details of the specified volume. The volume is referred to by
its ID, which you can obtain by making the call to list all the volumes you’ve registered.

Usage:
Volumes$get(id)

Arguments:
id The Volume ID consists of volume owner’s name (for enterprise users) and volume name

in form {volume_owner}/{volume_name}, or division name (if user belongs to some divi-
sion) and volume name in form {division}/{volume_name}. You can also get the Volume
ID for a volume by making the call to list all volumes you’ve registered.

Returns: Volume object.

Examples:
\dontrun{
volumes_object <- Volumes$new(auth = auth)

Get volumes
volumes_object$get(id = id)

}

Method delete(): This call deletes a volume you’ve created to refer to storage on Amazon Web
Services or Google Cloud Storage. To be able to delete a volume, you first need to deactivate it
and then delete all files on the Platform that were previously imported from the volume.
Volumes are specified by their IDs, which you can obtain by using Volumes$query() to list files
or by getting a single file using Volumes$get().

Usage:
Volumes$delete(volume, ...)

Arguments:
volume Volume object or volume ID.
... Other arguments that can be passed to core api() function as ’fields’, etc.

Examples:
\dontrun{
volumes_object <- Volumes$new(auth = auth)

Get volumes
volumes_object$delete(volume = volume)

}

Method create_s3_using_iam_user(): Create new volume to connect to your s3 bucket on
AWS cloud. Volumes authorize the Platform to access and query objects on a specified cloud
storage (Amazon Web Services, Google Cloud Storage, Azure or Ali cloud) on your behalf. This
function uses IAM User credentials to connect to your s3 bucket.

Read more about volume creation in our API documentation.

https://docs.sevenbridges.com/reference/create-a-volume-v2

Volumes 183

Usage:
Volumes$create_s3_using_iam_user(
name = NULL,
access_mode = "RW",
description = NULL,
prefix = NULL,
bucket = NULL,
endpoint = "s3.amazonaws.com",
access_key_id = NULL,
secret_access_key = NULL,
properties = list(sse_algorithm = "AES256"),
from_path = NULL

)

Arguments:

name The name of the volume. It must be unique from all other volumes for this user. Required
if from_path parameter is not provided.

access_mode Signifies whether this volume should be used for read-write (RW) or read-only
(RO) operations. The access mode is consulted independently of the credentials granted to
Seven Bridges when the volume was created, so it is possible to use a read-write credentials
to register both read-write and read-only volumes using it. Default: "RW".

description An optional description of this volume.
prefix A service-specific string prefix to append to all objects created in this volume. If the

service supports folders, and this prefix includes them, the API will attempt to create any
missing folders when it outputs a file.

bucket The name of the AWS S3 bucket you wish to register as a volume.
Required if from_path parameter is not provided.

endpoint AWS API endpoint to use when accessing this bucket. Default: s3.amazonaws.com.
access_key_id AWS access key ID in form of string of the IAM user shared with Seven

Bridges to access this bucket. Required if from_path parameter is not provided.
secret_access_key AWS secret access key in form of string of the IAM user shared with

Seven Bridges to access this bucket. Required if from_path parameter is not provided.
properties Named list containing the properties of a specific service. These values set the

defaults for operations performed with this volume. Individual operations can override
these defaults by providing a custom properties object. For AWS S3, there are:
• sse_algorithm - S3 server-side encryption to use when exporting to this bucket. Sup-

ported values: AES256 (SSE-S3 encryption), aws:kms, null (no server-side encryption).
Default: AES256.

• sse_aws_kms_key_id: Applies to type: s3. If AWS KMS encryption is used, this should
be set to the required KMS key. If not set and aws:kms is set as sse_algorithm, default
KMS key is used.

• aws_canned_acl: S3 canned ACL to apply on the object on during export. Supported
values: any one of S3 canned ACLs; null (do not apply canned ACLs). Default: null.

from_path Path to JSON configuration file containing all required information for registering
a volume. If provided, it will overwrite all previous parameters set.

Returns: Volume object.

https://docs.aws.amazon.com/AmazonS3/latest/userguide/acl-overview.html#canned-acl

184 Volumes

Examples:
\dontrun{
volumes_object <- Volumes$new(auth = auth)

Create new AWS Volume (IAM User)
aws_iam_user_volume <- volumes_object$create_s3_using_iam_user(

name = "my_new_aws_user_volume",
bucket = "<bucket-name>",
description = "AWS IAM User Vol",
access_key_id = "<access-key>",
secret_access_key = "<secret-access-key>"

)
}

Method create_s3_using_iam_role(): Create new volume to connect to your s3 bucket on
AWS cloud. Volumes authorize the Platform to access and query objects on a specified cloud
storage (Amazon Web Services, Google Cloud Storage, Azure or Ali cloud) on your behalf. This
function uses IAM Role credentials to connect to your s3 bucket. In order to use these credentials,
user must have specific user tag enabled by Support team.

Read more about volume creation in our API documentation.

Usage:
Volumes$create_s3_using_iam_role(
name = NULL,
access_mode = "RW",
description = NULL,
prefix = NULL,
bucket = NULL,
endpoint = "s3.amazonaws.com",
role_arn = NULL,
external_id = NULL,
properties = list(sse_algorithm = "AES256"),
from_path = NULL

)

Arguments:
name The name of the volume. It must be unique from all other volumes for this user. Required

if from_path parameter is not provided.
access_mode Signifies whether this volume should be used for read-write (RW) or read-only

(RO) operations. The access mode is consulted independently of the credentials granted to
Seven Bridges when the volume was created, so it is possible to use a read-write credentials
to register both read-write and read-only volumes using it. Default: "RW".

description An optional description of this volume.
prefix A service-specific string prefix to append to all objects created in this volume. If the

service supports folders, and this prefix includes them, the API will attempt to create any
missing folders when it outputs a file.

https://docs.sevenbridges.com/reference/create-a-volume-v2

Volumes 185

bucket The name of the AWS S3 bucket you wish to register as a volume.
Required if from_path parameter is not provided.

endpoint AWS API endpoint to use when accessing this bucket. Default: s3.amazonaws.com.
role_arn The ARN (Amazon Resource Name) of your role that is used to connect your S3

bucket. Required if from_path parameter is not provided.
external_id Optional information that you can use in an IAM role trust policy to designate

who can assume the role. Must be provided if it is configured in your role trust policy on
AWS. Required if from_path parameter is not provided.

properties Named list containing the properties of a specific service. These values set the
defaults for operations performed with this volume. Individual operations can override
these defaults by providing a custom properties object. For AWS S3, there are:
• sse_algorithm - S3 server-side encryption to use when exporting to this bucket. Sup-

ported values: AES256 (SSE-S3 encryption), aws:kms, null (no server-side encryption).
Default: AES256.

• sse_aws_kms_key_id: Applies to type: s3. If AWS KMS encryption is used, this should
be set to the required KMS key. If not set and aws:kms is set as sse_algorithm, default
KMS key is used.

• aws_canned_acl: S3 canned ACL to apply on the object on during export. Supported
values: any one of S3 canned ACLs; null (do not apply canned ACLs). Default: null.

from_path Path to JSON configuration file containing all required information for registering
a volume. If provided, it will overwrite all previous parameters set.

Returns: Volume object.

Examples:

\dontrun{
volumes_object <- Volumes$new(auth = auth)

Create new AWS Volume (IAM Role)
aws_iam_role_volume <- volumes_object$create_s3_using_iam_role(

name = "my_new_aws_user_volume",
bucket = "<bucket-name>",
description = "AWS IAM Role Vol",
role_arn = "<role-arn-key>",
external_id = "<external-id>"

)
}

Method create_google_using_iam_user(): Create new volume to connect to your bucket
on GCS. Volumes authorize the Platform to access and query objects on a specified cloud storage
(Amazon Web Services, Google Cloud Storage, Azure or Ali cloud) on your behalf. This function
uses IAM User credentials to connect with your GCS bucket.

Read more about volume creations in our API documentation.

Usage:
Volumes$create_google_using_iam_user(
name = NULL,

https://docs.aws.amazon.com/AmazonS3/latest/userguide/acl-overview.html#canned-acl
https://docs.sevenbridges.com/reference/create-a-volume-v2

186 Volumes

access_mode = "RW",
description = NULL,
prefix = NULL,
bucket = NULL,
root_url = "https://www.googleapis.com",
client_email = NULL,
private_key = NULL,
properties = NULL,
from_path = NULL

)

Arguments:
name The name of the volume. It must be unique from all other volumes for this user. Required

if from_path parameter is not provided.
access_mode Signifies whether this volume should be used for read-write (RW) or read-only

(RO) operations. The access mode is consulted independently of the credentials granted to
Seven Bridges when the volume was created, so it is possible to use a read-write credentials
to register both read-write and read-only volumes using it. Default: "RW".

description An optional description of this volume.
prefix A service-specific string prefix to append to all objects created in this volume. If the

service supports folders, and this prefix includes them, the API will attempt to create any
missing folders when it outputs a file.

bucket The name of the GCS bucket you wish to register as a volume. Required if from_path
parameter is not provided.

root_url Google Cloud Storage API endpoint for accessing this bucket.
Default: https://www.googleapis.com.

client_email The client email address for the Google Cloud service account to use for op-
erations on this bucket. This can be found in the JSON containing your service account
credentials. Required if from_path parameter is not provided.

private_key Google Cloud Platform private key. Required if from_path parameter is not
provided.

properties Named list containing the properties of a specific service. These values set the
defaults for operations performed with this volume. Individual operations can override
these defaults by providing a custom properties object.

from_path Path to JSON configuration file containing all required information for registering
a volume. If provided, it will overwrite all previous parameters set.

Returns: Volume object.

Examples:
\dontrun{
volumes_object <- Volumes$new(auth = auth)

Create Google cloud volume using IAM User authentication type
gc_iam_user_volume <- volumes_object$create_google_using_iam_user(

name = "my_new_gc_user_volume",
access_mode = "RW",
bucket = "<bucket-name>",
description = "GC IAM User volume",

Volumes 187

client_email = "<client_email>",
private_key = "<private_key-string>"

)
}

Method create_google_using_iam_role(): Create new volume to connect to your bucket
on GCS. Volumes authorize the Platform to access and query objects on a specified cloud storage
(Amazon Web Services, Google Cloud Storage, Azure or Ali cloud) on your behalf. This function
uses IAM Role credentials to connect to your GCS bucket. In order to use these credentials, user
must have specific user tag enabled by Support team.

Read more about volume creations in our API documentation.

Usage:
Volumes$create_google_using_iam_role(
name = NULL,
access_mode = "RW",
description = NULL,
prefix = NULL,
bucket = NULL,
root_url = "https://www.googleapis.com",
configuration = NULL,
properties = NULL,
from_path = NULL

)

Arguments:

name The name of the volume. It must be unique from all other volumes for this user. Required
if from_path parameter is not provided.

access_mode Signifies whether this volume should be used for read-write (RW) or read-only
(RO) operations. The access mode is consulted independently of the credentials granted to
Seven Bridges when the volume was created, so it is possible to use a read-write credentials
to register both read-write and read-only volumes using it. Default: "RW".

description An optional description of this volume.
prefix A service-specific string prefix to append to all objects created in this volume. If the

service supports folders, and this prefix includes them, the API will attempt to create any
missing folders when it outputs a file.

bucket The name of the GCS bucket you wish to register as a volume. Required if from_path
parameter is not provided.

root_url Google Cloud Storage API endpoint for accessing this bucket.
Default: https://www.googleapis.com.

configuration Connection configuration parameters in JSON format downloaded from the
Google Cloud Console once prerequisites have been set up. Could be provided as a named
list, or as path to the downloaded JSON file.

properties Named list containing the properties of a specific service. These values set the
defaults for operations performed with this volume. Individual operations can override
these defaults by providing a custom properties object.

https://docs.sevenbridges.com/reference/create-a-volume-v2

188 Volumes

from_path Path to JSON configuration file containing all required information for registering
a volume. If provided, it will overwrite all previous parameters set.

Returns: Volume object.

Examples:

\dontrun{
volumes_object <- Volumes$new(auth = auth)

Create Google cloud volume using IAM User authentication type
gc_iam_role_volume <- volumes_object$create_google_using_iam_role(

name = "my_new_gc_role_volume",
access_mode = "RO",
bucket = "<bucket-name>",
description = "GC IAM Role volume",
configuration = list(

type = "<type-name>",
audience = "<audience-link>",
subject_token_type = "<subject_token_type>",

service_account_impersonation_url = "<service_account_impersonation_url>",
token_url = "<token_url>",
credential_source = list(

environment_id = "<environment_id>",
region_url = "<region_url>",
url = "<url>",

regional_cred_verification_url = "<regional_cred_verification_url>"
)

)
)

}

Method create_azure(): This call creates a new volume by attaching a Microsoft Azure
storage container to the Platform.

Usage:
Volumes$create_azure(
name = NULL,
description = NULL,
endpoint = NULL,
storage_account = NULL,
container = NULL,
prefix = NULL,
tenant_id = NULL,
client_id = NULL,
client_secret = NULL,
resource_id = NULL,
from_path = NULL

)

Arguments:

Volumes 189

name The name of the volume. It must be unique from all other volumes for this user. Required
if from_path parameter is not provided.

description An optional description of this volume.
endpoint Specify a Microsoft Azure endpoint, only if you are using an endpoint that is dif-

ferent from the default one https://(serviceaccount).blob.core.windows.net. To
make a non-default endpoint work with the Platform, please first make sure it is supported
by Seven Bridges.

storage_account The name of the storage account that holds the container you want to attach
as a volume.

container The name of the container that you want to attach as a Volume.
prefix A service-specific string prefix to append to all objects created in this volume. If the

service supports folders, and this prefix includes them, the API will attempt to create any
missing folders when it outputs a file.

tenant_id Directory (tenant) ID of the application you created on the Azure Portal for the
purpose of attaching your storage container.

client_id Application (client) ID of the application you created on the Azure Portal for the
purpose of attaching your storage container.

client_secret Value of the client secret you created on the Azure Portal for the purpose of
attaching your storage container.

resource_id Resource ID of the Azure storage account. To get it, go to the Azure Portal, open
the storage account’s Overview page and click JSON View.

from_path JSON configuration file containing all required information for registering a vol-
ume.

Returns: Volume object.

Examples:

\dontrun{
volumes_object <- Volumes$new(auth = auth)

Create Azure volume
azure_volume <- volumes_object$create_azure(
name = "my_new_azure_volume",
description = "Azure volume",
endpoint = "<endpoint>",
container = "<bucket-name",
storage_account = "<storage_account-name>",
tenant_id = "<tenant_id>",
client_id = "<client_id>",
client_secret = "<client_secret>",
resource_id = "<resource_id>"

)
}

Method create_ali_oss(): Create new volume to connect to your bucket on ALI (OSS)
platform.

Usage:

https://portal.azure.com/

190 Volumes

Volumes$create_ali_oss(
name = NULL,
description = NULL,
endpoint = NULL,
bucket = NULL,
prefix = NULL,
access_key_id = NULL,
secret_access_key = NULL,
properties = NULL,
from_path = NULL

)

Arguments:
name The name of the volume. It must be unique from all other volumes for this user. Required

if from_path parameter is not provided.
description An optional description of this volume.
endpoint Specify an Ali Cloud endpoint.
bucket The name of the ALI(OSS) bucket you wish to register as a volume. Required if

from_path parameter is not provided.
prefix A service-specific string prefix to append to all objects created in this volume. If the

service supports folders, and this prefix includes them, the API will attempt to create any
missing folders when it outputs a file.

access_key_id ALI(OSS) access key ID of the user shared with Seven Bridges to access this
bucket. Required if from_path parameter is not provided.

secret_access_key ALI(OSS) secret access key of the user shared with Seven Bridges to
access this bucket. Required if from_path parameter is not provided.

properties Named list containing the properties of a specific service. These values set the
defaults for operations performed with this volume. Individual operations can override
these defaults by providing a custom properties object.

from_path JSON configuration file containing all required information for registering a vol-
ume.

Returns: Volume object.

Examples:
\dontrun{
volumes_object <- Volumes$new(auth = auth)

Create Ali cloud volume
ali_volume <- volumes_object$create_ali_oss(
name = "my_new_azure_volume",
description = "Ali volume",
endpoint = "<endpoint>",
bucket = "<bucket-name",
access_key_id = "<access_key_id>",
secret_access_key = "<secret_access_key>"
)

}

Volumes 191

Method clone(): The objects of this class are cloneable with this method.

Usage:
Volumes$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

--
Method `Volumes$query`
--

Not run:
volumes_object <- Volumes$new(auth = auth)

Query volumes
volumes_object$query()

End(Not run)

--
Method `Volumes$get`
--

Not run:
volumes_object <- Volumes$new(auth = auth)

Get volumes
volumes_object$get(id = id)

End(Not run)

--
Method `Volumes$delete`
--

Not run:
volumes_object <- Volumes$new(auth = auth)

Get volumes
volumes_object$delete(volume = volume)

End(Not run)

--
Method `Volumes$create_s3_using_iam_user`
--

192 Volumes

Not run:
volumes_object <- Volumes$new(auth = auth)

Create new AWS Volume (IAM User)
aws_iam_user_volume <- volumes_object$create_s3_using_iam_user(

name = "my_new_aws_user_volume",
bucket = "<bucket-name>",
description = "AWS IAM User Vol",
access_key_id = "<access-key>",
secret_access_key = "<secret-access-key>"

)

End(Not run)

--
Method `Volumes$create_s3_using_iam_role`
--

Not run:
volumes_object <- Volumes$new(auth = auth)

Create new AWS Volume (IAM Role)
aws_iam_role_volume <- volumes_object$create_s3_using_iam_role(

name = "my_new_aws_user_volume",
bucket = "<bucket-name>",
description = "AWS IAM Role Vol",
role_arn = "<role-arn-key>",
external_id = "<external-id>"

)

End(Not run)

--
Method `Volumes$create_google_using_iam_user`
--

Not run:
volumes_object <- Volumes$new(auth = auth)

Create Google cloud volume using IAM User authentication type
gc_iam_user_volume <- volumes_object$create_google_using_iam_user(

name = "my_new_gc_user_volume",
access_mode = "RW",
bucket = "<bucket-name>",
description = "GC IAM User volume",
client_email = "<client_email>",
private_key = "<private_key-string>"

)

End(Not run)

Volumes 193

--
Method `Volumes$create_google_using_iam_role`
--

Not run:
volumes_object <- Volumes$new(auth = auth)

Create Google cloud volume using IAM User authentication type
gc_iam_role_volume <- volumes_object$create_google_using_iam_role(

name = "my_new_gc_role_volume",
access_mode = "RO",
bucket = "<bucket-name>",
description = "GC IAM Role volume",
configuration = list(

type = "<type-name>",
audience = "<audience-link>",
subject_token_type = "<subject_token_type>",
service_account_impersonation_url = "<service_account_impersonation_url>",
token_url = "<token_url>",
credential_source = list(

environment_id = "<environment_id>",
region_url = "<region_url>",
url = "<url>",
regional_cred_verification_url = "<regional_cred_verification_url>"

)
)

)

End(Not run)

--
Method `Volumes$create_azure`
--

Not run:
volumes_object <- Volumes$new(auth = auth)

Create Azure volume
azure_volume <- volumes_object$create_azure(
name = "my_new_azure_volume",
description = "Azure volume",
endpoint = "<endpoint>",
container = "<bucket-name",
storage_account = "<storage_account-name>",
tenant_id = "<tenant_id>",
client_id = "<client_id>",
client_secret = "<client_secret>",
resource_id = "<resource_id>"

)

194 Volumes

End(Not run)

--
Method `Volumes$create_ali_oss`
--

Not run:
volumes_object <- Volumes$new(auth = auth)

Create Ali cloud volume
ali_volume <- volumes_object$create_ali_oss(

name = "my_new_azure_volume",
description = "Ali volume",
endpoint = "<endpoint>",
bucket = "<bucket-name",
access_key_id = "<access_key_id>",
secret_access_key = "<secret_access_key>"
)

End(Not run)

Index

api, 2
App, 4, 6–8, 15–18, 104, 105
Apps, 14
Auth, 19

Billing, 30, 31, 37
Billing_groups, 36

Collection, 15, 37, 39, 47, 58, 67, 75, 82, 99,
102, 104, 106, 107, 118, 131, 140,
156, 160, 161, 181

Export, 43, 45, 47–49, 60, 161
Exports, 46

File, 51, 53–55, 57, 58, 67, 68, 102, 103, 146
Files, 66

httr::upload_file(), 3

Import, 71, 73, 75–77, 107, 160, 174, 178
Imports, 74
Invoice, 79, 80, 82, 83
Invoices, 81
Item, 84

Member, 85, 99, 101, 156–158

Part, 87
Permission, 91, 101, 159
Project, 94, 118–120
Projects, 117

Rate, 122
Resource, 123

sevenbridges2::Collection, 167
sevenbridges2::Item, 4, 30, 44, 51, 71, 79,

85, 91, 94, 122, 124, 149, 150, 171,
175

sevenbridges2::Resource, 14, 36, 46, 66,
74, 81, 117, 139, 181

Task, 11, 106, 110, 124, 127, 128, 131, 132,
134, 140, 141, 143

Tasks, 138

Upload, 144
User, 149, 150

Volume, 150, 152–154, 181–183, 185, 186,
188–190

VolumeContentCollection, 155, 167, 177
VolumeFile, 155, 156, 171, 172, 177
VolumePrefix, 155, 175, 177
Volumes, 180

195

	api
	App
	Apps
	Auth
	Billing
	Billing_groups
	Collection
	Export
	Exports
	File
	Files
	Import
	Imports
	Invoice
	Invoices
	Item
	Member
	Part
	Permission
	Project
	Projects
	Rate
	Resource
	Task
	Tasks
	Upload
	User
	Volume
	VolumeContentCollection
	VolumeFile
	VolumePrefix
	Volumes
	Index

