sensobol: an R package to compute variance-based
sensitivity indices

Arnald Puy
Ecology and Evolutionary Biology,
Princeton University

Samuele Lo Piano Andrea Saltelli Simon A. Levin
School of the Built Environment Open Evidence Research Ecology and Evolutionary Biology,
University of Reading Universitat Oberta de Catalunya Princeton University

Abstract

The R package sensobol provides several functions to conduct variance-based uncer-
tainty and sensitivity analysis, from the estimation of sensitivity indices to the visual
representation of the results. It implements several state-of-the-art first and total-order
estimators and allows the computation of up to third-order effects, as well as of the ap-
proximation error, in a swift and user-friendly way. Its flexibility makes it also appropriate
for models with either a scalar or a multivariate output. We illustrate its functionality by
conducting a variance-based sensitivity analysis of three classic models: the Sobol’ (1998)
G function, the logistic population growth model of Verhulst (1845), and the spruce bud-
worm and forest model of Ludwig, Jones, and Holling (1976).

Keywords: R, Uncertainty, Sensitivity Analysis, Modeling.

1. Introduction

It has been argued that any form of knowledge based on mathematical modeling is conditional
on a set, perhaps a hierarchy, of either stated or unspoken assumptions (Kay 2012; Saltelli,
Bammer, Bruno, Charters, Di Fiore, Didier, Nelson Espeland, Kay, Lo Piano, Mayo, Pielke
Jr, Portaluri, Porter, Puy, Rafols, Ravetz, Reinert, Sarewitz, Stark, Stirling, van der Sluijs,
and Vineis 2020). Such assumptions range from the choice of the data and of the methods
to the framing of the problem, including normative elements that identify the nature and
the relevance of the problem itself. This conditional uncertainty is a property of the model
and not of the reality that the model has the ambition to depict. Yet it affects the model
output and hence any model-based inference aiming at guiding policies in the “real world”.
Identifying and understanding this conditional uncertainty is especially paramount when the
model output serves to inform a political decision, and boils down to answering two classes
of questions:

e How uncertain is the the inference? Is this uncertainty compatible with the taking of
a decision based on the model otcomes? Given the uncertainty, are the policy options

2 sensobol: variance-based sensitivity indices

distinguishable in their outcome?

e Which factor is dominating this uncertainty? Is this uncertainty reducible, e.g., with
more data or deeper research? Are there a few dominating factors or is the uncertainty
originating from several factors? Do the factors act singularly or in combination with
one another?

The second class of questions is the realm of global sensitivity analysis, which aims to offer a
diagnosis as to the composition of the uncertainty affecting the model output, and hence the
model based inference (Saltelli, Andres, and Homma 1993; Homma and Saltelli 1996a; Saltelli,
Ratto, Andres, Campolongo, Cariboni, Gatelli, Saisana, and Tarantola 2008). In helping to
appreciate the extent and the nature of the problems linked to the use of a given model in a
practical setting, global sensitivity analysis can be considered as a tool for the hermeneutics
of mathematical modeling.

Global sensitivity analysis is well represented in international guidelines for impact assessment
(Azzini, Listorti, Mara, and Rosati 2020a; Gilbertson 2018), as well as in many disciplinary
journals (Jakeman, Letcher, and Norton 2006; Puy, Lo Piano, and Saltelli 2020c). However,
the uptake of state-of-the-art global sensitivity analysis tools is still in its infancy. Most studies
continue to prioritize local sensitivity or one-at-a-time analyses, which explore how the model
output changes when one factor is varied and the rest is kept fixed at their nominal values
(Saltelli, Aleksankina, Becker, Fennell, Ferretti, Holst, Li, and Wu 2019). This approach
underexplores the input space and can not appraise interactions between factors, which are
ubiquitous in many models. Some reasons behind the scarce use of global sensitivity analysis
methods are lack of technical skills or resources available, unawareness of global sensitivity
methods or simply reluctance due to their “destructive honesty”: if applied properly, the
uncertainty uncovered by a global sensitivity analysis might be so wide as to render the
model largely impractical for policy-making (Leamer 2010; Saltelli et al. 2019).

This notwithstanding, there seems to be a progressive increase in the use of global sensitivity
methods from 2005 onwards (Ferretti, Saltelli, and Tarantola 2016), as well as a higher ac-
knowledgment of them being the ultimate acid test for the quality of any mathematical model.
Recently, global sensitivity analysis has been identified as one of the most well-equipped scien-
tific toolkits to tackle “deep uncertainty” (Steinmann, Wang, van Voorn, and Kwakkel 2020),
and a multidisciplinary team of scholars lists it as one of the five cornerstones of responsible
mathematical modeling (Saltelli et al. 2020).

1.1. Sensitivity analysis packages in R and beyond

The sparse uptake of global sensitivity methods contrasts with the many packages available in
different languages. In Python there is the SALib package (Herman and Usher 2017), which
includes the Sobol’, Morris and the Fourier Amplitude Sensitivity Test (FAST) methods.
In MATLAB, the UQLab offers the Morris method, the Borgonovo (2007) indices, Sobol’
indices (with the Sobol’ and Janon estimators) and the Kucherenko indices (Marelli and
Sudret 2014). The SAFE package (Pianosi, Sarrazin, and Wagener 2015), developed originally
for MATLAB / Octave but with scripts available for R and Python, includes variance-based
analysis, elementary effects and the PAWN method (Pianosi and Wagener 2015).

To our knowledge, there are three packages on CRAN that implement global sensitivity anal-
ysis in R (R Core Team 2020): the multisensi package (Bidot, Lamboni, and Monod 2018),

Arnald Puy, Samuele Lo Piano, Andrea Saltelli, Simon A. Levin

specifically designed for models with a multivariate output; the fast package (Reusser D.
2015), which implements FAST (removed from CRAN on 29-08-2020); and the sensitivity
package (Iooss, Janon, Pujol, with contributions from Baptiste Broto, Boumhaout, Veiga,
Delage, Amri, Fruth, Gilquin, Guillaume, Le Gratiet, Lemaitre, Marrel, Meynaoui, Nelson,
Monari, Oomen, Rakovec, Ramos, Roustant, Song, Staum, Sueur, Touati, and Weber 2020),
the most comprehensive collection of functions in R for screening, global sensitivity analysis
and robustness analysis.

sensobol differs from these R packages by the following characteristics:

1. It offers a state-of-the-art compilation of variance-based sensitivity estimators. Variance-
based sensitivity analysis is regarded as the gold standard of global sensitivity methods.
In its current version, sensobol comprises four first-order and eight total-order variance-
based estimators, from the classic formulae of Sobol’ (1993) or Jansen (1999) to the more
recent contributions by Glen and Isaacs (2012), Razavi and Gupta (2016b,a) (VARS-
TO) or Azzini, Mara, and Rosati (2020b).

2. It is very flexible and user-friendly. There is only one function to compute Sobol’-
based sensitivity indices, sobol_indices(). Any first and total-order estimator can
be simultaneously feed into the function provided that the user correctly specifies the
sampling design (see Section 2.1). This contrasts with the sensitivity package (Iooss
et al. 2020), which keeps estimators compartmentalized in different functions and hence
prevents the user from combining them the way it better suits their needs. Furthermore,
the compatibility of sobol_indices() with the data.table syntax makes the calculation
of sensitivity indices for scalar outputs as easy as for multivariate outputs (see Section
3.3) (Dowle and Srinivasan 2019).

3. It permits the computation of up to third-order effects. Appraising high-order effects
is paramount when models are non-additive (see Section 2). Although the total-order
index already informs on whether a parameter is involved in interactions, sometimes
a more precise account of the nature of this interaction is needed. sensobol opens
the possibility to probe into these interactions through the computation of second and
third-order effects regardless of the selected estimator.

4. It offers publication-ready figures of the model output and sensitivity-related analysis.
sensobol relies on ggplot2 (Wickham 2016) and the grammar of graphics to yield high-
quality plots which can be easily modified by the user.

5. It is more efficient than current implementations of variance-based estimators in R.
Our benchmark of sensobol and sensitivity functions suggest that the former may be
approximately two times faster than the latter (See Annex, section 6.1).

The paper is organized as follows: in Section 2 we briefly describe variance-based sensitivity
analysis. In Section 3 we walk through three examples of models with different characteristics
and increasing complexity to show all the functionalities of sensobol. Finally, we summarize
the main contributions of the package in Section 4.

2. Variance-based sensitivity analysis

Variance-based sensitivity indices use the variance to describe the model output uncertainty.
Given a model of the form y = f(x), © = x1,22,...,7;,...,2x € RF, where y is a scalar

4 sensobol: variance-based sensitivity indices

output and zy, ...,z are k uncertain parameters described by probability distributions, the
analyst might be interested in assessing how sensitive y is to changes in x;. One way of
tackling this question is to check how much the variance in y decreases after fixing x; to its
“true” value z7, i.e., V(y|z; = x}). But the true value of z; is unknown, so instead of fixing it
to an arbitrary number, we take the mean of the variance of y after fixing x; to all its possible
values over its uncertainty range, while all other parameters are left to vary. This can be
expressed as Fg, [Vg...(y|z;)], where x; denotes all parameters-but-x; and E(.) and V(.) are
the mean and the variance operator respectively. E, Vg, (y|z;:)] < V(y), and in fact,

V(Y) = Vi, [Ba; (yli)] + B, Vi (yl2i)] (1)

where Vy, [Eqg._, (y|z;)] is known as the first-order effect of z;; and Ey; [Va_, (y|x;)] is the residual.
When a parameter is important in conditioning V' (y), Vz, [Ee., (y|zi)] is high.

To illustrate this property, let’s imagine we run a three-dimensional model, plot the model
output y against the range of values in z;, divide the latter in n bins and compute the mean
y in each bin. This is represented in Figure 1, with the red dots showing the mean in each
bin. The parameter whose mean y values vary the most has the highest direct influence in
the model output; in this case, this is clearly x;. This procedure applied over very small bins
is actually Vg, [Ex.,(y|zi)] and is the conditional variance of x; on V(y), V; (Saltelli et al.
2008). When x1,x2, ..., z) are independent parameters, V(y) can be decomposed as the sum
of all partial variances up to the k-th order, as

€I €I I3

9 | A
0.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.00
T

Figure 1: Scatterplot of y against x;, ¢ = 1,2,3. The red dots show the mean y value in
each bin (we have set the number of bins arbitrarely at 30), and N = 20, The model is
the polynomial function shown in Becker and Saltelli (2015), where y = 33:% + 2z120 — 273,
Ty ~ U (0, 1).

Viy) = ZW—FZZVZJ +..+Vig. ok, (2)
i=1

i i<J
where
Vi=Vy, [EmNi (ylwz)] Vij = Vzi@j [Emw‘,j (y‘xi’xj)]

- Vl"i [Em~i (y’xl)] (3)
- V:rj [Emwj (y|xj)]

Arnald Puy, Samuele Lo Piano, Andrea Saltelli, Simon A. Levin

Note that Equation 2 is akin to Sobol’ (1993)’s functional decomposition scheme:
F@)=fot+ > filz) + D fi@izy) + ...+ fro.wl@n, v, 20) (4)
i i <]

where

and therefore

Vi =V [fi(zs)] Vij =V [fij(@i, ;)] e (6)

Sobol’ (1993) indices are then calculated as

S — Vi L Vij
) Y Viy)

where S; is the first-order effect of x;, S;; is the second-order effect of (x;,x;) (formed by the
first order effect of z;, x; and their interaction), etc. S; (S;;) can thus be expressed as the
fractional reduction in the variance of y which will be obtained if x; (z;, ;) could be fixed. In
variance-based sensitivity analysis, S; is used to rank parameters given their contribution to
the model output uncertainty, a setting known as “factor prioritization’’ (Saltelli et al. 2008).

(7)

If we divide all terms in Equation 2 by V (y), we get

k
Z S; + Z Z Sij + ...+ Sl,Q,...,k =1. (8)
i=1

i 1<j

When Zle S; = 1, the model is additive, i.e., the variance of y can be fully decomposed
as the sum of first-order effects, meaning that there are no interaction between parameters.
However, this is rarely the case in real-life models, and first-order indices are usually not
enough to account for all the model output variance.

This is better demonstrated with the example displayed in Figure 2: x5 and z3 do not have
a first-order effect on y as V,, [Ex._.(y|z;)] = 0. However, and unlike z2, x3 does influence
y given the shape of the scatterplot, so it can not be an inconsequential parameter. Indeed,
x3 influences y through high-order effects, i.e., by interacting with some other parameter(s).
In this specific case, it is clear that z3 must interact with x; given that x5 is non-influential.
This notwithstanding, such appraisal of interactions can rarely be made through the visual
inspection of scatterplots alone, and often requires computing higher-order terms in Equation
8.

Since there are 2% — 1 terms in Equation 8, a model with 10 parameters will have 1023 terms,
making a full variance decomposition very arduous: just the computation of second-order
terms for this model would require estimating 45 indices.

To circumvent this issue, Homma and Saltelli (1996b) proposed to compute the total-order
index T;, which measures the first-order effect of x; jointly with its interactions with all the

6 sensobol: variance-based sensitivity indices

other parameters. In other words, T; includes all terms in Equation 2 with the index ¢, and
is computed as follows:

Ve, [Bo,(92~i)] _ B, [Vo, (y]2i)]
V(y) V(y) ’

For a three-dimensional model, the total-order index of x7 will thus be computed as 17 =
S1+ 51,2+ 51,3+ 51,2,3. Since T; = 0 indicates that x; does not convey any uncertainty to the
model output, the total-order index has been used to screen influential from non-influential
parameters, a setting known as “factor fixing’’ (Saltelli et al. 2008).

T,=1-— 9)

Figure 2: Scatterplot of y against x;, ¢ = 1,2,3. The red dots show the mean y value in
each bin (we have set the number of bins arbitrarely at 30), and N = 21, The model is the
Ishigami and Homma (1990) function.

2.1. Sampling design and sensitivity estimators

The computation of variance-based sensitivity indices requires two elements: 1) a sampling
design, i.e., a strategy to arrange the sample points into the multidimensional space of the
input factors, and 2) an estimator, i.e., a formula to compute the sensitivity measures (Lo
Piano, Ferretti, Puy, Albrecht, and Saltelli 2021). Both elements are inextricably intertwined:
the reliance on a given sampling design determines which estimators can be used, and the
other way around.

The package sensobol currently offers support for five first-order and eight total-order sensi-
tivity estimators, which rely on specific combinations of A, B, Ag) or BX) matrices (Tables
1-2). Estimator 9 in Table 2 is known as VARS-TO and requires a different sampling design
based on star-centers and cross-sections (Razavi and Gupta 2016a,b). We provide further in-
formation about VARS-TO in the Annex, section 6.2. All these estimators are sample-based
and hence sensobol does not include emulators or surrogate models.

How are these matrices formed, and why are they required? Let @ be a (N,2k) matrix
constructed using either random or quasi-random number generators, such as the Sobol’
(1967, 1976) sequence or a Latin Hypercube Sampling design (McKay, Beckman, and Conover
1979)). The A and the B matrices include respectively the leftmost and rightmost & columns

of the Q matrix. As for the Ag) (BS)) matrices, they are formed by all columns from the A
(B) matrix except the i-th, which comes from B (A) (Equation 10, Figure 3).

Arnald Puy, Samuele Lo Piano, Andrea Saltelli, Simon A. Levin

N© Estimator first Author
1 N ()Y _ 2
] EXem f(@)(vyf)%BA(>) iy "Sobol" Sobol’ (1993)
+ 20 F(B)o [F(AF)e— (A
2 ORISR)V[{y() 5 oS)] "saltelli" Saltelli, Annoni,
Azzini, Campo-
longo, Ratto, and
Tarantola (2010)
Vi) — sk SN (1B —faD),]
3 W)~ 2w Zvlv[g) S f(AE)] "jansen" Jansen (1999)
4 2Z’]Jvzl(f(Bf(“i))”7f(B)”)(f(A)”ff(Ag.))“) "azzini" Azzini et al.
S0 [(F(A) =T (B2 +(F(BY)u—1(AF))0)?] (2020D)

Table 1: First-order estimators included in sensobol (v1.0.1).

In these matrices each column is a model input and each row a sampling point. Any sampling
point in either A or B can be indicated as x,;, where v and i respectively index the row (from
1 to N) and the column (from 1 to k).

First and total-order effects are then calculated by averaging several elementary effects com-
puted rowwise: for S;, we need pairs of points where all factors but x; have different values

(i.e., Ay, (BX))U; or B,, (Ag))v), and for T; pairs of points where all factors except x; have
the same values (i.e., A,, (Ag))v; or By, (BS))U). The elementary effect for S; thus requires

moving from A, to (BS))U (or from B, to (Ag))v), therefore taking a step along x..;, whereby
the elementary effect for 7; involves moving from A, to (A%))U (or from B, to (BS))U), hence
moving along x; (Saltelli et al. 2010).

The function sobol_matrices() allows to create these sampling designs using either Sobol’
(1967, 1976) Quasi-Random Numbers (type = "QRN"), Latin Hypercube Sampling (type =
"LHS") or Random numbers (type = "R"). In Figure 3 we show how these sampling methods
differ in two dimensions. Comparatively, quasi-random numbers fill the input space quicker
and more evenly, leaving smaller unexplored volumes. However, random numbers might
provide more accurate sensitivity indices when the model under examination has important
high-order terms (Kucherenko, Feil, Shah, and Mauntz 2011). In addition, Latin Hyper-
cube Sampling might outperform quasi-random numbers for some specific function typologies
(Kucherenko, Delpuech, Iooss, and Tarantola 2015). In general, quasi-random numbers are
assumed to be the safest bet when selecting a sampling algorithm for a function of unknown
behavior, and are the default setting in sensobol.

8 sensobol: variance-based sensitivity indices

N°¢ Estimator total Author

& S [Fa) -]’

"jansen" Jansen (1999)

Viy) "
¥ st F(A) | F(A)u—f(AL o
2 N 2=)V{;) oI As)] "sobol" Sobol” (2001)
_ 1N (2)
3 V) -x Zu=1‘f((£v)f(AB vt f3 "homma" Homma and

Saltelli (1996b)

4 1. NI F(BL (B 1

15N fAR—12 saltelli Saltelli et al

(2008)
1 N (1Y _ 2
5 1 N 2=t f(A)”f(A’fi))” fo "janon" Janon, Klein,
L N fA2+f(ApHE
N rv—1 35— ——f% Lagnoux, Nodet,

and Prieur (2014)
Monod, Naud, and
Makowski (2006)

A)p—(f(A) A(i) — A(i) Y
6 1- ﬁZszl S0 >][f(o) (i)<f(5) >] "glen" Glen and Isaacs
SV [rag).] (2012)
N _ (%) _ (4)
7 1];\7:1[f(B)U f(BA)’U]2+[f((’3)’v f(Ag))v}2 "aZZini" AZZini 6t al.
> o=t [(A)u—F(B)o]2+[f(By) o—f(Ag)v]? (2020D)
EZ*NZ, [%*Ni(hi)]-&-Ez*Ni[Cz*Ni(hi)] See Annex,

Razavi and Gupta

V(y) i .
section 6.2 (2016b,a).

Table 2: Total-order estimators included in sensobol (v1.0.1).

Figure 4: Sampling methods. Each dot is a sampling point. N = 210,

Once the sampling design is set, the computation of Sobol’ indices is done with the function
sobol_indices(). The arguments first, total and matrices are set by default at first =
"saltelli", total = "jansen" and matrices = c("A", "B", "AB") following best prac-
tices in sensitivity analysis (Saltelli et al. 2010; Puy et al. 2020a). However, any combination

Arnald Puy, Samuele Lo Piano, Andrea Saltelli, Simon A. Levin

0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
0.75 0.25 075 025 0.75 0.25 0.75 0.25
Q= 0.25 0.75 025 075 0.25 0.75 0.25 0.75
0.38 0.38 0.62 0.12 0.88 0.88 0.12 0.62
0.88 0.88 0.12 0.62 0.38 0.38 0.62 0.12

0.50 0.50 0.50 0.50
0.75 0.25 0.75 0.25
Ag) = 0.25 0.75 0.25 0.75
0.88 0.38 0.62 0.12
0.38 0.88 0.12 0.62

0.50 0.50 050 0.50
0.75 025 0.75 0.25
AD = 025 015 025 075
0.38 0.88 0.62 0.12
0.88 0.38 0.12 0.62

0.50 0.50 0.50 0.50
0.75 025 0.75 0.25
BY=| 025 o 02 07
0.38 0.88 0.12 0.62
0.88 038 0.62 0.12

0.50 0.50 0.50 0.50
0.75 0.25 0.75 0.25
B® _

A~ 0.25 075 0.25 0.75
0.88 0.38 0.12 0.62
0.38 0.88 0.62 0.12

Figure 3: Example of the creation of an A and a B matrix, as well as Ag) and BS) matrices.
The Q matrix has been created with Sobol’ (1967, 1976) Quasi-Random Numbers, k = 4 and

N = 5. The figure is based on Puy et al. (2020a).

between all first and total-order estimators listed in Tables 1-2 is possible with the appro-

10 sensobol: variance-based sensitivity indices

priate sampling design (Table 3). If the analyst selects estimators whose combination do not
match the specific designs listed in Table 3, sobol_indices () will generate an error and urge
to revise the specifications. This would be the case, for instance, if the analyst sets first =
"sobol", total = "glen" and matrices = "c("A", "AB", "BA").

first total matrices N? model runs
IIjansenll
"sobol"
n 1t 11 = n
i’a € 1‘ "homma" C("A", "B", "AB") N(k+2)
jansen " "
janon
|Iglen||
"sobol" "saltelli" c("A", "B", "BA")]V(kﬁ—2)
"jansen"
"sobol"
IIhommall
"azzinill "jaIlOIl" C(“A", ||Bll’ IIABII’ |IBAII) 2N(k _l_ 1)
|Iglen||
"azzini"
"saltelli"
"saltelli"
LI n
|;]Sa:bsoe§| "gzzini" C("A" , ngn s "AB" , "BA") 2N(k, + 1)
"azzini"

Table 3: Available combinations of first and total-order estimators in sensobol (v1.0.1).

3. Usage

In this section we illustrate the functionality of sensobol through three different examples of
increasing complexity. Let us first load the required packages:

R> library("sensobol")
R> library("data.table")
R> library("ggplot2")

3.1. Example 1: The Sobol’ G function

In sensitivity analysis, the accuracy of sensitivity estimators is usually checked against test
functions for which the variance and the sensitivity indices can be expressed analytically.
sensobol includes five of these test functions: Ishigami and Homma (1990)’s, Sobol’ (1998)’s
(known as G function), Bratley, Fox, and Niederreiter (1992)’s, Bratley and Fox (1988)’s and
Oakley and O’Hagan (2004)’s, as well as Becker (2020)’s metafunction (Table 4).

Arnald Puy, Samuele Lo Piano, Andrea Saltelli, Simon A. Levin

In this first example we illustrate the functionality of semsobol with the Sobol’ G function,
one of the most used benchmark functions in sensitivity analysis (Lo Piano et al. 2021; Puy,
Lo Piano, and Saltelli 2020b; Saltelli et al. 2010). In its current implementation, the Sobol’
G is an eight-dimension function with S; > Sy > S3 > Sy and (Ss,...,S8) ~ 0 (Table
4, N° 2). With this parametrization the Sobol’ G function is a Type A function according
to Kucherenko et al. (2011)’s taxonomy (a function with few important factors and minor
interactions), with Type B and Type C functions designing those with equally important
parameters but with few and large interactions respectively.

We first define the settings of the uncertainty and sensitivity analysis: we set the sample size
N of the base sample matrix and the number of uncertain parameters k, and create a vector
with the parameters’ name. Since we will bootstrap the indices to get confidence intervals,
we also set the number of bootstrap replicas R and define the bootstrap confidence interval
method, which in this case will be the normal method. Finally, we set the confidence intervals
at 0.95:

N© Test function Author
o . . 2 4 .
1 y = sin(z1) + asin(xz)” + bzgsin(zy), Ishigami and
where a = 2,b =1 and (21, 22, 23) ~ U(—7,+) Homma (1990)
Hk |4.1‘i—2|+a2'
2 i=1 Tt Sobol’ (1998)

y =
where k =8, z; ~U(0,1) and a = (0,1,4.5,9,99, 99, 99, 99)

H .
3 y=>(-1) H;‘:l L

Bratl t l.
where x; ~ U(0,1) ey

(1992)

I 0 .
4 y =11y [42: — 2], Bratley and Fox
where x; ~ U(0,1) (1988)
y = alx + alsin(z) + alcos(z) + T M=,
5 where * = x1, 29, ..., 2, k = 15, and values Oakley and
for al,i=1,2,3 and M are defined by the authors O’Hagan (2004)

k k2
y = aif (@) + Y Bif i (e) [(2)
6 =1 =1 See Becker (2020)

k3
puw ‘ uw; o _ uw; 5 , and Puy et al.
* ;%f (@w..)f (@w.)f (@ws) (2020a) for details.

Table 4: Test functions included in sensobol (v1.0.0).

R> N <-2 "~ 10

R> k <- 8
R> params <- paste("$x_", 1:k, "$", sep = "")
R> R <- 1073

R> type <- '"norm"
R> conf <- 0.95

11

12 sensobol: variance-based sensitivity indices

The next step is to create the sample matrix. In this specific case we will use an A, B, Ag)
design and Sobol’ quasi-random numbers to compute first and total-order indices. These are
default settings in sobol_matrices(). In our call to the function we only need to define the

sample size and the parameters:

R> mat <- sobol_matrices(N = N, params = params)

Once the sample matrix is defined we can run our model. Note that in mat each column is a
model input and each row a sample point, so the model has to be coded as to run rowwise.
This is already the case of the Sobol’ G function included in sensobol:

R> y <- sobol_Fun(mat)

The package also allows the user to swiftly visualize the model output uncertainty by plotting
an histogram of the model output obtained from the A matrix:

R> plot_uncertainty(Y = y, N = N) + labs(y = "Counts", x = "y")

60]

Counts

Y

Figure 5: Empirical distribution of the Sobol” G model output.

Before computing Sobol’ indices, it is recommended to explore how the model output maps
onto the model input space. sensobol includes two functions to that aim, plot_scatter()
and plot_multiscatter(). The first displays the model output y against x; while showing
the mean y value (i.e., as in Figures 1-2), and allows the user to identify patterns denoting
sensitivity (Pianosi, Beven, Freer, Hall, Rougier, Stephenson, and Wagener 2016).

R> plot_scatter(data = mat, N = N, Y = y, params = params)

Arnald Puy, Samuele Lo Piano, Andrea Saltelli, Simon A. Levin

I i) I3

' Wy T8 T
LTI YT)
ww""; RN,

aher s
2 nd iy,
i"ﬁ’m‘ "‘r{i‘:i.' ‘“‘ x..‘- ?".{‘;‘ ™ .
BRI | | G Ty
.»Z"" Y

00 025 050 0.7

Ty xTg
31
pe Bl ianPatd Sh BN % e
’.-,:f,,'_‘ f-;.\'h A ":: !‘_-‘.‘. .m.‘,_:.“q,. LY
LFehe . * %3 X
] !ﬁ;."i: t)..ia.ni'.g. ﬁ},‘;& "v"‘v"‘%!"if 3;41.{‘,; s
() vu. - " B h . i;—"“'.h’f ’:3-«:“‘
fc i ;“a‘,‘ o ?"? -5 P L R
R e B 4 YRR T ’." “ﬁf." iﬁh'ﬁ.c-:ru\t*,‘_}g;
T T T
0.00 0.25 0.-‘30 0.75 I.OOO.UO 0.‘25 0.50 0.75 1.00
Value

Figure 6: Scatter plots of model inputs against the model output for the Sobol’ G function.

The scatter plots in Figure 6 evidence that z1, xo and x3 have more “shape” than the rest
and thus have a higher influence on y than (z4,...,zs). However, scatter plots do not always
permit to detect which parameters have a joint effect on the model output. To gain a first
insight on these interactions, the function plot_multiscatter () plots x; against z; and maps
the resulting coordinate to its respective model output value. Interactions are then visible by
the emergence of colored patterns.

By default, plot_multiscatter () plots all possible combinations of z; and x;, which equal

% = 6 possible combinations in this specific case. In high-dimensional models with

several inputs this might lead to overplotting. To avoid this drawback, the user can subset

13

the parameters they wish to focus on following the results obtained with plot_scatter(): if

x; does not show “shape” in the scatterplots of x; against y, then it may be excluded from
plot_multiscatter().

Below we plot all possible combinations of pairs of inputs between x1 —x4, which are influential
according to Figure 6:

R> plot_multiscatter(data = mat, N = N, Y = y, params = paste("$x_", 1:4, "$",

+ sep = un))

14 sensobol: variance-based sensitivity indices

Yy
0 1 2 3
€Ty Ha T
Lo €T3 Ty
1.0 4 A AT 1.0 ;-:;-"":-"Q_’g' 1.0
,J.\ "'\ S ‘4 >
:.-\'.?-\ A) ST W
SOSOL oy AR AL
N 7, . " N, . % é
OO OO0 5 oo NN A P 0 . é»y"
'o“O\D\ » > Mt Yo D e . ,;.p“." Jc.n?"‘..
\:' “FA, \s\‘ro \‘\'o‘.) S ':ﬂ-‘." S b, _ " ---"o...\‘ by "3’, N,
0.5 13 OBOEOEO0 | 0.5 2T2EgH IR | 051 a8 S R]
TR NI R N o A NS A CON D
SIINEINEN R A ; .:-.‘-,;?.-ﬁ,:.f},‘-.g £,
» [)3 8% o C ol e e oton s d
LA T e O L ISR X DA R
AY YA ’ Z‘--v'!}ﬁ'.‘.:ft‘:". ;) -u:(l _'?-".1.“..':_
AN o BTN ROy Xy o
0.0 STNAES SRR Pt ittt IR B et
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
T2) £
T3 Tq Ia
1.0 1 R a LY 1.04 3 v 4 2, 1.0 geonpmted o atensnine
RO '::f:. N -",“: PEEANGY .-‘.'.- 4] .,‘t\ : 'E‘;‘.!-..r'--. sttt
B A L AN S Y iat el 3 FERAAY I N T
A PR e O SEIANR S TS SO L Xt
S SR NS * FE AL XN £ AR SRl m e R Ee s Rt o2l
LN A Mt P YAy s PN F e PR A 5
O Ly ¢ () L v TH B Y TR T AL)
T O S Lo e Seiivyir oy e Sl b A e,
N '-'.'0"")“\“:5:"}‘;\“ AR TN %';Y':' A2 -.':' [l -?’? -c'?-:.".r
0.5+ 4".'.-\._,':} ,{W}.’ v 0.51 -’-.;3\\“ "‘Z;‘.{; aa | 0.59.% '5“:..;. Eal::;.':q-';:-.:
SRS NI AR Y diie ?3.;' T SR TS
-~ ‘1."&:*;',‘. G ARk Fiasesy)'-".‘.‘;'- '."":'"-'.,-i":-.""a"- %8s
AR TR N LAV IR
PR A RO 1) R AN Al
0.0 o .Lq_“’t'.“:~‘..~“{‘. 0.0 X ".J..'..g\‘ "'".u.f- F 0.0 L9 .:.:‘,:.kt.;.-:“‘_:‘:.’ £

Figure 7: Scatterplot matrix of pairs of model inputs for the Sobol’ G function. The topmost
and bottommost label facets refer to the x and the y axis respectively.

The results suggest that x; might interact with xo given the colored pattern of the (z1,xz2)
facet: the highest values of the model output are concentrated in the corners of the (z1,x2)
input space and thus result from combinations of high/low z; values with high/low z9 values.
In case the analyst is interested in assessing the exact weight of this high-order interaction,
the computation of second-order indices would be required.

The last step is the computation of Sobol’ indices. In this specific case, we set boot = TRUE
to bootstrap the Sobol’ indices and get confidence intervals:

R> ind <- sobol_indices(Y = y, N = N, params = params, boot = TRUE, R = R,
+ type = type, conf = conf)

The output of sobol_indices() is an S3 object of class sensobol, with the results stored
in the component results. To improve the visualization of the object, we set the number of
digits in each numerical column to 3:

R> cols <- colnames(ind$results)[1:5]

Arnald Puy, Samuele Lo Piano, Andrea Saltelli, Simon A. Levin

R> ind$results[, (cols):= round(.SD, 3), .SDcols = (cols)]
R> ind

First-order estimator: saltelli | Total-order estimator: jansen
Total number of model runs: 10240

Sum of first order indices: 0.9419303
original bias std.error low.ci high.ci sensitivity parameters

1: 0.724 0.005 0.069 0.584 0.854 Si x_1%
2: 0.184 -0.002 0.039 0.110 0.261 Si $x_2%
3: 0.025 0.000 0.015 -0.005 0.054 Si $x_3%
4: 0.010 0.000 0.008 -0.007 0.025 Si $x_43
5: 0.000 0.000 0.001 -0.001 0.002 Si $x_5%
6: 0.000 0.000 0.001 -0.002 0.002 Si $x_63%
7: 0.000 0.000 0.001 -0.001 0.002 Si x_7
8: 0.000 0.000 0.001 -0.002 0.002 Si $x_8%
9: 0.799 0.001 0.036 0.728 0.868 Ti x_1%
10: 0.243 0.000 0.013 0.217 0.269 Ti $x_28
11: 0.035 0.000 0.002 0.030 0.039 Ti x_3
12: 0.011 0.000 0.001 0.009 0.012 Ti $x_4%
13: 0.000 0.000 0.000 0.000 0.000 Ti $x_5%
14: 0.000 0.000 0.000 0.000 0.000 Ti x_6
15: 0.000 0.000 0.000 0.000 0.000 Ti x_78
16: 0.000 0.000 0.000 0.000 0.000 Ti x_8%

The output informs of the first and total-order estimators used in the calculation, the total
number of model runs and the sum of the first-order indices: if (Zle S;) < 1, the model is
non-additive.

When boot = TRUE, the output of sobol_indices() displays the bootstrap statistics in the
five leftmost columns (the observed statistic, the bias, the standard error and the low and
high confidence intervals), and two extra columns linking each statistic to a sensitivity index
(sensitivity) and a parameter (parameters). If boot = FALSE, sobol_indices() com-
putes a point estimate of the indices and the output includes only the columns original,
sensitivity and parameters.

The results indicate that z; is responsible for 72% of the uncertainty in y, followed by xo
(18%). x3 and x4 have a very minor first-order effect, while the rest are non-influential. Note
that the observed statistics suggest the presence of non-additivities: 77 and T, (0.79 and 0.24)
are respectively higher than S; and S (0.72 and 0.18). As we have seen in Figure 7, 1 and
292 have a non-additive effect in y.

We can also compute the Sobol’ indices of a dummy parameter, i.e., a parameter that has
no influence on the model output, to estimate the numerical approximation error. This
will be used later on to identify parameters whose contribution to the output variance is
less than the approximation error, and therefore can not be considered influential. Like
sobol_indices(), the function sobol_dummy () allows to obtain point estimates (the default)
or bootstrap estimates. In this example we use the latter option:

16 sensobol: variance-based sensitivity indices

R> ind.dummy <- sobol_dummy(Y = y, N = N, params = params, boot = TRUE, R = R)

The last stage is to plot the Sobol” indices and their confidence intervals, as well as the Sobol’
indices of a dummy parameter, with the function plot_sobol():

R> plot(ind, dummy = ind.dummy)

Sobol’ indices D 5 . T;

Figure 8: Sobol’ indices of the Sobol’ G function.

The error bars of S and Se overlap with those of 17 and T respectively. In the case of the
Sobol” G function we know that 77 > S7 and Tb > S5 because the analytic variance is known,
but for models where this is not the case such overlap might hamper the identification of
non-additivities. Under these circumstances, narrower confidence intervals can be obtained
by increasing the sample size N and re-running the analysis from the creation of the sample
matrix onwards.

The horizontal, blue / red dashed lines respectively mark the upper limit of the 7; and S;
indices of the dummy parameter. This helps in identifying which parameters condition the
model output given the sample size constraints of the analysis: only parameters whose lower
confidence intervals are not below the S; and T; indices of the dummy parameter can be
considered truly influential, in this case x1 and z2. Note that although T3 # 0, the T} index
of the dummy parameter is higher than 73 and therefore T3 can not be distinguished from
the approximation error.

3.2. Example 2: A logistic population growth model

In this section we show how sensobol can be implemented to conduct a global uncertainty and
sensitivity analysis of a dynamic model. We will use the following logistic population growth
model:

dN N

— =7rN(1l - — 11

a ~ VAR (1)
Malthusian models of population growth (i.e., exponential growth) can not forever describe

the growth of a population because resources, including space, are limited and competitive

Arnald Puy, Samuele Lo Piano, Andrea Saltelli, Simon A. Levin

pressures ultimately impose limits on growth. Most ways to incorporate that limit to growth
in models share similar dynamics, and the most intuitive and widely used is the form proposed
by Verhulst in Equation 11, which was popularized in Ecology by Pearl and Reed (1920). In
this model, the population N at time ¢ is dependent on the growth rate r, the number of
individuals N and the carrying capacity K, defined as the maximum number of individuals
that a given environment can sustain. When N approaches K, the population growth slows
down until the number of individuals converges to a constant (Figure 9).

100

Z 00 -

]
[}]
1

Figure 9: Dynamics of the logistic population growth model for Ng = 3, r = 0.6 and K = 100.

Before moving forward to conduct a global sensitivity analysis of Equation 11, we set the
sample size N of the base sample matrix at 2'3 and create a vector with the name of the
parameters. For this specific example we will use the Azzini et al. (2020b) estimators, which
require a sampling design based on A, B, Ag), BX) matrices. We will compute up to second-
order effects, bootstrap the indices 10? times and compute the 95% confidence intervals using

the percentile method.

R> N <-2 " 13

R> params <- c("r", "K", "N_08")
R> matrices <- c("A", "B", "AB", "BA")
R> first <- total <- "azzini"

R> order <- "second"

R> R <- 10 ~ 3

R> type <- "percent"

R> conf <- 0.95

In the next two code snippets we code Equation 11 and wrap it up in a mapply () call to make
it run rowwise:

R> population_growth <- function (r, K, X0) {
+ X <= X0

+ for (i in 0:20) {

+ X<-X+r*X+* (1 -X/K)

17

18 sensobol: variance-based sensitivity indices

+ }
+ return (X)
+ }

R> population_growth_run <- function (dt) {
+ return(mapply(population_growth, dt[, 1], dt[, 2], dt[, 31))
+ }

We now construct the sample matrix. This time we set type = "LHS" to use a Latin Hyper-
cube Sampling Design:

R> mat <- sobol_matrices(matrices = matrices, N = N, params = params,
+ order = order, type = "LHS")

Let’s assume that, after surveying the literature and conducting fieldwork, we have agreed
that the uncertainty in the model inputs can be fairly approximated with the distributions
presented in Table 5. We thus transform each model input in mat to its specific probability
distribution using the appropriate inverse quantile transformation:

Table 5: Summary of the parameters and their distributions (Chalom and Inacio Knegt Lopez
2017).

Parameter Description Distribution
r Population growth rate N(1.7,0.3)
K Maximum carrying capacity — AN(40,1)
No Initial population size U(10,50)

R> mat[, "r"] <- qnorm(mat[, "r"], 1.7, 0.3)
R> mat[, "K"] <- qunorm(mat[, "K"], 40, 1)
R> mat[, "N_0"] <- qunif(mat[, "N_0"], 10, 50)

The sample matrix in mat is now ready, and we can run the model:

R> y <- population_growth_run(mat)

And display the model output uncertainty:

R> plot_uncertainty(Y = y, N = N) + labs(y = "Counts", x = "y")

Arnald Puy, Samuele Lo Piano, Andrea Saltelli, Simon A. Levin 19

Counts

N 11—

20 30 10 50

Figure 10: Empirical distribution of the logistic population growth model output.

The results suggest that after 20 time steps the number of individuals will most likely con-
centrate around 40. Note however the right and left tails of the distribution, indicating that
a few simulations also yielded significantly lower and higher population values. These tails
result from some specific combinations of parameter values and are indicative of interaction
effects, which will be explored later on.

We can also compute some statistics to get a better grasp of the output distribution, such as
quantiles:

R> quantile(y, probs = c(0.01, 0.025, 0.5, 0.975, 0.99, 1))

1% 2.5% 50% 97.5Y 999 1009,
27.80714 30.66101 40.00111 46.64511 47.91589 53.41604

With plot_scatter() we can map the model inputs onto the model output. Instead of
plotting one dot per simulation, in this example we use hexagon bins by setting method
= "bin" and internally calling ggplot2::geom_hex (). With this specification we divide the
plane into regular hexagons, count the number of hexagons and map the number of simulations
to the hexagon bin. method = "bin" is therefo