Package 'pcds'

December 19, 2023
Type Package
Title Proximity Catch Digraphs and Their Applications
Version 0.1.8
Description Contains the functions for construction and visualization of various families of the proximity catch digraphs (PCDs), see (Ceyhan (2005) ISBN:978-3-639-19063-2), for computing the graph invariants for testing the patterns of segregation and association against complete spatial randomness (CSR) or uniformity in one, two and three dimensional cases.
The package also has tools for generating points from these spatial patterns.
The graph invariants used in testing spatial point data are the domination number (Ceyhan (2011) doi:10.1080/03610921003597211) and arc density (Cey-
han et al. (2006) doi:10.1016/j.csda.2005.03.002;
Ceyhan et al. (2007) doi:10.1002/cjs.5550350106). The PCD families considered are ArcSlice PCDs,
Proportional-Edge PCDs, and Central Similarity PCDs.
License GPL-2
Encoding UTF-8
LazyData TRUE
Imports combinat, interp, gMOIP, plot3D, plotrix, Rdpack ($>=0.7$)
Depends R (>= 3.5.0)
RdMacros Rdpack
Suggests knitr, scatterplot3d, spatstat.random, rmarkdown, bookdown, spelling
RoxygenNote 7.2.3
VignetteBuilder knitr
Language en-US
NeedsCompilation no
Author Elvan Ceyhan [aut, cre]
Maintainer Elvan Ceyhan elvanceyhan@gmail.com
Repository CRAN
Date/Publication 2023-12-19 06:50:02 UTC

R topics documented:

pcds-package 8
.onAttach 10
.onLoad 10
angle.str2end 11
angle3pnts 13
arcsAS 14
arcsAStri 17
arcsCS 19
$\operatorname{arcsCS} 1 \mathrm{D}$ 21
arcsCSend.int 24
arcsCSint 26
arcsCSmid.int 28
arcsCStri 30
arcsPE 32
$\operatorname{arcsPE} 1 \mathrm{D}$ 34
arcsPEend.int 36
arcsPEint 38
arcsPEmid.int 40
arcsPEtri 42
area.polygon 45
as.basic.tri 46
ASarc.dens.tri 47
center.nondegPE 49
centerMc 51
centersMc 52
circumcenter.basic.tri 53
circumcenter.tetra 55
circumcenter.tri 57
cl2CCvert.reg 58
cl2CCvert.reg.basic.tri 60
cl2edges.std.tri 63
cl2edges.vert.reg.basic.tri 65
cl2edgesCCvert.reg 68
cl2edgesCMvert.reg 70
cl2edgesMvert.reg 72
cl2faces.vert.reg.tetra 75
cl2Mc.int 78
CSarc.dens.test 80
CSarc.dens.test.int 82
CSarc.dens.test1D 84
CSarc.dens.tri 87
dimension 89
Dist 90
dist.point2line 91
dist.point2plane 93
dist.point2set 94R topics documented:3
dom.num.exact 95
dom.num.greedy 96
edge.reg.triCM 97
fr2edgesCMedge.reg.std.tri 99
fr2vertsCCvert.reg 101
fr2vertsCCvert.reg.basic.tri 104
funsAB2CMTe 106
funsAB2MTe 108
funsCartBary 111
funsCSEdgeRegs 112
funsCSGamTe 115
funsCSt1EdgeRegs 118
funsIndDelTri 120
funsMuVarCS1D 122
funsMuVarCS2D 124
funsMuVarCSend.int 126
funsMuVarPE1D 128
funsMuVarPE2D 130
funsMuVarPEend.int 132
funsPDomNum2PE1D 133
funsRankOrderTe 137
funsTbMid2CC 139
IarcASbasic.tri 142
IarcASset2pnt.tri 144
IarcAStri 146
IarcCS.Te.onesixth 148
IarcCSbasic.tri 149
IarcCSedge.reg.std.tri 151
IarcCSend.int 153
IarcCSint 155
IarcCSmid.int 156
IarcCSset2pnt.std.tri 158
IarcCSset2pnt.tri 159
IarcCSstd.tri 161
IarcCSt1.std.tri 163
IarcCStri 164
IarcCStri.alt 165
IarcPEbasic.tri 167
IarcPEend.int 169
IarcPEint 170
IarcPEmid.int 172
IarcPEset2pnt.std.tri 173
IarcPEset2pnt.tri 175
IarcPEstd.tetra 176
IarcPEstd.tri 178
IarcPEtetra 180
IarcPEtri 182
Idom.num.up.bnd 184
Idom.num1ASbasic.tri 185
Idom.num1AStri 188
Idom.num1CS.Te.onesixth 191
Idom.num1CSint 192
Idom.num1CSstd.tri 194
Idom.num1CSt1std.tri 196
Idom.num1PEbasic.tri 198
Idom.num1PEint 201
Idom.num1PEstd.tetra 203
Idom.num1PEtetra 205
Idom.num1PEtri 208
Idom.num2ASbasic.tri 211
Idom.num2AStri 213
Idom.num2CS.Te.onesixth 216
Idom.num2PEbasic.tri 217
Idom.num2PEstd.tetra 219
Idom.num2PEtetra 222
Idom.num2PEtri 224
Idom.num3PEstd.tetra 226
Idom.num3PEtetra 229
Idom.numASup.bnd.tri 231
Idom.numCSup.bnd.std.tri 233
Idom.numCSup.bnd.tri 235
Idom.setAStri 236
Idom.setCSstd.tri 238
Idom.setCStri 240
Idom.setPEstd.tri 242
Idom.setPEtri 243
in.circle 245
in.tetrahedron 246
in.tri.all 248
in.triangle 250
inci.matAS 251
inci.matAStri 253
inci.matCS 255
inci.matCS1D 256
inci.matCSint 258
inci.matCSstd.tri 260
inci.matCStri 261
inci.matPE 263
inci.matPE1D 265
inci.matPEint 266
inci.matPEstd.tri 268
inci.matPEtetra 269
inci.matPEtri 271
index.six.Te 272
intersect.line.circle 274
intersect.line.plane 276
intersect2lines 278
interval.indices.set 279
is.in.data 280
is.point 282
is.std.eq.tri 283
kfr2vertsCCvert.reg 284
kfr2vertsCCvert.reg.basic.tri 286
Line 288
Line3D 290
NASbasic.tri 293
NAStri 296
NCSint 299
NCStri 301
NPEbasic.tri 302
NPEint 304
NPEstd.tetra 305
NPEtetra 307
NPEtri 309
num. arcsAS 311
num.arcsAStri 313
num.arcsCS 315
num.arcsCS1D 317
num.arcsCSend.int 319
num.arcsCSint 320
num.arcsCSmid.int 322
num.arcsCSstd.tri 324
num.arcsCStri 325
num. arcsPE 327
num.arcsPE1D 330
num. arcsPEend.int 332
num.arcsPEint 333
num.arcsPEmid.int 335
num.arcsPEstd.tri 336
num.arcsPEtetra 338
num. arcsPEtri 340
num.delaunay.tri 341
paraline 342
paraline3D 344
paraplane 346
Pdom.num2PE1Dasy 349
Pdom.num2PEtri 350
PEarc.dens.test 351
PEarc.dens.test.int 354
PEarc.dens.test1D 356
PEarc.dens.tetra 358
PEarc.dens.tri 360
PEdom.num 362
PEdom.num.binom.test 364
PEdom.num.binom.test1D 366
PEdom.num.binom.test1Dint 369
PEdom.num.nondeg 372
PEdom.num.norm.test 374
PEdom.num.tetra 376
PEdom.num.tri 378
PEdom.num1D 380
PEdom.num1Dnondeg 381
perpline 383
perpline2plane 385
Plane 387
plot.Extrema 389
plot.Lines 390
plot.Lines3D 391
plot.NumArcs 392
plot.Patterns 393
plot.PCDs 394
plot.Planes 395
plot.TriLines 396
plot.Uniform 397
plotASarcs 398
plotASarcs.tri 400
plotASregs 403
plotASregs.tri 405
plotCSarcs 407
plotCSarcs.int 409
plotCSarcs.tri 411
plotCSarcs1D 414
plotCSregs 416
plotCSregs.int 418
plotCSregs.tri 420
plotCSregs1D 422
plotDelaunay.tri 424
plotIntervals 426
plotPEarcs 427
plotPEarcs.int 429
plotPEarcs.tri 431
plotPEarcs1D 434
plotPEregs 436
plotPEregs.int 438
plotPEregs.std.tetra 440
plotPEregs.tetra 442
plotPEregs.tri 444
plotPEregs1D 446
print.Extrema 448
print.Lines 449
print.Lines3D 450
print.NumArcs 451
print.Patterns 452
print.PCDs 453
print.Planes 454
print.summary.Extrema 455
print.summary.Lines 455
print.summary.Lines3D 456
print.summary.NumArcs 456
print.summary.Patterns 457
print.summary.PCDs 457
print.summary.Planes 458
print.summary.TriLines 459
print.summary.Uniform 459
print.TriLines 460
print.Uniform 461
prj.cent2edges 462
prj.cent2edges.basic.tri 463
prj.nondegPEcent2edges 465
radii 467
radius 469
rassoc.circular 471
rassoc.matern 473
rassoc.multi.tri 476
rassoc.std.tri 478
rassoc.tri 481
rassocII.std.tri 483
rel.edge.basic.tri 485
rel.edge.basic.triCM 487
rel.edge.std.triCM 489
rel.edge.tri 491
rel.edge.triCM 494
rel.edges.tri 496
rel.edges.triCM 498
rel.vert.basic.tri 500
rel.vert.basic.triCC 503
rel.vert.basic.triCM 505
rel.vert.end.int 508
rel.vert.mid.int 510
rel.vert.std.tri 512
rel.vert.std.triCM 514
rel.vert.tetraCC 516
rel.vert.tetraCM 518
rel.vert.tri 521
rel.vert.triCC 523
rel.vert.triCM 525
rel.verts.tri 527
rel.verts.tri.nondegPE 530
rel.verts.triCC 532
rel.verts.triCM 534
rel.verts.triM 536
rseg.circular 538
rseg.multi.tri 540
rseg.std.tri 543
rseg.tri 545
rsegII.std.tri 547
runif.basic.tri 549
runif.multi.tri 551
runif.std.tetra 553
runif.std.tri 555
runif.std.tri.onesixth 556
runif.tetra 558
runif.tri 560
seg.tri.support 561
six.extremaTe 563
slope 565
summary.Extrema 566
summary.Lines 567
summary.Lines3D 568
summary.NumArcs 569
summary.Patterns 570
summary.PCDs 571
summary.Planes 572
summary.TriLines 573
summary.Uniform 574
swamptrees 575
tri2std.basic.tri 576
Xin.convex.hullY 577
Index 579
pcds-package pcds: A package for Proximity Catch Digraphs and Their Applications

Description

pcds is a package for construction and visualization of proximity catch digraphs (PCDs) and computation of two graph invariants of the PCDs and testing spatial patterns using these invariants.

Details

The PCD families considered are Arc-Slice (AS) PCDs, Proportional-Edge (PE) PCDs and Central Similarity (CS) PCDs.
The graph invariants used in testing spatial point data are the domination number (Ceyhan (2011)) and arc density (Ceyhan et al. (2006); Ceyhan et al. (2007)) of for two-dimensional data.

The pcds package also contains the functions for generating patterns of segregation, association, CSR (complete spatial randomness) and Uniform data in one, two and three dimensional cases, for
testing these patterns based on two invariants of various families of the proximity catch digraphs (PCDs), (see (Ceyhan (2005)).

Moreover, the package has visualization tools for these digraphs for 1D-3D vertices. The AS-PCD and CS-PCD tools are provided for 1D and 2D data and PE-PCD related tools are provided for 1D-3D data.

The pcds functions
The pcds functions can be grouped as Auxiliary Functions, AS-PCD Functions, PE-PCD Functions, and CS-PCD Functions.

Auxiliary Functions

Contains the auxiliary (or utility) functions for constructing and visualizing Delaunay tessellations in 1D and 2D settings, computing the domination number, constructing the geometrical tools, such as equation of lines for two points, distances between lines and points, checking points inside the triangle etc., finding the (local) extrema (restricted to Delaunay cells or vertex or edge regions in them).

Arc-Slice PCD Functions

Contains the functions used in AS-PCD construction, estimation of domination number, arc density, etc in the 2 D setting.

Proportional-Edge PCD Functions

Contains the functions used in PE-PCD construction, estimation of domination number, arc density, etc in the 1D-3D settings.

Central-Similarity PCD Functions

Contains the functions used in CS-PCD construction, estimation of domination number, arc density, etc in the 1D and 2D setting.

Point Generation Functions

Contains functions for generation of points from uniform (or CSR), segregation and association patterns.

In all these functions points are vectors, and data sets are either matrices or data frames.

Author(s)

Maintainer: Elvan Ceyhan elvanceyhan@gmail.com

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2011). "Spatial Clustering Tests Based on Domination Number of a New Random Digraph Family." Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

Ceyhan E, Priebe CE, Marchette DJ (2007). "A new family of random graphs for testing spatial segregation." Canadian Journal of Statistics, 35(1), 27-50.

Ceyhan E, Priebe CE, Wierman JC (2006). "Relative density of the random r-factor proximity catch digraphs for testing spatial patterns of segregation and association." Computational Statistics \& Data Analysis, 50(8), 1925-1964.

```
    .onAttach .onAttach start message
```


Description

.onAttach start message

Usage

.onAttach(libname, pkgname)

Arguments

libname	defunct
pkgname	defunct

Value

invisible()

```
.onLoad .onLoad getOption package settings
```


Description

.onLoad getOption package settings

Usage

```
.onLoad(libname, pkgname)
```


Arguments

libname	defunct
pkgname	defunct

Value

invisible()

Examples

```
getOption("pcds.name")
```

angle.str2end

The angles to draw arcs between two line segments

Description

Gives the two pairs of angles in radians or degrees to draw arcs between two vectors or line segments for the draw. arc function in the plotrix package. The angles are provided with respect to the x axis in the coordinate system. The line segments are $[b a]$ and $[b c]$ when the argument is given as a, b, c in the function.
radian is a logical argument (default=TRUE) which yields the angle in radians if TRUE, and in degrees if FALSE. The first pair of angles is for drawing arcs in the smaller angle between $[b a]$ and $[b c]$ and the second pair of angles is for drawing arcs in the counter-clockwise order from $[b a]$ to [bc].

Usage

angle.str2end(a, b, c, radian $=$ TRUE)

Arguments

$a, b, c \quad$ Three 2D points which represent the intersecting line segments $[b a]$ and $[b c]$.
radian A logical argument (default=TRUE). If TRUE, the smaller angle or counter-clockwise angle between the line segments $[b a]$ and $[b c]$ is provided in radians, else it is provided in degrees.

Value

A list with two elements

[^0]
Author(s)

Elvan Ceyhan

See Also

```
angle3pnts
```


Examples

```
A<-c(.3,.2); B<-c(.6,.3); C<-c(1,1)
pts<-rbind(A,B,C)
Xp<-c(B[1]+max(abs(C[1]-B[1]),abs(A[1]-B[1])),0)
angle.str2end(A,B,C)
angle.str2end(A,B,A)
angle.str2end(A, B, C,radian=FALSE)
#plot of the line segments
ang.rad<-angle.str2end(A,B,C,radian=TRUE); ang.rad
ang.deg<-angle.str2end(A,B,C,radian=FALSE); ang.deg
ang.deg1<-ang.deg$s; ang.deg1
ang.deg2<-ang.deg$c; ang.deg2
rad<-min(Dist(A,B),Dist(B,C))
Xlim<-range(pts[,1],Xp[1],B+Xp,B[1]+C(+rad,-rad))
Ylim<-range(pts[,2],B[2]+c(+rad,-rad))
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
#plot for the smaller arc
plot(pts,pch=1,asp=1,xlab="x",ylab="y",xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
L<-rbind(B,B,B); R<-rbind(A,C,B+Xp)
segments(L[,1], L[,2], R[,1], R[,2], lty=2)
plotrix::draw.arc(B[1],B[2],radius=.3*rad,angle1=ang.rad$s[1],angle2=ang.rad$s[2])
plotrix::draw.arc(B[1],B[2],radius=.6*rad,angle1=0, angle2=ang.rad$s[1],lty=2,col=2)
plotrix::draw.arc(B[1],B[2],radius=.9*rad,angle1=0, angle2=ang.rad$s[2],col=3)
txt<-rbind(A,B,C)
text(txt+cbind(rep(xd*.02,nrow(txt)),rep(-xd*.02,nrow(txt))),c("A", "B","C"))
text(rbind(B)+.5*rad*c(cos(mean(ang.rad$s)), sin(mean(ang.rad$s))),
    paste(abs(round(ang.deg1[2]-ang.deg1[1],2))," degrees",sep=""))
text(rbind(B)+.6*rad*c(cos(ang.rad$s[1]/2), sin(ang.rad$s[1]/2)),paste(round(ang.deg1[1],2)),col=2)
text(rbind(B)+.9*rad*c(cos(ang.rad$s[2]/2),sin(ang.rad$s[2]/2)),paste(round(ang.deg1[2],2)),col=3)
#plot for the counter-clockwise arc
plot(pts,pch=1,asp=1,xlab="x",ylab="y",xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
L<-rbind(B,B,B); R<-rbind(A,C,B+Xp)
```

```
segments(L[,1], L[,2], R[,1], R[,2], lty=2)
plotrix::draw.arc(B[1],B[2],radius=.3*rad,angle1=ang.rad$c[1],angle2=ang.rad$c[2])
plotrix::draw.arc(B[1],B[2],radius=.6*rad,angle1=0, angle2=ang.rad$s[1],lty=2,col=2)
plotrix::draw.arc(B[1],B[2],radius=.9*rad,angle1=0,angle2=ang.rad$s[2],col=3)
txt<-pts
text(txt+cbind(rep(xd*.02,nrow(txt)),rep(-xd*.02,nrow(txt))),c("A", "B", "C"))
text(rbind(B)+.5*rad*c(cos(mean(ang.rad$c)), sin(mean(ang.rad$c))),
    paste(abs(round(ang.deg2[2]-ang.deg2[1],2))," degrees",sep=""))
text(rbind(B)+.6*rad*c(cos(ang.rad$s[1]/2),sin(ang.rad$s[1]/2)),paste(round(ang.deg1[1],2)),col=2)
text(rbind(B)+.9*rad*c(cos(ang.rad$s[2]/2), sin(ang.rad$s[2]/2)), paste(round(ang.deg1[2],2)),col=3)
```

angle3pnts The angle between two line segments

Description

Returns the angle in radians or degrees between two vectors or line segments at the point of intersection. The line segments are $[b a]$ and $[b c]$ when the arguments of the function are given as a, b, c. radian is a logical argument (default=TRUE) which yields the angle in radians if TRUE, and in degrees if FALSE. The smaller of the angle between the line segments is provided by the function.

Usage

angle3pnts(a, b, c, radian $=$ TRUE)

Arguments

$$
\begin{array}{ll}
\mathrm{a}, \mathrm{~b}, \mathrm{c} & \text { Three 2D points which represent the intersecting line segments }[b a] \text { and }[b c] . \\
\text { The smaller angle between these line segments is to be computed. } \\
\text { radian } & \begin{array}{l}
\text { A logical argument (default=TRUE). If TRUE, the (smaller) angle between the line } \\
\text { segments }[b a] \text { and }[b c] \text { is provided in radians, else it is provided in degrees. }
\end{array}
\end{array}
$$

Value

angle in radians or degrees between the line segments $[b a]$ and $[b c]$

Author(s)

Elvan Ceyhan

See Also

angle.str2end

Examples

```
A<-c(.3,.2); B<-c(.6,.3); C<-c(1, 1)
pts<-rbind(A,B,C)
angle3pnts(A,B,C)
angle3pnts(A,B,A)
round(angle3pnts(A,B,A), 7)
angle3pnts(A, B , C, radian=FALSE)
#plot of the line segments
Xlim<-range(pts[,1])
Ylim<-range(pts[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
ang1<-angle3pnts(A,B,C,radian=FALSE)
ang2<-angle3pnts(B+C(1,0),B,C,radian=FALSE)
sa<-angle.str2end(A,B,C,radian=FALSE)$s #small arc angles
ang1<-sa[1]
ang2<-sa[2]
plot(pts,asp=1,pch=1,xlab="x",ylab="y",
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
L<-rbind(B,B); R<-rbind(A,C)
segments(L[,1], L[,2], R[,1], R[,2], lty=2)
plotrix::draw.arc(B[1],B[2],radius=xd*.1, deg1=ang1, deg2=ang2)
txt<-rbind(A,B,C)
text(txt+cbind(rep(xd*.05,nrow(txt)),rep(-xd*.02,nrow(txt))), c("A", "B", "C"))
text(rbind(B)+.15*xd*c(cos(pi*(ang2+ang1)/360),sin(pi*(ang2+ang1)/360)),
paste(round(abs(ang1-ang2),2)," degrees"))
```


Description

An object of class "PCDs". Returns arcs of AS-PCD as tails (or sources) and heads (or arrow ends) and related parameters and the quantities of the digraph. The vertices of the AS-PCD are the data points in Xp in the multiple triangle case.
AS proximity regions are defined with respect to the Delaunay triangles based on Yp points, i.e., AS proximity regions are defined only for $X p$ points inside the convex hull of $Y p$ points. That is, arcs
may exist for points only inside the convex hull of Yp points. It also provides various descriptions and quantities about the arcs of the AS-PCD such as number of arcs, arc density, etc.
Vertex regions are based on the center $\mathrm{M}=$ " CC " for circumcenter of each Delaunay triangle or $M=$ (α, β, γ) in barycentric coordinates in the interior of each Delaunay triangle; default is $\mathrm{M}=" \mathrm{CC} "$ i.e., circumcenter of each triangle. M must be entered in barycentric coordinates unless it is the circumcenter.

Convex hull of $Y p$ is partitioned by the Delaunay triangles based on $Y p$ points (i.e., multiple triangles are the set of these Delaunay triangles whose union constitutes the convex hull of Yp points). For the number of arcs, loops are not allowed so arcs are only possible for points inside the convex hull of $Y p$ points.

See (Ceyhan (2005, 2010)) for more on AS PCDs. Also see (Okabe et al. (2000); Ceyhan (2010); Sinclair (2016)) for more on Delaunay triangulation and the corresponding algorithm.

Usage

$\operatorname{arcsAS}(X p, Y p, M=" C C ")$

Arguments

Xp A set of 2D points which constitute the vertices of the AS-PCD.
Yp A set of 2D points which constitute the vertices of the Delaunay triangulation. The Delaunay triangles partition the convex hull of Yp points.
M The center of the triangle. "CC" represents the circumcenter of each Delaunay triangle or 3D point in barycentric coordinates which serves as a center in the interior of each Delaunay triangle; default is $M=$ " $C C$ " i.e., the circumcenter of each triangle. M must be entered in barycentric coordinates unless it is the circumcenter.

Value

A list with the elements
\(\left.$$
\begin{array}{ll}\text { type } & \text { A description of the type of the digraph } \\
\text { parameters } & \begin{array}{l}\text { Parameters of the digraph, here, it is the center used to construct the vertex } \\
\text { regions, default is circumcenter, denoted as "CC", otherwise given in barycentric } \\
\text { coordinates. }\end{array} \\
\text { tess.points } & \begin{array}{l}\text { Tessellation points, i.e., points on which the tessellation of the study region is } \\
\text { performed, here, tessellation is the Delaunay triangulation based on Yp points. }\end{array} \\
\text { tess.name } & \begin{array}{l}\text { Name of the tessellation points tess.points } \\
\text { vertices }\end{array}
$$

Vertices of the digraph, Xp.\end{array}\right]\)| Name of the data set which constitute the vertices of the digraph |
| :--- |
| S |\quad| Tails (or sources) of the arcs of AS-PCD for 2D data set Xp in the multiple |
| :--- |
| triangle case as the vertices of the digraph |

quant Various quantities for the digraph: number of vertices, number of partition points, number of intervals, number of arcs, and arc density.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). "An investigation of new graph invariants related to the domination number of random proximity catch digraphs." Methodology and Computing in Applied Probability, 14(2), 299-334.

Okabe A, Boots B, Sugihara K, Chiu SN (2000). Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. Wiley, New York.

Sinclair D (2016). "S-hull: a fast radial sweep-hull routine for Delaunay triangulation." 1604.01428.

See Also

arcsAStri, arcsPEtri, arcsCStri, arcsPE, and arcsCS

Examples

```
#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-15; ny<-5; #try also nx=20; nx<-40; ny<-10 or nx<-1000; ny<-10;
set.seed(1)
Xp<-cbind(runif(nx,0,1),runif(nx,0,1))
Yp<-cbind(runif(ny,0,.25),runif(ny,0,.25))+cbind(c(0,0,0.5,1,1),c(0,1,.5,0,1))
#try also Yp<-cbind(runif(ny,0,1),runif(ny,0,1))
M<-c(1,1,1) #try also M<-c(1,2,3)
Arcs<-arcsAS(Xp,Yp,M) #try also the default M with Arcs<-arcsAS(Xp,Yp)
Arcs
summary(Arcs)
plot(Arcs)
arcsAS(Xp,Yp[1:3,],M)
```

```
arcsAStri
```

The arcs of Arc Slice Proximity Catch Digraph (AS-PCD) for 2D data - one triangle case

Description

An object of class "PCDs". Returns arcs of AS-PCD as tails (or sources) and heads (or arrow ends) and related parameters and the quantities of the digraph. The vertices of the AS-PCD are the data points in Xp in the one triangle case.
AS proximity regions are constructed with respect to the triangle tri, i.e., arcs may exist for points only inside tri. It also provides various descriptions and quantities about the arcs of the AS-PCD such as number of arcs, arc density, etc.
Vertex regions are based on the center, $M=\left(m_{1}, m_{2}\right)$ in Cartesian coordinates or $M=(\alpha, \beta, \gamma)$ in barycentric coordinates in the interior of the triangle tri or based on circumcenter of tri; default is $M=" C C "$, i.e., circumcenter of tri. The different consideration of circumcenter vs any other interior center of the triangle is because the projections from circumcenter are orthogonal to the edges, while projections of M on the edges are on the extensions of the lines connecting M and the vertices. See also (Ceyhan $(2005,2010)$).

Usage

$\operatorname{arcsAStri}(X p, \operatorname{tri}, M=" C C ")$

Arguments

Xp A set of 2D points which constitute the vertices of the AS-PCD.
tri Three 2D points, stacked row-wise, each row representing a vertex of the triangle.
M The center of the triangle. "CC" stands for circumcenter of the triangle tri or a 2D point in Cartesian coordinates or a 3D point in barycentric coordinates which serves as a center in the interior of the triangle T_{b}; default is $\mathrm{M}=$ " CC " i.e., the circumcenter of tri.

Value

A list with the elements
type A description of the type of the digraph
parameters Parameters of the digraph, here, it is the center used to construct the vertex regions.
tess.points Tessellation points, i.e., points on which the tessellation of the study region is performed, here, tessellation points are the vertices of the support triangle tri.
tess.name Name of the tessellation points tess.points
vertices \quad Vertices of the digraph, Xp .
\(\left.\left.$$
\begin{array}{ll}\text { vert. name } & \begin{array}{l}\text { Name of the data set which constitute the vertices of the digraph } \\
\text { S }\end{array} \\
\text { Tails (or sources) of the arcs of AS-PCD for 2D data set Xp as vertices of the } \\
\text { digraph }\end{array}
$$\right] \begin{array}{l}Heads (or arrow ends) of the arcs of AS-PCD for 2D data set Xp as vertices of

the digraph\end{array}\right]\)| Text for "main" title in the plot of the digraph |
| :--- |
| mtitle | | Various quantities for the digraph: number of vertices, number of partition |
| :--- |
| points, number of intervals, number of arcs, and arc density. |

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). "An investigation of new graph invariants related to the domination number of random proximity catch digraphs." Methodology and Computing in Applied Probability, 14(2), 299-334.

See Also

arcsAS, arcsPEtri, arcsCStri, arcsPE, and arcsCS

Examples

```
A<-c(1,1); B<-c(2,0); C<-C(1.5,2);
Tr<-rbind(A,B,C);
n<-10
set.seed(1)
Xp<-runif.tri(n,Tr)$g
M<-as.numeric(runif.tri(1,Tr)$g) #try also M<-c(1.6,1.2) or M<-circumcenter.tri(Tr)
Arcs<-arcsAStri(Xp,Tr,M) #try also Arcs<-arcsAStri(Xp,Tr)
#uses the default center, namely circumcenter for M
Arcs
summary(Arcs)
plot(Arcs) #use plot(Arcs,asp=1) if M=CC
#can add vertex regions
```

```
#but we first need to determine center is the circumcenter or not,
#see the description for more detail.
CC<-circumcenter.tri(Tr)
M = as.numeric(Arcs$parameters[[1]])
if (isTRUE(all.equal(M,CC)) || identical(M, "CC"))
{cent<-CC
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
Ds<-rbind(D1,D2,D3)
cent.name<-"CC"
} else
{cent<-M
cent.name<-"M"
Ds<-prj.cent2edges(Tr,M)
}
L<-rbind(cent,cent,cent); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty=2)
#now we add the vertex names and annotation
txt<-rbind(Tr,cent,Ds)
xc<-txt[,1]+c(-.02,.03,.02,.03,.04,-.03,-.01)
yc<-txt[,2]+c(.02,.02,.03,.06,.04,.05,-.07)
txt.str<-c("A", "B", "C", cent.name,"D1", "D2", "D3")
text(xc,yc,txt.str)
```

arcsCS	The arcs of Central Similarity Proximity Catch Digraph (CS-PCD) for
$2 D$ data - multiple triangle case	

Description

An object of class "PCDs". Returns arcs of CS-PCD as tails (or sources) and heads (or arrow ends) and related parameters and the quantities of the digraph. The vertices of the CS-PCD are the data points in Xp in the multiple triangle case.
CS proximity regions are defined with respect to the Delaunay triangles based on Yp points with expansion parameter $t>0$ and edge regions in each triangle are based on the center $M=(\alpha, \beta, \gamma)$ in barycentric coordinates in the interior of each Delaunay triangle (default for $M=(1,1,1)$ which is the center of mass of the triangle). Each Delaunay triangle is first converted to an (nonscaled) basic triangle so that M will be the same type of center for each Delaunay triangle (this conversion is not necessary when M is $C M$).
Convex hull of Yp is partitioned by the Delaunay triangles based on Yp points (i.e., multiple triangles are the set of these Delaunay triangles whose union constitutes the convex hull of Yp points). For the number of arcs, loops are not allowed so arcs are only possible for points inside the convex hull of $Y p$ points.
See (Ceyhan (2005); Ceyhan et al. (2007); Ceyhan (2014)) for more on CS-PCDs. Also see (Okabe et al. (2000); Ceyhan (2010); Sinclair (2016)) for more on Delaunay triangulation and the corresponding algorithm.

Usage

$\operatorname{arcsCS}(X p, Y p, t, M=c(1,1,1))$

Arguments

Xp A set of 2D points which constitute the vertices of the CS-PCD.
Yp A set of 2D points which constitute the vertices of the Delaunay triangles.
$t \quad$ A positive real number which serves as the expansion parameter in CS proximity region.
M A 3D point in barycentric coordinates which serves as a center in the interior of each Delaunay triangle, default for $M=(1,1,1)$ which is the center of mass of each triangle.

Value

A list with the elements
type A description of the type of the digraph
parameters Parameters of the digraph, here, it is the center used to construct the edge regions.
tess.points Tessellation points, i.e., points on which the tessellation of the study region is performed, here, tessellation is Delaunay triangulation based on Yp points.
tess.name Name of the tessellation points tess.points
vertices Vertices of the digraph, Xp points
vert. name \quad Name of the data set which constitute the vertices of the digraph
S

E Heads (or arrow ends) of the arcs of CS-PCD for 2D data set $X p$ as vertices of the digraph
mtitle Text for "main" title in the plot of the digraph
quant Various quantities for the digraph: number of vertices, number of partition points, number of triangles, number of arcs, and arc density.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2014). "Comparison of Relative Density of Two Random Geometric Digraph Families in Testing Spatial Clustering." TEST, 23(1), 100-134.

Ceyhan E, Priebe CE, Marchette DJ (2007). "A new family of random graphs for testing spatial segregation." Canadian Journal of Statistics, 35(1), 27-50.

Okabe A, Boots B, Sugihara K, Chiu SN (2000). Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. Wiley, New York.

Sinclair D (2016). "S-hull: a fast radial sweep-hull routine for Delaunay triangulation." 1604.01428.

See Also

arcsCStri, arcsAS and arcsPE

Examples

```
#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-15; ny<-5; #try also nx<-40; ny<-10 or nx<-1000; ny<-10;
set.seed(1)
Xp<-cbind(runif(nx,0,1),runif(nx,0,1))
Yp<-cbind(runif(ny,0,.25),runif(ny,0,.25))+cbind(c(0,0,0.5,1,1),c(0,1,.5,0,1))
#try also Yp<-cbind(runif(ny,0,1),runif(ny,0,1))
M<-c(1,1,1) #try also M<-c(1,2,3)
tau<-1.5 #try also tau<-2
Arcs<-arcsCS(Xp,Yp,tau,M)
#or use the default center Arcs<-arcsCS(Xp,Yp,tau)
Arcs
summary(Arcs)
plot(Arcs)
```

arcsCS1D The arcs of Central Similarity Proximity Catch Digraph (CS-PCD) for 1D data - multiple interval case

Description

An object of class "PCDs". Returns arcs of CS-PCD as tails (or sources) and heads (or arrow ends) and related parameters and the quantities of the digraph. The vertices of the CS-PCD are the 1D data points in $X p$ in the multiple interval case. Yp determines the end points of the intervals.

If there are duplicates of Yp points, only one point is retained for each duplicate value, and a warning message is printed.
For this function, CS proximity regions are constructed data points inside or outside the intervals based on Yp points with expansion parameter $t>0$ and centrality parameter $c \in(0,1)$. That is, for this function, arcs may exist for points in the middle or end-intervals. It also provides various descriptions and quantities about the arcs of the CS-PCD such as number of arcs, arc density, etc.

Equivalent to function arcsCS1D.
See also (Ceyhan (2016)).

Usage

$\operatorname{arcsCS1D}(X p, Y p, t, c=0.5)$

Arguments

Xp A set or vector of 1D points which constitute the vertices of the CS-PCD.
Yp A set or vector of 1D points which constitute the end points of the intervals.
$\mathrm{t} \quad$ A positive real number which serves as the expansion parameter in CS proximity region.
c A positive real number in $(0,1)$ parameterizing the center inside middle intervals with the default $\mathrm{c}=.5$. For the interval, int $=(a, b)$, the parameterized center is $M_{c}=a+c(b-a)$.

Value

A list with the elements

type	A description of the type of the digraph
parameters	Parameters of the digraph, here, they are expansion and centrality parameters.
tess.points	Tessellation points, i.e., points on which the tessellation of the study region is performed, here, tessellation is the intervalization of the real line based on Yp points.
tess.name	Name of the tessellation points tess. points
vertices	Vertices of the digraph, Xp points
vert.name	Name of the data set which constitute the vertices of the digraph
S	Tails (or sources) of the arcs of CS-PCD for 1D data
E	Heads (or arrow ends) of the arcs of CS-PCD for 1D data
mtitle	Text for "main" title in the plot of the digraph quant
	Various quantities for the digraph: number of vertices, number of partition points, number of intervals, number of arcs, and arc density.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2016). "Density of a Random Interval Catch Digraph Family and its Use for Testing Uniformity." REVSTAT, 14(4), 349-394.

See Also

arcsCSend.int, arcsCSmid.int, arcsCS1D, and arcsPE1D

Examples

```
t<-2
c<-.4
a<-0; b<-10;
#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-20; ny<-4; #try also nx<-40; ny<-10 or nx<-1000; ny<-10;
set.seed(1)
xr<-range(a,b)
xf<-(xr[2]-xr[1])*. }
Xp<-runif(nx,a-xf,b+xf)
Yp<-runif(ny,a,b)
Arcs<--arcsCS1D(Xp,Yp,t,c)
Arcs
summary(Arcs)
plot(Arcs)
S<-Arcs$S
E<-Arcs$E
arcsCS1D(Xp,Yp,t,c)
arcsCS1D(Xp,Yp+10,t,c)
jit<-.1
yjit<-runif(nx,-jit,jit)
Xlim<-range(a,b,Xp,Yp)
xd<-Xlim[2]-Xlim[1]
plot(cbind(a,0),
main="arcs of CS-PCD for points (jittered along y-axis)\n in middle intervals ",
xlab=" ", ylab=" ", xlim=Xlim+xd*c(-.05,.05),ylim=3*c(-jit,jit),pch=".")
abline(h=0,lty=1)
points(Xp, yjit,pch=".",cex=3)
abline(v=Yp,lty=2)
arrows(S, yjit, E, yjit, length = .05, col= 4)
t<-2
c<-.4
```

```
a<-0; b<-10;
nx<-20; ny<-4; #try also nx<-40; ny<-10 or nx<-1000; ny<-10;
Xp<-runif(nx,a,b)
Yp<-runif(ny,a,b)
arcsCS1D(Xp,Yp,t,c)
```

arcsCSend. int The arcs of Central Similarity Proximity Catch Digraph (CS-PCD) for 1D data - end-interval case

Description

An object of class "PCDs". Returns arcs of CS-PCD as tails (or sources) and heads (or arrow ends) and related parameters and the quantities of the digraph. The vertices of the CS-PCD are the 1D data points in $X p$ in the end-interval case. Yp determines the end points of the end-intervals.
For this function, CS proximity regions are constructed data points outside the intervals based on Yp points with expansion parameter $t>0$. That is, for this function, arcs may exist for points only inside end-intervals. It also provides various descriptions and quantities about the arcs of the CS-PCD such as number of arcs, arc density, etc.
See also (Ceyhan (2016)).

Usage

arcsCSend.int(Xp, Yp, t)

Arguments

$$
\begin{array}{ll}
\text { Xp } & \text { A set or vector of 1D points which constitute the vertices of the CS-PCD. } \\
Y p & \text { A set or vector of 1D points which constitute the end points of the intervals. } \\
t & \begin{array}{l}
\text { A positive real number which serves as the expansion parameter in CS proximity } \\
\text { region. }
\end{array}
\end{array}
$$

Value

A list with the elements

type	A description of the type of the digraph
parameters	Parameters of the digraph, here, it is the expansion parameter.
tess.points	Tessellation points, i.e., points on which the tessellation of the study region is performed, here, tessellation is the intervalization based on Yp.
tess.name	Name of the tessellation points tess. points
vertices	Vertices of the digraph, Xp points
vert.name	Name of the data set which constitutes the vertices of the digraph

S Tails (or sources) of the arcs of CS-PCD for 1D data in the end-intervals
E Heads (or arrow ends) of the arcs of CS-PCD for 1D data in the end-intervals
mtitle Text for "main" title in the plot of the digraph
quant Various quantities for the digraph: number of vertices, number of partition points, number of intervals (which is 2 for end-intervals), number of arcs, and arc density.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2016). "Density of a Random Interval Catch Digraph Family and its Use for Testing Uniformity." REVSTAT, 14(4), 349-394.

See Also

arcsCSmid.int, arcsCS1D, arcsPEmid.int, arcsPEend.int and arcsPE1D

Examples

```
t<-1.5
a<-0; b<-10; int<-c(a,b)
#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-20; ny<-4; #try also nx<-40; ny<-10 or nx<-1000; ny<-10;
set.seed(1)
xr<-range(a,b)
xf<-(xr[2]-xr[1])*. }
Xp<-runif(nx,a-xf,b+xf)
Yp<-runif(ny,a,b)
arcsCSend.int(Xp,Yp,t)
Arcs<-arcsCSend.int(Xp,Yp,t)
Arcs
summary(Arcs)
plot(Arcs)
S<-Arcs$S
E<-Arcs$E
jit<-.1
yjit<-runif(nx,-jit,jit)
Xlim<-range(a,b,Xp,Yp)
xd<-Xlim[2]-Xlim[1]
```

```
plot(cbind(a,0),pch=".",
main="arcs of CS-PCD with vertices (jittered along y-axis)\n in end-intervals ",
    xlab=" ", ylab=" ",xlim=xlim+xd*c(-.05,.05),ylim=3*c(-jit,jit))
abline(h=0,lty=1)
points(Xp, yjit,pch=".",cex=3)
abline(v=Yp,lty=2)
arrows(S, yjit, E, yjit, length = .05, col= 4)
arcsCSend.int(Xp,Yp,t)
```

arcsCSint	The arcs of Central Similarity Proximity Catch Digraph (CS-PCD) for
ID data - one interval case	

Description

An object of class "PCDs". Returns arcs of CS-PCD as tails (or sources) and heads (or arrow ends) and related parameters and the quantities of the digraph. The vertices of the CS-PCD are the 1D data points in Xp in the one interval case. int determines the end points of the interval.

For this function, CS proximity regions are constructed data points inside or outside the interval based on int points with expansion parameter $t>0$ and centrality parameter $c \in(0,1)$. That is, for this function, arcs may exist for points in the middle or end-intervals. It also provides various descriptions and quantities about the arcs of the CS-PCD such as number of arcs, arc density, etc.

Usage

$\operatorname{arcsCSint}(X p$, int, $t, c=0.5)$

Arguments

Xp A set or vector of 1D points which constitute the vertices of the CS-PCD.
int A vector of two 1D points which constitutes the end points of the interval.
$t \quad$ A positive real number which serves as the expansion parameter in CS proximity region.
c
A positive real number in $(0,1)$ parameterizing the center inside middle intervals with the default $\mathrm{c}=.5$. For the interval, int $=(a, b)$, the parameterized center is $M_{c}=a+c(b-a)$.

Value

A list with the elements
type A description of the type of the digraph
parameters Parameters of the digraph, here, they are expansion and centrality parameters.
tess.points Tessellation points, i.e., points on which the tessellation of the study region is performed, here, tessellation is the intervalization of the real line based on int points.
tess.name Name of the tessellation points tess. points
vertices Vertices of the digraph, Xp points
vert.name \quad Name of the data set which constitute the vertices of the digraph
S Tails (or sources) of the arcs of CS-PCD for 1D data
E Heads (or arrow ends) of the arcs of CS-PCD for 1D data
mtitle Text for "main" title in the plot of the digraph
quant Various quantities for the digraph: number of vertices, number of partition points, number of intervals, number of arcs, and arc density.

Author(s)

Elvan Ceyhan

References

There are no references for Rd macro \insertAllCites on this help page.

See Also

```
arcsCS1D, arcsCSmid.int, arcsCSend.int, and arcsPE1D
```


Examples

```
tau<-2
c<-.4
a<-0; b<-10; int<-c(a,b);
#n is number of X points
n<-10; #try also n<-20
xf<-(int[2]-int[1])*.1
set.seed(1)
Xp<-runif(n,a-xf,b+xf)
Arcs<-arcsCSint(Xp,int,tau,c)
Arcs
summary(Arcs)
plot(Arcs)
Xp<-runif(n,a+10,b+10)
Arcs=arcsCSint(Xp,int,tau,c)
Arcs
summary(Arcs)
plot(Arcs)
```

```
arcsCSmid.int The arcs of Central Similarity Proximity Catch Digraph(CS-PCD) for
1D data - middle intervals case
```


Description

An object of class "PCDs". Returns arcs of CS-PCD as tails (or sources) and heads (or arrow ends) and related parameters and the quantities of the digraph. The vertices of the CS-PCD are the 1D data points in Xp in the middle interval case.
For this function, CS proximity regions are constructed with respect to the intervals based on $Y p$ points with expansion parameter $t>0$ and centrality parameter $c \in(0,1)$. That is, for this function, arcs may exist for points only inside the intervals. It also provides various descriptions and quantities about the arcs of the CS-PCD such as number of arcs, arc density, etc.
Vertex regions are based on center M_{c} of each middle interval.
See also (Ceyhan (2016)).

Usage

arcsCSmid.int(Xp, Yp, t, c = 0.5)

Arguments

Xp A set or vector of 1D points which constitute the vertices of the CS-PCD.
Yp A set or vector of 1D points which constitute the end points of the intervals.
$t \quad$ A positive real number which serves as the expansion parameter in CS proximity region.
c A positive real number in $(0,1)$ parameterizing the center inside middle intervals with the default $\mathrm{c}=.5$. For the interval, int $=(a, b)$, the parameterized center is $M_{c}=a+c(b-a)$.

Value

A list with the elements

type	A description of the type of the digraph
parameters	Parameters of the digraph, here, they are expansion and centrality parameters.
tess.points	Points on which the tessellation of the study region is performed, here, tessella- tion is the intervalization based on Yp points.
tess.name	Name of the tessellation points tess. points
vertices	Vertices of the digraph, i.e., Xp points
vert.name	Name of the data set which constitute the vertices of the digraph
S	Tails (or sources) of the arcs of CS-PCD for 1D data in the middle intervals
E	Heads (or arrow ends) of the arcs of CS-PCD for 1D data in the middle intervals mtitle
quant	Text for "main" title in the plot of the digraph Various quantities for the digraph: number of vertices, number of partition points, number of intervals, number of arcs, and arc density.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2016). "Density of a Random Interval Catch Digraph Family and its Use for Testing Uniformity." REVSTAT, 14(4), 349-394.

See Also

arcsPEend.int, arcsPE1D, arcsCSmid.int, arcsCSend.int and arcsCS1D

Examples

```
t<-1.5
c<-.4
a<-0; b<-10
#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-20; ny<-4; #try also nx<-40; ny<-10 or nx<-1000; ny<-10;
set.seed(1)
Xp<-runif(nx,a,b)
Yp<-runif(ny,a,b)
arcsCSmid.int(Xp,Yp,t,c)
arcsCSmid.int(Xp,Yp+10,t,c)
Arcs<-arcsCSmid.int(Xp,Yp,t, c)
Arcs
summary(Arcs)
plot(Arcs)
S<-Arcs$S
E<-Arcs$E
jit<-. }
yjit<-runif(nx,-jit,jit)
Xlim<-range(Xp,Yp)
xd<-Xlim[2]-Xlim[1]
plot(cbind(a,0),
main="arcs of CS-PCD whose vertices (jittered along y-axis)\n in middle intervals ",
xlab=" ", ylab=" ", xlim=Xlim+xd*c(-.05,.05),ylim=3*c(-jit,jit),pch=".")
abline(h=0,lty=1)
points(Xp, yjit,pch=".",cex=3)
abline(v=Yp,lty=2)
arrows(S, yjit, E, yjit, length = .05, col= 4)
t<-. }
c<-. }
```

```
a<-0; b<-10;
nx<-20; ny<-4; #try also nx<-40; ny<-10 or nx<-1000; ny<-10;
Xp<-runif(nx,a,b)
Yp<-runif(ny,a,b)
arcsCSmid.int(Xp,Yp,t,c)
```

arcsCStri

The arcs of Central Similarity Proximity Catch Digraphs (CS-PCD) for $2 D$ data - one triangle case

Description

An object of class "PCDs". Returns arcs of CS-PCD as tails (or sources) and heads (or arrow ends) and related parameters and the quantities of the digraph. The vertices of the CS-PCD are the data points in Xp in the one triangle case.
CS proximity regions are constructed with respect to the triangle tri with expansion parameter $t>0$, i.e., arcs may exist for points only inside tri. It also provides various descriptions and quantities about the arcs of the CS-PCD such as number of arcs, arc density, etc.
Edge regions are based on center $M=\left(m_{1}, m_{2}\right)$ in Cartesian coordinates or $M=(\alpha, \beta, \gamma)$ in barycentric coordinates in the interior of the triangle tri; default is $M=(1,1,1)$ i.e., the center of mass of tri.

See also (Ceyhan (2005); Ceyhan et al. (2007); Ceyhan (2014)).

Usage

$\operatorname{arcsCStri}(X p, \operatorname{tri}, \mathrm{t}, \mathrm{M}=\mathrm{c}(1,1,1))$

Arguments

Xp A set of 2D points which constitute the vertices of the CS-PCD.
tri A 3×2 matrix with each row representing a vertex of the triangle.
$\mathrm{t} \quad$ A positive real number which serves as the expansion parameter in CS proximity region.

M
A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates which serves as a center in the interior of the triangle tri or the circumcenter of tri; default is $M=(1,1,1)$ i.e., the center of mass of tri.

Value
A list with the elements
type A description of the type of the digraph
parameters Parameters of the digraph, the center M used to construct the edge regions and the expansion parameter t.
tess.points Tessellation points, i.e., points on which the tessellation of the study region is performed, here, tessellation points are the vertices of the support triangle tri.
tess.name Name of the tessellation points tess.points
vertices Vertices of the digraph, Xp points
vert.name Name of the data set which constitute the vertices of the digraph
S Tails (or sources) of the arcs of CS-PCD for 2D data set $X p$ as vertices of the digraph

E
Heads (or arrow ends) of the arcs of CS-PCD for 2D data set Xp as vertices of the digraph
mtitle Text for "main" title in the plot of the digraph
quant Various quantities for the digraph: number of vertices, number of partition points, number of triangles, number of arcs, and arc density.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2014). "Comparison of Relative Density of Two Random Geometric Digraph Families in Testing Spatial Clustering." TEST, 23(1), 100-134.

Ceyhan E, Priebe CE, Marchette DJ (2007). "A new family of random graphs for testing spatial segregation." Canadian Journal of Statistics, 35(1), 27-50.

See Also

arcsCS, arcsAStri and arcsPEtri

Examples

```
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
n<-10
set.seed(1)
Xp<-runif.tri(n,Tr)$g
M<-as.numeric(runif.tri(1,Tr)$g) #try also M<-c(1.6,1.0)
t<-1.5 #try also t<-2
Arcs<-arcsCStri(Xp,Tr,t,M)
```

```
#or try with the default center Arcs<-arcsCStri(Xp,Tr,t); M= (Arcs$param)$c
Arcs
summary(Arcs)
plot(Arcs)
#can add edge regions
L<-rbind(M,M,M); R<-Tr
segments(L[,1], L[,2], R[,1], R[,2], lty=2)
#now we can add the vertex names and annotation
txt<-rbind(Tr,M)
xc<-txt[,1]+c(-.02,.03,.02,.03)
yc<-txt[,2]+c(.02,.02,.03,.06)
txt.str<-c("A", "B","C", "M")
text(xc,yc,txt.str)
```

arcsPE The arcs of Proportional Edge Proximity Catch Digraph (PE-PCD)
for 2D data - multiple triangle case

Description

An object of class "PCDs". Returns arcs of PE-PCD as tails (or sources) and heads (or arrow ends) and related parameters and the quantities of the digraph. The vertices of the PE-PCD are the data points in Xp in the multiple triangle case.
PE proximity regions are defined with respect to the Delaunay triangles based on Yp points with expansion parameter $r \geq 1$ and vertex regions in each triangle are based on the center $M=(\alpha, \beta, \gamma)$ in barycentric coordinates in the interior of each Delaunay triangle or based on circumcenter of each Delaunay triangle (default for $M=(1,1,1)$ which is the center of mass of the triangle). Each Delaunay triangle is first converted to an (nonscaled) basic triangle so that M will be the same type of center for each Delaunay triangle (this conversion is not necessary when M is $C M$).

Convex hull of $Y p$ is partitioned by the Delaunay triangles based on Yp points (i.e., multiple triangles are the set of these Delaunay triangles whose union constitutes the convex hull of Yp points). For the number of arcs, loops are not allowed so arcs are only possible for points inside the convex hull of Yp points.
See (Ceyhan (2005); Ceyhan et al. (2006); Ceyhan (2011)) for more on the PE-PCDs. Also, see (Okabe et al. (2000); Ceyhan (2010); Sinclair (2016)) for more on Delaunay triangulation and the corresponding algorithm.

Usage

$\operatorname{arcsPE}(X p, Y p, r, M=c(1,1,1))$

Arguments

Xp A set of 2D points which constitute the vertices of the PE-PCD.
Yp A set of 2D points which constitute the vertices of the Delaunay triangles.
$r \quad$ A positive real number which serves as the expansion parameter in PE proximity region; must be ≥ 1.

M
A 3D point in barycentric coordinates which serves as a center in the interior of each Delaunay triangle or circumcenter of each Delaunay triangle (for this, argument should be set as $M=$ " $C C$ "), default for $M=(1,1,1)$ which is the center of mass of each triangle.

Value

A list with the elements

type	A description of the type of the digraph
parameters	Parameters of the digraph, the center used to construct the vertex regions and the expansion parameter.
tess.points	Tessellation points, i.e., points on which the tessellation of the study region is performed, here, tessellation is the Delaunay triangulation based on Yp points.
tess. name	Name of the tessellation points tess. points
vertices	Vertices of the digraph, Xp points
vert. name	Name of the data set which constitute the vertices of the digraph
S	Tails (or sources) of the arcs of PE-PCD for 2D data set $X p$ as vertices of the digraph
E	Heads (or arrow ends) of the arcs of PE-PCD for 2D data set Xp as vertices of the digraph
mtitle	Text for "main" title in the plot of the digraph
quant	Various quantities for the digraph: number of vertices, number of partition points, number of triangles, number of arcs, and arc density.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2011). "Spatial Clustering Tests Based on Domination Number of a New Random Digraph Family." Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

Ceyhan E, Priebe CE, Wierman JC (2006). "Relative density of the random r-factor proximity catch digraphs for testing spatial patterns of segregation and association." Computational Statistics \& Data Analysis, 50(8), 1925-1964.

Okabe A, Boots B, Sugihara K, Chiu SN (2000). Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. Wiley, New York.

Sinclair D (2016). "S-hull: a fast radial sweep-hull routine for Delaunay triangulation." 1604.01428.

See Also

arcsPEtri, arcsAS, and arcsCS

Examples

```
#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-20; ny<-5; #try also nx<-40; ny<-10 or nx<-1000; ny<-10;
set.seed(1)
Xp<-cbind(runif(nx,0,1),runif(nx,0,1))
Yp<-cbind(runif(ny,0,.25),runif(ny,0,.25))+cbind(c(0,0,0.5,1,1),c(0,1,.5,0,1))
#try also Yp<-cbind(runif(ny,0,1),runif(ny,0,1))
M<-c(1,1,1) #try also M<-c(1, 2, 3)
r<-1.5 #try also r<-2
Arcs<-arcsPE(Xp, Yp,r,M)
#or try with the default center Arcs<--arcsPE(Xp,Yp,r)
Arcs
summary(Arcs)
plot(Arcs)
```

arcsPE1D | The arcs of Proportional Edge Proximity Catch Digraph (PE-PCD) |
| :--- |
| for $1 D$ data - multiple interval case |

Description

An object of class "PCDs". Returns arcs of PE-PCD as tails (or sources) and heads (or arrow ends) and related parameters and the quantities of the digraph. The vertices of the PE-PCD are the 1D data points in $X p$ in the multiple interval case. Yp determines the end points of the intervals.
If there are duplicates of Yp points, only one point is retained for each duplicate value, and a warning message is printed.

For this function, PE proximity regions are constructed data points inside or outside the intervals based on Yp points with expansion parameter $r \geq 1$ and centrality parameter $c \in(0,1)$. That is, for this function, arcs may exist for points in the middle or end-intervals. It also provides various descriptions and quantities about the arcs of the PE-PCD such as number of arcs, arc density, etc.
See also (Ceyhan (2012)).

Usage

$\operatorname{arcsPE1D}(X p, Y p, r, c=0.5)$

Arguments

Xp A set or vector of 1D points which constitute the vertices of the PE-PCD.
Yp A set or vector of 1D points which constitute the end points of the intervals.
$r \quad$ A positive real number which serves as the expansion parameter in PE proximity region; must be ≥ 1.
c A positive real number in $(0,1)$ parameterizing the center inside middle intervals with the default $\mathrm{c}=.5$. For the interval, (a, b), the parameterized center is $M_{c}=$ $a+c(b-a)$.

Value

A list with the elements
type A description of the type of the digraph
parameters Parameters of the digraph, here, they are expansion and centrality parameters.
tess.points Tessellation points, i.e., points on which the tessellation of the study region is performed, here, tessellation is the intervalization of the real line based on $Y p$ points.
tess.name Name of the tessellation points tess. points
vertices Vertices of the digraph, Xp points
vert.name \quad Name of the data set which constitute the vertices of the digraph
S Tails (or sources) of the arcs of PE-PCD for 1D data
E Heads (or arrow ends) of the arcs of PE-PCD for 1D data
mtitle Text for "main" title in the plot of the digraph
quant Various quantities for the digraph: number of vertices, number of partition points, number of intervals, number of arcs, and arc density.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2012). "The Distribution of the Relative Arc Density of a Family of Interval Catch Digraph Based on Uniform Data." Metrika, 75(6), 761-793.

See Also

arcsPEint, arcsPEmid.int, arcsPEend.int, and arcsCS1D

Examples

```
r<-2
c<-.4
a<-0; b<-10; int<-c(a,b);
#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-15; ny<-4; #try also nx<-40; ny<-10 or nx<-1000; ny<-10;
set.seed(1)
xf<-(int[2]-int[1])*. }
Xp<-runif(nx,a-xf,b+xf)
Yp<-runif(ny,a,b)
Arcs<-arcsPE1D(Xp,Yp,r,c)
Arcs
summary(Arcs)
plot(Arcs)
```

arcsPEend.int

The arcs of Proportional Edge Proximity Catch Digraph (PE-PCD) for 1D data - end-interval case

Description

An object of class "PCDs". Returns arcs of PE-PCD as tails (or sources) and heads (or arrow ends) and related parameters and the quantities of the digraph. The vertices of the PE-PCD are the 1D data points in Xp in the end-interval case. Yp determines the end points of the end-intervals.

For this function, PE proximity regions are constructed data points outside the intervals based on Yp points with expansion parameter $r \geq 1$. That is, for this function, arcs may exist for points only inside end-intervals. It also provides various descriptions and quantities about the arcs of the PE-PCD such as number of arcs, arc density, etc.
See also (Ceyhan (2012)).

Usage

arcsPEend.int(Xp, Yp, r)

Arguments

Xp A set or vector of 1D points which constitute the vertices of the PE-PCD.
Yp A set or vector of 1D points which constitute the end points of the intervals.
$r \quad$ A positive real number which serves as the expansion parameter in PE proximity region; must be ≥ 1.

Value

A list with the elements
type A description of the type of the digraph
parameters Parameters of the digraph, here, it is the expansion parameter.
tess.points Tessellation points, i.e., points on which the tessellation of the study region is performed, here, tessellation is the intervalization based on $Y p$.
tess.name Name of the tessellation points tess.points
vertices Vertices of the digraph, Xp points
vert. name Name of the data set which constitutes the vertices of the digraph
S Tails (or sources) of the arcs of PE-PCD for 1D data in the end-intervals
E Heads (or arrow ends) of the arcs of PE-PCD for 1D data in the end-intervals
mtitle Text for "main" title in the plot of the digraph
quant Various quantities for the digraph: number of vertices, number of partition points, number of intervals (which is 2 for end-intervals), number of arcs, and arc density.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2012). "The Distribution of the Relative Arc Density of a Family of Interval Catch Digraph Based on Uniform Data." Metrika, 75(6), 761-793.

See Also

arcsPEmid.int, arcsPE1D, arcsCSmid.int, arcsCSend.int and arcsCS1D

Examples

```
r<-2
a<-0; b<-10; int<-c(a,b);
#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-15; ny<-4; #try also nx<-40; ny<-10 or nx<-1000; ny<-10;
set.seed(1)
```

```
xf<-(int[2]-int[1])*. }
Xp<-runif(nx,a-xf,b+xf)
Yp<-runif(ny,a,b) #try also Yp<-runif(ny,a,b)+c(-10,10)
Arcs<-arcsPEend.int(Xp,Yp,r)
Arcs
summary(Arcs)
plot(Arcs)
S<-Arcs$S
E<-Arcs$E
jit<-.1
yjit<-runif(nx,-jit,jit)
Xlim<-range(a,b,Xp,Yp)
xd<-Xlim[2]-Xlim[1]
plot(cbind(a,0),pch=".",
main="arcs of PE-PCDs for points (jittered along y-axis)\n in end-intervals ",
xlab=" ", ylab=" ", xlim=Xlim+xd*c(-.05,.05),ylim=3*c(-jit,jit))
abline(h=0,lty=1)
points(Xp, yjit,pch=".",cex=3)
abline(v=Yp,lty=2)
arrows(S, yjit, E, yjit, length = .05, col= 4)
```

arcsPEint \quad| The arcs of Proportional Edge Proximity Catch Digraph (PE-PCD) |
| :--- |
| for $1 D$ data - one interval case |

Description

An object of class "PCDs". Returns arcs of PE-PCD as tails (or sources) and heads (or arrow ends) and related parameters and the quantities of the digraph. The vertices of the PE-PCD are the 1D data points in Xp in the one interval case. int determines the end points of the interval.
For this function, PE proximity regions are constructed data points inside or outside the interval based on int points with expansion parameter $r \geq 1$ and centrality parameter $c \in(0,1)$. That is, for this function, arcs may exist for points in the middle or end-intervals. It also provides various descriptions and quantities about the arcs of the PE-PCD such as number of arcs, arc density, etc.

See also (Ceyhan (2012)).

Usage

arcsPEint(Xp, int, r, $c=0.5)$

Arguments

Xp A set or vector of 1D points which constitute the vertices of the PE-PCD.
int A vector of two 1D points which constitutes the end points of the interval.
$r \quad$ A positive real number which serves as the expansion parameter in PE proximity region; must be ≥ 1.
c
A positive real number in $(0,1)$ parameterizing the center inside middle intervals with the default $\mathrm{c}=.5$. For the interval, int $=(a, b)$, the parameterized center is $M_{c}=a+c(b-a)$.

Value

A list with the elements
type A description of the type of the digraph
parameters Parameters of the digraph, here, they are expansion and centrality parameters.
tess.points Tessellation points, i.e., points on which the tessellation of the study region is performed, here, tessellation points are the end points of the support interval int.
tess.name Name of the tessellation points tess.points
vertices Vertices of the digraph, Xp points
vert.name \quad Name of the data set which constitute the vertices of the digraph
S Tails (or sources) of the arcs of PE-PCD for 1D data
E Heads (or arrow ends) of the arcs of PE-PCD for 1D data
mtitle Text for "main" title in the plot of the digraph
quant Various quantities for the digraph: number of vertices, number of partition points, number of intervals, number of arcs, and arc density.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2012). "The Distribution of the Relative Arc Density of a Family of Interval Catch Digraph Based on Uniform Data." Metrika, 75(6), 761-793.

See Also

arcsPE1D, arcsPEmid.int, arcsPEend.int, and arcsCS1D

Examples

```
r<-2
c<-.4
a<-0; b<-10; int<-c(a,b);
#n is number of X points
n<-10; #try also n<-20
xf<-(int[2]-int[1])*. }
set.seed(1)
Xp<-runif(n,a-xf,b+xf)
Arcs<-arcsPEint(Xp,int,r,c)
Arcs
summary(Arcs)
plot(Arcs)
```

arcsPEmid.int

The arcs of Proportional Edge Proximity Catch Digraph (PE-PCD) for 1D data - middle intervals case

Description

An object of class "PCDs". Returns arcs of PE-PCD as tails (or sources) and heads (or arrow ends) and related parameters and the quantities of the digraph. The vertices of the PE-PCD are the 1D data points in Xp in the middle interval case.
For this function, PE proximity regions are constructed with respect to the intervals based on Yp points with expansion parameter $r \geq 1$ and centrality parameter $c \in(0,1)$. That is, for this function, arcs may exist for points only inside the intervals. It also provides various descriptions and quantities about the arcs of the PE-PCD such as number of arcs, arc density, etc.
Vertex regions are based on center M_{c} of each middle interval. If there are duplicates of Yp points, only one point is retained for each duplicate value, and a warning message is printed.

See also (Ceyhan (2012)).

Usage

arcsPEmid.int(Xp, Yp, r, $c=0.5)$

Arguments

Xp A set or vector of 1D points which constitute the vertices of the PE-PCD.
Yp A set or vector of 1D points which constitute the end points of the intervals.
$r \quad$ A positive real number which serves as the expansion parameter in PE proximity region; must be ≥ 1.
c A positive real number in $(0,1)$ parameterizing the center inside middle intervals with the default $\mathrm{c}=.5$. For the interval, (a, b), the parameterized center is $M_{c}=$ $a+c(b-a)$.

Value

A list with the elements

type	A description of the type of the digraph
parameters	Parameters of the digraph, here, they are expansion and centrality parameters.
tess.points	Tessellation points, i.e., points on which the tessellation of the study region is performed, here, tessellation is the intervalization based on Yp points.
tess.name	Name of the tessellation points tess. points
vertices	Vertices of the digraph, i.e., Xp points
vert.name	Name of the data set which constitute the vertices of the digraph S
E Tails (or sources) of the arcs of PE-PCD for 1D data in the middle intervals	
mtitle	Heads (or arrow ends) of the arcs of PE-PCD for 1D data in the middle intervals Text for "main" title in the plot of the digraph
quant	Various quantities for the digraph: number of vertices, number of partition points, number of intervals, number of arcs, and arc density.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2012). "The Distribution of the Relative Arc Density of a Family of Interval Catch Digraph Based on Uniform Data." Metrika, 75(6), 761-793.

See Also

arcsPEend.int, arcsPE1D, arcsCSmid.int, arcsCSend.int and arcsCS1D

Examples

```
r<-2
c<-.4
a<-0; b<-10;
#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-15; ny<-4; #try also nx<-40; ny<-10 or nx<-1000; ny<-10;
set.seed(1)
Xp<-runif(nx,a,b)
```

```
Yp<-runif(ny,a,b)
Arcs<-arcsPEmid.int(Xp,Yp,r,c)
Arcs
summary(Arcs)
plot(Arcs)
S<-Arcs$S
E<-Arcs$E
arcsPEmid.int(Xp,Yp,r,c)
arcsPEmid.int(Xp,Yp+10,r,c)
jit<-.1
yjit<-runif(nx,-jit,jit)
Xlim<-range(Xp,Yp)
xd<-Xlim[2]-Xlim[1]
plot(cbind(a,0),
main="arcs of PE-PCD for points (jittered along y-axis)\n in middle intervals ",
xlab=" ", ylab=" ", xlim=Xlim+xd*c(-.05,.05),ylim=3*c(-jit,jit),pch=".")
abline(h=0,lty=1)
points(Xp, yjit,pch=".",cex=3)
abline(v=Yp,lty=2)
arrows(S, yjit, E, yjit, length = .05, col= 4)
```

arcsPEtri
The arcs of Proportional Edge Proximity Catch Digraph (PE-PCD)
for 2D data - one triangle case

Description

An object of class "PCDs". Returns arcs of PE-PCD as tails (or sources) and heads (or arrow ends) and related parameters and the quantities of the digraph. The vertices of the PE-PCD are the data points in Xp in the one triangle case.
PE proximity regions are constructed with respect to the triangle tri with expansion parameter $r \geq 1$, i.e., arcs may exist only for points inside tri. It also provides various descriptions and quantities about the arcs of the PE-PCD such as number of arcs, arc density, etc.
Vertex regions are based on center $M=\left(m_{1}, m_{2}\right)$ in Cartesian coordinates or $M=(\alpha, \beta, \gamma)$ in barycentric coordinates in the interior of the triangle tri or based on the circumcenter of tri; default is $M=(1,1,1)$, i.e., the center of mass of tri. When the center is the circumcenter, CC , the vertex regions are constructed based on the orthogonal projections to the edges, while with any interior center M, the vertex regions are constructed using the extensions of the lines combining vertices with M. M-vertex regions are recommended spatial inference, due to geometry invariance property of the arc density and domination number the PE-PCDs based on uniform data.
See also (Ceyhan (2005); Ceyhan et al. (2006)).

Usage

$\operatorname{arcsPEtri}(X p, \operatorname{tri}, r, M=c(1,1,1))$

Arguments

Xp A set of 2D points which constitute the vertices of the PE-PCD.
tri A 3×2 matrix with each row representing a vertex of the triangle.
$r \quad$ A positive real number which serves as the expansion parameter in PE proximity region; must be ≥ 1.
M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates which serves as a center in the interior of the triangle tri or the circumcenter of tri which may be entered as "CC" as well; default is $M=(1,1,1)$, i.e., the center of mass of tri.

Value

A list with the elements

type parameters	A description of the type of the digraph Parameters of the digraph, the center M used to construct the vertex regions and the expansion parameter r.
tess.points	Tessellation points, i.e., points on which the tessellation of the study region is performed, here, tessellation points are the vertices of the support triangle tri. Name of the tessellation points tess. points
tess.name	Vertices of the digraph, Xp points
vertices	Name of the data set which constitutes the vertices of the digraph
vert. name	Tails (or sources) of the arcs of PE-PCD for 2D data set Xp as vertices of the digraph
E	Heads (or arrow ends) of the arcs of PE-PCD for 2D data set Xp as vertices of the digraph
mtitle	Text for "main" title in the plot of the digraph quant
	Various quantities for the digraph: number of vertices, number of partition points, number of triangles, number of arcs, and arc density.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E, Priebe CE, Wierman JC (2006). "Relative density of the random r-factor proximity catch digraphs for testing spatial patterns of segregation and association." Computational Statistics \& Data Analysis, 50(8), 1925-1964.

See Also

```
arcsPE, arcsAStri, and arcsCStri
```


Examples

```
A<-C(1,1); B<-C(2,0); C<-C (1.5,2);
Tr<-rbind(A,B,C);
n<-10
set.seed(1)
Xp<-runif.tri(n,Tr)$g
M<-as.numeric(runif.tri(1,Tr)$g) #try also M<-c(1.6,1.0)
r<-1.5 #try also r<-2
Arcs<-arcsPEtri(Xp,Tr,r,M)
#or try with the default center Arcs<-arcsPEtri(Xp,Tr,r); M= (Arcs$param)$cent
Arcs
summary(Arcs)
plot(Arcs)
#can add vertex regions
#but we first need to determine center is the circumcenter or not,
#see the description for more detail.
CC<-circumcenter.tri(Tr)
if (isTRUE(all.equal(M,CC)))
{cent<-CC
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
Ds<-rbind(D1,D2,D3)
cent.name<-"CC"
} else
{cent<-M
cent.name<-"M"
Ds<-prj.cent2edges(Tr,M)
}
L<-rbind(cent,cent,cent); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty=2)
#now we can add the vertex names and annotation
txt<-rbind(Tr,cent,Ds)
xc<-txt[,1]+c(-.02,.02,.02,.02,.03,--.03,-.01)
yc<-txt[,2]+c(.02,.02,.03,.06,.04,.05,-.07)
txt.str<-c("A", "B", "C", "M", "D1", "D2", "D3")
text(xc,yc,txt.str)
```


Description

Returns the area of the polygon, h , in the real plane R^{2}; the vertices of the polygon h must be provided in clockwise or counter-clockwise order, otherwise the function does not yield the area of the polygon. Also, the polygon could be convex or non-convex. See (Weisstein (2019)).

Usage

area.polygon(h)

Arguments

$\mathrm{h} \quad$ A vector of n 2D points, stacked row-wise, each row representing a vertex of the polygon, where n is the number of vertices of the polygon.

Value

area of the polygon h

Author(s)

Elvan Ceyhan

References

Weisstein EW (2019). "Polygon Area." From MathWorld - A Wolfram Web Resource, http: //mathworld.wolfram.com/PolygonArea.html.

Examples

```
A<-c(0,0); B<-c(1,0); C<-c(0.5,.8);
Tr<-rbind(A,B,C);
area.polygon(Tr)
A<-c(0,0); B<-c(1,0); C<-c(.7,.6); D<-c(0.3,.8);
h1<-rbind(A,B,C,D);
#try also h1<-rbind(A,B,D,C) or h1<-rbind(A,C,B,D) or h1<-rbind(A,D,C,B);
area.polygon(h1)
Xlim<-range(h1[,1])
Ylim<-range(h1[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(h1,xlab="",ylab="",main="A Convex Polygon with Four Vertices",
```

```
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(h1)
xc<-rbind(A,B,C,D)[,1]+c(-.03,.03,.02,-.01)
yc<-rbind(A,B,C,D)[,2]+c(.02,.02,.02,.03)
txt.str<-c("A","B","C","D")
text(xc,yc,txt.str)
#when the triangle is degenerate, it gives zero area
B<-A+2*(C-A);
T2<-rbind(A,B,C)
area.polygon(T2)
```


Description

Labels the vertices of triangle, tri, as $A B C$ so that $A B$ is the longest edge, $B C$ is the second longest and $A C$ is the shortest edge (the order is as in the basic triangle).
The standard basic triangle form is $T_{b}=T\left((0,0),(1,0),\left(c_{1}, c_{2}\right)\right)$ where c_{1} is in $[0,1 / 2], c_{2}>0$ and $\left(1-c_{1}\right)^{2}+c_{2}^{2} \leq 1$. Any given triangle can be mapped to the standard basic triangle by a combination of rigid body motions (i.e., translation, rotation and reflection) and scaling, preserving uniformity of the points in the original triangle. Hence, standard basic triangle is useful for simulation studies under the uniformity hypothesis.

The option scaled a logical argument for scaling the resulting triangle or not. If scaled=TRUE, then the resulting triangle is scaled to be a regular basic triangle, i.e., longest edge having unit length, else (i.e., if scaled=FALSE which is the default), the new triangle $T(A, B, C)$ is nonscaled, i.e., the longest edge $A B$ may not be of unit length. The vertices of the resulting triangle (whether scaled or not) is presented in the order of vertices of the corresponding basic triangle, however when scaled the triangle is equivalent to the basic triangle T_{b} up to translation and rotation. That is, this function converts any triangle to a basic triangle (up to translation and rotation), so that the output triangle is $\$ T\left(A^{\prime}, \mathrm{B}^{\prime}, \mathrm{C}^{\prime}\right) \$$ so that edges in decreasing length are $\$ \mathrm{~A}^{\prime} \mathrm{B}^{\prime} \$, \$ \mathrm{~B}^{\prime} \mathrm{C}^{\prime} \$$, and $\$ \mathrm{~A}^{\prime} \mathrm{C}^{\prime} \$$. Most of the times, the resulting triangle will still need to be translated and/or rotated to be in the standard basic triangle form.

Usage

as.basic.tri(tri, scaled = FALSE)

Arguments

tri A 3×2 matrix with each row representing a vertex of the triangle.
scaled A logical argument for scaling the resulting basic triangle. If scaled=TRUE, then the resulting triangle is scaled to be a regular basic triangle, i.e., longest edge having unit length, else the new triangle $T(A, B, C)$ is nonscaled. The default is scaled=FALSE.

Value

A list with three elements
tri The vertices of the basic triangle stacked row-wise and labeled row-wise as A, B, C.
desc Description of the edges based on the vertices, i.e., "Edges (in decreasing length are) $A B, B C$, and $A C$ ".
orig.order Row order of the input triangle, tri, when converted to the scaled version of the basic triangle

Author(s)

Elvan Ceyhan

Examples

```
c1<-.4; c2<-.6
A<-C(0,0); B<-C(1,0); C<-c(c1,c2);
as.basic.tri(rbind(A,B,C))
as.basic.tri(rbind(B,C,A))
A<-C(1,1); B<-C(2,0); C<-C(1.5,2);
as.basic.tri(rbind(A,B,C))
as.basic.tri(rbind(A,C,B))
as.basic.tri(rbind(B,A,C))
```

Arc density of Arc Slice Proximity Catch Digraphs (AS-PCDs) - one triangle case

Description

Returns the arc density of AS-PCD whose vertex set is the given 2D numerical data set, Xp , (some of its members are) in the triangle tri.
AS proximity regions are defined with respect to tri and vertex regions are defined with the center $\mathrm{M}=$ "CC" for circumcenter of tri; or $M=\left(m_{1}, m_{2}\right)$ in Cartesian coordinates or $M=(\alpha, \beta, \gamma)$ in barycentric coordinates in the interior of the triangle tri; default is $M=$ " $C C$ " i.e., circumcenter of tri. For the number of arcs, loops are not allowed so arcs are only possible for points inside tri for this function.
in. tri. only is a logical argument (default is FALSE) for considering only the points inside the triangle or all the points as the vertices of the digraph. if in.tri.only=TRUE, arc density is computed only for the points inside the triangle (i.e., arc density of the subdigraph induced by the vertices
in the triangle is computed), otherwise arc density of the entire digraph (i.e., digraph with all the vertices) is computed.
See also (Ceyhan $(2005,2010)$).

Usage

ASarc.dens.tri(Xp, tri, $M=" C C ", i n . t r i . o n l y=F A L S E)$

Arguments

Xp A set of 2D points which constitute the vertices of the AS-PCD.
tri Three 2D points, stacked row-wise, each row representing a vertex of the triangle.
M The center of the triangle. "CC" stands for circumcenter of the triangle tri or a 2D point in Cartesian coordinates or a 3D point in barycentric coordinates which serves as a center in the interior of tri; default is $M=$ "CC" i.e., the circumcenter of tri.
in.tri.only A logical argument (default is in.tri.only=FALSE) for computing the arc density for only the points inside the triangle, tri. That is, if in.tri.only=TRUE arc density of the induced subdigraph with the vertices inside tri is computed, otherwise otherwise arc density of the entire digraph (i.e., digraph with all the vertices) is computed.

Value

Arc density of AS-PCD whose vertices are the 2D numerical data set, Xp ; AS proximity regions are defined with respect to the triangle tri and $C C$-vertex regions.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). "An investigation of new graph invariants related to the domination number of random proximity catch digraphs." Methodology and Computing in Applied Probability, 14(2), 299-334.

See Also

ASarc.dens.tri, CSarc.dens.tri, and num.arcsAStri

Examples

```
A<-C(1,1); B<-C(2,0); C<-C(1.5,2);
Tr<-rbind(A,B,C);
set.seed(1)
n<-10 #try also n<-20
Xp<-runif.tri(n,Tr)$g
M<-as.numeric(runif.tri(1,Tr)$g) #try also M<-c(1.6,1.2)
narcs = num.arcsAStri(Xp,Tr,M)$num.arcs; narcs/(n*(n-1))
ASarc.dens.tri(Xp,Tr,M)
ASarc.dens.tri(Xp,Tr,M,in.tri.only = FALSE)
ASarc.dens.tri(Xp,Tr,M)
```

center.nondegPE Centers for non-degenerate asymptotic distribution of domination
number of Proportional Edge Proximity Catch Digraphs (PE-PCDs)

Description

Returns the centers which yield nondegenerate asymptotic distribution for the domination number of PE-PCD for uniform data in a triangle, $\operatorname{tri}=T\left(v_{1}, v_{2}, v_{3}\right)$.
PE proximity region is defined with respect to the triangle tri with expansion parameter r in $(1,1.5]$.
Vertex regions are defined with the centers that are output of this function. Centers are stacked row-wise with row number is corresponding to the vertex row number in tri (see the examples for an illustration). The center labels $1,2,3$ correspond to the vertices M_{1}, M_{2}, and M_{3} (which are the three centers for r in $(1,1.5)$ which becomes center of mass for $r=1.5$.).
See also (Ceyhan (2005); Ceyhan and Priebe (2007); Ceyhan (2011, 2012)).

Usage

center.nondegPE(tri, r)

Arguments

tri
r

A 3×2 matrix with each row representing a vertex of the triangle.
A positive real number which serves as the expansion parameter in PE proximity region; must be in $(1,1.5]$ for this function.

Value

The centers (stacked row-wise) which give nondegenerate asymptotic distribution for the domination number of PE-PCD for uniform data in a triangle, tri.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2011). "Spatial Clustering Tests Based on Domination Number of a New Random Digraph Family." Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

Ceyhan E (2012). "An investigation of new graph invariants related to the domination number of random proximity catch digraphs." Methodology and Computing in Applied Probability, 14(2), 299-334.

Ceyhan E, Priebe CE (2007). "On the Distribution of the Domination Number of a New Family of Parametrized Random Digraphs." Model Assisted Statistics and Applications, 1(4), 231-255.

Examples

```
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
r<-1.35
Ms<-center.nondegPE(Tr,r)
Ms
Xlim<-range(Tr[,1])
Ylim<-range(Tr[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(Tr,pch=".",xlab="",ylab="",
main="Centers of nondegeneracy\n for the PE-PCD in a triangle",
axes=TRUE,xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)
points(Ms,pch=".",col=1)
polygon(Ms,lty = 2)
xc<-Tr[,1]+c(-.02,.02,.02)
yc<-Tr[,2]+c(.02,.02,.03)
txt.str<-c("A","B","C")
text(xc,yc,txt.str)
```

$x c<-M s[, 1]+c(-.04, .04, .03)$
$\mathrm{yc}<-\mathrm{Ms}[, 2]+\mathrm{c}(.02, .02, .05)$
txt.str<-c("M1", "M2", "M3")
text(xc, yc,txt.str)
centerMc Parameterized center of an interval

Description

Returns the (parameterized) center, M_{c}, of the interval, int $=(a, b)$, parameterized by $c \in(0,1)$ so that $100 c \%$ of the length of interval is to the left of M_{c} and $100(1-c) \%$ of the length of the interval is to the right of M_{c}. That is, for the interval, int $=(a, b)$, the parameterized center is $M_{c}=a+c(b-a)$.
See also (Ceyhan $(2012,2016)$).

Usage

centerMc(int, $c=0.5)$

Arguments

int A vector with two entries representing an interval.
c
A positive real number in $(0,1)$ parameterizing the center inside int $=(a, b)$ with the default $\mathrm{c}=.5$. For the interval, int $=(a, b)$, the parameterized center is $M_{c}=a+c(b-a)$.

Value

(parameterized) center inside int

Author(s)

Elvan Ceyhan

References

Ceyhan E (2012). "The Distribution of the Relative Arc Density of a Family of Interval Catch Digraph Based on Uniform Data." Metrika, 75(6), 761-793.

Ceyhan E (2016). "Density of a Random Interval Catch Digraph Family and its Use for Testing Uniformity." REVSTAT, 14(4), 349-394.

See Also

centersMc

Examples

```
c<-.4
a<-0; b<-10
int = c(a,b)
centerMc(int,c)
c<-.3
a<-2; b<-4; int<-c(a,b)
centerMc(int,c)
```

centersMc Parameterized centers of intervals

Description

Returns the centers of the intervals based on 1D points in Yp parameterized by $c \in(0,1)$ so that $100 c \%$ of the length of interval is to the left of M_{c} and $100(1-c) \%$ of the length of the interval is to the right of M_{c}. That is, for an interval (a, b), the parameterized center is $M_{c}=a+c(b-a)$ Yp is a vector of 1D points, not necessarily sorted.
See also (Ceyhan (2012, 2016)).

Usage

centersMc(Yp, c = 0.5)

Arguments

Yp A vector real numbers that constitute the end points of intervals.
c A positive real number in $(0,1)$ parameterizing the centers inside the intervals with the default $\mathrm{c}=.5$. For the interval, int $=(a, b)$, the parameterized center is $M_{c}=a+c(b-a)$.

Value

(parameterized) centers of the intervals based on Yp points as a vector

Author(s)

Elvan Ceyhan

References

Ceyhan E (2012). "The Distribution of the Relative Arc Density of a Family of Interval Catch Digraph Based on Uniform Data." Metrika, 75(6), 761-793.

Ceyhan E (2016). "Density of a Random Interval Catch Digraph Family and its Use for Testing Uniformity." REVSTAT, 14(4), 349-394.

See Also

centerMc

Examples

```
n<-10
c<-.4 #try also c<-runif(1)
Yp<-runif(n)
centersMc(Yp,c)
c<-. }3\mathrm{ #try also c<-runif(1)
Yp<-runif(n,0,10)
centersMc(Yp,c)
```

circumcenter.basic.tri

Description

Returns the circumcenter of a standard basic triangle form $T_{b}=T\left((0,0),(1,0),\left(c_{1}, c_{2}\right)\right)$ given c_{1}, c_{2} where c_{1} is in $[0,1 / 2], c_{2}>0$ and $\left(1-c_{1}\right)^{2}+c_{2}^{2} \leq 1$.
Any given triangle can be mapped to the standard basic triangle form by a combination of rigid body motions (i.e., translation, rotation and reflection) and scaling, preserving uniformity of the points in the original triangle. Hence, standard basic triangle form is useful for simulation studies under the uniformity hypothesis.
See (Weisstein (2019); Ceyhan (2010)) for triangle centers and (Ceyhan et al. (2006); Ceyhan et al. (2007); Ceyhan (2011)) for the standard basic triangle form.

Usage

circumcenter.basic.tri(c1, c2)

Arguments

c1, c2 Positive real numbers representing the top vertex in standard basic triangle form $T_{b}=T\left((0,0),(1,0),\left(c_{1}, c_{2}\right)\right), c_{1}$ must be in $[0,1 / 2], c_{2}>0$ and $\left(1-c_{1}\right)^{2}+$ $c_{2}^{2} \leq 1$.

Value

circumcenter of the standard basic triangle form $T_{b}=T\left((0,0),(1,0),\left(c_{1}, c_{2}\right)\right)$ given c_{1}, c_{2} as the arguments of the function.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2011). "Spatial Clustering Tests Based on Domination Number of a New Random Digraph Family." Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

Ceyhan E, Priebe CE, Marchette DJ (2007). "A new family of random graphs for testing spatial segregation." Canadian Journal of Statistics, 35(1), 27-50.

Ceyhan E, Priebe CE, Wierman JC (2006). "Relative density of the random r-factor proximity catch digraphs for testing spatial patterns of segregation and association." Computational Statistics \& Data Analysis, 50(8), 1925-1964.

Weisstein EW (2019). "Triangle Centers." From MathWorld - A Wolfram Web Resource, http: //mathworld.wolfram.com/TriangleCenter.html.

See Also

circumcenter.tri

Examples

```
c1<-.4; c2<-.6;
A<-c(0,0); B<-c(1,0); C<-c(c1,c2);
#the vertices of the standard basic triangle form Tb
Tb<-rbind(A,B,C)
CC<-circumcenter.basic.tri(c1,c2) #the circumcenter
CC
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2; #midpoints of the edges
Ds<-rbind(D1,D2,D3)
Xlim<-range(Tb[,1])
Ylim<-range(Tb[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
oldpar <- par(pty = "s")
plot(A,pch=".",asp=1,xlab="",ylab="",axes=TRUE,xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tb)
points(rbind(CC))
L<-matrix(rep(CC, 3),ncol=2,byrow=TRUE); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)
txt<-rbind(Tb,CC,D1,D2,D3)
```

```
xc<-txt[, 1]+c(-.03,.04,.03,.06,.06,-.03,0)
yc<-txt[, 2]+c(.02,.02,.03,-.03,.02,.04,-.03)
txt.str<-c("A", "B", "C", "CC", "D1", "D2", "D3")
text(xc,yc,txt.str)
#for an obtuse triangle
c1<-.4; c2<-.3;
A<-C(0,0); B<-C(1,0); C<-C(c1,c2);
#the vertices of the standard basic triangle form Tb
Tb<-rbind(A,B,C)
CC<-circumcenter.basic.tri(c1,c2) #the circumcenter
CC
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2; #midpoints of the edges
Ds<-rbind(D1,D2,D3)
Xlim<-range(Tb[,1],CC[1])
Ylim<-range(Tb[,2],CC[2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(A,pch=".", asp=1,xlab="",ylab="",axes=TRUE,xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tb)
points(rbind(CC))
L<-matrix(rep(CC, 3),ncol=2, byrow=TRUE); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)
txt<-rbind(Tb,CC,D1,D2,D3)
xc<-txt[,1]+c(-.03,.03,.03,.07,.07,-.05,0)
yc<-txt[,2]+c(.02,.02,.04,-.03,.03,.04,.06)
txt.str<-c("A", "B", "C", "CC", "D1","D2", "D3")
text(xc,yc,txt.str)
par(oldpar)
```

circumcenter.tetra Circumcenter of a general tetrahedron

Description

Returns the circumcenter a given tetrahedron th with vertices stacked row-wise.

Usage

circumcenter.tetra(th)

Arguments

th
A 4×3 matrix with each row representing a vertex of the tetrahedron.

Value

circumcenter of the tetrahedron th

Author(s)

Elvan Ceyhan

See Also

circumcenter.tri

Examples

```
set.seed(123)
A<-c(0,0,0)+runif(3,-.2,.2);
B<-c(1,0,0)+runif(3,-.2,.2);
C<-c(1/2,sqrt(3)/2,0)+runif(3,-.2,.2);
D<-c(1/2,sqrt(3)/6,sqrt(6)/3)+runif(3,-.2,.2);
tetra<-rbind(A,B,C,D)
CC<-circumcenter.tetra(tetra)
CC
Xlim<-range(tetra[,1],CC[1])
Ylim<-range(tetra[,2],CC[2])
Zlim<-range(tetra[,3],CC[3])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
zd<-Zlim[2]-Zlim[1]
plot3D::scatter3D(tetra[,1],tetra[,2],tetra[,3], phi =0,theta=40, bty = "g",
main="Illustration of the Circumcenter\n in a Tetrahedron",
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05), zlim=Zlim+zd*c(-.05,.05),
    pch = 20, cex = 1, ticktype = "detailed")
#add the vertices of the tetrahedron
plot3D::points3D(CC[1],CC[2],CC[3], add=TRUE)
L<-rbind(A,A,A,B,B,C); R<-rbind(B,C,D,C,D,D)
plot3D::segments3D(L[,1], L[,2], L[,3], R[,1], R[,2],R[,3], add=TRUE,lwd=2)
plot3D::text3D(tetra[,1],tetra[,2],tetra[,3],
labels=c("A","B","C","D"), add=TRUE)
D1<-(A+B)/2; D2<-(A+C)/2; D3<-(A+D)/2; D4<-(B+C)/2; D5<-(B+D)/2; D6<-(C+D)/2;
L<-rbind(D1,D2,D3,D4,D5,D6); R<-matrix(rep(CC,6),byrow = TRUE,ncol=3)
plot3D::segments3D(L[,1], L[,2], L[,3], R[,1], R[,2],R[,3], add=TRUE,lty = 2)
plot3D::text3D(CC[1],CC[2],CC[3], labels="CC", add=TRUE)
```

```
circumcenter.tri Circumcenter of a general triangle
```


Description

Returns the circumcenter a given triangle, tri, with vertices stacked row-wise. See (Weisstein (2019); Ceyhan (2010)) for triangle centers.

Usage

circumcenter.tri(tri)

Arguments

tri A 3×2 matrix with each row representing a vertex of the triangle.

Value

circumcenter of the triangle tri

Author(s)

Elvan Ceyhan

References

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

Weisstein EW (2019). "Triangle Centers." From MathWorld - A Wolfram Web Resource, http: //mathworld.wolfram.com/TriangleCenter.html.

See Also

circumcenter.basic.tri

Examples

```
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C); #the vertices of the triangle Tr
CC<-circumcenter.tri(Tr) #the circumcenter
CC
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2; #midpoints of the edges
Ds<-rbind(D1,D2,D3)
Xlim<-range(Tr[,1],CC[1])
```

```
Ylim<-range(Tr[,2],CC[2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(A,asp=1,pch=".",xlab="",ylab="",main="Circumcenter of a triangle",
axes=TRUE,xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)
points(rbind(CC))
L<-matrix(rep(CC,3),ncol=2,byrow=TRUE); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)
txt<-rbind(Tr,CC,Ds)
xc<-txt[,1]+c(-.08,.08,.08,.12,-.09,-.1,-.09)
yc<-txt[,2]+c(.02,-.02,.03,-.06,.02,.06,-.04)
txt.str<-c("A", "B", "C", "CC", "D1", "D2", "D3")
text(xc,yc,txt.str)
A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C); #the vertices of the equilateral triangle Te
circumcenter.tri(Te) #the circumcenter
A<-c(0,0); B<-c(0,1); C<-c(2,0);
Tr<-rbind(A,B,C); #the vertices of the triangle T
circumcenter.tri(Tr) #the circumcenter
```

cl2CCvert.reg The closest points to circumcenter in each CC-vertex region in a triangle

Description

An object of class "Extrema". Returns the closest data points among the data set, Xp , to circumcenter, $C C$, in each $C C$-vertex region in the triangle $\operatorname{tri}=T(A, B, C)=($ vertex 1 , vertex 2 , vertex 3).
ch.all.intri is for checking whether all data points are inside tri (default is FALSE). If some of the data points are not inside tri and ch.all.intri=TRUE, then the function yields an error message. If some of the data points are not inside tri and ch.all.intri=FALSE, then the function yields the closest points to $C C$ among the data points in each $C C$-vertex region of tri (yields NA if there are no data points inside tri).
See also (Ceyhan $(2005,2012)$).

Usage

cl2CCvert.reg(Xp, tri, ch.all.intri = FALSE)

Arguments

Xp	A set of 2D points representing the set of data points.
tri	A 3×2 matrix with each row representing a vertex of the triangle.
ch.all.intri	A logical argument (default=FALSE) to check whether all data points are inside the triangle tri. So, if it is TRUE, the function checks if all data points are inside the closure of the triangle (i.e., interior and boundary combined) else it does not.
	comen

Value

A list with the elements

txt1	Vertex labels are $A=1, B=2$, and $C=3$ (correspond to row number in Extremum Points).
txt2	A short description of the distances as "Distances from closest points to
	CC \ldots "
type	Type of the extrema points
mtitle	The "main" title for the plot of the extrema
ext	The extrema points, here, closest points to $C C$ in each $C C$-vertex region
x	The input data, Xp, can be a matrix or data frame
num. points	The number of data points, i.e., size of Xp
supp	Support of the data points, here, it is tri
cent	The center point used for construction of vertex regions
ncent	Name of the center, cent, it is "CC" for this function
regions	Vertex regions inside the triangle, tri, provided as a list
region.names	Names of the vertex regions as "vr=1", "vr=2", and "vr=3"
region. centers	Centers of mass of the vertex regions inside tri
dist2ref	Distances from closest points in each $C C$-vertex region to CC.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2012). "An investigation of new graph invariants related to the domination number of random proximity catch digraphs." Methodology and Computing in Applied Probability, 14(2), 299-334.

See Also

cl2CCvert.reg.basic.tri, cl2edges.vert.reg.basic.tri, cl2edgesMvert.reg, cl2edgesCMvert.reg, and fr2edgesCMedge.reg.std.tri

Examples

```
A<-C(1,1); B<-C(2,0); C<-C (1.5, 2);
Tr<-rbind(A,B,C);
n<-10 #try also n<-20
set.seed(1)
Xp<-runif.tri(n,Tr)$g
Ext<-cl2CCvert.reg(Xp,Tr)
Ext
summary(Ext)
plot(Ext)
c2CC<-Ext
CC<-circumcenter.tri(Tr) #the circumcenter
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
Ds<-rbind(D1,D2,D3)
Xlim<-range(Tr[,1],Xp[,1])
Ylim<-range(Tr[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(A,pch=".",asp=1,xlab="",ylab="",
main="Closest Points in CC-Vertex Regions \n to the Circumcenter",
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)
points(Xp)
L<-matrix(rep(CC, 3),ncol=2, byrow=TRUE); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty=2)
points(c2CC$ext,pch=4,col=2)
txt<-rbind(Tr,CC,Ds)
xc<-txt[,1]+c(-.07,.08,.06,.12,-.1,-.1,-..09)
yc<-txt[,2]+c(.02,-.02,.03,.0,.02,.06,-.04)
txt.str<-c("A", "B", "C", "CC", "D1", "D2", "D3")
text(xc,yc,txt.str)
Xp2<-rbind(Xp,c(.2,.4))
cl2CCvert.reg(Xp2,Tr,ch.all.intri = FALSE)
#gives an error message if ch.all.intri = TRUE since not all points are in the triangle
```

```
cl2CCvert.reg.basic.tri
```

The closest points to circumcenter in each CC-vertex region in a standard basic triangle

Description

An object of class "Extrema". Returns the closest data points among the data set, Xp , to circumcenter, $C C$, in each $C C$-vertex region in the standard basic triangle $T_{b}=T(A=(0,0), B=$ $\left.(1,0), C=\left(c_{1}, c_{2}\right)\right)=($ vertex 1,vertex 2,vertex 3$)$. ch. all. intri is for checking whether all data points are inside T_{b} (default is FALSE).
See also (Ceyhan $(2005,2012)$).

Usage

cl2CCvert.reg.basic.tri (Xp, c1, c2, ch.all.intri = FALSE)

Arguments

Xp A set of 2D points representing the set of data points.
c1, c2 Positive real numbers which constitute the vertex of the standard basic triangle. adjacent to the shorter edges; c_{1} must be in $[0,1 / 2], c_{2}>0$ and $\left(1-c_{1}\right)^{2}+c_{2}^{2} \leq$ 1
ch.all.intri A logical argument for checking whether all data points are inside T_{b} (default is FALSE).

Value
A list with the elements
txt1 Vertex labels are $A=1, B=2$, and $C=3$ (correspond to row number in Extremum Points).
txt2 A short description of the distances as "Distances from closest points to . . .".
type Type of the extrema points
mtitle The "main" title for the plot of the extrema
ext The extrema points, here, closest points to $C C$ in each vertex region.
$X \quad$ The input data, $X p$, can be a matrix or data frame
num. points The number of data points, i.e., size of $X p$
supp \quad Support of the data points, here, it is T_{b}.
cent The center point used for construction of vertex regions
ncent Name of the center, cent, it is "CC" for this function.
regions Vertex regions inside the triangle, T_{b}, provided as a list.
region. names Names of the vertex regions as "vr=1", "vr=2", and "vr=3"
region.centers Centers of mass of the vertex regions inside T_{b}.
dist2ref Distances from closest points in each vertex region to CC.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2012). "An investigation of new graph invariants related to the domination number of random proximity catch digraphs." Methodology and Computing in Applied Probability, 14(2), 299-334.

See Also

cl2CCvert.reg, cl2edges.vert.reg.basic.tri, cl2edgesMvert.reg, cl2edgesCMvert.reg, and fr2edgesCMedge.reg.std.tri

Examples

```
c1<-.4; c2<-.6;
A<-c(0,0); B<-c(1,0); C<-c(c1,c2);
Tb<-rbind(A,B,C)
n<-15
set.seed(1)
Xp<-runif.basic.tri(n, c1,c2)$g
Ext<-cl2CCvert.reg.basic.tri(Xp,c1,c2)
Ext
summary(Ext)
plot(Ext)
c2CC<-Ext
CC<-circumcenter.basic.tri(c1,c2) #the circumcenter
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
Ds<-rbind(D1,D2,D3)
Xlim<-range(Tb[,1],Xp[,1])
Ylim<-range(Tb[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(A,pch=".",asp=1,xlab="",ylab="",
main="Closest Points in CC-Vertex Regions \n to the Circumcenter",
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tb)
L<-matrix(rep(CC,3),ncol=2,byrow=TRUE); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty=2)
points(Xp)
points(c2CC$ext,pch=4,col=2)
txt<-rbind(Tb,CC,Ds)
```

```
xc<-txt[, 1]+c(-.03,.03,.02,.07,.06,-.05,.01)
yc<-txt[,2]+c(.02,.02,.03,-.01,.03,.03,-.04)
txt.str<-c("A", "B", "C", "CC", "D1", "D2", "D3")
text(xc,yc,txt.str)
Xp2<-rbind(Xp,c(.2,.4))
cl2CCvert.reg.basic.tri(Xp2,c1,c2,ch.all.intri = FALSE)
#gives an error message if ch.all.intri = TRUE
#since not all points are in the standard basic triangle
```

cl2edges.std.tri The closest points in a data set to edges in the standard equilateral triangle

Description

An object of class "Extrema". Returns the closest points from the 2D data set, Xp, to the edges in the standard equilateral triangle $T_{e}=T(A=(0,0), B=(1,0), C=(1 / 2, \sqrt{3} / 2))$.
ch.all.intri is for checking whether all data points are inside T_{e} (default is FALSE).
If some of the data points are not inside T_{e} and ch.all.intri=TRUE, then the function yields an error message. If some of the data points are not inside T_{e} and ch.all.intri=FALSE, then the function yields the closest points to edges among the data points inside T_{e} (yields NA if there are no data points inside T_{e}).
See also (Ceyhan (2005); Ceyhan et al. (2006); Ceyhan and Priebe (2007)).

Usage

cl2edges.std.tri(Xp, ch.all.intri = FALSE)

Arguments

Xp A set of 2D points representing the set of data points.
ch.all.intri A logical argument (default=FALSE) to check whether all data points are inside the standard equilateral triangle T_{e}. So, if it is TRUE, the function checks if all data points are inside the closure of the triangle (i.e., interior and boundary combined) else it does not.

Value

A list with the elements
txt1 Edge labels as $A B=3, B C=1$, and $A C=2$ for T_{e} (correspond to row number in Extremum Points).
txt2 A short description of the distances as "Distances to Edges ...".
type Type of the extrema points

desc	A short description of the extrema points
mtitle	The "main" title for the plot of the extrema
ext	The extrema points, i.e., closest points to edges
x	The input data, Xp, which can be a matrix or data frame
num. points	The number of data points, i.e., size of Xp supp cent
Support of the data points, i.e., the standard equilateral triangle T_{e}	

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E, Priebe CE (2007). "On the Distribution of the Domination Number of a New Family of Parametrized Random Digraphs." Model Assisted Statistics and Applications, 1(4), 231-255.

Ceyhan E, Priebe CE, Wierman JC (2006). "Relative density of the random r-factor proximity catch digraphs for testing spatial patterns of segregation and association." Computational Statistics \& Data Analysis, 50(8), 1925-1964.

See Also

cl2edges.vert.reg.basic.tri, cl2edgesMvert.reg, cl2edgesCMvert.reg and fr2edgesCMedge.reg.std.tri

Examples

```
n<-20 #try also n<-100
Xp<-runif.std.tri(n)$gen.points
Ext<-cl2edges.std.tri(Xp)
```

```
Ext
summary(Ext)
plot(Ext,asp=1)
ed.clo<-Ext
A<-c(0,0); B<-c(1,0); C<-c(0.5,sqrt(3)/2);
Te<-rbind(A,B,C)
CM<-(A+B+C)/3
p1<-(A+B)/2
p2<-(B+C)/2
p3<-(A+C)/2
Xlim<-range(Te[,1],Xp[,1])
Ylim<-range(Te[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(A,pch=".",xlab="",ylab="",axes=TRUE,xlim=Xlim+xd*c(-.05,.05),
ylim=Ylim+yd*c(-.05,.05))
polygon(Te)
points(Xp,xlab="",ylab="")
points(ed.clo$ext,pty=2,pch=4,col="red")
txt<-rbind(Te,p1,p2,p3)
xc<-txt[, 1]+c(-.03,.03,.03,0,0,0)
yc<-txt[,2]+c(.02,.02,.02,0,0,0)
txt.str<-c("A", "B", "C", "re=1", "re=2", "re=3")
text(xc,yc,txt.str)
```

cl2edges.vert.reg.basic.tri

The closest points among a data set in the vertex regions to the corresponding edges in a standard basic triangle

Description

An object of class "Extrema". Returns the closest data points among the data set, Xp, to edge i in M-vertex region i for $i=1,2,3$ in the standard basic triangle $T_{b}=T(A=(0,0), B=(1,0), C=$ $\left.\left(c_{1}, c_{2}\right)\right)$ where c_{1} is in $[0,1 / 2], c_{2}>0$ and $\left(1-c_{1}\right)^{2}+c_{2}^{2} \leq 1$. Vertex labels are $A=1, B=2$, and $C=3$, and corresponding edge labels are $B C=1, A C=2$, and $A B=3$.
Vertex regions are based on center $M=\left(m_{1}, m_{2}\right)$ in Cartesian coordinates or $M=(\alpha, \beta, \gamma)$ in barycentric coordinates in the interior of the standard basic triangle T_{b} or based on the circumcenter of T_{b}.
Any given triangle can be mapped to the standard basic triangle by a combination of rigid body motions (i.e., translation, rotation and reflection) and scaling, preserving uniformity of the points
in the original triangle. Hence, standard basic triangle is useful for simulation studies under the uniformity hypothesis.
See also (Ceyhan $(2005,2010)$).

Usage

cl2edges.vert.reg.basic.tri(Xp, c1, c2, M)

Arguments

Xp A set of 2D points representing the set of data points.
$\mathrm{c} 1, \mathrm{c} 2 \quad$ Positive real numbers which constitute the vertex of the standard basic triangle adjacent to the shorter edges; c_{1} must be in $[0,1 / 2], c_{2}>0$ and $\left(1-c_{1}\right)^{2}+c_{2}^{2} \leq$ 1.

M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates which serves as a center in the interior of the standard basic triangle T_{b} or the circumcenter of T_{b}.

Value

A list with the elements
txt1 Vertex labels are $A=1, B=2$, and $C=3$ (correspond to row number in Extremum Points).
txt2 A short description of the distances as "Distances to Edges in the Respective \eqn\{M\}-Vertex Regions".
type Type of the extrema points
desc A short description of the extrema points
mtitle The "main" title for the plot of the extrema
ext The extrema points, here, closest points to edges in the corresponding vertex region.
$X \quad$ The input data, Xp , can be a matrix or data frame
num. points The number of data points, i.e., size of $X p$
supp \quad Support of the data points, here, it is T_{b}.
cent The center point used for construction of vertex regions
ncent Name of the center, cent, it is " M " or "CC" for this function
regions Vertex regions inside the triangle, T_{b}.
region. names Names of the vertex regions as "vr=1", "vr=2", and "vr=3"
region. centers Centers of mass of the vertex regions inside T_{b}.
dist2ref Distances of closest points in the vertex regions to corresponding edges.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2011). "Spatial Clustering Tests Based on Domination Number of a New Random Digraph Family." Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

See Also

```
cl2edgesCMvert.reg, cl2edgesMvert.reg, and cl2edges.std.tri
```


Examples

```
c1<-.4; c2<-. }
A<-c(0,0); B<-c(1,0); C<-c(c1,c2);
Tb<-rbind(A,B,C);
set.seed(1)
n<-20
Xp<-runif.basic.tri(n,c1,c2)$g
M<-as.numeric(runif.basic.tri(1,c1,c2)$g) #try also M<-c(.6,.3)
Ext<-cl2edges.vert.reg.basic.tri(Xp, c1, c2,M)
Ext
summary(Ext)
plot(Ext)
cl2e<-Ext
Ds<-prj.cent2edges.basic.tri(c1, c2,M)
Xlim<-range(Tb[,1],Xp[,1])
Ylim<-range(Tb[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(Tb,pch=".",xlab="",ylab="",
main="Closest Points in M-Vertex Regions \n to the Opposite Edges",
axes=TRUE,xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tb)
points(Xp,pch=1,col=1)
L<-rbind(M,M,M); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty=2)
points(cl2e$ext,pch=3,col=2)
```

```
xc<-Tb[,1]+c(-.02,.02,0.02)
yc<-Tb[,2]+c(.02,.02,.02)
txt.str<-c("A","B","C")
text(xc,yc,txt.str)
txt<-rbind(M,Ds)
xc<-txt[,1]+c(-.02,.04,-.03,0)
yc<-txt[, 2]+c(-.02,.02,.02,-.03)
txt.str<-c("M","D1","D2","D3")
text(xc,yc,txt.str)
```

cl2edgesCCVert.reg

The closest points in a data set to edges in each $C C$-vertex region in a triangle

Description

An object of class "Extrema". Returns the closest data points among the data set, Xp , to edge j in $C C$-vertex region j for $j=1,2,3$ in the triangle, $\operatorname{tri}=T(A, B, C)$, where $C C$ stands for circumcenter. Vertex labels are $A=1, B=2$, and $C=3$, and corresponding edge labels are $B C=1, A C=2$, and $A B=3$. Function yields NA if there are no data points in a $C C$-vertex region.
See also (Ceyhan $(2005,2010)$).

Usage

cl2edgesCCvert.reg(Xp, tri)

Arguments

$\mathrm{Xp} \quad \mathrm{A}$ set of 2D points representing the set of data points.
tri A 3×2 matrix with each row representing a vertex of the triangle.

Value

A list with the elements
txt1 Vertex labels are $A=1, B=2$, and $C=3$ (correspond to row number in Extremum Points).
txt2 A short description of the distances as "Distances to Edges in the Respective CC-Vertex Regions".
type Type of the extrema points
desc A short description of the extrema points
mtitle The "main" title for the plot of the extrema

ext	The extrema points, here, closest points to edges in the respective vertex region.
ind.ext	Indices of the extrema points, ext.
x	The input data, Xp, can be a matrix or data frame
num. points	The number of data points, i.e., size of Xp
supp	Support of the data points, here, it is tri
cent	The center point used for construction of vertex regions
ncent	Name of the center, cent, it is "CC" for this function
regions	Vertex regions inside the triangle, tri, provided as a list
region.names	Names of the vertex regions as "vr=1", "vr=2", and "vr=3"
region.centers	Centers of mass of the vertex regions inside tri
dist2ref	Distances of closest points in the vertex regions to corresponding edges

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

See Also

cl2edges.vert.reg.basic.tri, cl2edgesCMvert.reg, cl2edgesMvert.reg, and cl2edges.std.tri

Examples

```
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
n<-20 #try also n<-100
set.seed(1)
Xp<-runif.tri(n,Tr)$g
Ext<-cl2edgesCCvert.reg(Xp,Tr)
Ext
summary(Ext)
plot(Ext)
cl2e<-Ext
CC<-circumcenter.tri(Tr);
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
```

```
Ds<-rbind(D1,D2,D3)
Xlim<-range(Tr[,1],Xp[,1],CC[1])
Ylim<-range(Tr[,2],Xp[,2],CC[2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(Tr,asp=1,pch=".",xlab="",ylab="",
main="Closest Points in CC-Vertex Regions \n to the Opposite Edges",
axes=TRUE,xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)
xc<-Tr[,1]+c(-.02,.02,.02)
yc<-Tr[,2]+c(.02,.02,.04)
txt.str<-c("A","B", "C")
text(xc,yc,txt.str)
points(Xp,pch=1,col=1)
L<-matrix(rep(CC, 3),ncol=2,byrow=TRUE); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty=2)
points(cl2e$ext,pch=3,col=2)
txt<-rbind(CC,Ds)
xc<-txt[,1]+c(-.04,.04,-.03,0)
yc<-txt[,2]+c(-.05,.04,.06,-.08)
txt.str<-c("CC","D1", "D2", "D3")
text(xc,yc,txt.str)
```

cl2edgesCMvert.reg The closest points in a data set to edges in each CM-vertex region in a triangle

Description

An object of class "Extrema". Returns the closest data points among the data set, Xp, to edge j in $C M$-vertex region j for $j=1,2,3$ in the triangle, $\operatorname{tri}=T(A, B, C)$, where $C M$ stands for center of mass. Vertex labels are $A=1, B=2$, and $C=3$, and corresponding edge labels are $B C=1$, $A C=2$, and $A B=3$. Function yields NA if there are no data points in a $C M$-vertex region.
See also (Ceyhan (2005); Ceyhan and Priebe (2007); Ceyhan (2010, 2011)).

Usage

cl2edgesCMvert.reg(Xp, tri)

Arguments

Xp A set of 2D points representing the set of data points.
tri A 3×2 matrix with each row representing a vertex of the triangle.

Value
A list with the elements
txt1 Vertex labels are $A=1, B=2$, and $C=3$ (correspond to row number in Extremum Points).
txt2 A short description of the distances as "Distances to Edges in the Respective CM-Vertex Regions".
type Type of the extrema points
desc A short description of the extrema points
mtitle The "main" title for the plot of the extrema
ext The extrema points, here, closest points to edges in the respective vertex region.
$X \quad$ The input data, $X p$, can be a matrix or data frame
num. points The number of data points, i.e., size of $X p$
supp Support of the data points, here, it is tri
cent The center point used for construction of vertex regions
ncent Name of the center, cent, it is "CM" for this function
regions Vertex regions inside the triangle, tri, provided as a list
region. names Names of the vertex regions as " $\mathrm{vr}=1$ ", " $\mathrm{vr}=2$ ", and " $\mathrm{vr}=3$ "
region.centers Centers of mass of the vertex regions inside tri
dist2ref Distances of closest points in the vertex regions to corresponding edges

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2011). "Spatial Clustering Tests Based on Domination Number of a New Random Digraph Family." Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

Ceyhan E, Priebe CE (2007). "On the Distribution of the Domination Number of a New Family of Parametrized Random Digraphs." Model Assisted Statistics and Applications, 1(4), 231-255.

See Also

cl2edges.vert.reg.basic.tri, cl2edgesCCvert.reg, cl2edgesMvert.reg, and cl2edges.std.tri

Examples

```
A<-c(1,1); B<-c(2,0); C<-c(1.5, 2);
Tr<-rbind(A,B,C);
n<-20 #try also n<-100
set.seed(1)
Xp<-runif.tri(n,Tr)$g
Ext<-cl2edgesCMvert.reg(Xp,Tr)
Ext
summary(Ext)
plot(Ext)
cl2e<-Ext
CM<-(A+B+C)/3;
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
Ds<-rbind(D1,D2,D3)
Xlim<-range(Tr[,1],Xp[,1])
Ylim<-range(Tr[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(Tr,pch=".",xlab="",ylab="",
main="Closest Points in CM-Vertex Regions \n to the Opposite Edges",
axes=TRUE,xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)
xc<-Tr[,1]+c(-.02,.02,.02)
yc<-Tr[,2]+c(.02,.02,.04)
txt.str<-c("A", "B", "C")
text(xc,yc,txt.str)
points(Xp,pch=1,col=1)
L<-matrix(rep(CM, 3),ncol=2, byrow=TRUE); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty=2)
points(cl2e$ext,pch=3,col=2)
txt<-rbind(CM,Ds)
xc<-txt[,1]+c(-.04,.04,-.03,0)
yc<-txt[,2]+c(-.05,.04,.06,-.08)
txt.str<-c("CM","D1","D2","D3")
text(xc,yc,txt.str)
``` tive edges in a triangle

\section*{Description}

An object of class "Extrema". Returns the closest data points among the data set, Xp , to edge \(i\) in M-vertex region \(i\) for \(i=1,2,3\) in the triangle \(\operatorname{tri}=T(A, B, C)\). Vertex labels are \(A=1, B=2\), and \(C=3\), and corresponding edge labels are \(B C=1, A C=2\), and \(A B=3\).
Vertex regions are based on center \(M=\left(m_{1}, m_{2}\right)\) in Cartesian coordinates or \(M=(\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of the triangle tri or based on the circumcenter of tri.
Two methods of finding these extrema are provided in the function, which can be chosen in the logical argument alt, whose default is alt=FALSE. When alt=FALSE, the function sequentially finds the vertex region of the data point and then updates the minimum distance to the opposite edge and the relevant extrema objects, and when alt=TRUE, it first partitions the data set according which vertex regions they reside, and then finds the minimum distance to the opposite edge and the relevant extrema on each partition. Both options yield equivalent results for the extrema points and indices, with the default being slightly \(\sim 20\)
See also (Ceyhan (2005, 2010)).

\section*{Usage}
cl2edgesMvert.reg(Xp, tri, M, alt = FALSE)

\section*{Arguments}
\(\mathrm{Xp} \quad\) A set of 2D points representing the set of data points.
tri A \(3 \times 2\) matrix with each row representing a vertex of the triangle.
M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates which serves as a center in the interior of the triangle tri or the circumcenter of tri; which may be entered as "CC" as well;
alt A logical argument for alternative method of finding the closest points to the edges, default al \(t=F A L S E\). When al \(t=F A L S E\), the function sequentially finds the vertex region of the data point and then the minimum distance to the opposite edge and the relevant extrema objects, and when alt=TRUE, it first partitions the data set according which vertex regions they reside, and then finds the minimum distance to the opposite edge and the relevant extrema on each partition.

\section*{Value}

A list with the elements
\begin{tabular}{ll}
txt1 & \begin{tabular}{l}
Vertex labels are \(A=1, B=2\), and \(C=3\) (correspond to row number in \\
Extremum Points).
\end{tabular} \\
txt2 & \begin{tabular}{l}
A short description of the distances as "Distances to Edges in the Respective \\
\eqn \(\{\mathrm{M}\}\)-Vertex Regions".
\end{tabular} \\
type & \begin{tabular}{l}
Type of the extrema points
\end{tabular} \\
desc & A short description of the extrema points \\
mtitle & The "main" title for the plot of the extrema \\
ext & The extrema points, here, closest points to edges in the respective vertex region.
\end{tabular}
\begin{tabular}{ll}
ind.ext & The data indices of extrema points, ext. \\
X & The input data, Xp, can be a matrix or data frame \\
num. points & The number of data points, i.e., size of Xp \\
supp & Support of the data points, here, it is tri \\
cent & The center point used for construction of vertex regions \\
ncent & Name of the center, cent, it is " \(\mathrm{M} " \mathrm{or}\) "CC" for this function \\
regions & Vertex regions inside the triangle, tri, provided as a list \\
region. names & Names of the vertex regions as "vr=1", "vr=2", and "vr=3" \\
region.centers & Centers of mass of the vertex regions inside tri \\
dist2ref & Distances of closest points in the \(M\)-vertex regions to corresponding edges.
\end{tabular}

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2011). "Spatial Clustering Tests Based on Domination Number of a New Random Digraph Family." Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

\section*{See Also}
cl2edges.vert.reg.basic.tri, cl2edgesCMvert.reg, and cl2edges.std.tri

\section*{Examples}
```

A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
n<-20 \#try also n<-100
set.seed(1)
Xp<-runif.tri(n,Tr)$g
M<-as.numeric(runif.tri(1,Tr)$g) \#try also M<-c(1.6,1.0)
Ext<-cl2edgesMvert.reg(Xp,Tr,M)
Ext
summary(Ext)
plot(Ext)

```
```

cl2e<-Ext
Ds<-prj.cent2edges(Tr,M)
Xlim<-range(Tr[,1],Xp[,1])
Ylim<-range(Tr[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
if (dimension(M)==3) {M<-bary2cart(M,Tr)}
\#need to run this when M is given in barycentric coordinates
plot(Tr,pch=".",xlab="",ylab="",
main="Closest Points in M-Vertex Regions \n to the Opposite Edges",
axes=TRUE,xlim=xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)
points(Xp,pch=1,col=1)
L<-rbind(M,M,M); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty=2)
points(cl2e\$ext,pch=3,col=2)
xc<-Tr[,1]+c(-.02,.03,.02)
yc<-Tr[,2]+c(.02,.02,.04)
txt.str<-c("A","B","C")
text(xc,yc,txt.str)
txt<-rbind(M,Ds)
xc<-txt[,1]+c(-.02,.05,-.02,-.01)
yc<-txt[,2]+c(-.03,.02,.08,-.07)
txt.str<-c("M","D1", "D2","D3")
text(xc,yc,txt.str)

```
cl2faces.vert.reg.tetra

The closest points among a data set in the vertex regions to the respective faces in a tetrahedron

\section*{Description}

An object of class "Extrema". Returns the closest data points among the data set, Xp , to face \(i\) in M-vertex region \(i\) for \(i=1,2,3,4\) in the tetrahedron \(t h=T(A, B, C, D)\). Vertex labels are \(A=1\), \(B=2, C=3\), and \(D=4\) and corresponding face labels are \(B C D=1, A C D=2, A B D=3\), and \(A B C=4\).

Vertex regions are based on center \(M\) which can be the center of mass ("CM") or circumcenter ("CC") of \(t h\).

\section*{Usage}
cl2faces.vert.reg.tetra(Xp, th, \(M=\) "CM")

\section*{Arguments}

Xp A set of 3D points representing the set of data points.
th A \(4 \times 3\) matrix with each row representing a vertex of the tetrahedron.
M The center to be used in the construction of the vertex regions in the tetrahedron, th. Currently it only takes "CC" for circumcenter and "CM" for center of mass; default="CM".

\section*{Value}

A list with the elements
txt1 Vertex labels are \(A=1, B=2, C=3\), and \(D=4\) (correspond to row number in Extremum Points).
txt2 A short description of the distances as "Distances from Closest Points to Faces ...".
type Type of the extrema points
desc A short description of the extrema points
mtitle The "main" title for the plot of the extrema
ext The extrema points, here, closest points to faces in the respective vertex region.
ind.ext The data indices of extrema points, ext.
X
num. points The number of data points, i.e., size of \(X p\)
supp \(\quad\) Support of the data points, here, it is th
cent The center point used for construction of vertex regions, it is circumcenter of center of mass for this function
ncent Name of the center, it is circumcenter "CC" or center of mass "CM" for this function.
regions Vertex regions inside the tetrahedron th provided as a list.
region.names Names of the vertex regions as "vr=1", "vr=2", "vr=3", "vr=4"
region. centers Centers of mass of the vertex regions inside th.
dist2ref Distances from closest points in each vertex region to the corresponding face.

\section*{Author(s)}

Elvan Ceyhan

\section*{See Also}

\section*{Examples}
```

A<-c(0,0,0); B<-c(1,0,0); C<-c(1/2,sqrt(3)/2,0);
D<-c(1/2,sqrt(3)/6,sqrt(6)/3)
set.seed(1)
tetra<-rbind(A, B, C,D)+matrix(runif(12,-.25,.25),ncol=3)
n<-10 \#try also n<-20
Cent<-"CC" \#try also "CM"
n<-20 \#try also n<-100
Xp<-runif.tetra(n,tetra)$g #try also Xp<-cbind(runif(n),runif(n),runif(n))
Ext<-cl2faces.vert.reg.tetra(Xp,tetra,Cent)
Ext
summary(Ext)
plot(Ext)
clf<-Ext$ext
if (Cent=="CC") {M<-circumcenter.tetra(tetra)}
if (Cent=="CM") {M<-apply(tetra,2,mean)}
Xlim<-range(tetra[,1],Xp[,1],M[1])
Ylim<-range(tetra[,2],Xp[,2],M[2])
Zlim<-range(tetra[,3],Xp[,3],M[3])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
zd<-Zlim[2]-Zlim[1]
plot3D::scatter3D(Xp[,1],Xp[,2],Xp[,3], phi =0,theta=40, bty = "g",
main="Closest Pointsin CC-Vertex Regions \n to the Opposite Faces",
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05), zlim=Zlim+zd*c(-.05,.05),
pch = 20, cex = 1, ticktype = "detailed")
\#add the vertices of the tetrahedron
plot3D::points3D(tetra[,1],tetra[,2],tetra[,3], add=TRUE)
L<-rbind(A,A,A,B,B,C); R<-rbind(B,C,D,C,D,D)
plot3D::segments3D(L[,1], L[,2], L[,3], R[,1], R[,2],R[,3], add=TRUE,lwd=2)
plot3D::points3D(clf[,1],clf[,2],clf[,3], pch=4,col="red", add=TRUE)
plot3D::text3D(tetra[,1],tetra[,2],tetra[,3],
labels=c("A","B","C","D"), add=TRUE)
\#for center of mass use \#Cent<-apply(tetra,2,mean)
D1<-(A+B)/2; D2<-(A+C)/2; D3<-(A+D)/2;
D4<-(B+C)/2; D5<-(B+D)/2; D6<-(C+D)/2;
L<-rbind(D1,D2,D3,D4,D5,D6); R<-rbind(M,M,M,M,M,M)
plot3D::segments3D(L[,1], L[,2], L[,3], R[,1], R[,2],R[,3], add=TRUE,lty=2)

```

\section*{Description}

An object of class "Extrema". Returns the closest data points among the data set, Xp, in each \(M_{c^{-}}\) vertex region i.e., finds the closest points from right and left to \(M_{c}\) among points of the 1D data set Xp which reside in in the interval int \(=(a, b)\).
\(M_{c}\) is based on the centrality parameter \(c \in(0,1)\), so that \(100 c \%\) of the length of interval is to the left of \(M_{c}\) and \(100(1-c) \%\) of the length of the interval is to the right of \(M_{c}\). That is, for the interval \((a, b), M_{c}=a+c(b-a)\). If there are no points from Xp to the left of \(M_{c}\) in the interval, then it yields NA, and likewise for the right of \(M_{c}\) in the interval.
See also (Ceyhan (2012)).

\section*{Usage}
cl2Mc.int(Xp, int, c)

\section*{Arguments}

Xp A set or vector of 1D points from which closest points to \(M_{c}\) are found in the interval int.
int A vector of two real numbers representing an interval.
C
A positive real number in \((0,1)\) parameterizing the center inside int \(=(a, b)\). For the interval, int \(=(a, b)\), the parameterized center is \(M_{c}=a+c(b-a)\).

\section*{Value}

A list with the elements
\begin{tabular}{ll}
txt1 & Vertex Labels are \(a=1\) and \(b=2\) for the interval \((a, b)\). \\
txt2 & A short description of the distances as "Distances from \(\ldots "\) \\
type & Type of the extrema points \\
desc & A short description of the extrema points \\
mtitle & The "main" title for the plot of the extrema \\
ext & The extrema points, here, closest points to \(M_{c}\) in each vertex region \\
ind.ext & The data indices of extrema points, ext. \\
\(x\) & The input data vector, Xp. \\
num. points & The number of data points, i.e., size of Xp \\
supp & Support of the data points, here, it is int. \\
cent & The (parameterized) center point used for construction of vertex regions. \\
ncent & Name of the (parameterized) center, cent, it is "Mc" for this function.
\end{tabular}
regions Vertex regions inside the interval, int, provided as a list.
region.names Names of the vertex regions as " \(\mathrm{vr}=1\) ", " \(\mathrm{vr}=2\) "
region. centers Centers of mass of the vertex regions inside int.
dist2ref Distances from closest points in each vertex region to \(M_{c}\).

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2012). "The Distribution of the Relative Arc Density of a Family of Interval Catch Digraph Based on Uniform Data." Metrika, 75(6), 761-793.

\section*{See Also}
cl2CCvert.reg.basic.tri and cl2CCvert.reg

\section*{Examples}
```

c<-.4
a<-0; b<-10; int<-c(a,b)
Mc<-centerMc(int,c)
nx<-10
xr<-range(a,b,Mc)
xf<-(xr[2]-xr[1])*. }
Xp<-runif(nx,a,b)
Ext<-cl2Mc.int(Xp,int,c)
Ext
summary(Ext)
plot(Ext)
cMc<-Ext
Xlim<-range(a,b,Xp)
xd<-Xlim[2]-Xlim[1]
plot(cbind(a,0),xlab="",pch=".",
main=paste("Closest Points in Mc-Vertex Regions \n to the Center Mc = ",Mc,sep=""),
xlim=xlim+xd*c(-.05,.05))
abline(h=0)
abline(v=c(a,b,Mc),col=c(1,1,2),lty=2)
points(cbind(Xp,0))
points(cbind(c(cMc\$ext),0),pch=4,col=2)
text(cbind(c(a,b,Mc)-.02*xd,-0.05),c("a", "b", expression(M[c])))

```

CSarc.dens.test A test of segregation/association based on arc density of Central Similarity Proximity Catch Digraph (CS-PCD) for 2D data

\section*{Description}

An object of class "htest" (i.e., hypothesis test) function which performs a hypothesis test of complete spatial randomness (CSR) or uniformity of \(X p\) points in the convex hull of Yp points against the alternatives of segregation (where \(X p\) points cluster away from \(Y p\) points) and association (where \(X p\) points cluster around \(Y p\) points) based on the normal approximation of the arc density of the CS-PCD for uniform 2D data in the convex hull of Yp points.
The function yields the test statistic, \(p\)-value for the corresponding alternative, the confidence interval, estimate and null value for the parameter of interest (which is the arc density), and method and name of the data set used.
Under the null hypothesis of uniformity of \(X p\) points in the convex hull of \(Y p\) points, arc density of CS-PCD whose vertices are Xp points equals to its expected value under the uniform distribution and alternative could be two-sided, or left-sided (i.e., data is accumulated around the Yp points, or association) or right-sided (i.e., data is accumulated around the centers of the triangles, or segregation).
CS proximity region is constructed with the expansion parameter \(t>0\) and \(C M\)-edge regions (i.e., the test is not available for a general center \(M\) at this version of the function).
Caveat: This test is currently a conditional test, where Xp points are assumed to be random, while \(Y p\) points are assumed to be fixed (i.e., the test is conditional on \(Y p\) points). Furthermore, the test is a large sample test when \(X p\) points are substantially larger than Yp points, say at least 5 times more. This test is more appropriate when supports of \(X p\) and \(Y p\) has a substantial overlap. Currently, the \(X p\) points outside the convex hull of \(Y p\) points are handled with a convex hull correction factor, ch.cor, which is derived under the assumption of uniformity of \(X p\) and \(Y p\) points in the study window, (see the description below and the function code.) However, in the special case of no Xp points in the convex hull of Yp points, arc density is taken to be 1 , as this is clearly a case of segregation. Removing the conditioning and extending it to the case of non-concurring supports is an ongoing line of research of the author of the package.
ch. cor is for convex hull correction (default is "no convex hull correction", i.e., ch. cor=FALSE) which is recommended when both \(X p\) and \(Y p\) have the same rectangular support.

See also (Ceyhan (2005); Ceyhan et al. (2007); Ceyhan (2014)).

\section*{Usage}
```

CSarc.dens.test(
Xp,
Yp,
t,
ch.cor = FALSE,
alternative = c("two.sided", "less", "greater"),
conf.level $=0.95$
)

```

\section*{Arguments}

Xp A set of 2D points which constitute the vertices of the CS-PCD.
Yp A set of 2D points which constitute the vertices of the Delaunay triangles.
\(t \quad\) A positive real number which serves as the expansion parameter in CS proximity region.
ch.cor A logical argument for convex hull correction, default ch.cor=FALSE, recommended when both \(X p\) and \(Y p\) have the same rectangular support.
alternative Type of the alternative hypothesis in the test, one of "two.sided", "less", "greater".
conf. level Level of the confidence interval, default is 0.95 , for the arc density of CS-PCD based on the \(2 D\) data set \(X p\).

\section*{Value}

A list with the elements
statistic Test statistic
p .value \(\quad\) The \(p\)-value for the hypothesis test for the corresponding alternative
conf.int Confidence interval for the arc density at the given confidence level conf.level and depends on the type of alternative.
estimate Estimate of the parameter, i.e., arc density
null.value Hypothesized value for the parameter, i.e., the null arc density, which is usually the mean arc density under uniform distribution.
alternative Type of the alternative hypothesis in the test, one of "two.sided", "less", "greater"
method Description of the hypothesis test
data.name Name of the data set

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2014). "Comparison of Relative Density of Two Random Geometric Digraph Families in Testing Spatial Clustering." TEST, 23(1), 100-134.

Ceyhan E, Priebe CE, Marchette DJ (2007). "A new family of random graphs for testing spatial segregation." Canadian Journal of Statistics, 35(1), 27-50.

\section*{See Also}

PEarc.dens.test and CSarc.dens.test1D

\section*{Examples}
```

\#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-100; ny<-5; \#try also nx<-40; ny<-10 or nx<-1000; ny<-10;
set.seed(1)
Xp<-cbind(runif(nx),runif(nx))
Yp<-cbind(runif(ny,0,.25),runif(ny,0,.25))+cbind(c(0,0,0.5,1,1),c(0,1,.5,0,1))
\#try also Yp<-cbind(runif(ny,0,1),runif(ny,0,1))
plotDelaunay.tri(Xp,Yp,xlab="",ylab = "")
CSarc.dens.test(Xp, Yp, t=.5)
CSarc.dens.test(Xp,Yp,t=.5,ch=TRUE)
\#try also t=1.0 and 1.5 above

```

CSarc.dens.test.int A test of uniformity of \(1 D\) data in a given interval based on Central Similarity Proximity Catch Digraph (CS-PCD)

\section*{Description}

An object of class "htest" (i.e., hypothesis test) function which performs a hypothesis test of uniformity of 1D data in one interval based on the normal approximation of the arc density of the CS-PCD with expansion parameter \(t>0\) and centrality parameter \(c \in(0,1)\).
The function yields the test statistic, \(p\)-value for the corresponding alternative, the confidence interval, estimate and null value for the parameter of interest (which is the arc density), and method and name of the data set used.
The null hypothesis is that data is uniform in a finite interval (i.e., arc density of CS-PCD equals to its expected value under uniform distribution) and alternative could be two-sided, or left-sided (i.e., data is accumulated around the end points) or right-sided (i.e., data is accumulated around the mid point or center \(M_{c}\)).
See also (Ceyhan (2016)).

\section*{Usage}

CSarc.dens.test.int(
Xp,
int,
t,
\(c=0.5\),
```

    alternative = c("two.sided", "less", "greater"),
    conf.level = 0.95
    )

```

\section*{Arguments}

Xp A set or vector of 1D points which constitute the vertices of CS-PCD.
int A vector of two real numbers representing an interval.
\(t \quad\) A positive real number which serves as the expansion parameter in CS proximity region.
c A positive real number in \((0,1)\) parameterizing the center inside int \(=(a, b)\) with the default \(\mathrm{c}=.5\). For the interval, int \(=(a, b)\), the parameterized center is \(M_{c}=a+c(b-a)\).
alternative Type of the alternative hypothesis in the test, one of "two.sided", "less", "greater".
conf.level Level of the confidence interval, default is 0.95 , for the arc density of CS-PCD based on the 1D data set Xp .

\section*{Value}

A list with the elements
\begin{tabular}{ll}
statistic & \begin{tabular}{l}
Test statistic \\
p.value
\end{tabular} \\
\begin{tabular}{ll}
The \(p\)-value for the hypothesis test for the corresponding alternative
\end{tabular} \\
estimate & \begin{tabular}{l}
Confidence interval for the arc density at the given level conf. level and de- \\
pends on the type of alternative.
\end{tabular} \\
null.value & \begin{tabular}{l}
Estimate of the parameter, i.e., arc density \\
Hypothesized value for the parameter, i.e., the null arc density, which is usually \\
the mean arc density under uniform distribution.
\end{tabular} \\
alternative & \begin{tabular}{l}
Type of the alternative hypothesis in the test, one of "two.sided", "less", \\
"greater"
\end{tabular} \\
method & \begin{tabular}{l}
Description of the hypothesis test
\end{tabular} \\
data.name & Name of the data set
\end{tabular}

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2016). "Density of a Random Interval Catch Digraph Family and its Use for Testing Uniformity." REVSTAT, 14(4), 349-394.

\section*{See Also}

PEarc.dens.test.int

\section*{Examples}
```

c<-. }
t<-2
a<-0; b<-10; int<-c(a,b)
n<-10
Xp<-runif(n,a,b)
num.arcsCSmid.int(Xp,int,t,c)
CSarc.dens.test.int(Xp,int,t,c)
num.arcsCSmid.int(Xp,int,t,c=. 3)
CSarc.dens.test.int(Xp,int, t, c=.3)
num.arcsCSmid.int(Xp,int, t=1.5, c)
CSarc.dens.test.int(Xp,int,t=1.5,c)
Xp<-runif(n,a-1,b+1)
num.arcsCSmid.int(Xp,int,t,c)
CSarc.dens.test.int(Xp,int,t,c)
c<-.4
t<-. }
a<-0; b<-10; int<-c(a,b)
n<-10 \#try also n<-20
Xp<-runif(n,a,b)
CSarc.dens.test.int(Xp,int, t, c)

```

CSarc.dens.test1D A test of segregation/association based on arc density of Central Similarity Proximity Catch Digraph (CS-PCD) for \(1 D\) data

\section*{Description}

An object of class "htest" (i.e., hypothesis test) function which performs a hypothesis test of complete spatial randomness (CSR) or uniformity of Xp points in the range (i.e., range) of Yp points against the alternatives of segregation (where \(X p\) points cluster away from \(Y p\) points) and association (where Xp points cluster around Yp points) based on the normal approximation of the arc density of the CS-PCD for uniform 1D data.
The function yields the test statistic, \(p\)-value for the corresponding alternative, the confidence interval, estimate and null value for the parameter of interest (which is the arc density), and method and name of the data set used.

Under the null hypothesis of uniformity of \(X p\) points in the range of \(Y p\) points, arc density of CSPCD whose vertices are \(X p\) points equals to its expected value under the uniform distribution and
alternative could be two-sided, or left-sided (i.e., data is accumulated around the Yp points, or association) or right-sided (i.e., data is accumulated around the centers of the intervals, or segregation).
CS proximity region is constructed with the expansion parameter \(t>0\) and centrality parameter c which yields \(M\)-vertex regions. More precisely, for a middle interval (\(\left.y_{(i)}, y_{(i+1)}\right)\), the center is \(M=y_{(i)}+c\left(y_{(i+1)}-y_{(i)}\right)\) for the centrality parameter \(c \in(0,1)\). If there are duplicates of \(Y p\) points, only one point is retained for each duplicate value, and a warning message is printed.
Caveat: This test is currently a conditional test, where Xp points are assumed to be random, while \(Y p\) points are assumed to be fixed (i.e., the test is conditional on Yp points). Furthermore, the test is a large sample test when \(X p\) points are substantially larger than Yp points, say at least 5 times more. This test is more appropriate when supports of \(X p\) and \(Y p\) have a substantial overlap. Currently, the \(X p\) points outside the range of \(Y p\) points are handled with a range correction (or endinterval correction) factor (see the description below and the function code.) However, in the special case of no Xp points in the range of Yp points, arc density is taken to be 1 , as this is clearly a case of segregation. Removing the conditioning and extending it to the case of non-concurring supports is an ongoing line of research of the author of the package.
end.int.cor is for end-interval correction, recommended when both \(X p\) and \(Y p\) have the same interval support (default is "no end-interval correction", i.e., end.int.cor=FALSE).

\section*{Usage}
```

CSarc.dens.test1D(
Xp,
Yp,
t,
$c=0.5$,
support.int $=$ NULL,
end.int.cor $=$ FALSE,
alternative = c("two.sided", "less", "greater"),
conf.level = 0.95
)

```

\section*{Arguments}

Xp A set of 1D points which constitute the vertices of the CS-PCD.
Yp A set of 1D points which constitute the end points of the partition intervals.
\(t \quad\) A positive real number which serves as the expansion parameter in CS proximity region.
c A positive real number which serves as the centrality parameter in CS proximity region; must be in \((0,1)\) (default \(\mathrm{c}=.5\)).
support.int Support interval \((a, b)\) with \(a<b\). Uniformity of Xp points in this interval is tested. Default is NULL.
end.int.cor A logical argument for end-interval correction, default is FALSE, recommended when both \(X p\) and \(Y p\) have the same interval support.
alternative Type of the alternative hypothesis in the test, one of "two.sided", "less", "greater".
conf.level Level of the confidence interval, default is 0.95 , for the arc density CS-PCD whose vertices are the 1D data set Xp.

\section*{Value}

A list with the elements
\begin{tabular}{ll}
statistic & Test statistic \\
p.value & \begin{tabular}{l}
The \(p\)-value for the hypothesis test for the corresponding alternative. \\
conf.int \\
Confidence interval for the arc density at the given confidence level conf. level \\
and depends on the type of alternative.
\end{tabular} \\
estimate & \begin{tabular}{l}
Estimate of the parameter, i.e., arc density
\end{tabular} \\
null.value & \begin{tabular}{l}
Hypothesized value for the parameter, i.e., the null arc density, which is usually \\
the mean arc density under uniform distribution.
\end{tabular} \\
alternative & \begin{tabular}{l}
Type of the alternative hypothesis in the test, one of "two.sided", "less", \\
"greater"
\end{tabular} \\
method & \begin{tabular}{l}
Description of the hypothesis test \\
data.name
\end{tabular}
\end{tabular}

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

There are no references for Rd macro \insertAllCites on this help page.

\section*{See Also}

CSarc.dens.test and CSarc.dens.test.int

\section*{Examples}
```

tau<-2
c<-.4
a<-0; b<-10; int=c(a,b)
\#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-20; ny<-4; \#try also nx<-40; ny<-10 or nx<-1000; ny<-10;
set.seed(1)
xf<-(int[2]-int[1])*.1
Xp<-runif(nx,a-xf,b+xf)
Yp<-runif(ny,a,b)
CSarc.dens.test1D(Xp,Yp,tau,c,int)
CSarc.dens.test1D(Xp,Yp, tau,c,int,alt="l")
CSarc.dens.test1D(Xp,Yp,tau,c,int,alt="g")

```
```

CSarc.dens.test1D(Xp,Yp, tau, c,int,end.int.cor = TRUE)
Yp2<-runif(ny,a,b)+11
CSarc.dens.test1D(Xp,Yp2, tau, c,int)
n<-10 \#try also n<-20
Xp<-runif(n,a,b)
CSarc.dens.test1D(Xp,Yp, tau, c,int)

```

CSarc.dens.tri Arc density of Central Similarity Proximity Catch Digraphs (CSPCDs) - one triangle case

\section*{Description}

Returns the arc density of CS-PCD whose vertex set is the given 2D numerical data set, Xp, (some of its members are) in the triangle tri.
CS proximity regions is defined with respect to tri with expansion parameter \(t>0\) and edge regions are based on center \(M=\left(m_{1}, m_{2}\right)\) in Cartesian coordinates or \(M=(\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of the triangle tri; default is \(M=(1,1,1)\) i.e., the center of mass of tri. The function also provides arc density standardized by the mean and asymptotic variance of the arc density of CS-PCD for uniform data in the triangle tri only when \(M\) is the center of mass. For the number of arcs, loops are not allowed.
is a logical argument (default is FALSE) for considering only the points inside the triangle or all the points as the vertices of the digraph. if in.tri. only=TRUE, arc density is computed only for the points inside the triangle (i.e., arc density of the subdigraph induced by the vertices in the triangle is computed), otherwise arc density of the entire digraph (i.e., digraph with all the vertices) is computed.

See (Ceyhan (2005); Ceyhan et al. (2007); Ceyhan (2014)) for more on CS-PCDs.

\section*{Usage}

CSarc.dens.tri(Xp, tri, \(t, M=c(1,1,1)\), in.tri.only = FALSE)

\section*{Arguments}

Xp A set of 2D points which constitute the vertices of the CS-PCD.
tri A \(3 \times 2\) matrix with each row representing a vertex of the triangle.
t
A positive real number which serves as the expansion parameter in CS proximity region.

M
A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates which serves as a center in the interior of the triangle tri; default is \(M=\) \((1,1,1)\) i.e., the center of mass of tri.
in.tri.only A logical argument (default is =FALSE) for computing the arc density for only the points inside the triangle, tri. That is, if =TRUE arc density of the induced subdigraph with the vertices inside tri is computed, otherwise otherwise arc density of the entire digraph (i.e., digraph with all the vertices) is computed.

\section*{Value}

A list with the elements
arc.dens Arc density of CS-PCD whose vertices are the 2D numerical data set, Xp ; CS proximity regions are defined with respect to the triangle tri and M -edge regions
std.arc.dens Arc density standardized by the mean and asymptotic variance of the arc density of CS-PCD for uniform data in the triangle tri.This will only be returned if M is the center of mass.

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2014). "Comparison of Relative Density of Two Random Geometric Digraph Families in Testing Spatial Clustering." TEST, 23(1), 100-134.

Ceyhan E, Priebe CE, Marchette DJ (2007). "A new family of random graphs for testing spatial segregation." Canadian Journal of Statistics, 35(1), 27-50.

\section*{See Also}

ASarc.dens.tri, PEarc.dens.tri, and num. arcsCStri

\section*{Examples}
```

A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
n<-10 \#try also n<-20
set.seed(1)
Xp<-runif.tri(n,Tr)$g
M<-as.numeric(runif.tri(1,Tr)$g) \#try also M<-c(1.6,1.0)
CSarc.dens.tri(Xp,Tr,t=.5,M)
CSarc.dens.tri(Xp,Tr,t=.5,M, in.tri.only= FALSE)
\#try also t=1 and t=1.5 above

```

\section*{Description}

Returns the dimension (i.e., number of columns) of \(x\), which is a matrix or a vector or a data frame. This is different than the dim function in base \(R\), in the sense that, dimension gives only the number of columns of the argument \(x\), while dim gives the number of rows and columns of \(x\). dimension also works for a scalar or a vector, while dim yields NULL for such arguments.

\section*{Usage}
dimension(\(x\))

\section*{Arguments}
x
A vector or a matrix or a data frame whose dimension is to be determined.

\section*{Value}

Dimension (i.e., number of columns) of \(x\)

\section*{Author(s)}

Elvan Ceyhan

\section*{See Also}
is. point and dim from the base distribution of \(R\)

\section*{Examples}
```

dimension(3)
dim(3)
A<-c(1,2)
dimension(A)
dim(A)
B<-C}(2,3
dimension(rbind(A,B,A))
dimension(cbind(A,B,A))
M<-matrix(runif(20),ncol=5)
dimension(M)
dim(M)

```
```

dimension(c("a","b"))

```

\section*{Description}

Returns the Euclidean distance between \(x\) and \(y\) which can be vectors or matrices or data frames of any dimension (\(x\) and \(y\) should be of same dimension).
This function is different from the dist function in the stats package of the standard \(R\) distribution. dist requires its argument to be a data matrix and dist computes and returns the distance matrix computed by using the specified distance measure to compute the distances between the rows of a data matrix (Becker et al. (1988)), while Dist needs two arguments to find the distances between. For two data matrices \(A\) and \(B\), dist(rbind(as.vector (A), as.vector (B))) and \(\operatorname{Dist}(\mathrm{A}, \mathrm{B})\) yield the same result.

\section*{Usage}

Dist(x, y)

\section*{Arguments}
\(x, y \quad\) Vectors, matrices or data frames (both should be of the same type).

\section*{Value}

Euclidean distance between \(x\) and \(y\)

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Becker RA, Chambers JM, Wilks AR (1988). The New S Language. Wadsworth \& Brooks/Cole.

\section*{See Also}
dist from the base package stats

\section*{Examples}
```

B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Dist(B,C);
dist(rbind(B,C))
x<-runif(10)
y<-runif(10)
Dist(x,y)
xm<-matrix(x,ncol=2)
ym<-matrix(y,ncol=2)
Dist(xm,ym)
dist(rbind(as.vector(xm),as.vector(ym)))
Dist(xm,xm)

```
 dist.point2line The distance from a point to a line defined by two points

\section*{Description}

Returns the distance from a point \(p\) to the line joining points \(a\) and \(b\) in 2D space.

\section*{Usage}
dist.point2line(p, a, b)

\section*{Arguments}
\(p \quad\) A 2D point, distance from \(p\) to the line passing through points \(a\) and \(b\) are to be computed.
\(a, b \quad 2 \mathrm{D}\) points that determine the straight line (i.e., through which the straight line passes).

\section*{Value}

A list with two elements
dis \(\quad\) Distance from point \(p\) to the line passing through \(a\) and \(b\)
cl2p The closest point on the line passing through \(a\) and \(b\) to the point \(p\)

\section*{Author(s)}

Elvan Ceyhan

\section*{See Also}
dist. point2plane, dist. point2set, and Dist

\section*{Examples}
```

A<-c(1,2); B<-c(2,3); P<-c(3,1.5)
dpl<-dist.point2line(P,A,B);
dpl
C<-dpl$cl2p
pts<-rbind(A,B,C,P)
xr<-range(pts[,1])
xf<-(xr[2]-xr[1])*. 25
#how far to go at the lower and upper ends in the x-coordinate
x<-seq(xr[1]-xf,xr[2]+xf,l=5) #try also l=10, 20, or 100
lnAB<-Line(A,B,x)
y<-lnAB$y
int<-lnAB$intercept #intercept
sl<-lnAB$slope \#slope
xsq<-seq(min(A[1],B[1],P[1])-xf,max(A[1],B[1],P[1])+xf,l=5)
\#try also l=10, 20, or 100
pline<-(-1/sl)*(xsq-P[1])+P[2]
\#line passing thru P and perpendicular to AB
Xlim<-range(pts[,1],x)
Ylim<-range(pts[,2],y)
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(rbind(P),asp=1,pch=1,xlab="x",ylab="y",
main="Illustration of the distance from P \n to the Line Crossing Points A and B",
xlim=xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
points(rbind(A,B),pch=1)
lines(x,y,lty=1,xlim=Xlim,ylim=Ylim)
int<-round(int,2); sl<-round(sl,2)
text(rbind((A+B)/2+xd*c(-.01,-.01)),ifelse(sl==0, paste("y=",int),
ifelse(sl==1,paste("y=x+",int),
ifelse(int==0,paste("y=",sl, "x"),paste("y=",sl,"x+",int)))))
text(rbind(A+xd*c(0,-.01),B+xd*c(.0,-.01),P+xd*c(.01,-.01)),c("A", "B","P"))
lines(xsq,pline,lty=2)
segments(P[1],P[2], C[1], C[2], lty=1,col=2,lwd=2)
text(rbind(C+xd*c(-.01,-.01)),"C")
text(rbind((P+C)/2),col=2,paste("d=",round(dpl\$dis,2)))

```

\section*{Description}

Returns the distance from a point \(p\) to the plane passing through points \(a, b, a n d c\) in \(3 D\) space.

\section*{Usage}
dist.point2plane(p, a, b, c)

\section*{Arguments}
\(p \quad\) A 3D point, distance from \(p\) to the plane passing through points \(a, b\), and \(c\) are to be computed.
\(a, b, c \quad 3 D\) points that determine the plane (i.e., through which the plane is passing).

\section*{Value}

A list with two elements
\(\begin{array}{ll}\text { dis } & \text { Distance from point } p \text { to the plane spanned by 3D points } a, b, \text { and } c \\ c l 2 p l & \text { The closest point on the plane spanned by 3D points } a, b, a n d \text { to the point } p\end{array}\)

\section*{Author(s)}

Elvan Ceyhan

\section*{See Also}
dist.point2line, dist.point2set, and Dist

\section*{Examples}
```

P<-c(5, 2,40)
P1<-c(1,2,3); P2<-c(3,9,12); P3<-c(1,1,3);
dis<-dist.point2plane(P,P1,P2,P3);
dis
Pr<-dis$prj #projection on the plane
xseq<-seq(0,10,l=5) #try also l=10, 20, or 100
yseq<-seq(0,10,l=5) #try also l=10, 20, or 100
pl.grid<-Plane(P1,P2,P3,xseq,yseq)$z
plot3D::persp3D(z = pl.grid, x = xseq, y = yseq, theta =225, phi = 30,
ticktype = "detailed",

```
```

expand = 0.7, facets = FALSE, scale = TRUE,
main="Point P and its Orthogonal Projection \n on the Plane Defined by P1, P2, P3")
\#plane spanned by points P1, P2, P3
\#add the vertices of the tetrahedron
plot3D::points3D(P[1],P[2],P[3], add=TRUE)
plot3D::points3D(Pr[1],Pr[2],Pr[3], add=TRUE)
plot3D::segments3D(P[1], P[2], P[3], Pr[1], Pr[2],Pr[3], add=TRUE,lwd=2)
plot3D::text3D(P[1]-.5,P[2],P[3]+1, c("P"),add=TRUE)
plot3D::text3D(Pr[1]-.5,Pr[2],Pr[3]+2, c("Pr"),add=TRUE)
persp(xseq,yseq,pl.grid, xlab="x",ylab="y",zlab="z",theta = -30,
phi = 30, expand = 0.5, col = "lightblue",
ltheta = 120, shade = 0.05, ticktype = "detailed")

```
dist.point2set Distance from a point to a set of finite cardinality

\section*{Description}

Returns the Euclidean distance between a point \(p\) and set of points \(Y p\) and the closest point in set \(Y p\) to \(p\). Distance between a point and a set is by definition the distance from the point to the closest point in the set. \(p\) should be of finite dimension and \(Y p\) should be of finite cardinality and \(p\) and elements of Yp must have the same dimension.

\section*{Usage}
dist.point2set(p, Yp)

\section*{Arguments}
p
A vector (i.e., a point in \(R^{d}\)).
Yp A set of \(d\)-dimensional points.

\section*{Value}

A list with the elements
distance \(\quad\) Distance from point \(p\) to set \(Y p\)
ind.cl.point Index of the closest point in set \(Y p\) to the point \(p\)
closest. point The closest point in set \(Y p\) to the point \(p\)

\section*{Author(s)}

Elvan Ceyhan

\section*{See Also}
```

dist.point2line and dist.point2plane

```

\section*{Examples}
```

A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C);
dist.point2set(c(1,2),Te)
X2<-cbind(runif(10),runif(10))
dist.point2set(c(1,2),X2)
x<-runif(1)
y<-as.matrix(runif(10))
dist.point2set(x,y)
\#this works, because x is a 1D point, and y is treated as a set of 10 1D points
\#but will give an error message if y<-runif(10) is used above

```
dom. num. exact Exact domination number (i.e., domination number by the exact algo- rithm)

\section*{Description}

Returns the (exact) domination number based on the incidence matrix Inc.Mat of a graph or a digraph and the indices (i.e., row numbers of Inc.Mat) for the corresponding (exact) minimum dominating set. Here the row number in the incidence matrix corresponds to the index of the vertex (i.e., index of the data point). The function works whether loops are allowed or not (i.e., whether the first diagonal is all 1 or all 0). It takes a rather long time for large number of vertices (i.e., large number of row numbers).

\section*{Usage}
dom.num.exact(Inc.Mat)

\section*{Arguments}

Inc.Mat A square matrix consisting of 0's and 1's which represents the incidence matrix of a graph or digraph.

\section*{Value}

A list with two elements

\title{
dom. num The cardinality of the (exact) minimum dominating set, i.e., (exact) domination number of the graph or digraph whose incidence matrix Inc.Mat is given as input. \\ ind.mds The vector of indices of the rows in the incidence matrix Inc.Mat for the (exact) minimum dominating set. The row numbers in the incidence matrix correspond to the indices of the vertices (i.e., indices of the data points).
}

\section*{Author(s)}

Elvan Ceyhan

\section*{See Also}
dom.num.greedy, PEdom.num1D, PEdom.num. tri, PEdom.num.nondeg, and Idom.numCSup.bnd.tri

\section*{Examples}
```

n<-10
M<-matrix(sample(c(0,1), n^2,replace=TRUE),nrow=n)
diag(M)<-1
dom.num.greedy(M)
Idom.num.up.bnd(M, 2)
dom.num.exact(M)

```

\section*{Description}

Returns the (approximate) domination number and the indices (i.e., row numbers) for the corresponding (approximate) minimum dominating set based on the incidence matrix Inc.Mat of a graph or a digraph by using the greedy algorithm (Chvatal (1979)). Here the row number in the incidence matrix corresponds to the index of the vertex (i.e., index of the data point). The function works whether loops are allowed or not (i.e., whether the first diagonal is all 1 or all 0). This function may yield the actual domination number or overestimates it.

\section*{Usage}
dom. num.greedy (Inc.Mat)

\section*{Arguments}

Inc.Mat A square matrix consisting of 0's and 1's which represents the incidence matrix of a graph or digraph.

\section*{Value}

A list with two elements
dom.num The cardinality of the (approximate) minimum dominating set found by the greedy algorithm. i.e., (approximate) domination number of the graph or digraph whose incidence matrix Inc. Mat is given as input.
ind.dom.set Indices of the rows in the incidence matrix Inc.Mat for the ((approximate) minimum dominating set). The row numbers in the incidence matrix correspond to the indices of the vertices (i.e., indices of the data points).

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Chvatal V (1979). "A greedy heuristic for the set-covering problem." Mathematics of Operations Research, 4(3), 233 - 235.

\section*{Examples}
```

n<-5
M<-matrix(sample(c(0, 1), n^2, replace=TRUE),nrow=n)
diag(M)<-1
dom.num.greedy(M)

```
edge.reg.triCM The vertices of the CM-edge region in a triangle that contains the point

\section*{Description}

Returns the edge whose region contains point, p , in the triangle \(\mathrm{tri}=T(A, B, C)\) with edge regions based on center of mass \(C M=(A+B+C) / 3\).
This function is related to rel.edge. triCM, but unlike rel.edge.triCM the related edges are given as vertices ABC for \(r e=3\), as BCA for \(r e=1\) and as CAB for \(r e=2\) where edges are labeled as 3 for edge \(A B, 1\) for edge \(B C\), and 2 for edge \(A C\). The vertices are given one vertex in each row in the output, e.g., \(A B C\) is printed as rbind \((\mathrm{A}, \mathrm{B}, \mathrm{C})\), where row 1 has the entries of vertex A , row 2 has the entries of vertex B , and row 3 has the entries of vertex C .
If the point, p , is not inside tri, then the function yields NA as output.
Edge region for BCA is the triangle \(T(B, C, C M)\), edge region CAB is \(T(A, C, C M)\), and edge region ABC is \(T(A, B, C M)\).
See also (Ceyhan \((2005,2010)\)).

\section*{Usage}
edge.reg.triCM(p, tri)

\section*{Arguments}
p A 2D point for which \(C M\)-edge region it resides in is to be determined in the triangle tri.
tri A \(3 \times 2\) matrix with each row representing a vertex of the triangle.

\section*{Value}

The \(C M\)-edge region that contains point, p in the triangle tri. The related edges are given as vertices ABC for \(r e=3\), as BCA for \(r e=1\) and as CAB for \(r e=2\) where edges are labeled as 3 for edge \(A B\), 1 for edge \(B C\), and 2 for edge \(A C\).

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). "An investigation of new graph invariants related to the domination number of random proximity catch digraphs." Methodology and Computing in Applied Probability, 14(2), 299-334.

\section*{See Also}
```

rel.edge.tri, rel.edge.triCM,rel.edge.basic.triCM,rel.edge.basic.tri,rel.edge.std.triCM,

``` and edge.reg.triCM

\section*{Examples}
```

A<-c(1,1); B<-c(2,0); C<-C(1.5,2);
Tr<-rbind(A,B,C);
P<-c(.4,.2) \#try also P<-as.numeric(runif.tri(1,Tr)\$g)
edge.reg.triCM(P,Tr)
P<-c(1.8,.5)
edge.reg.triCM(P,Tr)
CM<-(A+B+C)/3

```
```

p1<-(A+B+CM)/3
p2<-(B+C+CM)/3
p3<-(A+C+CM)/3
Xlim<-range(Tr[,1])
Ylim<-range(Tr[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(Tr,pch=".",xlab="",ylab="",axes=TRUE,xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)
L<-Tr; R<-matrix(rep(CM,3),ncol=2,byrow=TRUE)
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)
txt<-rbind(Tr,CM,p1,p2,p3)
xc<-txt[,1]+c(-.02,.02,.02,-.05,0,0,0)
yc<-txt[,2]+c(.02,.02,.02,.02,0,0,0)
txt.str<-c("A", "B","C", "CM", "re=T(A,B,CM)", "re=T(B,C,CM)","re=T(A,C,CM)")
text(xc,yc,txt.str)

```
fr2edgesCMedge.reg.std.tri

The furthest points in a data set from edges in each CM-edge region in the standard equilateral triangle

\section*{Description}

An object of class "Extrema". Returns the furthest data points among the data set, Xp , in each \(C M\) edge region from the edge in the standard equilateral triangle \(T_{e}=T(A=(0,0), B=(1,0), C=\) \((1 / 2, \sqrt{3} / 2))\).
ch.all.intri is for checking whether all data points are inside \(T_{e}\) (default is FALSE).
See also (Ceyhan (2005)).

\section*{Usage}
fr2edgesCMedge.reg.std.tri(Xp, ch.all.intri = FALSE)

\section*{Arguments}

Xp A set of 2D points, some could be inside and some could be outside standard equilateral triangle \(T_{e}\).
ch.all.intri A logical argument used for checking whether all data points are inside \(T_{e}\) (default is FALSE).

Value
A list with the elements
\begin{tabular}{ll}
txt1 & \begin{tabular}{l}
Edge labels as \(A B=3, B C=1\), and \(A C=2\) for \(T_{e}\) (correspond to row \\
number in Extremum Points).
\end{tabular} \\
txt2 & A short description of the distances as "Distances to Edges". \\
type & Type of the extrema points \\
desc & A short description of the extrema points \\
mtitle & The "main" title for the plot of the extrema \\
ext & The extrema points, here, furthest points from edges in each edge region. \\
x & The input data, Xp, can be a matrix or data frame \\
num. points & The number of data points, i.e., size of Xp \\
supp & Support of the data points, here, it is \(T_{e}\). \\
cent & The center point used for construction of edge regions. \\
ncent & Name of the center, cent, it is center of mass "CM" for this function. \\
regions & Edge regions inside the triangle, \(T_{e}\), provided as a list. \\
region. names & Names of the edge regions as "er=1", "er=2", and "er=3". \\
region.centers & Centers of mass of the edge regions inside \(T_{e}\). \\
dist2ref & Distances from furthest points in each edge region to the corresponding edge.
\end{tabular}

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

\section*{See Also}
fr2vertsCCvert.reg.basic.tri, fr2vertsCCvert.reg, fr2vertsCCVert.reg.basic.tri, kfr2vertsCCvert.reg, and cl2edges.std.tri

\section*{Examples}
```

n<-20
Xp<-runif.std.tri(n)\$gen.points
Ext<-fr2edgesCMedge.reg.std.tri(Xp)
Ext
summary(Ext)
plot(Ext,asp=1)

```
```

ed.far<-Ext
Xp2<-rbind(Xp,c(.8,.8))
fr2edgesCMedge.reg.std.tri(Xp2)
fr2edgesCMedge.reg.std.tri(Xp2,ch.all.intri = FALSE)
\#gives error if ch.all.intri = TRUE
A<-c(0,0); B<-c(1,0); C<-c(0.5,sqrt(3)/2);
Te<-rbind(A,B,C)
CM<-(A+B+C)/3
p1<-(A+B)/2
p2<-(B+C)/2
p3<-(A+C)/2
Xlim<-range(Te[,1],Xp[,1])
Ylim<-range(Te[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(A,pch=".",xlab="",ylab="",
main="Furthest Points in CM-Edge Regions \n of Std Equilateral Triangle from its Edges",
axes=TRUE,xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Te)
L<-Te; R<-matrix(rep(CM,3),ncol=2,byrow=TRUE)
segments(L[,1], L[,2], R[,1], R[,2], lty=2)
points(Xp,xlab="",ylab="")
points(ed.far\$ext,pty=2,pch=4,col="red")
txt<-rbind(Te,CM,p1,p2,p3)
xc<-txt[,1]+c(-.03,.03,.03,-.06,0,0,0)
yc<-txt[,2]+c(.02,.02,.02,.02,0,0,0)
txt.str<-c("A", "B", "C", "CM", "re=2", "re=3", "re=1")
text(xc,yc,txt.str)

```
fr2vertsCCvert.reg The furthest points in a data set from vertices in each CC-vertex region in a triangle

\section*{Description}

An object of class "Extrema". Returns the furthest data points among the data set, Xp, in each \(C C\)-vertex region from the vertex in the triangle, \(\operatorname{tri}=T(A, B, C)\). Vertex region labels/numbers correspond to the row number of the vertex in tri. ch. all. intri is for checking whether all data points are inside tri (default is FALSE).
If some of the data points are not inside tri and ch.all.intri=TRUE, then the function yields an error message. If some of the data points are not inside tri and ch.all.intri=FALSE, then the function yields the closest points to edges among the data points inside tri (yields NA if there are no data points inside tri).

See also (Ceyhan \((2005,2012)\)).

\section*{Usage}
fr2vertsCCvert.reg(Xp, tri, ch.all.intri = FALSE)

\section*{Arguments}

Xp A set of 2D points representing the set of data points.
tri A \(3 \times 2\) matrix with each row representing a vertex of the triangle.
ch.all.intri A logical argument (default=FALSE) to check whether all data points are inside the triangle tri. So, if it is TRUE, the function checks if all data points are inside the closure of the triangle (i.e., interior and boundary combined) else it does not.

\section*{Value}

A list with the elements
txt1 Vertex labels are \(A=1, B=2\), and \(C=3\) (correspond to row number in Extremum Points).
txt2 A short description of the distances as "Distances from furthest points to . . " .
type Type of the extrema points
desc A short description of the extrema points
mtitle The "main" title for the plot of the extrema
ext The extrema points, here, furthest points from vertices in each \(C C\)-vertex region in the triangle tri.
\(X \quad\) The input data, \(X p\), can be a matrix or data frame
num. points The number of data points, i.e., size of \(X p\)
supp Support of the data points, here, it is the triangle tri for this function.
cent The center point used for construction of edge regions.
ncent Name of the center, cent, it is circumcenter "CC" for this function
regions \(\quad\) CC-Vertex regions inside the triangle, tri, provided as a list
region. names Names of the vertex regions as " \(\mathrm{vr}=1\) ", " \(\mathrm{vr}=2\) ", and " \(\mathrm{vr}=3\) "
region.centers Centers of mass of the vertex regions inside tri
dist2ref Distances from furthest points in each vertex region to the corresponding vertex

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2012). "An investigation of new graph invariants related to the domination number of random proximity catch digraphs." Methodology and Computing in Applied Probability, 14(2), 299-334.

\section*{See Also}
fr2vertsCCvert.reg.basic.tri, fr2edgesCMedge.reg.std.tri, kfr2vertsCCvert.reg.basic.tri and kfr2vertsCCvert.reg

\section*{Examples}
```

A<-C(1,1); B<-c(2,0); C<-C(1.5,2);
Tr<-rbind(A,B,C);
n<-10 \#try also n<-20
set.seed(1)
Xp<-runif.tri(n,Tr)$g
Ext<-fr2vertsCCvert.reg(Xp,Tr)
Ext
summary(Ext)
plot(Ext)
f2v<-Ext
CC<-circumcenter.tri(Tr) #the circumcenter
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
Ds<-rbind(D1,D2,D3)
Xlim<-range(Tr[,1],Xp[,1])
Ylim<-range(Tr[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(Tr,xlab="",asp=1, ylab="",pch=".",
main="Furthest Points in CC-Vertex Regions \n from the Vertices",
axes=TRUE,xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)
L<-matrix(rep(CC,3),ncol=2,byrow=TRUE); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty=2)
points(Xp)
points(rbind(f2v$ext),pch=4,col=2)
txt<-rbind(Tr,CC,Ds)
xc<-txt[,1]+c(-.06,.08,.05,.12,-.1,-.1,-.09)

```
```

yc<-txt[,2]+c(.02,-.02,.05,.0,.02,.06,-.04)
txt.str<-c("A", "B", "C", "CC", "D1", "D2", "D3")
text(xc,yc,txt.str)
Xp2<-rbind(Xp,c(.2,.4))
fr2vertsCCvert.reg(Xp2,Tr,ch.all.intri = FALSE)
\#gives an error message if ch.all.intri = TRUE
\#since not all points in the data set are in the triangle

```
fr2vertsCCvert.reg.basic.tri
The furthest points from vertices in each CC-vertex region in a standard basic triangle

\section*{Description}

An object of class "Extrema". Returns the furthest data points among the data set, Xp , in each \(C C\) vertex region from the corresponding vertex in the standard basic triangle \(T_{b}=T(A=(0,0), B=\) \(\left.(1,0), C=\left(c_{1}, c_{2}\right)\right)\).
Any given triangle can be mapped to the standard basic triangle by a combination of rigid body motions (i.e., translation, rotation and reflection) and scaling, preserving uniformity of the points in the original triangle. Hence, standard basic triangle is useful for simulation studies under the uniformity hypothesis.
ch.all.intri is for checking whether all data points are inside \(T_{b}\) (default is FALSE).
See also (Ceyhan \((2005,2012)\)).

\section*{Usage}
fr2vertsCCvert.reg.basic.tri(Xp, c1, c2, ch.all.intri = FALSE)

\section*{Arguments}
\begin{tabular}{ll}
Xp & A set of 2D points. \\
\(\mathrm{c} 1, \mathrm{c} 2\) & \begin{tabular}{l}
Positive real numbers which constitute the vertex of the standard basic triangle. \\
adjacent to the shorter edges; \(c_{1}\) must be in \([0,1 / 2], c_{2}>0\) and \(\left(1-c_{1}\right)^{2}+c_{2}^{2} \leq\) \\
1
\end{tabular} \\
ch.all.intri & \begin{tabular}{l}
A logical argument for checking whether all data points are inside \(T_{b}\) (default is \\
FALSE).
\end{tabular}
\end{tabular}

\section*{Value}

A list with the elements
txt1 Vertex labels are \(A=1, B=2\), and \(C=3\) (correspond to row number in Extremum Points).
\begin{tabular}{ll}
txt2 & A short description of the distances as "Distances from furthest points to \\
& \(\ldots\) type \\
desc & Type of the extrema points \\
mtitle & A short description of the extrema points \\
ext & The "main" title for the plot of the extrema \\
x & The extrema points, here, furthest points from vertices in each vertex region. \\
num. points & The input data, Xp, can be a matrix or data frame \\
supp & The number of data points, i.e., size of Xp \\
cent & The center point used for construction of edge regions. \\
ncent & Name of the center, cent, it is circumcenter "CC" for this function. \\
regions & Vertex regions inside the triangle, \(T_{b}\), provided as a list. \\
region. names & Names of the vertex regions as "vr=1", "vr=2", and "vr=3" \\
region.centers & Centers of mass of the vertex regions inside \(T_{b}\). \\
dist2ref & Distances from furthest points in each vertex region to the corresponding vertex.
\end{tabular}

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2012). "An investigation of new graph invariants related to the domination number of random proximity catch digraphs." Methodology and Computing in Applied Probability, 14(2), 299-334.

\section*{See Also}
fr2vertsCCvert.reg, fr2edgesCMedge.reg.std.tri, and kfr2vertsCCvert.reg

\section*{Examples}
```

c1<-.4; c2<-.6;
A<-C(0,0); B<-C(1,0); C<-C (c1, c2);
Tb<-rbind(A,B,C)
n<-20
set.seed(1)
Xp<-runif.basic.tri(n, c1, c2)\$g
Ext<-fr2vertsCCvert.reg.basic.tri(Xp,c1,c2)

```
```

Ext
summary(Ext)
plot(Ext)
f2v<-Ext
CC<-circumcenter.basic.tri(c1,c2) \#the circumcenter
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
Ds<-rbind(D1,D2,D3)
Xlim<-range(Tb[,1],Xp[,1])
Ylim<-range(Tb[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(A,pch=".",asp=1,xlab="",ylab="",
main="Furthest Points in CC-Vertex Regions \n from the Vertices",
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tb)
L<-matrix(rep(CC,3),ncol=2,byrow=TRUE); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty=2)
points(Xp)
points(rbind(f2v\$ext),pch=4,col=2)
txt<-rbind(Tb,CC,D1,D2,D3)
xc<-txt[,1]+c(-.03,.03,0.02,.07,.06,-.05,.01)
yc<-txt[,2]+c(.02,.02,.03,.01,.02,.02,-.04)
txt.str<-c("A", "B", "C", "CC", "D1", "D2", "D3")
text(xc,yc,txt.str)

```
funsAB2CMTe The lines joining two vertices to the center of mass in standard equilateral triangle

\section*{Description}

Two functions, lineA2CMinTe and lineB2CMinTe of class "TriLines". Returns the equation, slope, intercept, and \(y\)-coordinates of the lines joining \(A\) and \(C M\) and also \(B\) and \(C M\).
lineA2CMinTe is the line joining \(A\) to the center of mass, \(C M\), and lineB2CMinTe is the line joining \(B\) to the center of mass, \(C M\), in the standard equilateral triangle \(T_{e}=(A, B, C)\) with \(A=(0,0), B=(1,0), C=(1 / 2, \sqrt{3} / 2) ; x\)-coordinates are provided in vector x .

\section*{Usage}
lineA2CMinTe(x)
lineB2CMinTe(x)

\section*{Arguments}

X
A single scalar or a vector of scalars which is the argument of the functions lineA2CMinTe and lineB2CMinTe.

\section*{Value}

A list with the elements
txt1 Longer description of the line.
txt2 Shorter description of the line (to be inserted over the line in the plot).
mtitle The "main" title for the plot of the line.
cent The center chosen inside the standard equilateral triangle.
cent. name The name of the center inside the standard equilateral triangle. It is "CM" for these two functions.
tri The triangle (it is the standard equilateral triangle for this function).
\(x \quad\) The input vector, can be a scalar or a vector of scalars, which constitute the \(x\)-coordinates of the point(s) of interest on the line.
\(y \quad\) The output vector, will be a scalar if x is a scalar or a vector of scalars if x is a vector of scalar, constitutes the \(y\)-coordinates of the point(s) of interest on the line.
slope Slope of the line.
intercept Intercept of the line.
equation Equation of the line.

\section*{Author(s)}

Elvan Ceyhan

\section*{See Also}
lineA2MinTe, lineB2MinTe, and lineC2MinTe

\section*{Examples}
```

\#Examples for lineA2CMinTe
A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C)
xfence<-abs(A[1]-B[1])*. 25
\#how far to go at the lower and upper ends in the x-coordinate
x<-seq(min(A[1],B[1])-xfence,max(A[1],B[1])+xfence,by = .1) \#try also by = . 01
lnACM<-lineA2CMinTe(x)
lnACM
summary(lnACM)
plot(lnACM)

```
```

CM<-(A+B+C)/3;
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
Ds<-rbind(D1,D2,D3)
Xlim<-range(Te[,1])
Ylim<-range(Te[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(Te,pch=".",xlab="",ylab="",xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Te)
L<-Te; R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)
txt<-rbind(Te,CM,D1,D2,D3,c(.25,lineA2CMinTe(.25)$y),c(.75,lineB2CMinTe(.75)$y))
xc<-txt[,1]+c(-.02,.02,.02,.05,.05,--.03,.0,0,0)
yc<-txt[, 2]+c(.02,.02,.02,.02,0,.02,-.04,0,0)
txt.str<-c("A", "B", "C", "CM", "D1", "D2", "D3", "lineA2CMinTe(x)", "lineB2CMinTe(x)")
text(xc,yc,txt.str)
lineA2CMinTe(.25)$y
#Examples for lineB2CMinTe
A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C)
xfence<-abs(A[1]-B[1])*. }2
#how far to go at the lower and upper ends in the x-coordinate
x<-seq(min(A[1],B[1])-xfence,max(A[1],B[1])+xfence,by = .1) #try also by = . 01
lnBCM<-lineB2CMinTe(x)
lnBCM
summary(lnBCM)
plot(lnBCM,xlab=" x",ylab="y")
lineB2CMinTe(.25)$y

```
funsAB2MTe The lines joining the three vertices of the standard equilateral triangle to a center, M , of it

\section*{Description}

Three functions, lineA2MinTe, lineB2MinTe and lineC2MinTe of class "TriLines". Returns the equation, slope, intercept, and \(y\)-coordinates of the lines joining \(A\) and \(\mathrm{M}, B\) and M , and also \(C\) and M.
lineA2MinTe is the line joining \(A\) to the center, M, lineB2MinTe is the line joining \(B\) to M , and lineC2MinTe is the line joining C to M , in the standard equilateral triangle \(T_{e}=(A, B, C)\) with \(A=(0,0), B=(1,0), C=(1 / 2, \sqrt{3} / 2) ; x\)-coordinates are provided in vector x

\section*{Usage}
lineA2MinTe(x, M)
lineB2MinTe(x, M)
lineC2MinTe(x, M)

\section*{Arguments}
\(x \quad\) A single scalar or a vector of scalars.
M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates which serves as a center in the interior of the standard equilateral triangle.

\section*{Value}

A list with the elements
txt1 Longer description of the line.
txt2 Shorter description of the line (to be inserted over the line in the plot).
mtitle The "main" title for the plot of the line.
cent The center chosen inside the standard equilateral triangle.
cent. name The name of the center inside the standard equilateral triangle.
tri The triangle (it is the standard equilateral triangle for this function).
\(x \quad\) The input vector, can be a scalar or a vector of scalars, which constitute the \(x\)-coordinates of the point(s) of interest on the line.
\(y \quad\) The output vector, will be a scalar if x is a scalar or a vector of scalars if x is a vector of scalar, constitutes the \(y\)-coordinates of the point(s) of interest on the line.
slope \(\quad\) Slope of the line.
intercept Intercept of the line.
equation Equation of the line.

\section*{See Also}
lineA2CMinTe and lineB2CMinTe

\section*{Examples}
```

\#Examples for lineA2MinTe
A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C)
M<-c(.65,.2) \#try also M<-c(1,1,1)
xfence<-abs(A[1]-B[1])*. 25
\#how far to go at the lower and upper ends in the x-coordinate
x<-seq(min(A[1],B[1])-xfence,max(A[1],B[1])+xfence,by = .1) \#try also by = .01
lnAM<-lineA2MinTe(x,M)
lnAM
summary(lnAM)
plot(lnAM)
Ds<-prj.cent2edges(Te,M)
\#finds the projections from a point M=(m1,m2) to the edges on the
\#extension of the lines joining M to the vertices in the triangle Te
Xlim<-range(Te[,1])
Ylim<-range(Te[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(Te,pch=".",xlab="",ylab="",
xlim=xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Te)
L<-Te; R<-rbind(M,M,M)
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)
L<-Ds; R<-rbind(M,M,M)
segments(L[,1], L[,2], R[,1], R[,2], lty = 3,col=2)
txt<-rbind(Te,M,Ds,c(.25,lineA2MinTe(.25,M)$y),c(.4,lineB2MinTe(.4,M)$y),
c(.60,lineC2MinTe(.60,M)\$y))
xc<-txt[,1]+c(-.02,.02,.02,.02,.04,-.03,.0,0,0,0)
yc<-txt[,2]+c(.02,.02,.02,.05,.02,.03,-.03,0,0,0)
txt.str<-c("A","B","C","M","D1","D2","D3","lineA2MinTe(x)","lineB2MinTe(x)","lineC2MinTe(x)")
text(xc,yc,txt.str)

```
lineA2MinTe(.25,M)
\#Examples for lineB2MinTe
\(A<-c(0,0) ; B<-c(1,0) ; C<-c(1 / 2, s q r t(3) / 2) ;\)
Te<-rbind(A, B, C)
M<-c(. \(65, .2)\) \#try also \(M<-c(1,1,1)\)
xfence<-abs(A[1]-B[1])*. 25
```

\#how far to go at the lower and upper ends in the x-coordinate
x<-seq(min(A[1],B[1])-xfence,max(A[1],B[1])+xfence,by = .5) \#try also by = .1
lnBM<-lineB2MinTe(x,M)
lnBM
summary(lnBM)
plot(lnBM)
\#Examples for lineC2MinTe
A<-c(0,0); B<-c(1,0); C<-C(1/2,sqrt(3)/2);
Te<-rbind(A,B,C)
M<-c(.65,.2) \#try also M<-c(1,1,1)
xfence<-abs(A[1]-B[1])*. 25
\#how far to go at the lower and upper ends in the x-coordinate
x<-seq(min(A[1],B[1])-xfence,max(A[1],B[1])+xfence,by = .5)
\#try also by = .1
lnCM<-lineC2MinTe(x,M)
lnCM
summary (lnCM)
plot(lnCM)

```

\section*{Description}

Two functions: cart2bary and bary2cart.
cart2bary converts Cartesian coordinates of a given point \(\mathrm{P}=(x, y)\) to barycentric coordinates (in the normalized form) with respect to the triangle \(\operatorname{tri}=\left(v_{1}, v_{2}, v_{3}\right)\) with vertex labeling done row-wise in tri (i.e., row \(i\) corresponds to vertex \(v_{i}\) for \(i=1,2,3\)).
bary2cart converts barycentric coordinates of the point \(\mathrm{P}=\left(t_{1}, t_{2}, t_{3}\right)\) (not necessarily normalized) to Cartesian coordinates according to the coordinates of the triangle, tri. For information on barycentric coordinates, see (Weisstein (2019)).

\section*{Usage}
cart2bary (P, tri)
bary2cart(P, tri)

\section*{Arguments}

P
A 2D point for cart2bary, and a vector of three numeric entries for bary2cart.
tri A \(3 \times 2\) matrix with each row representing a vertex of the triangle.

\section*{Value}
cart2bary returns the barycentric coordinates of a given point \(\mathrm{P}=(x, y)\) and bary2cart returns the Cartesian coordinates of the point \(\mathrm{P}=\left(t_{1}, t_{2}, t_{3}\right)\) (not necessarily normalized).

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Weisstein EW (2019). "Barycentric Coordinates." From MathWorld - A Wolfram Web Resource, http://mathworld.wolfram.com/BarycentricCoordinates.html.

\section*{Examples}
```

\#Examples for cart2bary
c1<-.4; c2<-.6
A<-c(0,0); B<-c(1,0); C<-c(c1,c2);
Tr<-rbind(A,B,C)
cart2bary(A,Tr)
cart2bary(c(.3,.2),Tr)
\#Examples for bary2cart
c1<-.4; c2<-.6
A<-c(0,0); B<-c(1,0); C<-c(c1,c2);
Tr<-rbind(A,B,C)
bary2cart(c(.3,.2,.5),Tr)
bary2cart(c(6, 2,4),Tr)

```

\section*{Description}

Three indicator functions: IarcCSstd. triRAB, IarcCSstd. triRBC and IarcCSstd.triRAC.
The function IarcCSstd. triRAB returns I(p 2 is in \(N_{C S}(p 1, t)\) for p 1 in \(R A B\) (edge region for edge \(A B\), i.e., edge 3) in the standard equilateral triangle \(T_{e}=T(A, B, C)=T((0,0),(1,0),(1 / 2, \sqrt{3} / 2))\);
IarcCSstd. triRBC returns \(\mathrm{I}\left(\mathrm{p} 2\right.\) is in \(N_{C S}(p 1, t)\) for p 1 in \(R B C\) (edge region for edge \(B C\), i.e., edge 1) in \(T_{e}\); and
IarcCSstd. triRAC returns I(p2 is in \(N_{C S}(p 1, t)\) for p 1 in \(R A C\) (edge region for edge \(A C\), i.e., edge 2) in \(T_{e}\). That is, each function returns 1 if p 2 is in \(N_{C S}(p 1, t)\), returns 0 otherwise.
CS proximity region is defined with respect to \(T_{e}\) whose vertices are also labeled as \(T_{e}=T(v=\) \(1, v=2, v=3\)) with expansion parameter \(t>0\) and edge regions are based on the center \(M=\) \(\left(m_{1}, m_{2}\right)\) in Cartesian coordinates or \(M=(\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of \(T_{e}\)
If p 1 and p 2 are distinct and p 1 is outside the corresponding edge region and p 2 is outside \(T_{e}\), it returns 0 , but if they are identical, then it returns 1 regardless of their location (i.e., it allows loops).
See also (Ceyhan \((2005,2010)\)).

\section*{Usage}

IarcCSstd.triRAB(p1, p2, t, M)
IarcCSstd.triRBC(p1, p2, t, M)
IarcCSstd.triRAC(p1, p2, t, M)

\section*{Arguments}
p1 A 2D point whose CS proximity region is constructed.
p2 A 2D point. The function determines whether p2 is inside the CS proximity region of p 1 or not.
\(t \quad\) A positive real number which serves as the expansion parameter in CS proximity region.
M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates which serves as a center in the interior of the standard equilateral triangle \(T_{e}\).

\section*{Value}

Each function returns \(I\left(\mathrm{p} 2\right.\) is in \(\left.N_{C S}(p 1, t)\right)\) for p 1 , that is, returns 1 if p 2 is in \(N_{C S}(p 1, t)\), returns 0 otherwise

\section*{Author(s)}

Elvan Ceyhan

\section*{See Also}

IarcCSt1.std.triRAB, IarcCSt1.std.triRBC and IarcCSt1.std.triRAC

\section*{Examples}
```

\#Examples for IarcCSstd.triRAB
A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
CM<-(A+B+C)/3
T3<-rbind(A,B,CM);
set.seed(1)
Xp<-runif.std.tri(3)$gen.points
M<-as.numeric(runif.std.tri(1)$g) \#try also M<-c(.6,.2)
t<-1
IarcCSstd.triRAB(Xp[1,],Xp[2,],t,M)
IarcCSstd.triRAB(c(.2,.5),Xp[2,],t,M)
\#Examples for IarcCSstd.triRBC
A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
CM<-(A+B+C)/3
T1<-rbind(B,C,CM);
set.seed(1)
Xp<-runif.std.tri(3)$gen.points
M<-as.numeric(runif.std.tri(1)$g) \#try also M<-c(.6,.2)
t<-1
IarcCSstd.triRBC(Xp[1,],Xp[2,],t,M)
IarcCSstd.triRBC(c(.2,.5),Xp[2,],t,M)
\#Examples for IarcCSstd.triRAC
A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
CM<-(A+B+C)/3
T2<-rbind(A,C,CM);
set.seed(1)
Xp<-runif.std.tri(3)$gen.points
M<-as.numeric(runif.std.tri(1)$g) \#try also M<-c(.6,.2)
t<-1
IarcCSstd.triRAC(Xp[1,],Xp[2,],t,M)
IarcCSstd.triRAC(c(.2,.5),Xp[2,],t,M)

```
funsCSGamTe The function gammakCSstd.tri is for \(k(k=2,3,4,5)\) points constituting a dominating set for Central Similarity Proximity Catch Digraphs (CS-PCDs) - standard equilateral triangle case

\section*{Description}

Four indicator functions: Idom.num2CSstd.tri, Idom.num3CSstd.tri, Idom.num4CSstd.tri, Idom.num5CSstd.tri and Idom.num6CSstd.tri.

The function gammakCSstd.tri returns \(\mathrm{I}(\{\mathrm{p} 1, \ldots, \mathrm{pk}\}\) is a dominating set of the CS-PCD) where vertices of CS-PCD are the 2D data set Xp, that is, returns 1 if \(\{p 1, \ldots, p k\}\) is a dominating set of CS-PCD, returns 0 otherwise for \(k=2,3,4,5,6\).
CS proximity region is constructed with respect to \(T_{e}=T(A, B, C)=T((0,0),(1,0),(1 / 2, \sqrt{3} / 2))\) with expansion parameter \(t>0\) and edge regions are based on center of mass \(C M=(1 / 2, \sqrt{3} / 6)\).
ch. data. pnts is for checking whether points \(\mathrm{p} 1, \ldots, \mathrm{pk}\) are data points in Xp or not (default is FALSE), so by default this function checks whether the points \(\mathrm{p} 1, \ldots, \mathrm{pk}\) would be a dominating set if they actually were in the data set.

See also (Ceyhan (2005, 2010)).

\section*{Usage}

Idom.num2CSstd.tri(p1, p2, Xp, t, ch.data.pnts = FALSE)
Idom.num3CSstd.tri(p1, p2, p3, Xp, t, ch.data.pnts = FALSE)
Idom.num4CSstd.tri(p1, p2, p3, p4, Xp, t, ch.data.pnts = FALSE)
Idom.num5CSstd.tri(p1, p2, p3, p4, p5, Xp, t, ch.data.pnts = FALSE)
Idom.num6CSstd.tri(p1, p2, p3, p4, p5, p6, Xp, t, ch.data.pnts = FALSE)

\section*{Arguments}
p1, p2, p3, p4, p5, p6
The points \(\{p 1, \ldots, p k\}\) are \(k 2 \mathrm{D}\) points (for \(k=2,3,4,5,6\)) to be tested for constituting a dominating set of the CS-PCD.

Xp A set of 2D points which constitutes the vertices of the CS-PCD.
\(t \quad\) A positive real number which serves as the expansion parameter in CS proximity region.
ch.data.pnts A logical argument for checking whether points \(\{p 1, \ldots, p k\}\) are data points in Xp or not (default is FALSE).

\section*{Value}

The function gammakCSstd.tri returns \(\{\mathrm{p} 1, \ldots, \mathrm{pk}\}\) is a dominating set of the CS-PCD) where vertices of the CS-PCD are the 2 D data set Xp), that is, returns 1 if \(\{\mathrm{p} 1, \ldots, \mathrm{pk}\}\) is a dominating set of CS-PCD, returns 0 otherwise.

\section*{Author(s)}

Elvan Ceyhan

\section*{See Also}

Idom.num1CSstd.tri, Idom.num2PEtri and Idom.num2PEtetra

\section*{Examples}
```

set.seed(123)
\#Examples for Idom.num2CSstd.tri
t<-1.5
n<-10 \#try also 10, 20 (it may take longer for larger n)
set.seed(1)
Xp<-runif.std.tri(n)\$gen.points
Idom.num2CSstd.tri(Xp[1,],Xp[2,],Xp,t)
Idom.num2CSstd.tri(c(.2,.2),Xp[2,],Xp,t)
ind.gam2<-vector()
for (i in 1:(n-1))
for (j in (i+1):n)
{if (Idom.num2CSstd.tri(Xp[i,],Xp[j,],Xp,t)==1)
ind.gam2<-rbind(ind.gam2,c(i,j))}
ind.gam2

```
\#Examples for Idom.num3CSstd.tri
\(\mathrm{t}<-1.5\)
\(\mathrm{n}<-10\) \#try also 10 , 20 (it may take longer for larger n)
set.seed(1)
Xp<-runif.std.tri(n)\$gen.points
Idom. num3CSstd. \(\operatorname{tri}(X p[1],, X p[2],, X p[3],, X p, t)\)
ind.gam3<-vector()
for (i in 1:(n-2))
 for (\(j\) in \((i+1):(n-1)\))
 for (\(k\) in \((j+1): n\))
 \{if (Idom.num3CSstd. \(\operatorname{tri}(X p[i],, X p[j],, X p[k],, X p, t)==1)\)
 ind.gam3<-rbind(ind.gam3, \(c(i, j, k))\}\)
ind.gam3
```

\#Examples for Idom.num4CSstd.tri
t<-1.5
n<-10 \#try also 10, 20 (it may take longer for larger n)
set.seed(1)
Xp<-runif.std.tri(n)\$gen.points
Idom.num4CSstd.tri(Xp[1,],Xp[2,],Xp[3,],Xp[4,],Xp,t)
ind.gam4<-vector()
for (i in 1:(n-3))
for (j in (i+1):(n-2))
for (k in (j+1):(n-1))
for (l in (k+1):n)
{if (Idom.num4CSstd.tri(Xp[i,],Xp[j,],Xp[k,],Xp[l,],Xp,t)==1)
ind.gam4<-rbind(ind.gam4,c(i,j,k,l))}

```
ind.gam4
Idom.num4CSstd.tri \((c(.2, .2), \mathrm{Xp}[2],, \mathrm{Xp}[3],, \mathrm{Xp}[4], \mathrm{Xp}, \mathrm{t}, ch.\), data.pnts \(=\mathrm{FALSE})\)
\#gives an error message if ch.data.pnts \(=\) TRUE since not all points are data points in \(X p\)
\#Examples for Idom.num5CSstd.tri
\(\mathrm{t}<-1.5\)
\(\mathrm{n}<-10\) \#try also 10 , 20 (it may take longer for larger n)
set. seed(1)
Xp<-runif.std.tri(n)\$gen.points
Idom.num5CSstd. \(\operatorname{tri}(X p[1],, X p[2],, X p[3],, X p[4],, X p[5],, X p, t)\)
ind.gam5<-vector()
for (i1 in 1:(n-4))
 for (i2 in (i1+1):(n-3))
 for (i3 in (i2+1): \((n-2)\))
 for (i4 in (i3+1):(n-1))
 for (i5 in (i4+1):n)
 \{if (Idom.num5CSstd.tri (Xp[i1,], Xp[i2,], Xp[i3,], Xp[i4,], Xp[i5,], Xp, t)==1)
 ind.gam5<-rbind(ind.gam5, c(i1,i2,i3,i4,i5))\}
ind.gam5

Idom.num5CSstd.tri (c (.2, .2) , Xp[2,], Xp[3,],Xp[4,],Xp[5,],Xp,t,ch.data.pnts = FALSE)
\#gives an error message if ch.data.pnts = TRUE since not all points are data points in Xp
```

\#Examples for Idom.num6CSstd.tri
t<-1.5
n<-10 \#try also 10, 20 (it may take longer for larger n)
set.seed(1)
Xp<-runif.std.tri(n)\$gen.points
Idom.num6CSstd.tri(Xp[1,],Xp[2,],Xp[3,],Xp[4,],Xp[5,],Xp[6,],Xp,t)
ind.gam6<-vector()
for (i1 in 1:(n-5))
for (i2 in (i1+1):(n-4))
for (i3 in (i2+1):(n-3))
for (i4 in (i3+1):(n-2))
for (i5 in (i4+1):(n-1))
for (i6 in (i5+1):n)
{if (Idom.num6CSstd.tri(Xp[i1,],Xp[i2,],Xp[i3,],Xp[i4,],Xp[i5,],Xp[i6,],Xp,t)==1)
ind.gam6<-rbind(ind.gam6,c(i1,i2,i3,i4,i5,i6))}
ind.gam6
Idom.num6CSstd.tri(c(.2,.2),Xp[2,],Xp[3,],Xp[4,],Xp[5,],Xp[6,],Xp,t,ch.data.pnts = FALSE)
\#gives an error message if ch.data.pnts = TRUE since not all points are data points in Xp

```

\section*{Description}

Three indicator functions: IarcCSt1.std. triRAB, IarcCSt1.std.triRBC and IarcCSt1.std.triRAC.
The function IarcCSt1.std. triRAB returns \(I\left(\mathrm{p} 2\right.\) is in \(N_{C S}(p 1, t=1)\) for p 1 in \(R A B\) (edge region for edge \(A B\), i.e., edge 3) in the standard equilateral triangle \(T_{e}=T(A, B, C)=T((0,0),(1,0),(1 / 2, \sqrt{3} / 2))\);
IarcCSt1.std. triRBC returns \(I\left(\mathrm{p} 2\right.\) is in \(N_{C S}(p 1, t=1)\) for p 1 in \(R B C\) (edge region for edge \(B C\), i.e., edge 1) in \(T_{e}\); and
IarcCSt1.std. triRAC returns \(I\left(\mathrm{p} 2\right.\) is in \(N_{C S}(p 1, t=1)\) for p 1 in \(R A C\) (edge region for edge \(A C\), i.e., edge 2) in \(T_{e}\).
That is, each function returns 1 if p 2 is in \(N_{C S}(p 1, t=1)\), returns 0 otherwise, where \(N_{C S}(x, t)\) is the CS proximity region for point \(x\) with expansion parameter \(t=1\).

\section*{Usage}

IarcCSt1.std.triRAB(p1, p2)
```

IarcCSt1.std.triRBC(p1, p2)
IarcCSt1.std.triRAC(p1, p2)

```

\section*{Arguments}
p1 A 2D point whose CS proximity region is constructed.
p2 A 2D point. The function determines whether p 2 is inside the CS proximity region of p 1 or not.

\section*{Value}

Each function returns \(I\left(\mathrm{p} 2\right.\) is in \(\left.N_{C S}(p 1, t=1)\right)\) for p 1 , that is, returns 1 if p 2 is in \(N_{C S}(p 1, t=1)\), returns 0 otherwise

\section*{Author(s)}

Elvan Ceyhan

\section*{See Also}

IarcCSstd.triRAB, IarcCSstd.triRBC and IarcCSstd.triRAC

\section*{Examples}
```

\#Examples for IarcCSt1.std.triRAB
A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
CM<-(A+B+C)/3
T3<-rbind(A,B,CM);
set.seed(1)
Xp<-runif.std.tri(10)\$gen.points
IarcCSt1.std.triRAB(Xp[1,],Xp[2,])
IarcCSt1.std.triRAB(c(.2,.5),Xp[2,])

```
\#Examples for IarcCSt1.std.triRBC
\(\mathrm{A}<-\mathrm{c}(0,0)\); \(\mathrm{B}<-\mathrm{c}(1,0)\); \(\mathrm{C}<-c(1 / 2, s q r t(3) / 2)\);
CM<-(A+B+C)/3
T1<-rbind(B,C,CM);
set.seed(1)
Xp<-runif.std.tri(3)\$gen.points
IarcCSt1.std.triRBC(Xp[1,], Xp[2,])
IarcCSt1.std.triRBC(c(.2,.5), Xp[2,])
```

\#Examples for IarcCSt1.std.triRAC
A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
CM<-(A+B+C)/3
T2<-rbind(A,C,CM);
set.seed(1)
Xp<-runif.std.tri(3)\$gen.points
IarcCSt1.std.triRAC(Xp[1,],Xp[2,])
IarcCSt1.std.triRAC(c(1,2),Xp[2,])

```
funsIndDelTri Functions provide the indices of the Delaunay triangles where the points reside

\section*{Description}

Two functions: index.delaunay.tri and indices.delaunay.tri.
index. delaunay.tri finds the index of the Delaunay triangle in which the given point, \(p\), resides. indices.delaunay. tri finds the indices of triangles for all the points in data set, Xp , as a vector.

Delaunay triangulation is based on Yp and DTmesh are the Delaunay triangles with default NULL. The function returns NA for a point not inside the convex hull of Yp. Number of Yp points (i.e., size of \(Y p\)) should be at least three and the points should be in general position so that Delaunay triangulation is (uniquely) defined.

If the number of \(Y p\) points is 3 , then there is only one Delaunay triangle and the indices of all the points inside this triangle are all 1.

See (Okabe et al. (2000); Ceyhan (2010); Sinclair (2016)) for more on Delaunay triangulation and the corresponding algorithm.

\section*{Usage}
index.delaunay.tri(p, Yp, DTmesh = NULL)
indices.delaunay.tri(Xp, Yp, DTmesh = NULL)

\section*{Arguments}
p
A 2D point; the index of the Delaunay triangle in which \(p\) resides is to be determined. It is an argument for index. delaunay. tri.

Yp A set of 2D points from which Delaunay triangulation is constructed.

DTmesh Delaunay triangles based on Yp, default is NULL, which is computed via tri.mesh function in interp package. triangles function yields a triangulation data structure from the triangulation object created by tri.mesh.
Xp A set of 2D points representing the set of data points for which the indices of the Delaunay triangles they reside is to be determined. It is an argument for indices.delaunay.tri.

\section*{Value}
index.delaunay.tri returns the index of the Delaunay triangle in which the given point, p , resides and indices.delaunay.tri returns the vector of indices of the Delaunay triangles in which points in the data set, Xp , reside.

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

Okabe A, Boots B, Sugihara K, Chiu SN (2000). Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. Wiley, New York.

Sinclair D (2016). "S-hull: a fast radial sweep-hull routine for Delaunay triangulation." 1604.01428.

\section*{Examples}
```

\#Examples for index.delaunay.tri
nx<-20 \#number of X points (target)
ny<-5 \#number of Y points (nontarget)
set.seed(1)
Yp<-cbind(runif(ny),runif(ny))
Xp<-runif.multi.tri(nx,Yp)\$g \#data under CSR in the convex hull of Ypoints
\#try also Xp<-cbind(runif(nx),runif(nx))
index.delaunay.tri(Xp[10,],Yp)
\#or use
DTY<-interp::tri.mesh(Yp[,1],Yp[,2],duplicate="remove")
\#Delaunay triangulation
TRY<-interp::triangles(DTY)[,1:3];
index.delaunay.tri(Xp[10,],Yp,DTY)
ind.DT<-vector()
for (i in 1:nx)
ind.DT<-c(ind.DT,index.delaunay.tri(Xp[i,],Yp))
ind.DT

```
```

Xlim<-range(Yp[,1],Xp[,1])
Ylim<-range(Yp[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
DTY<-interp::tri.mesh(Yp[,1],Yp[,2],duplicate="remove")
\#Delaunay triangulation based on Y points
\#plot of the data in the convex hull of Y points together with the Delaunay triangulation
plot(Xp,main=" ", xlab=" ", ylab=" ",xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05),type="n")
interp::plot.triSht(DTY, add=TRUE, do.points = TRUE,pch=16,col="blue")
points(Xp,pch=".",cex=3)
text(Xp,labels = factor(ind.DT))
\#Examples for indices.delaunay.tri
\#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-20; ny<-4; \#try also nx<-40; ny<-10 or nx<-1000; ny<-10;
set.seed(1)
Yp<-cbind(runif(ny),runif(ny))
Xp<-runif.multi.tri(nx,Yp)\$g \#data under CSR in the convex hull of Ypoints
\#try also Xp<-cbind(runif(nx),runif(nx))
tr.ind<-indices.delaunay.tri(Xp,Yp) \#indices of the Delaunay triangles
tr.ind
\#or use
DTY<-interp::tri.mesh(Yp[,1],Yp[,2],duplicate="remove")
\#Delaunay triangulation based on Y points
tr.ind<-indices.delaunay.tri(Xp,Yp,DTY) \#indices of the Delaunay triangles
tr.ind
Xlim<-range(Yp[,1],Xp[,1])
Ylim<-range(Yp[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
\#plot of the data in the convex hull of Y points together with the Delaunay triangulation
oldpar <- par(pty = "s")
plot(Xp,main=" ", xlab=" ", ylab=" ",xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05),pch=".")
interp::plot.triSht(DTY, add=TRUE, do.points = TRUE,pch=16,col="blue")
text(Xp,labels = factor(tr.ind))
par(oldpar)

```
funsMuVarCS1D Returning the mean and (asymptotic) variance of arc density of Central Similarity Proximity Catch Digraph (CS-PCD) for 1D data - middle interval case

\section*{Description}

Two functions: muCS1D and asy.varCS1D.
muCS1D returns the mean of the (arc) density of CS-PCD and asy. varCS1D returns the (asymptotic) variance of the arc density of CS-PCD for a given centrality parameter \(c \in(0,1)\) and an expansion parameter \(t>0\) and 1D uniform data in a finite interval \((a, b)\), i.e., data from \(U(a, b)\) distribution.
See also (Ceyhan (2016)).

\section*{Usage}
\(\operatorname{muCS1D}(\mathrm{t}, \mathrm{c})\)
asy. \(\operatorname{varCS1D(t,~c)~}\)

\section*{Arguments}
t
A positive real number which serves as the expansion parameter in CS proximity region.
c
A positive real number in \((0,1)\) parameterizing the center inside int \(=(a, b)\). For the interval, int \(=(a, b)\), the parameterized center is \(M_{c}=a+c(b-a)\).

\section*{Value}
muCS1D returns the mean and asy. varCS1D returns the asymptotic variance of the arc density of CS-PCD for uniform data in an interval

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2016). "Density of a Random Interval Catch Digraph Family and its Use for Testing Uniformity." REVSTAT, 14(4), 349-394.

\section*{See Also}
muPE1D and asy.varPE1D

\section*{Examples}
```

\#Examples for muCS1D
muCS1D(1.2,.4)
muCS1D(1.2,.6)
tseq<-seq(0.01,5,by=.05)
cseq<-seq(0.01, .99,by=.05)
ltseq<-length(tseq)
lcseq<-length(cseq)
mu.grid<-matrix(0,nrow=ltseq,ncol=lcseq)
for (i in 1:ltseq)
for (j in 1:lcseq)
{
mu.grid[i,j]<-muCS1D(tseq[i],cseq[j])
}
persp(tseq,cseq,mu.grid, xlab="t", ylab="c", zlab="mu(t,c)",theta = -30,
phi = 30, expand = 0.5, col = "lightblue", ltheta = 120,
shade = 0.05, ticktype = "detailed")

```
\#Examples for asy.varCS1D
asy.varCS1D(1.2,.8)
tseq<-seq(0.01, \(5, b y=.05)\)
cseq<-seq(0.01, . 99, by=.05)
ltseq<-length(tseq)
lcseq<-length (cseq)
var.grid<-matrix(0, nrow=ltseq, ncol=lcseq)
for (i in 1:ltseq)
 for (j in 1:lcseq)
 \{
 var.grid[i,j]<-asy.varCS1D(tseq[i],cseq[j])
 \}
persp(tseq,cseq,var.grid, xlab="t", ylab="c", zlab="var(t,c)", theta = -30,
phi = 30, expand \(=0.5\), col \(=\) "lightblue", ltheta \(=120\),
shade \(=0.05\), ticktype = "detailed") Similarity Proximity Catch Digraph (CS-PCD) for 2D uniform data in one triangle

\section*{Description}

Two functions: muCS2D and asy.varCS2D.
muCS2D returns the mean of the (arc) density of CS-PCD and asy.varCS2D returns the asymptotic variance of the arc density of CS-PCD with expansion parameter \(t>0\) for 2 D uniform data in a triangle.
CS proximity regions are defined with respect to the triangle and vertex regions are based on center of mass, \(C M\) of the triangle.
See also (Ceyhan (2005); Ceyhan et al. (2007)).

\section*{Usage}
muCS2D (t)
asy.varCS2D (t)

\section*{Arguments}
\(t \quad\) A positive real number which serves as the expansion parameter in CS proximity region.

\section*{Value}
muCS2D returns the mean and asy. varCS2D returns the (asymptotic) variance of the arc density of CS-PCD for uniform data in any triangle

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E, Priebe CE, Marchette DJ (2007). "A new family of random graphs for testing spatial segregation." Canadian Journal of Statistics, 35(1), 27-50.

\section*{See Also}
muPE2D and asy.varPE2D

\section*{Examples}
```

\#Examples for muCS2D
muCS2D(.5)
tseq<-seq(0.01,5,by=.1)

```
```

ltseq<-length(tseq)
mu<-vector()
for (i in 1:ltseq)
{
mu<-c(mu,muCS2D(tseq[i]))
}
plot(tseq, mu,type="l",xlab="t",ylab=expression(mu(t)),lty=1,xlim=range(tseq))

```
\#Examples for asy.varCS2D
asy.varCS2D(.5)
tseq<-seq(0.01, 10, by=.1)
ltseq<-length(tseq)
asy.var<-vector()
for (i in 1:ltseq)
\{
 asy.var<-c(asy.var, asy.varCS2D(tseq[i]))
\}
oldpar <- \(\operatorname{par}(\operatorname{mar}=c(5,5,4,2))\)
plot(tseq, asy.var,type="l",xlab="t",
 ylab=expression(paste(sigma^2,"(t)")),lty=1,xlim=range(tseq))
par(oldpar)
funsMuVarCSend.int Returns the mean and (asymptotic) variance of arc density of Central Similarity Proximity Catch Digraph (CS-PCD) for 1D data - endinterval case

\section*{Description}

Two functions: muCSend.int and asy.varCSend.int.
muCSend. int returns the mean of the arc density of CS-PCD and asy. varCSend.int returns the asymptotic variance of the arc density of CS-PCD for a given expansion parameter \(t>0\) for 1D uniform data in the left and right end-intervals for the interval \((a, b)\).
See also (Ceyhan (2016)).

\section*{Usage}
muCSend.int(t)
asy.varCSend.int(t)

\section*{Arguments}
t
A positive real number which serves as the expansion parameter in CS proximity region.

\section*{Details}
funsMuVarCSend.int

\section*{Value}
muCSend.int returns the mean and asy.varCSend.int returns the asymptotic variance of the arc density of CS-PCD for uniform data in end-intervals

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2016). "Density of a Random Interval Catch Digraph Family and its Use for Testing Uniformity." REVSTAT, 14(4), 349-394.

\section*{See Also}
muPEend.int and asy.varPEend.int

\section*{Examples}
```

\#Examples for muCSend.int
muCSend.int(1.2)
tseq<-seq(0.01,5,by=.05)
ltseq<-length(tseq)
mu.end<-vector()
for (i in 1:ltseq)
{
mu.end<-c(mu.end,muCSend.int(tseq[i]))
}
oldpar <- par(no.readonly = TRUE)
par(mar = c(5,4,4,2) + 0.1)
plot(tseq, mu.end,type="l",
ylab=expression(paste(mu,"(t)")),xlab="t",lty=1,xlim=range(tseq),ylim=c(0,1))
par(oldpar)
\#Examples for asy.varCSend.int
asy.varCSend.int(1.2)
tseq<-seq(.01,5,by=.05)
ltseq<-length(tseq)

```
```

var.end<-vector()
for (i in 1:ltseq)
{
var.end<-c(var.end, asy.varCSend.int(tseq[i]))
}
oldpar <- par(no.readonly = TRUE)
par(mar=c(5,5,4,2))
plot(tseq, var.end,type="l",xlab="t",ylab=expression(paste(sigma^2,"(t)")),lty=1,xlim=range(tseq))
par(oldpar)

```
funsMuVarPE1D \begin{tabular}{l}
Returns the mean and (asymptotic) variance of arc density of Propor- \\
tional Edge Proximity Catch Digraph \((P E-P C D)\) for \(1 D\) data - middle \\
interval case
\end{tabular}

\section*{Description}

The functions muPE1D and asy.varPE1D and their auxiliary functions.
muPE1D returns the mean of the (arc) density of PE-PCD and asy.varPE1D returns the (asymptotic) variance of the arc density of PE-PCD for a given centrality parameter \(c \in(0,1)\) and an expansion parameter \(r \geq 1\) and for 1D uniform data in a finite interval \((a, b)\), i.e., data from \(U(a, b)\) distribution.
muPE1D uses auxiliary (internal) function mu1PE1D which yields mean (i.e., expected value) of the arc density of PE-PCD for a given \(c \in(0,1 / 2)\) and \(r \geq 1\).
asy. varPE1D uses auxiliary (internal) functions fvar1 which yields asymptotic variance of the arc density of PE-PCD for \(c \in(1 / 4,1 / 2)\) and \(r \geq 1\); and fvar2 which yields asymptotic variance of the arc density of PE-PCD for \(c \in(0,1 / 4)\) and \(r \geq 1\).

See also (Ceyhan (2012)).

\section*{Usage}
mu1PE1D \((r, c)\)
muPE1D \((r, c)\)
fvar1 (r, c)
fvar2(r, c)
asy.varPE1D(r, c)

\section*{Arguments}
\(r \quad\) A positive real number which serves as the expansion parameter in PE proximity region; must be \(\geq 1\).
c
A positive real number in \((0,1)\) parameterizing the center inside int \(=(a, b)\). For the interval, \((a, b)\), the parameterized center is \(M_{c}=a+c(b-a)\).

\section*{Value}
muPE1D returns the mean and asy. varPE1D returns the asymptotic variance of the arc density of PE-PCD for \(U(a, b)\) data

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2012). "The Distribution of the Relative Arc Density of a Family of Interval Catch Digraph Based on Uniform Data." Metrika, 75(6), 761-793.

\section*{See Also}
muCS1D and asy. varCS1D

\section*{Examples}
```

\#Examples for muPE1D
muPE1D(1.2,.4)
muPE1D(1.2,.6)
rseq<-seq(1.01,5,by=.1)
cseq<-seq(0.01,.99,by=.1)
lrseq<-length(rseq)
lcseq<-length(cseq)
mu.grid<-matrix(0,nrow=lrseq,ncol=lcseq)
for (i in 1:lrseq)
for (j in 1:lcseq)
{
mu.grid[i,j]<-muPE1D(rseq[i],cseq[j])
}
persp(rseq,cseq,mu.grid, xlab="r", ylab="c", zlab="mu(r,c)", theta = -30, phi = 30,
expand = 0.5, col = "lightblue", ltheta = 120, shade = 0.05, ticktype = "detailed")

```
\#Examples for asy.varPE1D
asy.varPE1D(1.2,.8)
```

rseq<-seq(1.01,5,by=.1)
cseq<-seq(0.01,.99,by=.1)
lrseq<-length(rseq)
lcseq<-length(cseq)
var.grid<-matrix(0,nrow=lrseq,ncol=lcseq)
for (i in 1:lrseq)
for (j in 1:lcseq)
{
var.grid[i,j]<-asy.varPE1D(rseq[i],cseq[j])
}
persp(rseq,cseq,var.grid, xlab="r", ylab="c", zlab="var(r,c)", theta = -30, phi = 30,
expand = 0.5, col = "lightblue", ltheta = 120, shade = 0.05, ticktype = "detailed")

```
\begin{tabular}{ll}
funsMuVarPE2D & \begin{tabular}{l}
Returns the mean and (asymptotic) variance of arc density of Propor- \\
tional Edge Proximity Catch Digraph \((P E-P C D)\) for \(2 D\) uniform data \\
in one triangle
\end{tabular}
\end{tabular}

\section*{Description}

Two functions: muPE2D and asy.varPE2D.
muPE2D returns the mean of the (arc) density of PE-PCD and asy.varPE2D returns the asymptotic variance of the arc density of PE-PCD for 2D uniform data in a triangle.
PE proximity regions are defined with expansion parameter \(r \geq 1\) with respect to the triangle in which the points reside and vertex regions are based on center of mass, \(C M\) of the triangle.
See also (Ceyhan et al. (2006)).

\section*{Usage}
muPE2D (\(r\))
asy. \(\operatorname{varPE2D}(r)\)

\section*{Arguments}
\(r\)
A positive real number which serves as the expansion parameter in PE proximity region; must be \(\geq 1\).

\section*{Value}
muPE2D returns the mean and asy varPE2D returns the (asymptotic) variance of the arc density of PE-PCD for uniform data in any triangle.

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E, Priebe CE, Wierman JC (2006). "Relative density of the random \(r\)-factor proximity catch digraphs for testing spatial patterns of segregation and association." Computational Statistics \& Data Analysis, 50(8), 1925-1964.

\section*{See Also}
muCS2D and asy. varCS2D

\section*{Examples}
```

\#Examples for muPE2D
muPE2D(1.2)
rseq<-seq(1.01,5,by=.05)
lrseq<-length(rseq)
mu<-vector()
for (i in 1:lrseq)
{
mu<-c(mu,muPE2D(rseq[i]))
}
plot(rseq, mu,type="l",xlab="r",ylab=expression(mu(r)),lty=1,
xlim=range(rseq),ylim=c(0,1))

```
\#Examples for asy.varPE2D
asy.varPE2D(1.2)
rseq<-seq(\(1.01,5, b y=.05)\)
lrseq<-length (rseq)
avar<-vector()
for (i in 1:lrseq)
\{
 avar<-c(avar,asy.varPE2D(rseq[i]))
\}
oldpar <- \(\operatorname{par}(\operatorname{mar}=c(5,5,4,2))\)
plot(rseq, avar,type="l",xlab="r",
ylab=expression(paste(sigma^2,"(r)")),lty=1,xlim=range(rseq))
par(oldpar)
funsMuVarPEend.int Returns the mean and (asymptotic) variance of arc density of Proportional Edge Proximity Catch Digraph (PE-PCD) for ID data - endinterval case

\section*{Description}

Two functions: muPEend.int and asy.varPEend.int.
muPEend. int returns the mean of the arc density of PE-PCD and asy.varPEend.int returns the asymptotic variance of the arc density of PE-PCD for a given expansion parameter \(r \geq 1\) for 1D uniform data in the left and right end-intervals for the interval \((a, b)\).

See also (Ceyhan (2012)).

\section*{Usage}
muPEend.int(\(r\))
asy.varPEend.int(r)

\section*{Arguments}
\(r \quad\) A positive real number which serves as the expansion parameter in PE proximity region; must be \(\geq 1\).

\section*{Value}
muPEend. int returns the mean and asy.varPEend. int returns the asymptotic variance of the arc density of PE-PCD for uniform data in end-intervals

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2012). "The Distribution of the Relative Arc Density of a Family of Interval Catch Digraph Based on Uniform Data." Metrika, 75(6), 761-793.

\section*{See Also}
muCSend.int and asy.varCSend.int

\section*{Examples}
```

\#Examples for muPEend.int
muPEend.int(1.2)
rseq<-seq(1.01,5,by=.1)
lrseq<-length(rseq)
mu.end<-vector()
for (i in 1:lrseq)
{
mu.end<-c(mu.end,muPEend.int(rseq[i]))
}
plot(rseq, mu.end,type="l",
ylab=expression(paste(mu,"(r)")),xlab="r",lty=1,xlim=range(rseq),ylim=c(0,1))

```
\#Examples for asy.varPEend.int
asy.varPEend.int(1.2)
rseq<-seq(1.01,5,by=.1)
lrseq<-length(rseq)
var.end<-vector()
for (i in 1:lrseq)
\{
 var.end<-c(var.end, asy.varPEend.int(rseq[i]))
\}
oldpar <- \(\operatorname{par}(\operatorname{mar}=c(5,5,4,2))\)
plot(rseq, var.end, type="l",
xlab="r", ylab=expression(paste(sigma^2,"(r)")), lty=1,xlim=range(rseq))
par(oldpar)
funsPDomNum2PE1D \(\quad\) The functions for probability of domination number \(=2\) for Proportional Edge Proximity Catch Digraphs (PE-PCDs) - middle interval case

\section*{Description}

The function Pdom. num2PE1D and its auxiliary functions.
Returns \(P(\gamma=2)\) for PE-PCD whose vertices are a uniform data set of size n in a finite interval \((a, b)\) where \(\gamma\) stands for the domination number.

The PE proximity region \(N_{P E}(x, r, c)\) is defined with respect to \((a, b)\) with centrality parameter \(c \in(0,1)\) and expansion parameter \(r \geq 1\).

To compute the probability \(P(\gamma=2)\) for PE-PCD in the 1D case, we partition the domain \((r, c)=\) \((1, \infty) \times(0,1)\), and compute the probability for each partition set. The sample size (i.e., number of vertices or data points) is a positive integer, \(n\).

\section*{Usage}
```

Pdom.num2AI(r, c, n)
Pdom.num2AII(r, c, n)
Pdom.num2AIII(r, c, n)
Pdom.num2AIV(r, c, n)
Pdom.num2A(r, c, n)
Pdom.num2Asym(r, c, n)
Pdom.num2BIII(r, c, n)
Pdom.num2B(r, c, n)
Pdom.num2Bsym(r, c, n)
Pdom.num2CIV(r, c, n)
Pdom.num2C(r, c, n)
Pdom.num2Csym(r, c, n)
Pdom.num2PE1D(r, c, n)

```

\section*{Arguments}
\(r\)
c
n

A positive real number which serves as the expansion parameter in PE proximity region; must be \(\geq 1\).
A positive real number in \((0,1)\) parameterizing the center inside int \(=(a, b)\). For the interval, \((a, b)\), the parameterized center is \(M_{c}=a+c(b-a)\).

A positive integer representing the size of the uniform data set.

\section*{Value}
\(P(\) domination number \(\leq 1)\) for PE-PCD whose vertices are a uniform data set of size n in a finite interval \((a, b)\)

\section*{Auxiliary Functions for Pdom. num2PE1D}

The auxiliary functions are Pdom. num2AI, Pdom. num2AII, Pdom. num2AIII, Pdom. num2AIV, Pdom. num2A, Pdom.num2Asym, Pdom.num2BIII, Pdom.num2B, Pdom.num2B, Pdom.num2Bsym, Pdom.num2CIV, Pdom.num2C, and Pdom. num2Csym, each corresponding to a partition of the domain of \(r\) and \(c\). In particular, the domain partition is handled in 3 cases as
CASE A: \(c \in((3-\sqrt{5}) / 2,1 / 2)\)
CASE B: \(c \in(1 / 4,(3-\sqrt{5}) / 2)\) and
CASE C: \(c \in(0,1 / 4)\).

Case A-c \(\quad((3-\sqrt{5}) / 2,1 / 2)\)
In Case A, we compute \(P(\gamma=2)\) with
Pdom.num2AIV \((\mathrm{r}, \mathrm{c}, \mathrm{n})\) if \(1<r<(1-c) / c\);
Pdom. num2AIII (\(r, \mathrm{c}, \mathrm{n}\)) if \((1-c) / c<r<1 /(1-c)\);
Pdom.num2AII \((r, c, n)\) if \(1 /(1-c)<r<1 / c\);
and Pdom. num2AI (\(r, c, n\)) otherwise.
Pdom. num2A \((r, c, n)\) combines these functions in Case \(A: c \in((3-\sqrt{5}) / 2,1 / 2)\). Due to the symmetry in the PE proximity regions, we use Pdom. num2Asym (\(r, c, n\)) for \(c\) in \((1 / 2,(\sqrt{5}-1) / 2)\) with the same auxiliary functions

Pdom.num2AIV \((r, 1-\mathrm{c}, \mathrm{n})\) if \(1<r<c /(1-c)\);
Pdom.num2AIII (\(\mathrm{r}, 1-\mathrm{c}, \mathrm{n}\)) if \((c /(1-c)<r<1 / c\);
Pdom. num2AII (\(r, 1-\mathrm{c}, \mathrm{n}\)) if \(1 / c<r<1 /(1-c)\);
and Pdom. num2AI (\(r, 1-c, n\)) otherwise.

Case B-c \(\quad(1 / 4,(3-\sqrt{5}) / 2)\)
In Case B, we compute \(P(\gamma=2)\) with
Pdom.num2AIV \((r, c, n)\) if \(1<r<1 /(1-c)\);
Pdom.num2BIII \((r, c, n)\) if \(1 /(1-c)<r<(1-c) / c\);
Pdom.num2AII \((r, c, n)\) if \((1-c) / c<r<1 / c\);
and Pdom. num2AI (\(r, c, n\)) otherwise.
Pdom. num2B \((r, c, n)\) combines these functions in Case \(\mathrm{B}: c \in(1 / 4,(3-\sqrt{5}) / 2)\). Due to the symmetry in the PE proximity regions, we use Pdom. num2Bsym (\(r, c, n\)) for \(c\) in \(((\sqrt{5}-1) / 2,3 / 4)\) with the same auxiliary functions
\[
\text { Pdom. num2AIV }(r, 1-c, n) \text { if } 1<r<1 / c
\]

Pdom.num2BIII (\(\mathrm{r}, 1-\mathrm{c}, \mathrm{n}\)) if \(1 / c<r<c /(1-c)\);
Pdom.num2AII \((r, 1-c, n)\) if \(c /(1-c)<r<1 /(1-c)\);
and Pdom. num2AI (\(r, 1-c, n\)) otherwise.

Case C-c \(\boldsymbol{C}(0,1 / 4)\)
In Case C, we compute \(P(\gamma=2)\) with
Pdom.num2AIV \((r, c, n)\) if \(1<r<1 /(1-c)\);
Pdom.num2BIII \((\mathrm{r}, \mathrm{c}, \mathrm{n})\) if \(1 /(1-c)<r<(1-\sqrt{1-4 c}) /(2 c)\);
Pdom. num2CIV \((r, c, n)\) if \((1-\sqrt{1-4 c}) /(2 c)<r<(1+\sqrt{1-4 c}) /(2 c)\);
Pdom.num2BIII \((\mathrm{r}, \mathrm{c}, \mathrm{n})\) if \((1+\sqrt{1-4 c}) /(2 c)<r<1 /(1-c)\);
Pdom.num2AII \((r, c, n)\) if \(1 /(1-c)<r<1 / c\);
and Pdom. num2AI (\(r, c, n\)) otherwise.
Pdom. num2C \((r, c, n)\) combines these functions in Case \(C: c \in(0,1 / 4)\). Due to the symmetry in the PE proximity regions, we use Pdom. num2Csym \((r, c, n)\) for \(c \in(3 / 4,1)\) with the same auxiliary functions

Pdom.num2AIV (\(r, 1-c, n\)) if \(1<r<1 / c\);
Pdom.num2BIII (\(r, 1-\mathrm{c}, \mathrm{n}\)) if \(1 / c<r<(1-\sqrt{1-4(1-c)}) /(2(1-c))\);
Pdom. num2CIV \((r, 1-\mathrm{c}, \mathrm{n})\) if \((1-\sqrt{1-4(1-c)}) /(2(1-c))<r<(1+\sqrt{1-4(1-c)}) /(2(1-\) c));

Pdom.num2BIII \((\mathrm{r}, 1-\mathrm{c}, \mathrm{n})\) if \((1+\sqrt{1-4(1-c)}) /(2(1-c))<r<c /(1-c)\);
Pdom.num2AII \((r, 1-c, n)\) if \(c /(1-c)<r<1 /(1-c)\);
and Pdom. num2AI (\(r, 1-c, n\)) otherwise.
Combining Cases A, B, and C, we get our main function Pdom. num2PE1D which computes \(P(\gamma=\) 2) for any (\(r, c\)) in its domain.

\section*{Author(s)}

Elvan Ceyhan

\section*{See Also}

Pdom.num2PEtri and Pdom.num2PE1Dasy

\section*{Examples}
```

\#Examples for the main function Pdom.num2PE1D
r<-2
c<-. }
Pdom.num2PE1D(r,c,n=10)
Pdom.num2PE1D(r=1.5, c=1/1.5,n=100)

```
funsRankOrderTe
Returns the ranks and orders of points in decreasing distance to the edges of the triangle

\section*{Description}

Two functions: rank.dist2edges.std.tri and order.dist2edges.std.tri.
rank. dist2edges.std. tri finds the ranks of the distances of points in data, Xp , to the edges of the standard equilateral triangle \(T_{e}=T((0,0),(1,0),(1 / 2, \sqrt{3} / 2))\)
dec is a logical argument, default is TRUE, so the ranks are for decreasing distances, if FALSE it will be in increasing distances.
order. dist2edges.std.tri finds the orders of the distances of points in data, Xp , to the edges of \(T_{e}\). The arguments are as in rank. dist2edges.std.tri.

\section*{Usage}
rank.dist2edges.std.tri \((X p\), dec \(=\) TRUE \()\)
order.dist2edges.std.tri (Xp, dec = TRUE)

\section*{Arguments}

Xp A set of 2D points representing the data set in which ranking in terms of the distance to the edges of \(T_{e}\) is performed.
dec A logical argument indicating the how the ranking will be performed. If TRUE, the ranks are for decreasing distances, and if FALSE they will be in increasing distances, default is TRUE.

\section*{Value}

A list with two elements
distances \(\quad\) Distances from data points to the edges of \(T_{e}\)
dist.rank The ranks of the data points in decreasing distances to the edges of \(T_{e}\)

\section*{Author(s)}

Elvan Ceyhan

\section*{Examples}
```

\#Examples for rank.dist2edges.std.tri
n<-10
set.seed(1)
Xp<-runif.std.tri(n)\$gen.points

```
```

dec.dist<-rank.dist2edges.std.tri(Xp)
dec.dist
dec.dist.rank<-dec.dist[[2]]
\#the rank of distances to the edges in decreasing order
dec.dist.rank
A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C);
Xlim<-range(Te[,1])
Ylim<-range(Te[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(A,pch=".",xlab="",ylab="",xlim=Xlim+xd*c(-.0,.01),
ylim=Ylim+yd*c(-.01,.01))
polygon(Te)
points(Xp,pch=".")
text(Xp,labels = factor(dec.dist.rank) )
inc.dist<-rank.dist2edges.std.tri(Xp,dec = FALSE)
inc.dist
inc.dist.rank<-inc.dist[[2]]
\#the rank of distances to the edges in increasing order
inc.dist.rank
dist<-inc.dist[[1]] \#distances to the edges of the std eq. triangle
dist
plot(A,pch=".",xlab="",ylab="",xlim=Xlim,ylim=Ylim)
polygon(Te)
points(Xp,pch=".",xlab="",ylab="", main="",xlim=Xlim+xd*c(-.05,.05),
ylim=Ylim+yd*c(-.05,.05))
text(Xp,labels = factor(inc.dist.rank))
\#Examples for order.dist2edges.std.tri
n<-10
set.seed(1)
Xp<-runif.std.tri(n)\$gen.points \#try also Xp<-cbind(runif(n),runif(n))
dec.dist<-order.dist2edges.std.tri(Xp)
dec.dist
dec.dist.order<-dec.dist[[2]]
\#the order of distances to the edges in decreasing order
dec.dist.order
A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C);
Xlim<-range(Te[,1])
Ylim<-range(Te[,2])
xd<-Xlim[2]-Xlim[1]

```
```

yd<-Ylim[2]-Ylim[1]
plot(A,pch=".",xlab="",ylab="",xlim=Xlim+xd*c(-.01,.01),
ylim=Ylim+yd*c(-.01,.01))
polygon(Te)
points(Xp,pch=".")
text(Xp[dec.dist.order,],labels = factor(1:n) )
inc.dist<-order.dist2edges.std.tri(Xp,dec = FALSE)
inc.dist
inc.dist.order<-inc.dist[[2]]
\#the order of distances to the edges in increasing order
inc.dist.order
dist<-inc.dist[[1]] \#distances to the edges of the std eq. triangle
dist
dist[inc.dist.order] \#distances in increasing order
plot(A, pch=".",xlab="",ylab="",xlim=Xlim+xd*c(-.05,.05),
ylim=Ylim+yd*c(-.05,.05))
polygon(Te)
points(Xp,pch=".")
text(Xp[inc.dist.order,],labels = factor(1:n))

```
funsTbMid2CC Two functions lineD1CCinTb and lineD2CCinTb which are of class
 "TriLines" - The lines joining the midpoints of edges to the circum-
 center \((C C)\) in the standard basic triangle.

\section*{Description}

Returns the equation, slope, intercept, and \(y\)-coordinates of the lines joining \(D_{1}\) and \(C C\) and also \(D_{2}\) and \(C C\), in the standard basic triangle \(T_{b}=T\left(A=(0,0), B=(1,0), C=\left(c_{1}, c_{2}\right)\right)\) where \(c_{1}\) is in \([0,1 / 2], c_{2}>0\) and \(\left(1-c_{1}\right)^{2}+c_{2}^{2} \leq 1\) and \(D_{1}=(B+C) / 2\) and \(D_{2}=(A+C) / 2\) are the midpoints of edges \(B C\) and \(A C\).

Any given triangle can be mapped to the standard basic triangle by a combination of rigid body motions (i.e., translation, rotation and reflection) and scaling, preserving uniformity of the points in the original triangle. Hence standard basic triangle is useful for simulation studies under the uniformity hypothesis. \(x\)-coordinates are provided in vector x .

\section*{Usage}
lineD1CCinTb(x, c1, c2)
lineD2CCinTb(x, c1, c2)

\section*{Arguments}
x
A single scalar or a vector of scalars.
c1, c2
Positive real numbers which constitute the vertex of the standard basic triangle adjacent to the shorter edges; \(c_{1}\) must be in \([0,1 / 2], c_{2}>0\) and \(\left(1-c_{1}\right)^{2}+c_{2}^{2} \leq\) 1.

\section*{Value}

A list with the elements
\begin{tabular}{|c|c|}
\hline txt1 & Longer description of the line. \\
\hline txt2 & Shorter description of the line (to be inserted over the line in the plot). \\
\hline mtitle & The "main" title for the plot of the line. \\
\hline cent & The center chosen inside the standard equilateral triangle. \\
\hline cent. name & The name of the center inside the standard basic triangle. It is "CC" for these two functions. \\
\hline tri & The triangle (it is the standard basic triangle for this function). \\
\hline x & The input vector, can be a scalar or a vector of scalars, which constitute the \(x\)-coordinates of the point(s) of interest on the line. \\
\hline y & The output vector, will be a scalar if x is a scalar or a vector of scalars if x is a vector of scalar, constitutes the \(y\)-coordinates of the point(s) of interest on the line. \\
\hline slope & Slope of the line. \\
\hline intercept & Intercept of the line. \\
\hline equation & Equation of the line. \\
\hline
\end{tabular}

\section*{Author(s)}

Elvan Ceyhan

\section*{See Also}
lineA2CMinTe, lineB2CMinTe, lineA2MinTe, lineB2MinTe, and lineC2MinTe

\section*{Examples}
```

\#Examples for lineD1CCinTb
c1<-.4; c2<-.6;
A<-c(0,0); B<-c(1,0); C<-c(c1,c2); \#the vertices of the standard basic triangle Tb
Tb<-rbind(A,B,C)

```
xfence<-abs(A[1]-B[1])*. 25 \#how far to go at the lower and upper ends in the \(x\)-coordinate
\(x<-\operatorname{seq}(\min (A[1], B[1])-x f e n c e, \max (A[1], B[1])+x f e n c e, b y=.1)\) \#try also by=. 01
lnD1CC<-lineD1CCinTb(x,c1,c2)
```

lnD1CC
summary(lnD1CC)
plot(lnD1CC)
CC<-circumcenter.basic.tri(c1,c2) \#the circumcenter
CC
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2; \#midpoints of the edges
Ds<-rbind(D1,D2,D3)
x1<-seq(0,1,by=.1) \#try also by=.01
y1<-lineD1CCinTb(x1,c1,c2)\$y
Xlim<-range(Tb[,1],x1)
Ylim<-range(Tb[, 2],y1)
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(A,pch=".",asp=1,xlab="",ylab="",axes=TRUE,xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tb)
L<-matrix(rep(CC,3),ncol=2,byrow=TRUE); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty=2)
txt<-rbind(Tb,CC,D1,D2,D3)
xc<-txt[,1]+c(-.03,.04,.03,.02,.09,-.08,0)
yc<-txt[,2]+c(.02,.02,.04,.08,.03,.03,-.05)
txt.str<-c("A","B","C", "CC","D1","D2","D3")
text(xc,yc,txt.str)
lines(x1,y1,type="l",lty=2)
text(.8,.5,"lineD1CCinTb")
c1<-.4; c2<-.6;
x1<-seq(0,1,by=.1) \#try also by=.01
lineD1CCinTb(x1,c1,c2)

```
\#Examples for lineD2CCinTb
c1<-.4; c2<-.6;
\(A<-c(0,0) ; B<-c(1,0) ; C<-c(c 1, c 2)\); \#the vertices of the standard basic triangle Tb
Tb<-rbind(A,B,C)
xfence<-abs(A[1]-B[1])*. 25 \#how far to go at the lower and upper ends in the x -coordinate
\(x<-\operatorname{seq}(\min (A[1], B[1])-x f e n c e, \max (A[1], B[1])+x f e n c e, b y=.1)\) \#try also by=. 01
\(\operatorname{lnD2CC}<-l i n e D 2 C C i n T b(x, c 1, c 2)\)
lnD2CC
summary (lnD2CC)
plot(lnD2CC)
CC<-circumcenter.basic.tri(c1,c2) \#the circumcenter
CC
```

D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2; \#midpoints of the edges
Ds<-rbind(D1,D2,D3)
x2<-seq(0,1,by=.1) \#try also by=.01
y2<-lineD2CCinTb(x2,c1,c2)\$y
Xlim<-range(Tb[,1],x1)
Ylim<-range(Tb[,2],y2)
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(A,pch=".",asp=1,xlab="",ylab="",axes=TRUE,xlim=xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tb)
L<-matrix(rep(CC,3),ncol=2,byrow=TRUE); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty=2)
txt<-rbind(Tb,CC,D1,D2,D3)
xc<-txt[,1]+c(-.03,.04,.03,.02,.09,-.08,0)
yc<-txt[,2]+c(.02,.02,.04,.08,.03,.03,-.05)
txt.str<-c("A", "B", "C", "CC", "D1", "D2","D3")
text(xc,yc,txt.str)
lines(x2,y2, type="l",lty=2)
text(0,.5,"lineD2CCinTb")

```

IarcASbasic.tri The indicator for the presence of an arc from a point to another for Arc Slice Proximity Catch Digraphs (AS-PCDs) - standard basic triangle case

\section*{Description}

Returns \(I\left(p 2 \in N_{A S}(p 1)\right)\) for points p 1 and p 2 , that is, returns 1 if \(p 2\) is in \(N_{A S}(p 1)\), returns 0 otherwise, where \(N_{A S}(x)\) is the AS proximity region for point \(x\).
AS proximity region is constructed in the standard basic triangle \(T_{b}=T\left((0,0),(1,0),\left(c_{1}, c_{2}\right)\right)\) where \(c_{1}\) is in \([0,1 / 2], c_{2}>0\) and \(\left(1-c_{1}\right)^{2}+c_{2}^{2} \leq 1\).
Vertex regions are based on the center, \(M=\left(m_{1}, m_{2}\right)\) in Cartesian coordinates or \(M=(\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of the standard basic triangle \(T_{b}\) or based on circumcenter of \(T_{b}\); default is \(\mathrm{M}={ }^{\prime \prime} \mathrm{CC}\) ", i.e., circumcenter of \(T_{b}\). rv is the index of the vertex region p 1 resides, with default=NULL.
If p 1 and p 2 are distinct and either of them are outside \(T_{b}\), the function returns 0 , but if they are identical, then it returns 1 regardless of their locations (i.e., it allows loops).
Any given triangle can be mapped to the standard basic triangle by a combination of rigid body motions (i.e., translation, rotation and reflection) and scaling, preserving uniformity of the points in the original triangle. Hence standard basic triangle is useful for simulation studies under the uniformity hypothesis.
See also (Ceyhan (2005, 2010)).

\section*{Usage}

IarcASbasic.tri(p1, p2, c1, c2, M = "CC", rv = NULL)

\section*{Arguments}
p1 A 2D point whose AS proximity region is constructed.
p2 A 2D point. The function determines whether p2 is inside the AS proximity region of p 1 or not.
c1, c2 Positive real numbers representing the top vertex in standard basic triangle \(T_{b}=\) \(T\left((0,0),(1,0),\left(c_{1}, c_{2}\right)\right), c_{1}\) must be in \([0,1 / 2], c_{2}>0\) and \(\left(1-c_{1}\right)^{2}+c_{2}^{2} \leq 1\).
M The center of the triangle. "CC" stands for circumcenter or a 2D point in Cartesian coordinates or a 3D point in barycentric coordinates which serves as a center in the interior of the triangle \(T_{b}\); default is \(\mathrm{M}=\) "CC" i.e., the circumcenter of \(T_{b}\).
rv The index of the M-vertex region in \(T_{b}\) containing the point, either 1,2,3 or NULL (default is NULL).

\section*{Value}
\(I\left(p 2 \in N_{A S}(p 1)\right)\) for points p 1 and p 2 , that is, returns 1 if \(p 2\) is in \(N_{A S}(p 1)\) (i.e., if there is an arc from p 1 to p 2), returns 0 otherwise.

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). "An investigation of new graph invariants related to the domination number of random proximity catch digraphs." Methodology and Computing in Applied Probability, 14(2), 299-334.

\section*{See Also}

IarcAStri and NAStri

\section*{Examples}
```

c1<-.4; c2<-.6;
A<-c(0,0); B<-c(1,0); C<-c(c1,c2);
Tb<-rbind(A,B,C)

```
```

M<-as.numeric(runif.basic.tri(1,c1,c2)$g) #try also M<-c(.6,.2)
P1<-as.numeric(runif.basic.tri(1,c1,c2)$g)
P2<-as.numeric(runif.basic.tri(1,c1,c2)$g)
IarcASbasic.tri(P1,P2, c1, c2,M)
P1<-c(.3,.2)
P2<-c(.6,.2)
IarcASbasic.tri(P1,P2, c1, c2,M)
#or try
Rv<-rel.vert.basic.triCC(P1,c1,c2)$rv
IarcASbasic.tri(P1,P2,c1,c2,M,Rv)
P1<-c(.3,.2)
P2<-c(.8,.2)
IarcASbasic.tri(P1,P2, c1, c2,M)
P3<-c(.5,.4)
IarcASbasic.tri(P1,P3, c1, c2,M)
P4<-c(1.5,.4)
IarcASbasic.tri(P1,P4, c1,c2,M)
IarcASbasic.tri(P4,P4, c1, c2,M)
c1<-.4; c2<-.6;
P1<-c(.3,.2)
P2<-c(.6,.2)
IarcASbasic.tri(P1,P2, c1, c2,M)

```

IarcASset2pnt.tri The indicator for the presence of an arc from a point in set S to the point p for Arc Slice Proximity Catch Digraphs (AS-PCDs) - one triangle case

\section*{Description}

Returns \(\mathrm{I}\left(p t \in N_{A S}(x)\right.\) for some \(\left.x \in S\right)\), that is, returns 1 if \(p\) is in \(\cup_{x \in S} N_{A S}(x)\), returns 0 otherwise, where \(N_{A S}(x)\) is the AS proximity region for point \(x\).
AS proximity regions are constructed with respect to the triangle, \(\mathrm{tri}=T(A, B, C)=(r v=1, \mathrm{rv}=2, \mathrm{rv}=3)\), and vertices of tri are also labeled as 1,2 , and 3, respectively.
Vertex regions are based on the center, \(M=\left(m_{1}, m_{2}\right)\) in Cartesian coordinates or \(M=(\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of the triangle tri or based on circumcenter of tri; default is \(M=\) "CC", i.e., circumcenter of tri.
If \(p\) is not in \(S\) and either \(p\) or all points in \(S\) are outside tri, it returns 0 , but if \(p\) is in \(S\), then it always returns 1 (i.e., loops are allowed).

See also (Ceyhan \((2005,2010)\)).

\section*{Usage}

IarcASset2pnt.tri(S, p, tri, \(M=\) "CC")

\section*{Arguments}

S
p
tri Three 2D points, stacked row-wise, each row representing a vertex of the triangle.
M The center of the triangle. "CC" stands for circumcenter of the triangle tri or a 2D point in Cartesian coordinates or a 3D point in barycentric coordinates which serves as a center in the interior of tri; default is \(M=\) "CC" i.e., the circumcenter of tri.

\section*{Value}
\(I\left(p t \in \cup_{x i n S} N_{A S}(x, r)\right)\), that is, returns 1 if p is in S or inside \(N_{A S}(x)\) for at least one \(x\) in S , returns 0 otherwise, where AS proximity region is constructed in tri

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). "An investigation of new graph invariants related to the domination number of random proximity catch digraphs." Methodology and Computing in Applied Probability, 14(2), 299-334.

\section*{See Also}

IarcAStri, IarcASset2pnt.tri, and IarcCSset2pnt.tri

\section*{Examples}
```

A<-c(1,1); B<-C(2,0); C<-c(1.5, 2);
Tr<-rbind(A,B,C);

```
```

n<-10
set.seed(1)
Xp<-runif.tri(n,Tr)$gen.points
S<-rbind(Xp[1,],Xp[2,]) #try also S<-c(1.5,1)
M<-as.numeric(runif.tri(1,Tr)$g) \#try also M<-c(1.6,1.2)
IarcASset2pnt.tri(S,Xp[3,],Tr,M)
S<-rbind(Xp[1,],Xp[2,],Xp[3,],Xp[5,])
IarcASset2pnt.tri(S, Xp[3,],Tr,M)
IarcASset2pnt.tri(S, Xp[6,],Tr,M)
S<-rbind(c(.1,.1),c(.3,.4),c(.5,.3))
IarcASset2pnt.tri(S,Xp[3,],Tr,M)
IarcASset2pnt.tri(c(.2,.5),Xp[2,],Tr,M)
IarcASset2pnt.tri(Xp,c(.2,.5),Tr,M)
IarcASset2pnt.tri(Xp,Xp[2,],Tr,M)
IarcASset2pnt.tri(c(.2,.5),c(.2,.5),Tr,M)
IarcASset2pnt.tri(Xp[5,],Xp[2,],Tr,M)
S<-rbind(Xp[1,],Xp[2,],Xp[3,],Xp[5,],c(.2,.5))
IarcASset2pnt.tri(S,Xp[3,],Tr,M)
P<-c(.4,.2)
S<-Xp[c(1,3,4),]
IarcASset2pnt.tri(Xp,P,Tr,M)
IarcASset2pnt.tri(S,P,Tr,M)
IarcASset2pnt.tri(rbind(S,S),P,Tr,M)

```

IarcAStri \(\quad\) The indicator for the presence of an arc from a point to another for Arc Slice Proximity Catch Digraphs (AS-PCDs) - one triangle case

\section*{Description}

Returns \(I\left(p 2 \in N_{A S}(p 1)\right)\) for points p 1 and p 2 , that is, returns 1 if \(p 2\) is in \(N_{A S}(p 1)\), returns 0 otherwise, where \(N_{A S}(x)\) is the AS proximity region for point \(x\).
AS proximity regions are constructed with respect to the triangle, \(\mathrm{tri}=T(A, B, C)=(r v=1, \mathrm{rv}=2, \mathrm{rv}=3)\), and vertex regions are based on the center, \(M=\left(m_{1}, m_{2}\right)\) in Cartesian coordinates or \(M=\) \((\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of the triangle tri or based on circumcenter of tri; default is \(M=" C C\) ", i.e., circumcenter of tri. \(r v\) is the index of the vertex region \(p 1\) resides, with default=NULL.

If p 1 and p 2 are distinct and either of them are outside tri, the function returns 0 , but if they are identical, then it returns 1 regardless of their locations (i.e., it allows loops).
See also (Ceyhan (2005, 2010)).

\section*{Usage}

IarcAStri(p1, p2, tri, M = "CC", rv = NULL)

\section*{Arguments}
p1 A 2D point whose AS proximity region is constructed.
p2 A 2D point. The function determines whether p2 is inside the AS proximity region of p 1 or not.
tri Three 2D points, stacked row-wise, each row representing a vertex of the triangle.
M The center of the triangle. "CC" stands for circumcenter of the triangle tri or a 2D point in Cartesian coordinates or a 3D point in barycentric coordinates which serves as a center in the interior of tri; default is \(M=\) "CC" i.e., the circumcenter of tri.
\(r v \quad\) The index of the \(M\)-vertex region in tri containing the point, either \(1,2,3\) or NULL (default is NULL).

\section*{Value}
\(I\left(p 2 \in N_{A S}(p 1)\right)\) for p 1 , that is, returns 1 if \(p 2\) is in \(N_{A S}(p 1)\), returns 0 otherwise

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). "An investigation of new graph invariants related to the domination number of random proximity catch digraphs." Methodology and Computing in Applied Probability, 14(2), 299-334.

\section*{See Also}

IarcASbasic.tri, IarcPEtri, and IarcCStri

\section*{Examples}
```

A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
M<-as.numeric(runif.tri(1,Tr)$g) #try also M<-c(1.6,1.2)
P1<-as.numeric(runif.tri(1,Tr)$g)
P2<-as.numeric(runif.tri(1,Tr)$g)
IarcAStri(P1,P2,Tr,M)
P1<-c(1.3,1.2)
P2<-c(1.8,.5)
IarcAStri(P1,P2,Tr,M)
IarcAStri(P1,P1,Tr,M)
#or try
Rv<-rel.vert.triCC(P1,Tr)$rv
IarcAStri(P1,P2,Tr,M,Rv)
P3<-c(1.6,1.4)
IarcAStri(P1,P3,Tr,M)
P4<-c(1.5,1.0)
IarcAStri(P1,P4,Tr,M)
P5<-c(.5,1.0)
IarcAStri(P1,P5,Tr,M)
IarcAStri(P5,P5,Tr,M)
\#or try
Rv<-rel.vert.triCC(P5,Tr)\$rv
IarcAStri(P5,P5,Tr,M,Rv)

```

The indicator for the presence of an arc from a point to another for Central Similarity Proximity Catch Digraphs (CS-PCDs) - first onesixth of the standard equilateral triangle case

\section*{Description}

Returns \(I\left(\mathrm{p} 2\right.\) is in \(\left.N_{C S}(p 1, t=1)\right)\) for points p 1 and p 2 , that is, returns 1 if p 2 is in \(N_{C S}(p 1, t=1)\), returns 0 otherwise, where \(N_{C S}(x, t=1)\) is the CS proximity region for point \(x\) with expansion parameter \(t=1\).
CS proximity region is defined with respect to the standard equilateral triangle \(T_{e}=T(A, B, C)=\) \(T((0,0),(1,0),(1 / 2, \sqrt{3} / 2))\) and edge regions are based on the center of mass \(C M=(1 / 2, \sqrt{3} / 6)\).

Here p 1 must lie in the first one-sixth of \(T_{e}\), which is the triangle with vertices \(T\left(A, D_{3}, C M\right)=\) \(T((0,0),(1 / 2,0), C M)\). If p 1 and p 2 are distinct and p 1 is outside of \(T\left(A, D_{3}, C M\right)\) or p 2 is outside \(T_{e}\), it returns 0 , but if they are identical, then it returns 1 regardless of their locations (i.e., it allows loops).

\section*{Usage}

IarcCS.Te.onesixth(p1, p2)

\section*{Arguments}
p1 A 2D point whose CS proximity region is constructed.
p2 A 2D point. The function determines whether p2 is inside the CS proximity region of p 1 or not.

\section*{Value}
\(I\left(\mathrm{p} 2\right.\) is in \(\left.N_{C S}(p 1, t=1)\right)\) for p 1 in the first one-sixth of \(T_{e}, T\left(A, D_{3}, C M\right)\), that is, returns 1 if p 2 is in \(N_{C S}(p 1, t=1)\), returns 0 otherwise

\section*{Author(s)}

Elvan Ceyhan

See Also
IarcCSstd.tri
\begin{tabular}{ll}
IarcCSbasic.tri & The indicator for the presence of an arc from a point to another for \\
Central Similarity Proximity Catch Digraphs \((C S-P C D s)-\) standard \\
basic triangle case
\end{tabular}

\section*{Description}

Returns \(I\left(\mathrm{p} 2\right.\) is in \(\left.N_{C S}(p 1, t)\right)\) for points p 1 and p 2 , that is, returns 1 if p 2 is in \(N_{C S}(p 1, t)\), returns 0 otherwise, where \(N_{C S}(x, t)\) is the CS proximity region for point \(x\) with expansion parameter \(r \geq 1\).
CS proximity region is defined with respect to the standard basic triangle \(T_{b}=T\left((0,0),(1,0),\left(c_{1}, c_{2}\right)\right)\) where \(c_{1}\) is in \([0,1 / 2], c_{2}>0\) and \(\left(1-c_{1}\right)^{2}+c_{2}^{2} \leq 1\).
Edge regions are based on the center, \(M=\left(m_{1}, m_{2}\right)\) in Cartesian coordinates or \(M=(\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of the standard basic triangle \(T_{b}\); default is \(M=(1,1,1)\) i.e., the center of mass of \(T_{b}\). re is the index of the edge region p 1 resides, with default=NULL.

If p 1 and p 2 are distinct and either of them are outside \(T_{b}\), it returns 0 , but if they are identical, then it returns 1 regardless of their locations (i.e., it allows loops).

Any given triangle can be mapped to the standard basic triangle by a combination of rigid body motions (i.e., translation, rotation, and reflection) and scaling, preserving uniformity of the points in the original triangle. Hence standard basic triangle is useful for simulation studies under the uniformity hypothesis.
See also (Ceyhan (2005, 2010); Ceyhan et al. (2007)).

\section*{Usage}

IarcCSbasic.tri(p1, p2, \(t, c 1, c 2, M=c(1,1,1)\), \(r e=N U L L)\)

\section*{Arguments}
p1 A 2D point whose CS proximity region is constructed.
p2 A 2D point. The function determines whether p2 is inside the CS proximity region of p 1 or not.
\(t \quad\) A positive real number which serves as the expansion parameter in CS proximity region; must be \(\geq 1\)
c1, c2 Positive real numbers which constitute the vertex of the standard basic triangle adjacent to the shorter edges; \(c_{1}\) must be in \([0,1 / 2], c_{2}>0\) and \(\left(1-c_{1}\right)^{2}+c_{2}^{2} \leq\) 1.

M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates which serves as a center in the interior of the standard basic triangle or circumcenter of \(T_{b}\); default is \(M=(1,1,1)\) i.e., the center of mass of \(T_{b}\).
re \(\quad\) The index of the edge region in \(T_{b}\) containing the point, either \(1,2,3\) or NULL (default is NULL).

\section*{Value}
\(I\left(\mathrm{p} 2\right.\) is in \(\left.N_{C S}(p 1, t)\right)\) for points p 1 and p 2 , that is, returns 1 if p 2 is in \(N_{C S}(p 1, t)\), returns 0 otherwise

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E, Priebe CE, Marchette DJ (2007). "A new family of random graphs for testing spatial segregation." Canadian Journal of Statistics, 35(1), 27-50.

\section*{See Also}

IarcCStri and IarcCSstd.tri

\section*{Examples}
```

c1<-.4; c2<-. 6
A<-c(0,0); B<-C(1,0); C<-c(c1,c2);
Tb<-rbind(A,B,C);
M<-as.numeric(runif.basic.tri(1, c1,c2)$g)
tau<-2
P1<-as.numeric(runif.basic.tri(1, c1,c2)$g)
P2<-as.numeric(runif.basic.tri(1, c1,c2)$g)
IarcCSbasic.tri(P1,P2,tau, c1, c2,M)
P1<-c(.4,.2)
P2<-c(.5,.26)
IarcCSbasic.tri(P1,P2,tau, c1, c2,M)
IarcCSbasic.tri(P1,P1,tau, c1, c2,M)
#or try
Re<-rel.edge.basic.tri(P1, c1, c2,M)$re
IarcCSbasic.tri(P1,P2, tau, c1, c2,M,Re)
IarcCSbasic.tri(P1, P1, tau, c1, c2,M,Re)

```

IarcCSedge.reg.std.tri
The indicator for the presence of an arc from a point to another for Central Similarity Proximity Catch Digraphs (CS-PCDs) - standard equilateral triangle case

\section*{Description}

Returns \(I\left(\mathrm{p} 2\right.\) is in \(\left.N_{C S}(p 1, t)\right)\) for points p 1 and p 2 , that is, returns 1 if p 2 is in \(N_{C S}(p 1, t)\), returns 0 otherwise, where \(N_{C S}(x, t)\) is the CS proximity region for point \(x\) with expansion parameter \(t>0\). This function is equivalent to IarcCSstd. tri, except that it computes the indicator using the functions IarcCSstd.triRAB, IarcCSstd.triRBC and IarcCSstd.triRAC which are edge-region specific indicator functions. For example, IarcCSstd. triRAB computes \(I\left(\mathrm{p} 2\right.\) is in \(\left.N_{C S}(p 1, t)\right)\) for points p 1 and p 2 when p 1 resides in the edge region of edge \(A B\).
CS proximity region is defined with respect to the standard equilateral triangle \(T_{e}=T(v=1, v=\) \(2, v=3)=T((0,0),(1,0),(1 / 2, \sqrt{3} / 2))\) and edge regions are based on the center \(M=\left(m_{1}, m_{2}\right)\) in Cartesian coordinates or \(M=(\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of \(T_{e}\); default
is \(M=(1,1,1)\) i.e., the center of mass of \(T_{e}\). re is the index of the edge region p 1 resides, with default=NULL.
If p 1 and p 2 are distinct and either of them are outside \(T_{e}\), it returns 0 , but if they are identical, then it returns 1 regardless of their locations (i.e., it allows loops).
See also (Ceyhan (2005); Ceyhan et al. (2007); Ceyhan (2014)).

\section*{Usage}

IarcCSedge.reg.std.tri(p1, p2, t, \(M=c(1,1,1)\), \(r e=N U L L)\)

\section*{Arguments}
p1 A 2D point whose CS proximity region is constructed.
p2 A 2D point. The function determines whether p 2 is inside the CS proximity region of p 1 or not.
\(t \quad\) A positive real number which serves as the expansion parameter in CS proximity region.

M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates which serves as a center in the interior of the standard equilateral triangle \(T_{e}\); default is \(M=(1,1,1)\) i.e. the center of mass of \(T_{e}\).
re \(\quad\) The index of the edge region in \(T_{e}\) containing the point, either \(1,2,3\) or NULL (default is NULL).

\section*{Value}
\(I\left(\mathrm{p} 2\right.\) is in \(\left.N_{C S}(p 1, t)\right)\) for p 1 , that is, returns 1 if p 2 is in \(N_{C S}(p 1, t)\), returns 0 otherwise

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2014). "Comparison of Relative Density of Two Random Geometric Digraph Families in Testing Spatial Clustering." TEST, 23(1), 100-134.

Ceyhan E, Priebe CE, Marchette DJ (2007). "A new family of random graphs for testing spatial segregation." Canadian Journal of Statistics, 35(1), 27-50.

\section*{See Also}
```

IarcCStri and IarcPEstd.tri

```

\section*{Examples}
```

A<-c(0,0); B<-c(1,0); C<-C(1/2,sqrt(3)/2);
Te<-rbind(A,B,C);
n<-3
set.seed(1)
Xp<-runif.std.tri(n)$gen.points
M<-as.numeric(runif.std.tri(1)$g) \#try also M<-c(.6,.2)
t<-1
IarcCSedge.reg.std.tri(Xp[1,],Xp[2,],t,M)
IarcCSstd.tri(Xp[1,],Xp[2,],t,M)
\#or try
re<-rel.edge.std.triCM(Xp[1,])\$re
IarcCSedge.reg.std.tri(Xp[1,],Xp[2,],t,M,re=re)

```

The indicator for the presence of an arc from a point to another for Central Similarity Proximity Catch Digraphs (CS-PCDs) - endinterval case

\section*{Description}

Returns \(I\left(p_{2}\right.\) in \(\left.N_{C S}\left(p_{1}, t\right)\right)\) for points \(p_{1}\) and \(p_{2}\), that is, returns 1 if \(p_{2}\) is in \(N_{C S}\left(p_{1}, t\right)\), returns 0 otherwise, where \(N_{C S}(x, t)\) is the CS proximity region for point \(x\) with expansion parameter \(t>0\) for the region outside the interval \((a, b)\).
\(r v\) is the index of the end vertex region \(p_{1}\) resides, with default=NULL, and \(r v=1\) for left end-interval and \(r v=2\) for the right end-interval. If \(p_{1}\) and \(p_{2}\) are distinct and either of them are inside interval int, it returns 0 , but if they are identical, then it returns 1 regardless of their locations (i.e., it allows loops).
See also (Ceyhan (2016)).

\section*{Usage}

IarcCSend.int(p1, p2, int, t, rv = NULL)

\section*{Arguments}
p1 A 1D point for which the CS proximity region is constructed.
A 1D point to check whether it is inside the proximity region or not.
int
A vector of two real numbers representing an interval.
t
rv

A positive real number which serves as the expansion parameter in CS proximity region.

Index of the end-interval containing the point, either 1, 2 or NULL (default=NULL).

\section*{Value}
\(I\left(p_{2}\right.\) in \(\left.N_{C S}\left(p_{1}, t\right)\right)\) for points \(p_{1}\) and \(p_{2}\), that is, returns 1 if \(p_{2}\) is in \(N_{C S}\left(p_{1}, t\right)\) (i.e., if there is an arc from \(p_{1}\) to \(p_{2}\)), returns 0 otherwise

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2016). "Density of a Random Interval Catch Digraph Family and its Use for Testing Uniformity." REVSTAT, 14(4), 349-394.

\section*{See Also}

IarcCSmid.int, IarcPEmid.int, and IarcPEend.int

\section*{Examples}
```

a<-0; b<-10; int<-c(a,b)
t<-2
IarcCSend.int(15,17,int, t)
IarcCSend.int(15,15,int,t)
IarcCSend.int(1.5,17,int,t)
IarcCSend.int(1.5,1.5,int,t)
IarcCSend.int(-15, 17, int, t)
IarcCSend.int(-15,-17,int,t)
a<-0; b<-10; int<-c(a,b)
t<-. 5
IarcCSend.int(15,17,int,t)

```

The indicator for the presence of an arc from a point to another for Central Similarity Proximity Catch Digraphs (CS-PCDs) - one interval case

\section*{Description}

Returns \(I\left(p_{2}\right.\) in \(\left.N_{C S}\left(p_{1}, t, c\right)\right)\) for points \(p_{1}\) and \(p_{2}\), that is, returns 1 if \(p_{2}\) is in \(N_{C S}\left(p_{1}, t, c\right)\), returns 0 otherwise, where \(N_{C S}(x, t, c)\) is the CS proximity region for point \(x\) with expansion parameter \(t>0\) and centrality parameter \(c \in(0,1)\).
CS proximity region is constructed with respect to the interval \((a, b)\). This function works whether \(p_{1}\) and \(p_{2}\) are inside or outside the interval int.
Vertex regions for middle intervals are based on the center associated with the centrality parameter \(c \in(0,1)\). If \(p_{1}\) and \(p_{2}\) are identical, then it returns 1 regardless of their locations (i.e., loops are allowed in the digraph).
See also (Ceyhan (2016)).

\section*{Usage}

IarcCSint(p1, p2, int, \(t, c=0.5)\)

\section*{Arguments}
p1 A 1D point for which the proximity region is constructed.
p2 A 1D point for which it is checked whether it resides in the proximity region of \(p_{1}\) or not.
int A vector of two real numbers representing an interval.
\(t \quad\) A positive real number which serves as the expansion parameter in CS proximity region.
c A positive real number in \((0,1)\) parameterizing the center inside int \(=(a, b)\) with the default \(\mathrm{c}=.5\). For the interval, int \(=(a, b)\), the parameterized center is \(M_{c}=a+c(b-a)\).

\section*{Value}
\(I\left(p_{2}\right.\) in \(\left.N_{C S}\left(p_{1}, t, c\right)\right)\) for p 2 , that is, returns 1 if \(p_{2}\) in \(N_{C S}\left(p_{1}, t, c\right)\), returns 0 otherwise

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2016). "Density of a Random Interval Catch Digraph Family and its Use for Testing Uniformity." REVSTAT, 14(4), 349-394.

\section*{See Also}

IarcCSmid.int, IarcCSend.int and IarcPEint

\section*{Examples}
```

c<-.4
t<-2
a<-0; b<-10; int<-c(a,b)
IarcCSint(7,5,int,t,c)
IarcCSint(17,17,int,t,c)
IarcCSint(15,17,int,t,c)
IarcCSint(1, 3,int,t,c)
IarcCSint(-17, 17,int,t,c)
IarcCSint(3,5,int,t,c)
IarcCSint(3, 3,int,t,c)
IarcCSint(4,5,int,t,c)
IarcCSint(a,5,int,t,c)
c<-.4
r<-2
a<-0; b<-10; int<-c(a,b)
IarcCSint(7, 5,int,t,c)

```
IarcCSmid.int

The indicator for the presence of an arc from a point to another for Central Similarity Proximity Catch Digraphs (CS-PCDs) - middle interval case

\section*{Description}

Returns \(I\left(p_{2}\right.\) in \(\left.N_{C S}\left(p_{1}, t, c\right)\right)\) for points \(p_{1}\) and \(p_{2}\), that is, returns 1 if \(p_{2}\) is in \(N_{C S}\left(p_{1}, t, c\right)\), returns 0 otherwise, where \(N_{C S}(x, t, c)\) is the CS proximity region for point \(x\) and is constructed with expansion parameter \(t>0\) and centrality parameter \(c \in(0,1)\) for the interval \((a, b)\).
CS proximity regions are defined with respect to the middle interval int and vertex regions are based on the center associated with the centrality parameter \(c \in(0,1)\). For the interval, int \(=(a, b)\), the parameterized center is \(M_{c}=a+c(b-a) . \mathrm{rv}\) is the index of the vertex region \(p_{1}\) resides, with default=NULL.
If \(p_{1}\) and \(p_{2}\) are distinct and either of them are outside interval int, it returns 0 , but if they are identical, then it returns 1 regardless of their locations (i.e., loops are allowed in the digraph).
See also (Ceyhan (2016)).

\section*{Usage}

IarcCSmid.int(p1, p2, int, t, \(c=0.5, r v=N U L L)\)

\section*{Arguments}
p1, p2
1D points; \(p_{1}\) is the point for which the proximity region, \(N_{C S}\left(p_{1}, t, c\right)\) is constructed and \(p_{2}\) is the point which the function is checking whether its inside \(N_{C S}\left(p_{1}, t, c\right)\) or not.
int A vector of two real numbers representing an interval.
\(t \quad\) A positive real number which serves as the expansion parameter in CS proximity region.
c
A positive real number in \((0,1)\) parameterizing the center inside int \(=(a, b)\) with the default \(\mathrm{c}=.5\). For the interval, int \(=(a, b)\), the parameterized center is \(M_{c}=a+c(b-a)\).
rv Index of the end-interval containing the point, either 1,2 or NULL (default is NULL).

\section*{Value}
\(I\left(p_{2}\right.\) in \(\left.N_{C S}\left(p_{1}, t, c\right)\right)\) for points \(p_{1}\) and \(p_{2}\) that is, returns 1 if \(p_{2}\) is in \(N_{C S}\left(p_{1}, t, c\right)\), returns 0 otherwise

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2016). "Density of a Random Interval Catch Digraph Family and its Use for Testing Uniformity." REVSTAT, 14(4), 349-394.

\section*{See Also}

IarcCSend.int, IarcPEmid.int, and IarcPEend.int

\section*{Examples}
```

c<-. }
t<-2
a<-0; b<-10; int<-c(a,b)
IarcCSmid.int(7,5,int,t,c)
IarcCSmid.int(7,7,int,t,c)
IarcCSmid.int(7,5,int,t,c=.4)
IarcCSmid.int(1,3,int,t,c)
IarcCSmid.int(9,11,int,t,c)
IarcCSmid.int(19,1,int,t, c)
IarcCSmid.int(19,19,int,t,c)
IarcCSmid.int(3,5,int,t,c)

```
```

\#or try
Rv<-rel.vert.mid.int(3,int,c)\$rv
IarcCSmid.int(3,5,int,t, c,rv=Rv)
IarcCSmid.int(7,5,int,t,c)

```

IarcCSset2pnt.std.tri The indicator for the presence of an arc from a point in set S to the point p for Central Similarity Proximity Catch Digraphs (CS-PCDs) standard equilateral triangle case

\section*{Description}

Returns \(I\left(\mathrm{p}\right.\) in \(N_{C S}(x, t)\) for some \(x\) in S\()\), that is, returns 1 if p is in \(\cup_{x i n S} N_{C S}(x, t)\), returns 0 otherwise, CS proximity region is constructed with respect to the standard equilateral triangle \(T_{e}=\) \(T(A, B, C)=T((0,0),(1,0),(1 / 2, \sqrt{3} / 2))\) with the expansion parameter \(t>0\) and edge regions are based on center \(M=\left(m_{1}, m_{2}\right)\) in Cartesian coordinates or \(M=(\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of \(T_{e}\); default is \(M=(1,1,1)\) i.e., the center of mass of \(T_{e}\) (which is equivalent to circumcenter of \(T_{e}\)).
Edges of \(T_{e}, A B, B C, A C\), are also labeled as edges 3,1 , and 2 , respectively. If p is not in S and either p or all points in S are outside \(T_{e}\), it returns 0 , but if p is in S , then it always returns 1 regardless of its location (i.e., loops are allowed).
See also (Ceyhan (2012)).

\section*{Usage}

IarcCSset2pnt.std.tri(S, \(p, t, M=c(1,1,1))\)

\section*{Arguments}

S
p A 2D point. Presence of an arc from a point in \(S\) to point \(p\) is checked by the function.
t

M
A set of 2D points. Presence of an arc from a point in \(S\) to point \(p\) is checked by the function.
t A positive real number which serves as the expansion parameter in CS proximity region in the standard equilateral triangle \(T_{e}=T((0,0),(1,0),(1 / 2, \sqrt{3} / 2))\). which serves as a center in the interior of the standard equilateral triangle \(T_{e}\); default is \(M=(1,1,1)\) i.e., the center of mass of \(T_{e}\).

\section*{Value}
\(I\left(\mathrm{p}\right.\) is in \(\left.\cup_{x i n S} N_{C S}(x, t)\right)\), that is, returns 1 if p is in S or inside \(N_{C S}(x, t)\) for at least one \(x\) in S , returns 0 otherwise. CS proximity region is constructed with respect to the standard equilateral triangle \(T_{e}=T(A, B, C)=T((0,0),(1,0),(1 / 2, \sqrt{3} / 2))\) with M-edge regions.

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2012). "An investigation of new graph invariants related to the domination number of random proximity catch digraphs." Methodology and Computing in Applied Probability, 14(2), 299-334.

\section*{See Also}

IarcCSset2pnt.tri, IarcCSstd.tri, IarcCStri, and IarcPEset2pnt.std.tri

\section*{Examples}
```

A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C);
n<-10
set.seed(1)
Xp<-runif.std.tri(n)$gen.points
M<-as.numeric(runif.std.tri(1)$g) \#try also M<-c(.6,.2)
t<-. }
S<-rbind(Xp[1,],Xp[2,]) \#try also S<-c(.5,.5)
IarcCSset2pnt.std.tri(S,Xp[3,],t,M)
IarcCSset2pnt.std.tri(S, Xp[3,], t=1,M)
IarcCSset2pnt.std.tri(S,Xp[3,],t=1.5,M)
S<-rbind(c(.1,.1),c(.3,.4),c(.5,.3))
IarcCSset2pnt.std.tri(S, Xp[3,],t,M)

```

IarcCSset2pnt.tri The indicator for the presence of an arc from a point in set S to the point p for Central Similarity Proximity Catch Digraphs (CS-PCDs) one triangle case

\section*{Description}

Returns \(\mathrm{I}\left(\mathrm{p}\right.\) in \(N_{C S}(x, t)\) for some \(x\) in S\()\), that is, returns 1 if p in \(\cup_{x i n S} N_{C S}(x, t)\), returns 0 otherwise.
CS proximity region is constructed with respect to the triangle tri with the expansion parameter \(t>0\) and edge regions are based on the center, \(M=\left(m_{1}, m_{2}\right)\) in Cartesian coordinates or \(M=\)
\((\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of the triangle tri ; default is \(M=(1,1,1)\) i.e., the center of mass of tri.
Edges of \(\operatorname{tri}=T(A, B, C), A B, B C, A C\), are also labeled as edges 3, 1 , and 2 , respectively. If p is not in \(S\) and either \(p\) or all points in \(S\) are outside tri, it returns 0 , but if \(p\) is in \(S\), then it always returns 1 regardless of its location (i.e., loops are allowed).

\section*{Usage}

IarcCSset2pnt.tri(S, p, tri, t, \(M=c(1,1,1))\)

\section*{Arguments}
\(S \quad\) A set of 2D points. Presence of an arc from a point in \(S\) to point \(p\) is checked by the function.
p A 2D point. Presence of an arc from a point in \(S\) to point \(p\) is checked by the function.
tri A \(3 \times 2\) matrix with each row representing a vertex of the triangle.
\(t \quad\) A positive real number which serves as the expansion parameter in CS proximity region constructed in the triangle tri.
M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates which serves as a center in the interior of the triangle tri; default is \(M=\) \((1,1,1)\) i.e., the center of mass of tri.

\section*{Value}
\(\mathrm{I}\left(\mathrm{p}\right.\) is in \(\left.\cup_{x i n S} N_{C S}(x, t)\right)\), that is, returns 1 if p is in S or inside \(N_{C S}(x, t)\) for at least one \(x\) in S , returns 0 otherwise where CS proximity region is constructed with respect to the triangle tri

\section*{Author(s)}

Elvan Ceyhan

\section*{See Also}

IarcCSset2pnt.std.tri, IarcCStri, IarcCSstd.tri, IarcASset2pnt.tri, and IarcPEset2pnt.tri

\section*{Examples}
```

A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
n<-10
set.seed(1)
Xp<-runif.tri(n,Tr)$gen.points
S<-rbind(Xp[1,],Xp[2,]) #try also S<-c(1.5,1)
M<-as.numeric(runif.tri(1,Tr)$g) \#try also M<-c(1.6,1.0)

```
```

tau<-. }
IarcCSset2pnt.tri(S, Xp[3,],Tr,tau,M)
IarcCSset2pnt.tri(S, Xp[3,],Tr, t=1,M)
IarcCSset2pnt.tri(S,Xp[3,],Tr,t=1.5,M)
S<-rbind(c(.1,.1),c(.3,.4),c(.5,.3))
IarcCSset2pnt.tri(S, Xp[3,],Tr, tau,M)

```

IarcCSstd.tri The indicator for the presence of an arc from a point to another for Central Similarity Proximity Catch Digraphs (CS-PCDs) - standard equilateral triangle case

\section*{Description}

Returns \(I\left(\mathrm{p} 2\right.\) is in \(\left.N_{C S}(p 1, t)\right)\) for points p 1 and p 2 , that is, returns 1 if p 2 is in \(N_{C S}(p 1, t)\), returns 0 otherwise, where \(N_{C S}(x, t)\) is the CS proximity region for point \(x\) with expansion parameter \(t>0\).
CS proximity region is defined with respect to the standard equilateral triangle \(T_{e}=T(v=\) \(1, v=2, v=3)=T((0,0),(1,0),(1 / 2, \sqrt{3} / 2))\) and vertex regions are based on the center \(M=\left(m_{1}, m_{2}\right)\) in Cartesian coordinates or \(M=(\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of \(T_{e}\); default is \(M=(1,1,1)\) i.e., the center of mass of \(T_{e}\). rv is the index of the vertex region p 1 resides, with default=NULL.
If p 1 and p 2 are distinct and either of them are outside \(T_{e}\), it returns 0 , but if they are identical, then it returns 1 regardless of their locations (i.e., it allows loops).
See also (Ceyhan (2005, 2010); Ceyhan et al. (2007)).

\section*{Usage}

IarcCSstd.tri(p1, p2, \(\mathrm{t}, \mathrm{M}=\mathrm{c}(1,1,1)\), \(\mathrm{re}=\mathrm{NULL})\)

\section*{Arguments}
p1
p2
t

M
re

A 2D point whose CS proximity region is constructed.
A 2D point. The function determines whether p 2 is inside the CS proximity region of p 1 or not.

The index of the edge region in \(T_{e}\) containing the point, either \(1,2,3\) or NULL (default is NULL).

\section*{Value}
\(I\left(\mathrm{p} 2\right.\) is in \(\left.N_{C S}(p 1, t)\right)\) for points p 1 and p 2 , that is, returns 1 if p 2 is in \(N_{C S}(p 1, t)\), returns 0 otherwise

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E, Priebe CE, Marchette DJ (2007). "A new family of random graphs for testing spatial segregation." Canadian Journal of Statistics, 35(1), 27-50.

\section*{See Also}

IarcCStri, IarcCSbasic.tri, and IarcPEstd.tri

\section*{Examples}
```

A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C)
n<-3
set.seed(1)
Xp<-runif.std.tri(n)$gen.points
M<-as.numeric(runif.std.tri(1)$g) \#try also M<-c(.6,.2) or M=(A+B+C)/3
IarcCSstd.tri(Xp[1,],Xp[3,],t=2,M)
IarcCSstd.tri(c(0,1),Xp[3,],t=2,M)
\#or try
Re<-rel.edge.tri(Xp[1,],Te,M) \$re
IarcCSstd.tri(Xp[1,],Xp[3,],t=2,M,Re)

```
```

IarcCSt1.std.tri The indicator for the presence of an arc from a point to another for Central Similarity Proximity Catch Digraphs (CS-PCDs) - standard equilateral triangle case with $t=1$

```

\section*{Description}

Returns \(I\left(\mathrm{p} 2\right.\) is in \(\left.N_{C S}(p 1, t=1)\right)\) for points p 1 and p 2 , that is, returns 1 if p 2 is in \(N_{C S}(p 1, t=1)\), returns 0 otherwise, where \(N_{C S}(x, t=1)\) is the CS proximity region for point \(x\) with expansion parameter \(t=1\).
CS proximity region is defined with respect to the standard equilateral triangle \(T_{e}=T(A, B, C)=\) \(T((0,0),(1,0),(1 / 2, \sqrt{3} / 2))\) and edge regions are based on the center of mass \(C M=(1 / 2, \sqrt{3} / 6)\).

If p 1 and p 2 are distinct and either are outside \(T_{e}\), it returns 0 , but if they are identical, then it returns 1 regardless of their locations (i.e., it allows loops).

\section*{Usage}

IarcCSt1.std.tri(p1, p2)

\section*{Arguments}
p1 A 2D point whose CS proximity region is constructed.
p2 A 2D point. The function determines whether p2 is inside the CS proximity region of p 1 or not.

\section*{Value}
\(I\left(\mathrm{p} 2\right.\) is in \(\left.N_{C S}(p 1, t=1)\right)\) for p 1 in \(T_{e}\) that is, returns 1 if p 2 is in \(N_{C S}(p 1, t=1)\), returns 0 otherwise

\section*{Author(s)}

Elvan Ceyhan

\section*{See Also}

IarcCSstd.tri

\section*{Examples}
```

A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C);
n<-3
set.seed(1)
Xp<-runif.std.tri(n)\$gen.points

```
```

IarcCSt1.std.tri(Xp[1,],Xp[2,])
IarcCSt1.std.tri(c(.2,.5),Xp[2,])

```

IarcCStri The indicator for the presence of an arc from one point to another for Central Similarity Proximity Catch Digraphs (CS-PCDs)

\section*{Description}

Returns \(I\left(\mathrm{p} 2\right.\) is in \(\left.N_{C S}(p 1, t)\right)\) for points p 1 and p 2 , that is, returns 1 if p 2 is in \(N C S(p 1, t)\), returns 0 otherwise, where \(N_{C S}(x, t)\) is the CS proximity region for point \(x\) with the expansion parameter \(t>0\).
CS proximity region is constructed with respect to the triangle tri and edge regions are based on the center, \(M=\left(m_{1}, m_{2}\right)\) in Cartesian coordinates or \(M=(\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of tri or based on the circumcenter of tri. re is the index of the edge region p resides, with default=NULL

If p 1 and p 2 are distinct and either of them are outside tri, it returns 0 , but if they are identical, then it returns 1 regardless of their locations (i.e., it allows loops).
See also (Ceyhan (2005); Ceyhan et al. (2007); Ceyhan (2014)).

\section*{Usage}

IarcCStri(p1, p2, tri, t, M, re = NULL)

\section*{Arguments}
p1
p2
tri A \(3 \times 2\) matrix with each row representing a vertex of the triangle.
\(t \quad\) A positive real number which serves as the expansion parameter in CS proximity region.
M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates which serves as a center in the interior of the triangle tri.
re Index of the M-edge region containing the point \(p\), either 1, 2, 3 or NULL (default is NULL).

\section*{Value}
\(\mathrm{I}(\mathrm{p} 2\) is in \(N C S(p 1, t))\) for p 1 , that is, returns 1 if p 2 is in \(N C S(p 1, t)\), returns 0 otherwise

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2014). "Comparison of Relative Density of Two Random Geometric Digraph Families in Testing Spatial Clustering." TEST, 23(1), 100-134.

Ceyhan E, Priebe CE, Marchette DJ (2007). "A new family of random graphs for testing spatial segregation." Canadian Journal of Statistics, 35(1), 27-50.

\section*{See Also}

IarcAStri, IarcPEtri, IarcCStri, and IarcCSstd.tri

\section*{Examples}
```

A<-C(1,1); B<-c(2,0); C<-C(1.5,2);
Tr<-rbind(A,B,C);
tau<-1.5
M<-as.numeric(runif.tri(1,Tr)$g) #try also M<-c(1.6,1.2)
n<-10
set.seed(1)
Xp<-runif.tri(n,Tr)$g
IarcCStri(Xp[1,],Xp[2,],Tr,tau,M)
P1<-as.numeric(runif.tri(1,Tr)$g)
P2<-as.numeric(runif.tri(1,Tr)$g)
IarcCStri(P1,P2,Tr,tau,M)
\#or try
re<-rel.edges.tri(P1,Tr,M)\$re
IarcCStri(P1,P2,Tr,tau,M,re)

```

IarcCStri.alt An alternative to the function IarcCStri which yields the indicator for the presence of an arc from one point to another for Central Similarity Proximity Catch Digraphs (CS-PCDs)

\section*{Description}

Returns \(I\left(\mathrm{p} 2\right.\) is in \(\left.N_{C S}(p 1, t)\right)\) for points p 1 and p 2 , that is, returns 1 if p 2 is in \(N_{C S}(p 1, t)\), returns 0 otherwise, where \(N_{C S}(x, t)\) is the CS proximity region for point \(x\) with the expansion parameter \(t>0\).
CS proximity region is constructed with respect to the triangle tri and edge regions are based on the center of mass, \(C M\). re is the index of the \(C M\)-edge region p resides, with default=NULL but must be provided as vertices \(\left(y_{1}, y_{2}, y_{3}\right)\) for \(r e=3\) as \(\operatorname{rbind}(\mathrm{y} 2, \mathrm{y} 3, \mathrm{y} 1)\) for \(r e=1\) and as \(\operatorname{rbind}(\mathrm{y} 1, \mathrm{y} 3, \mathrm{y} 2)\) for \(r e=2\) for triangle \(T\left(y_{1}, y_{2}, y_{3}\right)\).
If p 1 and p 2 are distinct and either of them are outside tri, it returns 0 , but if they are identical, then it returns 1 regardless of their locations (i.e., it allows loops).
See also (Ceyhan (2005); Ceyhan et al. (2007); Ceyhan (2014)).

\section*{Usage}

IarcCStri.alt(p1, p2, tri, t, re = NULL)

\section*{Arguments}
p1 A 2D point whose CS proximity region is constructed.
p2 A 2D point. The function determines whether p2 is inside the CS proximity region of p 1 or not.
tri A \(3 \times 2\) matrix with each row representing a vertex of the triangle.
\(t \quad\) A positive real number which serves as the expansion parameter in CS proximity region.
re Index of the \(C M\)-edge region containing the point p , either \(1,2,3\) or NULL, default=NULL but must be provided (row-wise) as vertices \(\left(y_{1}, y_{2}, y_{3}\right)\) for re=3 as \(\left(y_{2}, y_{3}, y_{1}\right)\) for re \(=1\) and as \(\left(y_{1}, y_{3}, y_{2}\right)\) for re \(=2\) for triangle \(T\left(y_{1}, y_{2}, y_{3}\right)\).

\section*{Value}
\(I\left(\mathrm{p} 2\right.\) is in \(\left.N_{C S}(p 1, t)\right)\) for p 1 , that is, returns 1 if p 2 is in \(N_{C S}(p 1, t)\), returns 0 otherwise.

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2014). "Comparison of Relative Density of Two Random Geometric Digraph Families in Testing Spatial Clustering." TEST, 23(1), 100-134.

Ceyhan E, Priebe CE, Marchette DJ (2007). "A new family of random graphs for testing spatial segregation." Canadian Journal of Statistics, 35(1), 27-50.

\section*{See Also}

IarcAStri, IarcPEtri, IarcCStri, and IarcCSstd.tri

\section*{Examples}
```

A<-C(1,1); B<-C(2,0); C<-C(1.6,2);
Tr<-rbind(A,B,C);
t<-1.5
P1<-c(.4,.2)
P2<-c(1.8,.5)
IarcCStri (P1, P2,Tr, t,M=c(1, 1, 1))
IarcCStri.alt(P1,P2,Tr,t)
IarcCStri (P2,P1,Tr, t,M=c(1, 1, 1))
IarcCStri.alt(P2,P1,Tr,t)
\#or try
re<-rel.edges.triCM(P1,Tr)\$re
IarcCStri(P1, P2,Tr, t,M=c(1, 1, 1),re)
IarcCStri.alt(P1,P2,Tr,t,re)

```

IarcPEbasic.tri The indicator for the presence of an arc from a point to another for Proportional Edge Proximity Catch Digraphs (PE-PCDs) - standard basic triangle case

\section*{Description}

Returns \(I\left(\mathrm{p} 2\right.\) is in \(\left.N_{P E}(p 1, r)\right)\) for points p 1 and p 2 in the standard basic triangle, that is, returns 1 if p 2 is in \(N_{P E}(p 1, r)\), and returns 0 otherwise, where \(N_{P E}(x, r)\) is the PE proximity region for point \(x\) with expansion parameter \(r \geq 1\).
PE proximity region is defined with respect to the standard basic triangle \(T_{b}=T\left((0,0),(1,0),\left(c_{1}, c_{2}\right)\right)\) where \(c_{1}\) is in \([0,1 / 2], c_{2}>0\) and \(\left(1-c_{1}\right)^{2}+c_{2}^{2} \leq 1\).
Vertex regions are based on the center, \(M=\left(m_{1}, m_{2}\right)\) in Cartesian coordinates or \(M=(\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of the standard basic triangle \(T_{b}\) or based on circumcenter of \(T_{b}\); default is \(M=(1,1,1)\), i.e., the center of mass of \(T_{b} . r v\) is the index of the vertex region p 1 resides, with default=NULL.
If p 1 and p 2 are distinct and either of them are outside \(T_{b}\), it returns 0 , but if they are identical, then it returns 1 regardless of their locations (i.e., it allows loops).
Any given triangle can be mapped to the standard basic triangle by a combination of rigid body motions (i.e., translation, rotation and reflection) and scaling, preserving uniformity of the points in the original triangle. Hence, standard basic triangle is useful for simulation studies under the uniformity hypothesis.
See also (Ceyhan (2005, 2010); Ceyhan et al. (2006)).

\section*{Usage}

IarcPEbasic.tri(p1, p2, \(r, ~ c 1, ~ c 2, ~ M=c(1,1,1), r v=N U L L)\)

\section*{Arguments}
p1 A 2D point whose PE proximity region is constructed.
p2 A 2D point. The function determines whether p2 is inside the PE proximity region of p 1 or not.
\(r \quad\) A positive real number which serves as the expansion parameter in PE proximity region; must be \(\geq 1\)
c1, c2 Positive real numbers which constitute the vertex of the standard basic triangle adjacent to the shorter edges; \(c_{1}\) must be in \([0,1 / 2], c_{2}>0\) and \(\left(1-c_{1}\right)^{2}+c_{2}^{2} \leq\) 1.

M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates which serves as a center in the interior of the standard basic triangle or circumcenter of \(T_{b}\) which may be entered as "CC" as well; default is \(M=(1,1,1)\), i.e., the center of mass of \(T_{b}\).
rv \(\quad\) The index of the vertex region in \(T_{b}\) containing the point, either \(1,2,3\) or NULL (default is NULL).

\section*{Value}
\(I\left(\mathrm{p} 2\right.\) is in \(\left.N_{P E}(p 1, r)\right)\) for points p 1 and p 2 in the standard basic triangle, that is, returns 1 if p 2 is in \(N_{P E}(p 1, r)\), and returns 0 otherwise.

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E, Priebe CE, Wierman JC (2006). "Relative density of the random \(r\)-factor proximity catch digraphs for testing spatial patterns of segregation and association." Computational Statistics \& Data Analysis, 50(8), 1925-1964.

\section*{See Also}
```

IarcPEtri and IarcPEstd.tri

```

\section*{Examples}
```

c1<-.4; c2<-.6
A<-c(0,0); B<-c(1,0); C<-c(c1, c2);
Tb<-rbind(A,B,C);
M<-as.numeric(runif.basic.tri(1, c1, c2)$g)
r<-2
P1<-as.numeric(runif.basic.tri(1, c1,c2)$g)
P2<-as.numeric(runif.basic.tri(1, c1,c2)$g)
IarcPEbasic.tri(P1, P2,r, c1, c2,M)
P1<-c(.4,.2)
P2<-c(.5,.26)
IarcPEbasic.tri(P1, P2, r, c1, c2,M)
IarcPEbasic.tri(P2,P1,r, c1, c2,M)
#or try
Rv<-rel.vert.basic.tri(P1, c1, c2,M)$rv
IarcPEbasic.tri(P1,P2,r, c1, c2,M,Rv)

```
IarcPEend.int The indicator for the presence of an arc from a point to another for Proportional Edge Proximity Catch Digraphs (PE-PCDs) - endinterval case

\section*{Description}

Returns \(I\left(p_{2} \in N_{P E}\left(p_{1}, r\right)\right)\) for points \(p_{1}\) and \(p_{2}\), that is, returns 1 if \(p_{2}\) is in \(N_{P E}\left(p_{1}, r\right)\), returns 0 otherwise, where \(N_{P E}(x, r)\) is the PE proximity region for point \(x\) with expansion parameter \(r \geq 1\) for the region outside the interval \((a, b)\).
\(r v\) is the index of the end vertex region \(p_{1}\) resides, with default=NULL, and \(r v=1\) for left end-interval and \(r v=2\) for the right end-interval. If \(p_{1}\) and \(p_{2}\) are distinct and either of them are inside interval int, it returns 0 , but if they are identical, then it returns 1 regardless of their locations (i.e., it allows loops).

See also (Ceyhan (2012)).

\section*{Usage}

IarcPEend.int(p1, p2, int, r, rv = NULL)

\section*{Arguments}
p1
A 1D point whose PE proximity region is constructed.
p2
A 1D point. The function determines whether \(p_{2}\) is inside the PE proximity region of \(p_{1}\) or not.
int A vector of two real numbers representing an interval.
r
A positive real number which serves as the expansion parameter in PE proximity region; must be \(\geq 1\).
rv Index of the end-interval containing the point, either 1,2 or NULL (default is NULL).

\section*{Value}
\(I\left(p_{2} \in N_{P E}\left(p_{1}, r\right)\right)\) for points \(p_{1}\) and \(p_{2}\), that is, returns 1 if \(p_{2}\) is in \(N_{P E}\left(p_{1}, r\right)\) (i.e., if there is an arc from \(p_{1}\) to \(p_{2}\)), returns 0 otherwise

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2012). "The Distribution of the Relative Arc Density of a Family of Interval Catch Digraph Based on Uniform Data." Metrika, 75(6), 761-793.

\section*{See Also \\ IarcPEmid.int, IarcCSmid.int, and IarcCSend.int}

\section*{Examples}
```

a<-0; b<-10; int<-c(a,b)
r<-2
IarcPEend.int(15,17,int,r)
IarcPEend.int(1.5,17,int,r)
IarcPEend.int(-15, 17, int,r)

```

\section*{IarcPEint}

The indicator for the presence of an arc from a point to another for Proportional Edge Proximity Catch Digraphs (PE-PCDs) - one interval case

\section*{Description}

Returns \(I\left(p_{2} \in N_{P E}\left(p_{1}, r, c\right)\right)\) for points \(p_{1}\) and \(p_{2}\), that is, returns 1 if \(p_{2}\) is in \(N_{P E}\left(p_{1}, r, c\right)\), returns 0 otherwise, where \(N_{P E}(x, r, c)\) is the PE proximity region for point \(x\) with expansion parameter \(r \geq 1\) and centrality parameter \(c \in(0,1)\).

PE proximity region is constructed with respect to the interval \((a, b)\). This function works whether \(p_{1}\) and \(p_{2}\) are inside or outside the interval int.

Vertex regions for middle intervals are based on the center associated with the centrality parameter \(c \in(0,1)\). If \(p_{1}\) and \(p_{2}\) are identical, then it returns 1 regardless of their locations (i.e., loops are allowed in the digraph).

See also (Ceyhan (2012)).

\section*{Usage}

IarcPEint(p1, p2, int, r, \(c=0.5\))

\section*{Arguments}
p1 A 1D point for which the proximity region is constructed.
p2 A 1D point for which it is checked whether it resides in the proximity region of \(p_{1}\) or not.
int A vector of two real numbers representing an interval.
\(r \quad\) A positive real number which serves as the expansion parameter in PE proximity region must be \(\geq 1\).
c A positive real number in \((0,1)\) parameterizing the center inside int \(=(a, b)\) with the default \(\mathrm{c}=.5\). For the interval, int \(=(a, b)\), the parameterized center is \(M_{c}=a+c(b-a)\).

\section*{Value}
\(I\left(p_{2} \in N_{P E}\left(p_{1}, r, c\right)\right)\), that is, returns 1 if \(p_{2}\) in \(N_{P E}\left(p_{1}, r, c\right)\), returns 0 otherwise

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2012). "The Distribution of the Relative Arc Density of a Family of Interval Catch Digraph Based on Uniform Data." Metrika, 75(6), 761-793.

\section*{See Also}

IarcPEmid.int, IarcPEend.int and IarcCSint

\section*{Examples}
```

c<-.4
r<-2
a<-0; b<-10; int<-c(a,b)
IarcPEint(7,5,int,r, c)
IarcPEint(15,17,int,r,c)
IarcPEint(1,3,int,r,c)

```

IarcPEmid.int
The indicator for the presence of an arc from a point to another for Proportional Edge Proximity Catch Digraphs (PE-PCDs) - middle interval case

\section*{Description}

Returns \(I\left(p_{2} \in N_{P E}\left(p_{1}, r, c\right)\right)\) for points \(p_{1}\) and \(p_{2}\), that is, returns 1 if \(p_{2}\) is in \(N_{P E}\left(p_{1}, r, c\right)\), returns 0 otherwise, where \(N_{P E}(x, r, c)\) is the PE proximity region for point \(x\) and is constructed with expansion parameter \(r \geq 1\) and centrality parameter \(c \in(0,1)\) for the interval \((a, b)\).

PE proximity regions are defined with respect to the middle interval int and vertex regions are based on the center associated with the centrality parameter \(c \in(0,1)\). For the interval, int \(=(a, b)\), the parameterized center is \(M_{c}=a+c(b-a) . \mathrm{rv}\) is the index of the vertex region \(p_{1}\) resides, with default=NULL. If \(p_{1}\) and \(p_{2}\) are distinct and either of them are outside interval int, it returns 0 , but if they are identical, then it returns 1 regardless of their locations (i.e., loops are allowed in the digraph).
See also (Ceyhan (2012, 2016)).

\section*{Usage}

IarcPEmid.int(p1, x2, int, r, c = 0.5, rv = NULL)

\section*{Arguments}
\(\mathrm{p} 1, \mathrm{x} 2 \quad 1 \mathrm{D}\) points; \(p_{1}\) is the point for which the proximity region, \(N_{P E}\left(p_{1}, r, c\right)\) is constructed and \(p_{2}\) is the point which the function is checking whether its inside \(N_{P E}\left(p_{1}, r, c\right)\) or not.
int A vector of two real numbers representing an interval.
\(r\)

C
rv

A positive real number which serves as the expansion parameter in PE proximity region; must be \(\geq 1\).

A positive real number in \((0,1)\) parameterizing the center inside int \(=(a, b)\) with the default \(\mathrm{c}=.5\). For the interval, int \(=(a, b)\), the parameterized center is \(M_{c}=a+c(b-a)\).
The index of the vertex region \(p_{1}\) resides, with default=NULL.

\section*{Value}
\(I\left(p_{2} \in N_{P E}\left(p_{1}, r, c\right)\right)\) for points \(p_{1}\) and \(p_{2}\) that is, returns 1 if \(p_{2}\) is in \(N_{P E}\left(p_{1}, r, c\right)\), returns 0 otherwise

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2012). "The Distribution of the Relative Arc Density of a Family of Interval Catch Digraph Based on Uniform Data." Metrika, 75(6), 761-793.

Ceyhan E (2016). "Density of a Random Interval Catch Digraph Family and its Use for Testing Uniformity." REVSTAT, 14(4), 349-394.

\section*{See Also}

IarcPEend.int, IarcCSmid.int, and IarcCSend.int

\section*{Examples}
```

$c<-.4$
$r<-2$
$a<-0 ; b<-10$; int $<-c(a, b)$
IarcPEmid.int(7,5,int, r, c)
IarcPEmid.int(1, 3 , int, $r, c$ )

```

IarcPEset2pnt.std.tri The indicator for the presence of an arc from a point in set S to the point p or Proportional Edge Proximity Catch Digraphs (PE-PCDs) standard equilateral triangle case

\section*{Description}

Returns \(I\) (p in \(N_{P E}(x, r)\) for some \(x\) in S) for S , in the standard equilateral triangle, that is, returns 1 if p is in \(\cup_{x i n S} N_{P E}(x, r)\), and returns 0 otherwise.
PE proximity region is constructed with respect to the standard equilateral triangle \(T_{e}=T(A, B, C)=\) \(T((0,0),(1,0),(1 / 2, \sqrt{3} / 2))\) with the expansion parameter \(r \geq 1\) and vertex regions are based on center \(M=\left(m_{1}, m_{2}\right)\) in Cartesian coordinates or \(M=(\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of \(T_{e}\); default is \(M=(1,1,1)\), i.e., the center of mass of \(T_{e}\) (which is equivalent to the circumcenter for \(T_{e}\)).
Vertices of \(T_{e}\) are also labeled as 1,2 , and 3 , respectively. If p is not in S and either p or all points in S are outside \(T_{e}\), it returns 0 , but if p is in S , then it always returns 1 regardless of its location (i.e., loops are allowed).

\section*{Usage}

IarcPEset2pnt.std.tri(S, p, r, M = c(1, 1, 1))

\section*{Arguments}

S
p
\(r\)

M

A set of 2D points. Presence of an arc from a point in \(S\) to point \(p\) is checked by the function.
A 2D point. Presence of an arc from a point in \(S\) to point \(p\) is checked by the function.

A positive real number which serves as the expansion parameter in PE proximity region in the standard equilateral triangle \(T_{e}=T((0,0),(1,0),(1 / 2, \sqrt{3} / 2))\); must be \(\geq 1\).
4 A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates which serves as a center in the interior of the standard equilateral triangle \(T_{e}\); default is \(M=(1,1,1)\) i.e., the center of mass of \(T_{e}\).

\section*{Value}
\(I\left(\mathrm{p}\right.\) is in \(\left.U_{x i n S} N_{P E}(x, r)\right)\) for S in the standard equilateral triangle, that is, returns 1 if p is in S or inside \(N_{P E}(x, r)\) for at least one \(x\) in S , and returns 0 otherwise. PE proximity region is constructed with respect to the standard equilateral triangle \(T_{e}=T(A, B, C)=T((0,0),(1,0),(1 / 2, \sqrt{3} / 2))\) with M-vertex regions

\section*{Author(s)}

Elvan Ceyhan

\section*{See Also}

IarcPEset2pnt.tri, IarcPEstd.tri, IarcPEtri, and IarcCSset2pnt.std.tri

\section*{Examples}
```

A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C);
n<-10
set.seed(1)
Xp<-runif.std.tri(n)$gen.points
M<-as.numeric(runif.std.tri(1)$g) \#try also M<-c(.6,.2)
r<-1.5
S<-rbind(Xp[1,],Xp[2,]) \#try also S<-c(.5,.5)
IarcPEset2pnt.std.tri(S,Xp[3,],r,M)
IarcPEset2pnt.std.tri(S,Xp[3,],r=1,M)
S<-rbind(Xp[1,],Xp[2,],Xp[3,],Xp[5,])

```
```

IarcPEset2pnt.std.tri(S,Xp[3,],r,M)
IarcPEset2pnt.std.tri(S,Xp[6,],r,M)
IarcPEset2pnt.std.tri(S, Xp[6,],r=1.25,M)
P<-c(.4,.2)
S<-Xp[c(1,3,4),]
IarcPEset2pnt.std.tri(Xp,P,r,M)

```

IarcPEset2pnt.tri The indicator for the presence of an arc from a point in set S to the point p for Proportional Edge Proximity Catch Digraphs (PE-PCDs) - one triangle case

\section*{Description}

Returns \(I\) (p in \(N_{P E}(x, r)\) for some \(x\) in S\()\), that is, returns 1 if p is in \(\cup_{x i n S} N_{P E}(x, r)\), and returns 0 otherwise.
PE proximity region is constructed with respect to the triangle tri with the expansion parameter \(r \geq 1\) and vertex regions are based on the center, \(M=\left(m_{1}, m_{2}\right)\) in Cartesian coordinates or \(M=\) \((\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of the triangle tri or based on the circumcenter of \(\operatorname{tri}\); default is \(M=(1,1,1)\), i.e., the center of mass of tri. Vertices of tri are also labeled as 1,2 , and 3 , respectively.
If \(p\) is not in \(S\) and either \(p\) or all points in \(S\) are outside tri, it returns 0 , but if \(p\) is in \(S\), then it always returns 1 regardless of its location (i.e., loops are allowed).

\section*{Usage}

IarcPEset2pnt.tri(S, p, tri, r, M = c(1, 1, 1))

\section*{Arguments}

S
p
tri A \(3 \times 2\) matrix with each row representing a vertex of the triangle.
\(r\)

M
A set of 2D points. Presence of an arc from a point in \(S\) to point \(p\) is checked by the function.
A 2D point. Presence of an arc from a point in \(S\) to point \(p\) is checked by the function.

A positive real number which serves as the expansion parameter in PE proximity region constructed in the triangle tri; must be \(\geq 1\).

A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates which serves as a center in the interior of the triangle tri or the circumcenter of tri which may be entered as "CC" as well; default is \(M=(1,1,1)\), i.e., the center of mass of tri.

\section*{Value}
\(I\left(\mathrm{p}\right.\) is in \(\left.U_{x i n S} N_{P E}(x, r)\right)\), that is, returns 1 if p is in S or inside \(N_{P E}(x, r)\) for at least one \(x\) in S , and returns 0 otherwise, where PE proximity region is constructed with respect to the triangle tri

\section*{Author(s)}

Elvan Ceyhan

\section*{See Also}

IarcPEset2pnt.std.tri, IarcPEtri, IarcPEstd.tri, IarcASset2pnt.tri, and IarcCSset2pnt.tri

\section*{Examples}
```

A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
n<-10
set.seed(1)
Xp<-runif.tri(n,Tr)$gen.points
M<-as.numeric(runif.tri(1,Tr)$g) \#try also M<-c(1.6,1.0)
r<-1.5
S<-rbind(Xp[1,],Xp[2,]) \#try also S<-c(1.5,1)
IarcPEset2pnt.tri(S,Xp[3,],Tr,r,M)
IarcPEset2pnt.tri(S,Xp[3,],r=1,Tr,M)
S<-rbind(Xp[1,],Xp[2,],Xp[3,],Xp[5,])
IarcPEset2pnt.tri(S,Xp[3,],Tr,r,M)
S<-rbind(c(.1,.1),c(.3,.4),c(.5,.3))
IarcPEset2pnt.tri(S,Xp[3,],Tr,r,M)
P<-c(.4,.2)
S<-Xp[c(1,3,4),]
IarcPEset2pnt.tri(Xp,P,Tr,r,M)

```

\section*{Description}

Returns \(I\left(\mathrm{p} 2\right.\) is in \(\left.N_{P E}(p 1, r)\right)\) for points p 1 and p 2 , that is, returns 1 if p 2 is in \(N_{P E}(p 1, r)\), returns 0 otherwise, where \(N_{P E}(x, r)\) is the PE proximity region for point \(x\) with expansion parameter \(r \geq 1\).
PE proximity region is defined with respect to the standard regular tetrahedron \(T_{h}=T(v=1, v=\) \(2, v=3, v=4)=T((0,0,0),(1,0,0),(1 / 2, \sqrt{3} / 2,0),(1 / 2, \sqrt{3} / 6, \sqrt{6} / 3))\) and vertex regions are based on the circumcenter (which is equivalent to the center of mass for standard regular tetrahedron) of \(T_{h} . \mathrm{rv}\) is the index of the vertex region p 1 resides, with default=NULL.

If p 1 and p 2 are distinct and either of them are outside \(T_{h}\), it returns 0 , but if they are identical, then it returns 1 regardless of their locations (i.e., it allows loops).
See also (Ceyhan \((2005,2010)\)).

\section*{Usage}

IarcPEstd.tetra(p1, p2, r, rv = NULL)

\section*{Arguments}
p1
A 3D point whose PE proximity region is constructed.
p2 A 3D point. The function determines whether p 2 is inside the PE proximity region of p 1 or not.
\(r \quad\) A positive real number which serves as the expansion parameter in PE proximity region; must be \(\geq 1\).
rv Index of the vertex region containing the point, either 1, 2, 3, 4 (default is NULL).

\section*{Value}
\(I\left(\mathrm{p} 2\right.\) is in \(\left.N_{P E}(p 1, r)\right)\) for points p 1 and p 2 , that is, returns 1 if p 2 is in \(N_{P E}(p 1, r)\), returns 0 otherwise

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

\section*{See Also}

IarcPEtetra, IarcPEtri and IarcPEint

\section*{Examples}
```

A<-c(0,0,0); B<-c(1,0,0); C<-c(1/2,sqrt(3)/2,0); D<-c(1/2,sqrt(3)/6,sqrt(6)/3)
tetra<-rbind(A,B,C,D)
n<-3 \#try also n<-20
Xp<-runif.std.tetra(n)$g
r<-1.5
IarcPEstd.tetra(Xp[1,],Xp[3,],r)
IarcPEstd.tetra(c(.4,.4,.4),c(.5,.5,.5),r)
#or try
RV<-rel.vert.tetraCC(Xp[1,],tetra)$rv
IarcPEstd.tetra(Xp[1,],Xp[3,],r,rv=RV)
P1<-c(.1,.1,.1)
P2<-c(.5,.5,.5)
IarcPEstd.tetra(P1,P2,r)

```
IarcPEstd.tri

The indicator for the presence of an arc from a point to another for Proportional Edge Proximity Catch Digraphs (PE-PCDs) - standard equilateral triangle case

\section*{Description}

Returns \(I\left(\mathrm{p} 2\right.\) is in \(\left.N_{P E}(p 1, r)\right)\) for points p 1 and p 2 in the standard equilateral triangle, that is, returns 1 if p 2 is in \(N_{P E}(p 1, r)\), and returns 0 otherwise, where \(N_{P E}(x, r)\) is the PE proximity region for point \(x\) with expansion parameter \(r \geq 1\).

PE proximity region is defined with respect to the standard equilateral triangle \(T_{e}=T(v=\) \(1, v=2, v=3)=T((0,0),(1,0),(1 / 2, \sqrt{3} / 2))\) and vertex regions are based on the center \(M=\left(m_{1}, m_{2}\right)\) in Cartesian coordinates or \(M=(\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of \(T_{e}\); default is \(M=(1,1,1)\), i.e., the center of mass of \(T_{e} . r v\) is the index of the vertex region p 1 resides, with default=NULL.

If p 1 and p 2 are distinct and either of them are outside \(T_{e}\), it returns 0 , but if they are identical, then it returns 1 regardless of their locations (i.e., it allows loops).

See also (Ceyhan (2005, 2010); Ceyhan et al. (2007)).

\section*{Usage}

IarcPEstd.tri(p1, p2, r, M = c(1, 1, 1), rv = NULL)

\section*{Arguments}
p1
p2
\(r\)

M
rv

A 2D point whose PE proximity region is constructed.
A 2D point. The function determines whether p 2 is inside the PE proximity region of p 1 or not.
A positive real number which serves as the expansion parameter in PE proximity region; must be \(\geq 1\).
A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates which serves as a center in the interior of the standard equilateral triangle \(T_{e}\); default is \(M=(1,1,1)\) i.e. the center of mass of \(T_{e}\).
The index of the vertex region in \(T_{e}\) containing the point, either \(1,2,3\) or NULL (default is NULL).

\section*{Value}
\(I\left(\mathrm{p} 2\right.\) is in \(\left.N_{P E}(p 1, r)\right)\) for points p 1 and p 2 in the standard equilateral triangle, that is, returns 1 if p 2 is in \(N_{P E}(p 1, r)\), and returns 0 otherwise.

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E, Priebe CE, Marchette DJ (2007). "A new family of random graphs for testing spatial segregation." Canadian Journal of Statistics, 35(1), 27-50.

\section*{See Also}

IarcPEtri, IarcPEbasic.tri, and IarcCSstd.tri

\section*{Examples}
```

A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C)
n<-3
set.seed(1)
Xp<-runif.std.tri(n)$gen.points
M<-as.numeric(runif.std.tri(1)$g) \#try also M<-c(.6,.2)

```
```

IarcPEstd.tri(Xp[1,],Xp[3,],r=1.5,M)
IarcPEstd.tri(Xp[1,],Xp[3,],r=2,M)
\#or try
Rv<-rel.vert.std.triCM(Xp[1,])\$rv
IarcPEstd.tri(Xp[1,],Xp[3,],r=2,rv=Rv)
P1<-C(.4,. 2)
P2<-c(.5,.26)
r<-2
IarcPEstd.tri(P1,P2,r,M)

```

\section*{Description}

Returns \(I\left(\mathrm{p} 2\right.\) is in \(\left.N_{P E}(p 1, r)\right)\) for 3D points p 1 and p 2 , that is, returns 1 if p 2 is in \(N_{P E}(p 1, r)\), returns 0 otherwise, where \(N_{P E}(x, r)\) is the PE proximity region for point \(x\) with the expansion parameter \(r \geq 1\).
PE proximity region is constructed with respect to the tetrahedron th and vertex regions are based on the center M which is circumcenter ("CC") or center of mass ("CM") of th with default="CM". rv is the index of the vertex region p 1 resides, with default=NULL.
If p1 and p2 are distinct and either of them are outside th, it returns 0 , but if they are identical, then it returns 1 regardless of their locations (i.e., it allows loops).
See also (Ceyhan \((2005,2010)\)).

\section*{Usage}

IarcPEtetra(p1, p2, th, r, M = "CM", rv = NULL)

\section*{Arguments}
p1
th
r

M
rv
p2 A 3D point. The function determines whether p 2 is inside the PE proximity region of p 1 or not.
A 3D point whose PE proximity region is constructed.

A \(4 \times 3\) matrix with each row representing a vertex of the tetrahedron.
A positive real number which serves as the expansion parameter in PE proximity region; must be \(\geq 1\).
The center to be used in the construction of the vertex regions in the tetrahedron, th. Currently it only takes "CC" for circumcenter and "CM" for center of mass; default="CM".
Index of the \(M\)-vertex region containing the point, either \(1,2,3,4\) (default is NULL).

\section*{Value}
\(I\left(\mathrm{p} 2\right.\) is in \(\left.N_{P E}(p 1, r)\right)\) for p 1 , that is, returns 1 if p 2 is in \(N_{P E}(p 1, r)\), returns 0 otherwise

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

\section*{See Also}

IarcPEstd.tetra, IarcPEtri and IarcPEint

\section*{Examples}
```

A<-c(0,0,0); B<-c(1,0,0); C<-c(1/2,sqrt(3)/2,0); D<-c(1/2, sqrt(3)/6,sqrt(6)/3)
tetra<-rbind(A,B,C,D)
n<-3 \#try also n<-20
Xp<-runif.tetra(n,tetra)$g
M<-"CM" #try also M<-"CC"
r<-1.5
IarcPEtetra(Xp[1,],Xp[2,],tetra,r) #uses the default M="CM"
IarcPEtetra(Xp[1,],Xp[2,],tetra,r,M)
IarcPEtetra(c(.4,.4,.4),c(.5,.5,.5),tetra,r,M)
#or try
RV<-rel.vert.tetraCC(Xp[1,],tetra)$rv
IarcPEtetra(Xp[1,],Xp[3,],tetra,r,M,rv=RV)
P1<-c(.1,.1,.1)
P2<-c(.5,.5,.5)
IarcPEtetra(P1,P2,tetra,r,M)

```

IarcPEtri
The indicator for the presence of an arc from a point to another for Proportional Edge Proximity Catch Digraphs (PE-PCDs) - one triangle case

\section*{Description}

Returns \(I\left(\mathrm{p} 2\right.\) is in \(\left.N_{P E}(p 1, r)\right)\) for points p 1 and p 2 , that is, returns 1 if p 2 is in \(N_{P E}(p 1, r)\), and returns 0 otherwise, where \(N_{P E}(x, r)\) is the PE proximity region for point \(x\) with the expansion parameter \(r \geq 1\).

PE proximity region is constructed with respect to the triangle tri and vertex regions are based on the center, \(M=\left(m_{1}, m_{2}\right)\) in Cartesian coordinates or \(M=(\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of tri or based on the circumcenter of tri; default is \(M=(1,1,1)\), i.e., the center of mass of tri. rv is the index of the vertex region \(p 1\) resides, with default=NULL.
If p 1 and p 2 are distinct and either of them are outside tri, it returns 0 , but if they are identical, then it returns 1 regardless of their locations (i.e., it allows loops).
See also (Ceyhan (2005); Ceyhan et al. (2006); Ceyhan (2011)).

\section*{Usage}

IarcPEtri(p1, p2, tri, r, M = c(1, 1, 1), rv = NULL)

\section*{Arguments}
p1
p2 A 2D point. The function determines whether p 2 is inside the PE proximity region of p 1 or not.
tri A \(3 \times 2\) matrix with each row representing a vertex of the triangle.
\(r\)

M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates which serves as a center in the interior of the triangle tri or the circumcenter of tri which may be entered as "CC" as well; default is \(M=(1,1,1)\), i.e., the center of mass of tri.
rv Index of the M-vertex region containing the point, either 1, 2, 3 or NULL (default is NULL).

\section*{Value}
\(I\left(\mathrm{p} 2\right.\) is in \(\left.N_{P E}(p 1, r)\right)\) for points p 1 and p 2 , that is, returns 1 if p 2 is in \(N_{P E}(p 1, r)\), and returns 0 otherwise.

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2011). "Spatial Clustering Tests Based on Domination Number of a New Random Digraph Family." Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

Ceyhan E, Priebe CE, Wierman JC (2006). "Relative density of the random \(r\)-factor proximity catch digraphs for testing spatial patterns of segregation and association." Computational Statistics \& Data Analysis, 50(8), 1925-1964.

\section*{See Also}

IarcPEbasic.tri, IarcPEstd.tri, IarcAStri, and IarcCStri

\section*{Examples}
```

A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
M<-as.numeric(runif.tri(1,Tr)$g) #try also M<-c(1.6,1.0);
r<-1.5
n<-3
set.seed(1)
Xp<-runif.tri(n,Tr)$g
IarcPEtri(Xp[1,],Xp[2,],Tr,r,M)
P1<-as.numeric(runif.tri(1,Tr)$g)
P2<-as.numeric(runif.tri(1,Tr)$g)
IarcPEtri(P1,P2,Tr,r,M)
P1<-c(.4,.2)
P2<-c(1.8,.5)
IarcPEtri(P1,P2,Tr,r,M)
IarcPEtri(P2,P1,Tr,r,M)
M<-c(1.3,1.3)
r<-2
\#or try
Rv<-rel.vert.tri(P1,Tr,M)\$rv
IarcPEtri(P1,P2,Tr,r,M,Rv)

``` algorithm

\section*{Description}

Returns 1 if the domination number is less than or equal to the prespecified value \(k\) and also the indices (i.e., row numbers) of a dominating set of size \(k\) based on the incidence matrix Inc.Mat of a graph or a digraph. Here the row number in the incidence matrix corresponds to the index of the vertex (i.e., index of the data point). The function works whether loops are allowed or not (i.e., whether the first diagonal is all 1 or all 0). It takes a rather long time for large number of vertices (i.e., large number of row numbers).

\section*{Usage}

Idom.num.up.bnd(Inc.Mat, k)

\section*{Arguments}

Inc.Mat A square matrix consisting of 0's and 1's which represents the incidence matrix of a graph or digraph.
\(k \quad\) A positive integer for the upper bound (to be checked) for the domination number.

\section*{Value}

A list with two elements
dom.up.bnd The upper bound (to be checked) for the domination number. It is prespecified as k in the function arguments.
Idom.num.up.bnd
The indicator for the upper bound for domination number of the graph or digraph being the specified value \(k\) or not. It returns 1 if the upper bound is \(k\), and 0 otherwise based on the incidence matrix Inc. Mat of the graph or digraph.
ind.dom.set Indices of the rows in the incidence matrix Inc.Mat that correspond to the vertices in the dominating set of size k if it exists, otherwise it yields NULL.

\section*{Author(s)}

Elvan Ceyhan

\section*{See Also}
```

dom.num.exact and dom.num.greedy

```

\section*{Examples}
```

n<-10
M<-matrix(sample(c(0, 1), n^2,replace=TRUE),nrow=n)
diag(M)<-1
dom.num.greedy (M)
Idom. num.up.bnd(M, 2)
for (k in 1:n)
print(c(k,Idom.num.up.bnd(M,k)))

```

Idom.num1ASbasic.tri The indicator for a point being a dominating point for Arc Slice Proximity Catch Digraphs (AS-PCDs) - standard basic triangle case

\section*{Description}

Returns I(p is a dominating point of the AS-PCD) where the vertices of the AS-PCD are the 2D data set \(X p\), that is, returns 1 if \(p\) is a dominating point of AS-PCD, returns 0 otherwise. AS proximity regions are defined with respect to the standard basic triangle, \(T_{b}, c_{1}\) is in \([0,1 / 2], c_{2}>0\) and \(\left(1-c_{1}\right)^{2}+c_{2}^{2} \leq 1\).
Any given triangle can be mapped to the standard basic triangle by a combination of rigid body motions (i.e., translation, rotation and reflection) and scaling, preserving uniformity of the points in the original triangle. Hence standard basic triangle is useful for simulation studies under the uniformity hypothesis.

Vertex regions are based on the center, \(M=\left(m_{1}, m_{2}\right)\) in Cartesian coordinates or \(M=(\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of the standard basic triangle \(T_{b}\) or based on circumcenter of \(T_{b}\); default is \(\mathrm{M}={ }^{\prime \prime} \mathrm{CC}\) ", i.e., circumcenter of \(T_{b}\). Point, p , is in the vertex region of vertex rv (default is NULL); vertices are labeled as \(1,2,3\) in the order they are stacked row-wise.
ch.data. pnt is for checking whether point p is a data point in Xp or not (default is FALSE), so by default this function checks whether the point \(p\) would be a dominating point if it actually were in the data set.
See also (Ceyhan \((2005,2010)\)).

\section*{Usage}

Idom.num1ASbasic.tri(p, Xp, c1, c2, \(M=" C C ", r v=N U L L, ~ c h . d a t a . p n t ~=~ F A L S E) ~\)

\section*{Arguments}
p
A 2D point that is to be tested for being a dominating point or not of the ASPCD.
Xp
A set of 2D points which constitutes the vertices of the AS-PCD.
\begin{tabular}{|c|c|}
\hline c1, c2 & Positive real numbers which constitute the vertex of the standard basic triangle adjacent to the shorter edges; \(c_{1}\) must be in \([0,1 / 2], c_{2}>0\) and \(\left(1-c_{1}\right)^{2}+c_{2}^{2} \leq\) 1. \\
\hline M & The center of the triangle. "CC" stands for circumcenter of the triangle \(T_{b}\) or a 2D point in Cartesian coordinates or a 3D point in barycentric coordinates which serves as a center in the interior of the triangle \(T_{b}\); default is \(\mathrm{M}=\) "CC" i.e., the circumcenter of \(T_{b}\). \\
\hline rv & Index of the vertex whose region contains point \(p, r v\) takes the vertex labels as \(1,2,3\) as in the row order of the vertices in \(T_{b}\). \\
\hline ch.data.pnt & A logical argument for checking whether point \(p\) is a data point in \(X p\) or not (default is FALSE). \\
\hline
\end{tabular}

\section*{Value}

I(\(p\) is a dominating point of the AS-PCD) where the vertices of the AS-PCD are the 2 D data set Xp , that is, returns 1 if \(p\) is a dominating point, returns 0 otherwise

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). "An investigation of new graph invariants related to the domination number of random proximity catch digraphs." Methodology and Computing in Applied Probability, 14(2), 299-334.

\section*{See Also}

Idom.num1AStri and Idom.num1PEbasic.tri

\section*{Examples}
```

c1<-.4; c2<-.6;
A<-c(0,0); B<-c(1,0); C<-c(c1,c2);
Tb<-rbind(A,B,C)
n<-10
set.seed(1)
Xp<-runif.basic.tri(n, c1,c2)\$g

```
```

M<-as.numeric(runif.basic.tri(1,c1,c2)$g) #try also M<-c(.6,.2)
Idom.num1ASbasic.tri(Xp[1,],Xp, c1, c2,M)
gam.vec<-vector()
for (i in 1:n)
{gam.vec<-c(gam.vec,Idom.num1ASbasic.tri(Xp[i,],Xp,c1,c2,M))}
ind.gam1<-which(gam.vec==1)
ind.gam1
#or try
Rv<-rel.vert.basic.triCC(Xp[1,],c1,c2)$rv
Idom.num1ASbasic.tri(Xp[1,],Xp,c1,c2,M,Rv)
Idom.num1ASbasic.tri(c(.2,.4),Xp, c1, c2,M)
Idom.num1ASbasic.tri(c(.2,.4),c(.2,.4), c1,c2,M)
Xp2<-rbind(Xp,c(.2,.4))
Idom.num1ASbasic.tri(Xp[1,],Xp2,c1,c2,M)
CC<-circumcenter.basic.tri(c1,c2) \#the circumcenter
if (dimension(M)==3) {M<-bary2cart(M,Tb)}
\#need to run this when M is given in barycentric coordinates
if (isTRUE(all.equal(M,CC)) || identical(M,"CC"))
{cent<-CC
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
Ds<-rbind(D1,D2,D3)
cent.name<-"CC"
} else
{cent<-M
cent.name<-"M"
Ds<-prj.cent2edges.basic.tri(c1,c2,M)
}
Xlim<-range(Tb[,1],Xp[,1])
Ylim<-range(Tb[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(A,pch=".",xlab="",ylab="",
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tb)
L<-rbind(cent,cent,cent); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty=2)
points(Xp)
points(rbind(Xp[ind.gam1,]),pch=4,col=2)
txt<-rbind(Tb,cent,Ds)
xc<-txt[,1]+c(-.03,.03,.02,.06,.06,-0.05,.01)
yc<-txt[, 2]+c(.02,.02,.03,.0,.03,.03,-.03)

```
```

txt.str<-c("A", "B", "C", cent.name, "D1", "D2", "D3")
text(xc,yc,txt.str)
Idom.num1ASbasic.tri(c(.4,.2), Xp, c1, c2,M)
Idom.num1ASbasic.tri(c(.5,.11), Xp, c1, c2,M)
Idom.num1ASbasic.tri(c(.5,.11), Xp, c1, c2,M, ch.data.pnt=FALSE)
\#gives an error message if ch.data.pnt=TRUE since the point is not in the standard basic triangle

```

Idom.num1AStri The indicator for a point being a dominating point for Arc Slice Proximity Catch Digraphs (AS-PCDs) - one triangle case

\section*{Description}

Returns \(\mathrm{I}(\mathrm{p}\) is a dominating point of the AS-PCD whose vertices are the 2 D data set Xp), that is, returns 1 if \(p\) is a dominating point of AS-PCD, returns 0 otherwise. Point, \(p\), is in the region of vertex rv (default is NULL); vertices are labeled as \(1,2,3\) in the order they are stacked row-wise in tri.

AS proximity regions are defined with respect to the triangle tri and vertex regions are based on the center, \(M=\left(m_{1}, m_{2}\right)\) in Cartesian coordinates or \(M=(\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of the triangle tri or based on circumcenter of tri; default is \(\mathrm{M}=\) " CC ", i.e., circumcenter of tri.
ch. data.pnt is for checking whether point \(p\) is a data point in Xp or not (default is FALSE), so by default this function checks whether the point \(p\) would be a dominating point if it actually were in the data set.
See also (Ceyhan \((2005,2010)\)).

\section*{Usage}

Idom.num1AStri(p, Xp, tri, \(M=" C C ", r v=N U L L, ~ c h . d a t a . p n t=F A L S E)\)

\section*{Arguments}
p

Xp A set of 2D points which constitutes the vertices of the AS-PCD.
tri Three 2D points, stacked row-wise, each row representing a vertex of the triangle.
M
A 2D point that is to be tested for being a dominating point or not of the ASPCD.

The center of the triangle. "CC" stands for circumcenter of the triangle tri or a 2D point in Cartesian coordinates or a 3D point in barycentric coordinates which serves as a center in the interior of the triangle \(T_{b}\); default is \(\mathrm{M}=\) " CC " i.e., the circumcenter of tri.
\begin{tabular}{ll}
rv & \begin{tabular}{l}
Index of the vertex whose region contains point \(\mathrm{p}, \mathrm{rv}\) takes the vertex labels as \\
\(1,2,3\) as in the row order of the vertices in tri.
\end{tabular} \\
ch.data.pnt \(\quad\)\begin{tabular}{l}
A logical argument for checking whether point p is a data point in Xp or not \\
(default is FALSE).
\end{tabular}
\end{tabular}

\section*{Value}

I (p is a dominating point of the AS-PCD whose vertices are the 2 D data set Xp), that is, returns 1 if \(p\) is a dominating point of the AS-PCD, returns 0 otherwise

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). "An investigation of new graph invariants related to the domination number of random proximity catch digraphs." Methodology and Computing in Applied Probability, 14(2), 299-334.

\section*{See Also}

Idom.num1ASbasic.tri

\section*{Examples}
```

A<-C(1,1); B<-C(2,0); C<-C(1.5,2);
Tr<-rbind(A,B,C);
n<-10
set.seed(1)
Xp<-runif.tri(n,Tr)$g
M<-as.numeric(runif.tri(1,Tr)$g) \#try also M<-c(1.6,1.2)
Idom.num1AStri(Xp[1, ],Xp,Tr,M)
Idom.num1AStri(Xp[1,],Xp[1,],Tr,M)
Idom.num1AStri(c(1.5,1.5),c(1.6,1),Tr,M)
Idom.num1AStri(c(1.6,1), c(1.5,1.5),Tr,M)
gam.vec<-vector()
for (i in 1:n)
{gam.vec<-c(gam.vec,Idom.num1AStri(Xp[i,],Xp,Tr,M))}

```
```

ind.gam1<-which(gam.vec==1)
ind.gam1
\#or try
Rv<-rel.vert.triCC(Xp[1,],Tr)\$rv
Idom.num1AStri(Xp[1,],Xp,Tr,M,Rv)
Idom.num1AStri(c(.2,.4), Xp,Tr,M)
Idom.num1AStri(c(.2,.4),c(.2,.4),Tr,M)
Xp2<-rbind(Xp,c(.2,.4))
Idom.num1AStri(Xp[1,],Xp2,Tr,M)
if (dimension(M)==3) {M<-bary2cart(M,Tr)}
\#need to run this when M is given in barycentric coordinates
CC<-circumcenter.tri(Tr) \#the circumcenter
if (isTRUE(all.equal(M,CC)) || identical(M, "CC"))
{cent<-CC
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
Ds<-rbind(D1,D2,D3)
cent.name<-"CC"
} else
{cent<-M
cent.name<-"M"
Ds<-prj.cent2edges(Tr,M)
}
Xlim<-range(Tr[,1],Xp[,1])
Ylim<-range(Tr[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(A,pch=".",xlab="",ylab="",xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)
points(Xp)
L<-rbind(cent,cent,cent); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty=2)
points(rbind(Xp[ind.gam1,]),pch=4,col=2)
txt<-rbind(Tr,cent,Ds)
xc<-txt[,1]
yc<-txt[,2]
txt.str<-c("A","B","C",cent.name,"D1","D2","D3")
text(xc,yc,txt.str)
Idom.num1AStri(c(1.5,1.1), Xp,Tr,M)
Idom.num1AStri(c(1.5,1.1),Xp,Tr,M)
Idom.num1AStri(c(1.5,1.1), Xp,Tr,M,ch.data.pnt=FALSE)

```
\#gives an error message if ch.data. pnt=TRUE since point p is not a data point in Xp

Idom. num1CS.Te.onesixth
The indicator for a point being a dominating point for Central Similarity Proximity Catch Digraphs (CS-PCDs) - first one-sixth of the standard equilateral triangle case

\section*{Description}

Returns \(I(\mathrm{p}\) is a dominating point of the 2 D data set Xp of CS-PCD) in the standard equilateral triangle \(T_{e}=T(A, B, C)=T((0,0),(1,0),(1 / 2, \sqrt{3} / 2))\), that is, returns 1 if p is a dominating point of CS-PCD, returns 0 otherwise.
Point, p , must lie in the first one-sixth of \(T_{e}\), which is the triangle with vertices \(T\left(A, D_{3}, C M\right)=\) \(T((0,0),(1 / 2,0), C M)\).

CS proximity region is constructed with respect to \(T_{e}\) with expansion parameter \(t=1\).
ch. data. pnt is for checking whether point p is a data point in Xp or not (default is FALSE), so by default this function checks whether the point \(p\) would be a dominating point if it actually were in the data set.
See also (Ceyhan (2005)).

\section*{Usage}

Idom.num1CS.Te.onesixth(p, Xp, ch.data.pnt = FALSE)

\section*{Arguments}
\(\mathrm{p} \quad\) A 2D point that is to be tested for being a dominating point or not of the CSPCD.
Xp A set of 2D points which constitutes the vertices of the CS-PCD.
ch.data.pnt A logical argument for checking whether point \(p\) is a data point in \(X p\) or not (default is FALSE).

\section*{Value}
\(I(\mathrm{p}\) is a dominating point of the CS-PCD) where the vertices of the CS-PCD are the 2 D data set Xp , that is, returns 1 if \(p\) is a dominating point, returns 0 otherwise

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

\section*{See Also}

Idom.num1CSstd.tri and Idom.num1CSt1std.tri

Idom.num1CSint \(\quad\) The indicator for a point being a dominating point for Central Similarity Proximity Catch Digraphs (CS-PCDs) for an interval

\section*{Description}

Returns \(I\) (p is a dominating point of CS-PCD) where the vertices of the CS-PCD are the 1 D data set \(X p\)).
CS proximity region is defined with respect to the interval int with an expansion parameter, \(t>0\), and a centrality parameter, \(c \in(0,1)\), so arcs may exist for Xp points inside the interval int \(=(a, b)\).
Vertex regions are based on the center associated with the centrality parameter \(c \in(0,1) . r v\) is the index of the vertex region \(p\) resides, with default=NULL.
ch. data.pnt is for checking whether point \(p\) is a data point in \(X p\) or not (default is FALSE), so by default this function checks whether the point \(p\) would be a dominating point if it actually were in the data set.

\section*{Usage}

Idom.num1CSint(\(p, X p\), int, \(t, c=0.5, r v=\) NULL, ch.data. pnt \(=\) FALSE)

\section*{Arguments}
p

Xp A set of 1D points which constitutes the vertices of the CS-PCD.
int A vector of two real numbers representing an interval.
t
c A positive real number in \((0,1)\) parameterizing the center inside int \(=(a, b)\) with the default \(\mathrm{c}=.5\). For the interval, int \(=(a, b)\), the parameterized center is \(M_{c}=a+c(b-a)\).
rv Index of the vertex region in which the point resides, either 1, 2 or NULL (default is NULL).
ch.data.pnt A logical argument for checking whether point p is a data point in Xp or not (default is FALSE).

\section*{Value}
\(I(\mathrm{p}\) is a dominating point of CS-PCD) where the vertices of the CS-PCD are the 1 D data set Xp\()\), that is, returns 1 if \(p\) is a dominating point, returns 0 otherwise

\section*{Author(s)}

\author{
Elvan Ceyhan
}

\section*{See Also}

Idom.num1PEint

\section*{Examples}
```

t<-2
c<-.4
a<-0; b<-10; int<-c(a,b)
Mc<-centerMc(int,c)
n<-10
set.seed(1)
Xp<-runif(n,a,b)
Idom.num1CSint(Xp[5],Xp, int, t, c)
Idom.num1CSint(2,Xp,int, t, c, ch.data.pnt = FALSE)
\#gives an error if ch.data.pnt = TRUE since p is not a data point in Xp
gam.vec<-vector()
for (i in 1:n)
{gam.vec<-c(gam.vec,Idom.num1CSint(Xp[i],Xp,int,t,c))}
ind.gam1<-which(gam.vec==1)
ind.gam1
domset<-Xp[ind.gam1]
if (length(ind.gam1)==0)
{domset<-NA}
\#or try
Rv<-rel.vert.mid.int(Xp[5],int,c)\$rv
Idom.num1CSint(Xp[5],Xp,int,t,c,Rv)
Xlim<-range(a,b,Xp)
xd<-Xlim[2]-Xlim[1]
plot(cbind(a,0),xlab="",pch=".",xlim=Xlim+xd*c(-.05,.05))
abline(h=0)
abline(v=c(a,b,Mc),col=c(1, 1, 2),lty=2)
points(cbind(Xp,0))
points(cbind(domset,0),pch=4,col=2)

```
text(cbind(c(a, b, Mc) ,-0.1), c("a", "b", "Mc"))
Idom.num1CSint(Xp[5],Xp,int,t,c)
\(\mathrm{n}<-10\)
Xp2<-runif(n, a+b,b+10)
Idom.num1CSint(5,Xp2,int,t,c)

Idom.num1CSstd.tri The indicator for a point being a dominating point for Central Similarity Proximity Catch Digraphs (CS-PCDs) - standard equilateral triangle case

\section*{Description}

Returns \(I\) (p is a dominating point of the CS-PCD) where the vertices of the CS-PCD are the 2 D data set Xp in the standard equilateral triangle \(T_{e}=T(A, B, C)=T((0,0),(1,0),(1 / 2, \sqrt{3} / 2))\), that is, returns 1 if p is a dominating point of CS-PCD, returns 0 otherwise.

CS proximity region is constructed with respect to \(T_{e}\) with expansion parameter \(t>0\) and edge regions are based on center of mass \(C M=(1 / 2, \sqrt{3} / 6)\).
ch. data. pnt is for checking whether point \(p\) is a data point in Xp or not (default is FALSE), so by default this function checks whether the point \(p\) would be a dominating point if it actually were in the data set.

See also (Ceyhan (2005, 2010)).

\section*{Usage}

Idom.num1CSstd.tri(p, Xp, t, ch.data.pnt = FALSE)

\section*{Arguments}
p A 2D point that is to be tested for being a dominating point or not of the CSPCD.

Xp A set of 2D points which constitutes the vertices of the CS-PCD.
\(t \quad\) A positive real number which serves as the expansion parameter in CS proximity region.
ch.data.pnt A logical argument for checking whether point p is a data point in Xp or not (default is FALSE).

\section*{Value}
\(I(\mathrm{p}\) is a dominating point of the CS-PCD) where the vertices of the CS-PCD are the 2 D data set Xp , that is, returns 1 if \(p\) is a dominating point, returns 0 otherwise

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). "An investigation of new graph invariants related to the domination number of random proximity catch digraphs." Methodology and Computing in Applied Probability, 14(2), 299-334.

\section*{See Also}

Idom.num1CSt1std.tri

\section*{Examples}
```

A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
CM<-(A+B+C)/3
Te<-rbind(A,B,C);
t<-1.5
n<-10 \#try also n<-20
set.seed(1)
Xp<-runif.std.tri(n)\$gen.points
Idom.num1CSstd.tri(Xp[3,],Xp,t)
Idom.num1CSstd.tri(c(1,2),c(1,2),t)
Idom.num1CSstd.tri(c(1,2),c(1,2),t,ch.data.pnt = TRUE)
gam.vec<-vector()
for (i in 1:n)
{gam.vec<-c(gam.vec,Idom.num1CSstd.tri(Xp[i,],Xp,t))}
ind.gam1<-which(gam.vec==1)
ind.gam1
Xlim<-range(Te[,1],Xp[,1])
Ylim<-range(Te[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(Te,pch=".",xlab="",ylab="",xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Te)
points(Xp)

```
```

L<-Te; R<-matrix(rep(CM,3),ncol=2,byrow=TRUE);
segments(L[,1], L[,2], R[,1], R[,2], lty=2)
points(rbind(Xp[ind.gam1,]),pch=4,col=2)
\#rbind is to insert the points correctly if there is only one dominating point
txt<-rbind(Te,CM)
xc<-txt[,1]+c(-.02,.02,.01,.05)
yc<-txt[,2]+c(.02,.02,.03,.02)
txt.str<-c("A","B","C","CM")
text(xc,yc,txt.str)
Idom.num1CSstd.tri(c(1,2),Xp,t,ch.data.pnt = FALSE)
\#gives an error if ch.data.pnt = TRUE message since p is not a data point

```

Idom.num1CSt1std.tri The indicator for a point being a dominating point for Central Similarity Proximity Catch Digraphs (CS-PCDs) - standard equilateral triangle case with \(t=1\)

\section*{Description}

Returns \(I\) (p is a dominating point of the CS-PCD) where the vertices of the CS-PCD are the 2D data set Xp in the standard equilateral triangle \(T_{e}=T(A, B, C)=T((0,0),(1,0),(1 / 2, \sqrt{3} / 2))\), that is, returns 1 if p is a dominating point of CS-PCD, returns 0 otherwise.
Point, p , is in the edge region of edge re (default is NULL); vertices are labeled as \(1,2,3\) in the order they are stacked row-wise in \(T_{e}\), and the opposite edges are labeled with label of the vertices (that is, edge numbering is 1,2 , and 3 for edges \(A B, B C\), and \(A C\)).
CS proximity region is constructed with respect to \(T_{e}\) with expansion parameter \(t=1\) and edge regions are based on center of mass \(C M=(1 / 2, \sqrt{3} / 6)\).
ch.data.pnt is for checking whether point \(p\) is a data point in Xp or not (default is FALSE), so by default this function checks whether the point \(p\) would be a dominating point if it actually were in the data set.
See also (Ceyhan \((2005,2010)\)).

\section*{Usage}

Idom.num1CSt1std.tri(p, Xp, re = NULL, ch.data.pnt = FALSE)

\section*{Arguments}
p

Xp
re \(\quad\) The index of the edge region in \(T_{e}\) containing the point, either 1,2,3 or NULL (default is NULL).
ch.data.pnt A logical argument for checking whether point p is a data point in Xp or not (default is FALSE).

\section*{Value}
\(I(\mathrm{p}\) is a dominating point of the CS-PCD) where the vertices of the CS-PCD are the 2 D data set Xp , that is, returns 1 if \(p\) is a dominating point, returns 0 otherwise.

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). "An investigation of new graph invariants related to the domination number of random proximity catch digraphs." Methodology and Computing in Applied Probability, 14(2), 299-334.

\section*{See Also}
```

Idom.num1CSstd.tri

```

\section*{Examples}
```

A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
CM<-(A+B+C)/3
Te<-rbind(A,B,C);
n<-10
set.seed(1)
Xp<-runif.std.tri(n)\$gen.points
Idom.num1CSt1std.tri(Xp[3,],Xp)
Idom.num1CSt1std.tri(c(1,2),c(1,2))
Idom.num1CSt1std.tri(c(1,2),c(1,2),ch.data.pnt = TRUE)
gam.vec<-vector()
for (i in 1:n)
{gam.vec<-c(gam.vec,Idom.num1CSt1std.tri(Xp[i,],Xp))}
ind.gam1<-which(gam.vec==1)
ind.gam1

```
```

Xlim<-range(Te[,1],Xp[,1])
Ylim<-range(Te[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(Te,pch=".",xlab="",ylab="",xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Te)
points(Xp)
L<-Te; R<-matrix(rep(CM,3),ncol=2,byrow=TRUE);
segments(L[,1], L[,2], R[,1], R[,2], lty=2)
points(rbind(Xp[ind.gam1,]),pch=4,col=2)
\#rbind is to insert the points correctly if there is only one dominating point
txt<-rbind(Te,CM)
xc<-txt[,1]+c(-.02,.02,.01,.05)
yc<-txt[,2]+c(.02,.02,.03,.02)
txt.str<-c("A","B", "C", "CM")
text(xc,yc,txt.str)

```

Idom.num1PEbasic.tri The indicator for a point being a dominating point or not for Proportional Edge Proximity Catch Digraphs (PE-PCDs) - standard basic triangle case

\section*{Description}

Returns \(I\) (p is a dominating point of the PE-PCD) where the vertices of the PE-PCD are the 2D data set Xp for data in the standard basic triangle \(T_{b}=T\left((0,0),(1,0),\left(c_{1}, c_{2}\right)\right)\), that is, returns 1 if p is a dominating point of PE-PCD, and returns 0 otherwise.
PE proximity regions are defined with respect to the standard basic triangle \(T_{b}\). In the standard basic triangle, \(T_{b}, c_{1}\) is in \([0,1 / 2], c_{2}>0\) and \(\left(1-c_{1}\right)^{2}+c_{2}^{2} \leq 1\).

Any given triangle can be mapped to the standard basic triangle by a combination of rigid body motions (i.e., translation, rotation and reflection) and scaling, preserving uniformity of the points in the original triangle. Hence, standard basic triangle is useful for simulation studies under the uniformity hypothesis.
Vertex regions are based on center \(M=\left(m_{1}, m_{2}\right)\) in Cartesian coordinates or \(M=(\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of a standard basic triangle to the edges on the extension of the lines joining \(M\) to the vertices or based on the circumcenter of \(T_{b}\); default is \(M=(1,1,1)\), i.e., the center of mass of \(T_{b}\). Point, p , is in the vertex region of vertex \(r v\) (default is NULL); vertices are labeled as \(1,2,3\) in the order they are stacked row-wise.
ch.data. pnt is for checking whether point p is a data point in Xp or not (default is FALSE), so by default this function checks whether the point \(p\) would be a dominating point if it actually were in the data set.
See also (Ceyhan \((2005,2011)\)).

\section*{Usage}

Idom.num1PEbasic.tri
p ,
Xp,
\(r\),
c1,
c2,
\(M=c(1,1,1)\),
rv = NULL,
ch. data. pnt \(=\) FALSE
)

\section*{Arguments}
p A 2D point that is to be tested for being a dominating point or not of the PEPCD.
Xp A set of 2D points which constitutes the vertices of the PE-PCD.
\(r \quad\) A positive real number which serves as the expansion parameter in PE proximity region; must be \(\geq 1\).
c1, c2 Positive real numbers which constitute the vertex of the standard basic triangle adjacent to the shorter edges; \(c_{1}\) must be in \([0,1 / 2], c_{2}>0\) and \(\left(1-c_{1}\right)^{2}+c_{2}^{2} \leq\) 1.

M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates which serves as a center in the interior of the standard basic triangle \(T_{b}\) or the circumcenter of \(T_{b}\) which may be entered as "CC" as well; default is \(M=\) \((1,1,1)\), i.e., the center of mass of \(T_{b}\).
\(r v \quad\) Index of the vertex whose region contains point \(p, r v\) takes the vertex labels as \(1,2,3\) as in the row order of the vertices in \(T_{b}\).
ch.data.pnt A logical argument for checking whether point p is a data point in Xp or not (default is FALSE).

\section*{Value}
\(I(\mathrm{p}\) is a dominating point of the PE-PCD) where the vertices of the PE-PCD are the 2 D data set Xp, that is, returns 1 if \(p\) is a dominating point, and returns 0 otherwise.

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2011). "Spatial Clustering Tests Based on Domination Number of a New Random Digraph Family." Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

\section*{See Also}

Idom.num1ASbasic.tri and Idom.num1AStri

\section*{Examples}
```

c1<-.4; c2<-.6;
A<-c(0,0); B<-c(1,0); C<-c(c1,c2);
Tb<-rbind(A,B,C)
n<-10 \#try also n<-20
set.seed(1)
Xp<-runif.basic.tri(n, c1,c2)$g
M<-as.numeric(runif.basic.tri(1,c1,c2)$g) \#try also M<-c(.6,.3)
r<-2
P<-c(.4,.2)
Idom.num1PEbasic.tri (P,Xp,r, c1, c2,M)
Idom.num1PEbasic.tri(Xp[1,],Xp,r, c1, c2,M)
Idom.num1PEbasic.tri(c(1,1),Xp,r,c1,c2,M,ch.data.pnt = FALSE)
\#gives an error message if ch.data.pnt = TRUE since point p=c(1,1) is not a data point in Xp
\#or try
Rv<-rel.vert.basic.tri(Xp[1,],c1,c2,M)\$rv
Idom.num1PEbasic.tri(Xp[1,],Xp,r,c1,c2,M,Rv)
gam.vec<-vector()
for (i in 1:n)
{gam.vec<-c(gam.vec,Idom.num1PEbasic.tri(Xp[i,],Xp,r,c1,c2,M))}
ind.gam1<-which(gam.vec==1)
ind.gam1
Xlim<-range(Tb[,1],Xp[,1])
Ylim<-range(Tb[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
if (dimension(M)==3) {M<-bary2cart(M,Tb)}
\#need to run this when M is given in barycentric coordinates
if (identical(M, circumcenter.tri(Tb)))
{
plot(Tb,pch=".",asp=1, xlab="",ylab="",axes=TRUE,
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tb)
points(Xp,pch=1,col=1)
Ds<-rbind((B+C)/2,(A+C)/2,(A+B)/2)
} else
{plot(Tb,pch=".",xlab="",ylab="",axes=TRUE,

```
```

xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tb)
points(Xp,pch=1,col=1)
Ds<-prj.cent2edges.basic.tri(c1, c2,M)}
L<-rbind(M,M,M); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty=2)
points(rbind(Xp[ind.gam1,]),pch=4,col=2)
txt<-rbind(Tb,M,Ds)
xc<-txt[,1]+c(-.02,.02,.02,-.02,.03,-.03,.01)
yc<-txt[,2]+c(.02,.02,.02,-.02,.02,.02,-.03)
txt.str<-c("A", "B", "C", "M", "D1", "D2","D3")
text(xc,yc,txt.str)
Idom.num1PEbasic.tri(c(.2,.1),Xp,r,c1,c2,M,ch.data.pnt=FALSE)
\#gives an error message if ch.data.pnt=TRUE since point p is not a data point in Xp

```

Idom.num1PEint The indicator for a point being a dominating point for Proportional Edge Proximity Catch Digraphs (PE-PCDs) for an interval

\section*{Description}

Returns \(I\) (p is a dominating point of the PE-PCD) where the vertices of the PE-PCD are the 1 D data set \(X p\).
PE proximity region is defined with respect to the interval int with an expansion parameter, \(r \geq 1\), and a centrality parameter, \(c \in(0,1)\), so arcs may exist for Xp points inside the interval int \(=(a, b)\).
Vertex regions are based on the center associated with the centrality parameter \(c \in(0,1) . r v\) is the index of the vertex region \(p\) resides, with default=NULL.
ch.data.pnt is for checking whether point \(p\) is a data point in Xp or not (default is FALSE), so by default this function checks whether the point \(p\) would be a dominating point if it actually were in the data set.

\section*{Usage}

Idom.num1PEint(p, Xp, int, \(r, c=0.5, r v=\) NULL, ch.data.pnt = FALSE)

\section*{Arguments}
p
A 1D point that is to be tested for being a dominating point or not of the PEPCD.
Xp A set of 1D points which constitutes the vertices of the PE-PCD.
int A vector of two real numbers representing an interval.
\(r \quad\) A positive real number which serves as the expansion parameter in PE proximity region; must be \(\geq 1\).
C
rv Index of the vertex region in which the point resides, either 1, 2 or NULL (default is NULL).
ch.data.pnt A logical argument for checking whether point p is a data point in Xp or not (default is FALSE).

\section*{Value}
\(I\) (p is a dominating point of the PE-PCD) where the vertices of the PE-PCD are the 1 D data set Xp , that is, returns 1 if \(p\) is a dominating point, returns 0 otherwise

\section*{Author(s)}

\section*{Elvan Ceyhan}

\section*{See Also}

Idom.num1PEtri

\section*{Examples}
```

r<-2
c<-.4
a<-0; b<-10
int=c(a,b)
Mc<-centerMc(int,c)
n<-10
set.seed(1)
Xp<-runif(n,a,b)
Idom.num1PEint(Xp[5],Xp,int,r,c)
gam.vec<-vector()
for (i in 1:n)
{gam.vec<-c(gam.vec,Idom.num1PEint(Xp[i],Xp,int,r,c))}
ind.gam1<-which(gam.vec==1)
ind.gam1
domset<-Xp[ind.gam1]
if (length(ind.gam1)==0)
{domset<-NA}
\#or try
Rv<-rel.vert.mid.int(Xp[5],int,c)\$rv

```
```

Idom.num1PEint(Xp[5],Xp,int,r, c,Rv)
Xlim<-range(a,b,Xp)
xd<-Xlim[2]-Xlim[1]
plot(cbind(a,0),xlab="",pch=".",xlim=Xlim+xd*c(-.05,.05))
abline(h=0)
points(cbind(Xp,0))
abline(v=c(a,b,Mc),col=c(1,1,2),lty=2)
points(cbind(domset,0),pch=4,col=2)
text(cbind(c(a,b,Mc),-0.1),c("a", "b", "Mc"))
Idom.num1PEint(2,Xp,int,r,c,ch.data.pnt = FALSE)
\#gives an error message if ch.data.pnt = TRUE since point p is not a data point in Xp

```

Idom.num1PEstd.tetra The indicator for a 3D point being a dominating point for Proportional Edge Proximity Catch Digraphs (PE-PCDs) - standard regular tetrahedron case

\section*{Description}

Returns \(I\) (p is a dominating point of the PE-PCD) where the vertices of the PE-PCD are the 3D data set Xp in the standard regular tetrahedron \(T_{h}=T((0,0,0),(1,0,0),(1 / 2, \sqrt{3} / 2,0),(1 / 2, \sqrt{3} / 6, \sqrt{6} / 3))\), that is, returns 1 if p is a dominating point of PE-PCD, returns 0 otherwise.
Point, \(p\), is in the vertex region of vertex \(r v\) (default is NULL); vertices are labeled as \(1,2,3,4\) in the order they are stacked row-wise in \(T_{h}\).
PE proximity region is constructed with respect to the tetrahedron \(T_{h}\) with expansion parameter \(r \geq 1\) and vertex regions are based on center of mass \(C M\) (equivalent to circumcenter in this case).
ch. data.pnt is for checking whether point \(p\) is a data point in Xp or not (default is FALSE), so by default this function checks whether the point \(p\) would be a dominating point if it actually were in the data set.
See also (Ceyhan \((2005,2010)\)).

\section*{Usage}

Idom.num1PEstd.tetra(p, Xp, r, rv = NULL, ch.data.pnt = FALSE)

\section*{Arguments}
p

Xp A set of 3D points which constitutes the vertices of the PE-PCD.
\(r \quad\) A positive real number which serves as the expansion parameter in PE proximity region; must be \(\geq 1\).
rv \begin{tabular}{l}
Index of the vertex whose region contains point \(p, r v\) takes the vertex labels \\
as \(1,2,3,4\) as in the row order of the vertices in standard regular tetrahedron, \\
default is NULL.
\end{tabular} ch.data.pnt \(\quad\)\begin{tabular}{l}
A logical argument for checking whether point \(p\) is a data point in \(X p\) or not \\
(default is FALSE).
\end{tabular}

\section*{Value}
\(I(\mathrm{p}\) is a dominating point of the PE-PCD) where the vertices of the PE-PCD are the 3D data set Xp, that is, returns 1 if \(p\) is a dominating point, returns 0 otherwise

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

\section*{See Also}

Idom.num1PEtetra, Idom.num1PEtri and Idom.num1PEbasic.tri

\section*{Examples}
```

set.seed(123)
A<-c(0,0,0); B<-c(1,0,0); C<-c(1/2,sqrt(3)/2,0); D<-c(1/2,sqrt(3)/6,sqrt(6)/3)
tetra<-rbind(A,B,C,D)
n<-5 \#try also n<-20
Xp<-runif.std.tetra(n)$g #try also Xp<-cbind(runif(n),runif(n),runif(n))
r<-1.5
P<-c(.4, .1,.2)
Idom.num1PEstd.tetra(Xp[1,],Xp,r)
Idom.num1PEstd.tetra(P,Xp,r)
Idom.num1PEstd.tetra(Xp[1,],Xp,r)
Idom.num1PEstd.tetra(Xp[1,],Xp[1,],r)
#or try
RV<-rel.vert.tetraCC(Xp[1,],tetra)$rv
Idom.num1PEstd.tetra(Xp[1,],Xp,r,rv=RV)
Idom.num1PEstd.tetra(c(-1,-1,-1),Xp,r)

```
```

Idom.num1PEstd.tetra(c(-1, -1, -1), c(-1, -1, -1),r)
gam.vec<-vector()
for (i in 1:n)
{gam.vec<-c(gam.vec,Idom.num1PEstd.tetra(Xp[i,],Xp,r))}
ind.gam1<-which(gam.vec==1)
ind.gam1
g1.pts<-Xp[ind.gam1,]
Xlim<-range(tetra[,1],Xp[,1])
Ylim<-range(tetra[,2],Xp[,2])
Zlim<-range(tetra[,3],Xp[,3])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
zd<-Zlim[2]-Zlim[1]
plot3D::scatter3D(Xp[,1],Xp[,2],Xp[,3], phi =0, theta=40, bty = "g",
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05), zlim=Zlim+zd*cc(-.05,.05),
pch = 20, cex = 1, ticktype = "detailed")
\#add the vertices of the tetrahedron
plot3D::points3D(tetra[,1],tetra[,2],tetra[,3], add=TRUE)
L<-rbind(A,A,A,B,B,C); R<-rbind(B,C,D,C,D,D)
plot3D::segments3D(L[,1], L[,2], L[,3], R[,1], R[,2],R[,3], add=TRUE,lwd=2)
if (length(g1.pts)!=0)
{
if (length(g1.pts)==3) g1.pts<-matrix(g1.pts,nrow=1)
plot3D::points3D(g1.pts[,1],g1.pts[,2],g1.pts[,3], pch=4,col="red", add=TRUE)}
plot3D::text3D(tetra[,1],tetra[,2],tetra[,3], labels=c("A","B", "C","D"), add=TRUE)
CM<-apply(tetra, 2,mean)
D1<-(A+B)/2; D2<-(A+C)/2; D3<-(A+D)/2; D4<-(B+C)/2; D5<-(B+D)/2; D6<-(C+D)/2;
L<-rbind(D1,D2,D3,D4,D5,D6); R<-matrix(rep(CM,6),ncol=3,byrow=TRUE)
plot3D::segments3D(L[,1], L[,2], L[,3], R[,1], R[,2],R[,3], add=TRUE,lty=2)
P<-c(.4,.1,.2)
Idom.num1PEstd.tetra(P,Xp,r)
Idom.num1PEstd.tetra(c(-1, -1, -1), Xp,r,ch.data.pnt = FALSE)
\#gives an error message if ch.data.pnt = TRUE

```

Idom.num1PEtetra The indicator for a \(3 D\) point being a dominating point for Proportional Edge Proximity Catch Digraphs (PE-PCDs) - one tetrahedron case

\section*{Description}

Returns \(I\) (p is a dominating point of the PE-PCD) where the vertices of the PE-PCD are the 2 D data set \(X p\) in the tetrahedron th, that is, returns 1 if \(p\) is a dominating point of PE-PCD, returns 0 otherwise.

Point, \(p\), is in the vertex region of vertex \(r v\) (default is NULL); vertices are labeled as \(1,2,3,4\) in the order they are stacked row-wise in th.
PE proximity region is constructed with respect to the tetrahedron th with expansion parameter \(r \geq 1\) and vertex regions are based on center of mass (\(M=" C M "\)) or circumcenter (\(M=\) "CC") only. and vertex regions are based on center of mass \(C M\) (equivalent to circumcenter in this case).
ch.data.pnt is for checking whether point \(p\) is a data point in Xp or not (default is FALSE), so by default this function checks whether the point \(p\) would be a dominating point if it actually were in the data set.

See also (Ceyhan \((2005,2010)\)).

\section*{Usage}

Idom.num1PEtetra(p, Xp, th, r, \(M=\) "CM", rv = NULL, ch.data.pnt = FALSE)

\section*{Arguments}
p A 3D point that is to be tested for being a dominating point or not of the PEPCD.

Xp A set of 3D points which constitutes the vertices of the PE-PCD.
th A \(4 \times 3\) matrix with each row representing a vertex of the tetrahedron.
\(r \quad\) A positive real number which serves as the expansion parameter in PE proximity region; must be \(\geq 1\).
M The center to be used in the construction of the vertex regions in the tetrahedron, th. Currently it only takes "CC" for circumcenter and "CM" for center of mass; default="CM".
\(r v \quad\) Index of the vertex whose region contains point \(p, r v\) takes the vertex labels as \(1,2,3,4\) as in the row order of the vertices in standard tetrahedron, default is NULL.
ch.data.pnt A logical argument for checking whether point p is a data point in Xp or not (default is FALSE).

\section*{Value}
\(I\) (p is a dominating point of the PE-PCD) where the vertices of the PE-PCD are the 2 D data set Xp , that is, returns 1 if \(p\) is a dominating point, returns 0 otherwise

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

\section*{See Also}

Idom.num1PEstd.tetra, Idom.num1PEtri and Idom.num1PEbasic.tri

\section*{Examples}
```

A<-C(0,0,0); B<-c(1,0,0); C<-c(1/2,sqrt(3)/2,0); D<-c(1/2, sqrt(3)/6, sqrt(6)/3)
tetra<-rbind(A,B,C,D)
n<-5 \#try also n<-20
Xp<-runif.tetra(n,tetra)$g #try also Xp<-cbind(runif(n),runif(n),runif(n))
M<-"CM"; cent<-apply(tetra,2,mean) #center of mass
#try also M<-"CC"; cent<-circumcenter.tetra(tetra) #circumcenter
r<-2
P<-C(.4,.1,.2)
Idom.num1PEtetra(Xp[1, ],Xp, tetra,r,M)
Idom.num1PEtetra(P,Xp,tetra,r,M)
#or try
RV<-rel.vert.tetraCC(Xp[1,],tetra)$rv
Idom.num1PEtetra(Xp[1,],Xp, tetra,r,M,rv=RV)
Idom.num1PEtetra(c(-1, -1, -1), Xp, tetra, r,M)
Idom.num1PEtetra(c(-1, -1, -1), c(-1, -1, -1), tetra, r,M)
gam.vec<-vector()
for (i in 1:n)
{gam.vec<-c(gam.vec,Idom.num1PEtetra(Xp[i,],Xp,tetra,r,M))}
ind.gam1<-which(gam.vec==1)
ind.gam1
g1.pts<-Xp[ind.gam1,]
Xlim<-range(tetra[,1],Xp[,1],cent[1])
Ylim<-range(tetra[,2],Xp[,2],cent[2])
Zlim<-range(tetra[,3],Xp[,3], cent[3])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
zd<-Zlim[2]-Zlim[1]

```
```

plot3D::scatter3D(Xp[,1],Xp[,2],Xp[,3], phi =0,theta=40, bty = "g",
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05), zlim=Zlim+zd*c(-.05,.05),
pch = 20, cex = 1, ticktype = "detailed")
\#add the vertices of the tetrahedron
plot3D::points3D(tetra[,1],tetra[,2],tetra[,3], add=TRUE)
L<-rbind(A,A,A,B,B,C); R<-rbind(B,C,D,C,D,D)
plot3D::segments3D(L[,1], L[,2], L[,3], R[,1], R[,2],R[,3], add=TRUE,lwd=2)
if (length(g1.pts)!=0)
{plot3D::points3D(g1.pts[,1],g1.pts[,2],g1.pts[,3], pch=4,col="red", add=TRUE)}
plot3D::text3D(tetra[,1],tetra[,2],tetra[,3], labels=c("A","B","C","D"), add=TRUE)
D1<-(A+B)/2; D2<-(A+C)/2; D3<-(A+D)/2; D4<-(B+C)/2; D5<-(B+D)/2; D6<-(C+D)/2;
L<-rbind(D1,D2,D3,D4,D5,D6); R<-rbind(cent,cent,cent,cent,cent,cent)
plot3D::segments3D(L[,1], L[,2], L[,3], R[,1], R[,2],R[,3], add=TRUE,lty=2)
P<-c(.4,.1,.2)
Idom.num1PEtetra(P,Xp,tetra, r,M)
Idom.num1PEtetra(c(-1, -1, -1),Xp, tetra, r,M,ch.data.pnt = FALSE)
\#gives an error message if ch.data.pnt = TRUE since p is not a data point

```

Idom.num1PEtri The indicator for a point being a dominating point for Proportional Edge Proximity Catch Digraphs (PE-PCDs) - one triangle case

\section*{Description}

Returns \(I\) (p is a dominating point of the PE-PCD) where the vertices of the PE-PCD are the 2D data set \(X p\) in the triangle tri, that is, returns 1 if \(p\) is a dominating point of PE-PCD, and returns 0 otherwise.
Point, p , is in the vertex region of vertex rv (default is NULL); vertices are labeled as \(1,2,3\) in the order they are stacked row-wise in tri.

PE proximity region is constructed with respect to the triangle tri with expansion parameter \(r \geq 1\) and vertex regions are based on center \(M=\left(m_{1}, m_{2}\right)\) in Cartesian coordinates or \(M=(\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of the triangle tri or based on the circumcenter of tri; default is \(M=(1,1,1)\), i.e., the center of mass of tri.
ch. data.pnt is for checking whether point \(p\) is a data point in Xp or not (default is FALSE), so by default this function checks whether the point \(p\) would be a dominating point if it actually were in the data set.
See also (Ceyhan (2005); Ceyhan and Priebe (2007); Ceyhan \((2011,2012)\)).

\section*{Usage}

Idom.num1PEtri(\(\mathrm{p}, \mathrm{Xp}\), tri, \(\mathrm{r}, \mathrm{M}=\mathrm{c}(1,1,1), r v=\) NULL, ch.data.pnt \(=\) FALSE)

\section*{Arguments}
p A 2D point that is to be tested for being a dominating point or not of the PEPCD.

Xp A set of 2D points which constitutes the vertices of the PE-PCD.
tri A \(3 \times 2\) matrix with each row representing a vertex of the triangle.
\(r\)
A positive real number which serves as the expansion parameter in PE proximity region; must be \(\geq 1\).
M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates which serves as a center in the interior of the triangle tri or the circumcenter of tri which may be entered as "CC" as well; default is \(M=(1,1,1)\), i.e., the center of mass of tri.
\(r v \quad\) Index of the vertex whose region contains point \(p, r v\) takes the vertex labels as \(1,2,3\) as in the row order of the vertices in tri.
ch.data.pnt A logical argument for checking whether point p is a data point in Xp or not (default is FALSE).

\section*{Value}
\(I\) (p is a dominating point of the PE-PCD) where the vertices of the PE-PCD are the 2 D data set Xp , that is, returns 1 if \(p\) is a dominating point, and returns 0 otherwise.

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2011). "Spatial Clustering Tests Based on Domination Number of a New Random Digraph Family." Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

Ceyhan E (2012). "An investigation of new graph invariants related to the domination number of random proximity catch digraphs." Methodology and Computing in Applied Probability, 14(2), 299-334.

Ceyhan E, Priebe CE (2007). "On the Distribution of the Domination Number of a New Family of Parametrized Random Digraphs." Model Assisted Statistics and Applications, 1(4), 231-255.

\section*{See Also}

Idom.num1PEbasic.tri and Idom.num1AStri

\section*{Examples}
```

A<-C(1,1); B<-C(2,0); C<-C(1.5,2);
Tr<-rbind(A,B,C);
n<-10 \#try also n<-20
set.seed(1)
Xp<-runif.tri(n,Tr)$g
M<-as.numeric(runif.tri(1,Tr)$g) \#try also M<-c(1.6,1.0)
r<-1.5 \#try also r<-2
Idom.num1PEtri(Xp[1,],Xp,Tr,r,M)
Idom.num1PEtri(c(1, 2), c(1, 2),Tr,r,M)
Idom.num1PEtri(c(1, 2), c(1, 2),Tr,r,M, ch.data.pnt = TRUE)
gam.vec<-vector()
for (i in 1:n)
{gam.vec<-c(gam.vec,Idom.num1PEtri(Xp[i,],Xp,Tr,r,M))}
ind.gam1<-which(gam.vec==1)
ind.gam1
\#or try
Rv<-rel.vert.tri(Xp[1,],Tr,M)\$rv
Idom.num1PEtri(Xp[1,],Xp,Tr,r,M,Rv)
Ds<-prj.cent2edges(Tr,M)
if (dimension(M)==3) {M<-bary2cart(M,Tr)}
\#need to run this when M is given in barycentric coordinates
Xlim<-range(Tr[,1],Xp[,1],M[1])
Ylim<-range(Tr[,2],Xp[,2],M[2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(Tr,pch=".",xlab="",ylab="",axes=TRUE,
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)
points(Xp,pch=1,col=1)
L<-rbind(M,M,M); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty=2)
points(rbind(Xp[ind.gam1,]),pch=4,col=2)
\#rbind is to insert the points correctly if there is only one dominating point
txt<-rbind(Tr,M,Ds)
xc<-txt[,1]+c(-.02,.03,.02,--.02,.04,-..03,.0)
yc<-txt[,2]+c(.02,.02,.05,-.03,.04,.06,-.07)
txt.str<-c("A", "B", "C", "M", "D1", "D2", "D3")
text(xc,yc,txt.str)

```
\(\mathrm{P}<-\mathrm{c}(1.4,1)\)
Idom. num1PEtri (\(\mathrm{P}, \mathrm{P}, \mathrm{Tr}, \mathrm{r}, \mathrm{M}\))
Idom. num1PEtri (\(\mathrm{Xp}[1], \mathrm{Xp}, \mathrm{Tr}, r,\),\(M)\)

Idom.num1PEtri (c (1, 2) , Xp, Tr, r, M, ch. data.pnt = FALSE)
\#gives an error message if ch.data.pnt \(=\) TRUE since \(p\) is not a data point

Idom.num2ASbasic.tri The indicator for two points being a dominating set for Arc Slice Proximity Catch Digraphs (AS-PCDs) - standard basic triangle case

\section*{Description}

Returns \(I(\{\mathrm{p} 1, \mathrm{p} 2\}\) is a dominating set of AS-PCD) where vertices of AS-PCD are the 2 D data set \(X p\)), that is, returns 1 if \(\{p 1, p 2\}\) is a dominating set of AS-PCD, returns 0 otherwise.
AS proximity regions are defined with respect to the standard basic triangle \(T_{b}=T(c(0,0), c(1,0), c(c 1, c 2))\), In the standard basic triangle, \(T_{b}, c_{1}\) is in \([0,1 / 2], c_{2}>0\) and \(\left(1-c_{1}\right)^{2}+c_{2}^{2} \leq 1\).
Any given triangle can be mapped to the standard basic triangle by a combination of rigid body motions (i.e., translation, rotation and reflection) and scaling, preserving uniformity of the points in the original triangle. Hence standard basic triangle is useful for simulation studies under the uniformity hypothesis.
Point, p 1 , is in the vertex region of vertex rv1 (default is NULL) and point, p 2 , is in the vertex region of vertex rv2 (default is NULL); vertices are labeled as \(1,2,3\) in the order they are stacked row-wise.
Vertex regions are based on the center, \(M=\left(m_{1}, m_{2}\right)\) in Cartesian coordinates or \(M=(\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of the standard basic triangle \(T_{b}\) or based on circumcenter of \(T_{b}\); default is \(\mathrm{M}={ }^{\prime} \mathrm{CC}^{\prime \prime}\), i.e., circumcenter of \(T_{b}\).
ch.data.pnts is for checking whether points p 1 and p 2 are data points in Xp or not (default is FALSE), so by default this function checks whether the points p 1 and p 2 would be a dominating set if they actually were in the data set.
See also (Ceyhan \((2005,2010)\)).

\section*{Usage}
```

Idom.num2ASbasic.tri(
p1,
p2,
Xp,
c1,
c2,
M = "CC",
rv1 = NULL,
rv2 = NULL,
ch.data.pnts = FALSE
)

```

\section*{Arguments}
p1, p2 Two 2D points to be tested for constituting a dominating set of the AS-PCD.
Xp A set of 2D points which constitutes the vertices of the AS-PCD.
\(\mathrm{c} 1, \mathrm{c} 2 \quad\) Positive real numbers which constitute the vertex of the standard basic triangle adjacent to the shorter edges; \(c_{1}\) must be in \([0,1 / 2], c_{2}>0\) and \(\left(1-c_{1}\right)^{2}+c_{2}^{2} \leq\) 1.

M The center of the triangle. "CC" stands for circumcenter of the triangle \(T_{b}\) or a 2D point in Cartesian coordinates or a 3D point in barycentric coordinates which serves as a center in the interior of the triangle \(T_{b}\); default is \(\mathrm{M}=\) " CC " i.e., the circumcenter of \(T_{b}\).
rv1, rv2 The indices of the vertices whose regions contains p1 and p2, respectively. They take the vertex labels as \(1,2,3\) as in the row order of the vertices in \(T_{b}\) (default is NULL for both).
ch.data.pnts A logical argument for checking whether points p 1 and p 2 are data points in Xp or not (default is FALSE).

\section*{Value}
\(I(\{\mathrm{p} 1, \mathrm{p} 2\}\) is a dominating set of the AS-PCD \()\) where the vertices of AS-PCD are the 2D data set \(X p)\), that is, returns 1 if \(\{p 1, p 2\}\) is a dominating set of AS-PCD, returns 0 otherwise

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). "An investigation of new graph invariants related to the domination number of random proximity catch digraphs." Methodology and Computing in Applied Probability, 14(2), 299-334.

\section*{See Also}

Idom.num2AStri

\section*{Examples}
```

c1<-.4; c2<-.6;
A<-c(0,0); B<-c(1,0); C<-c(c1,c2);
Tb<-rbind(A,B,C)

```
```

n<-10
set.seed(1)
Xp<-runif.basic.tri(n, c1, c2)$g
M<-as.numeric(runif.basic.tri(1,c1,c2)$g) \#try also M<-c(.6,.2)
Idom.num2ASbasic.tri(Xp[1,],Xp[2,],Xp, c1, c2,M)
Idom.num2ASbasic.tri(Xp[1,],Xp[1,],Xp, c1,c2,M) \#one point can not a dominating set of size two
Idom.num2ASbasic.tri(c(.2,.4),c(.2,.5),rbind(c(.2,.4),c(.2,.5)), c1, c2,M)
ind.gam2<-vector()
for (i in 1:(n-1))
for (j in (i+1):n)
{if (Idom.num2ASbasic.tri(Xp[i,],Xp[j,],Xp, c1, c2,M)==1)
ind.gam2<-rbind(ind.gam2,c(i,j))}
ind.gam2
\#or try
rv1<-rel.vert.basic.triCC(Xp[1,],c1,c2)$rv
rv2<-rel.vert.basic.triCC(Xp[2,],c1,c2)$rv
Idom.num2ASbasic.tri(Xp[1,],Xp[2,],Xp,c1,c2,M,rv1,rv2)
Idom.num2ASbasic.tri(c(.2,.4),Xp[2,],Xp, c1, c2,M,rv1,rv2)
\#or try
rv1<-rel.vert.basic.triCC(Xp[1,],c1,c2)$rv
Idom.num2ASbasic.tri (Xp[1,],Xp[2,],Xp, c1, c2,M,rv1)
#or try
Rv2<-rel.vert.basic.triCC(Xp[2,],c1,c2)$rv
Idom.num2ASbasic.tri(Xp[1,],Xp[2,],Xp, c1, c2,M,rv2=Rv2)
Idom.num2ASbasic.tri(c(.3,.2),c(.35,.25),Xp,c1,c2,M)

```

Idom.num2AStri The indicator for two points constituting a dominating set for Arc Slice Proximity Catch Digraphs (AS-PCDs) - one triangle case

\section*{Description}

Returns \(I(\{\mathrm{p} 1, \mathrm{p} 2\}\) is a dominating set of the AS-PCD) where vertices of the AS-PCD are the 2D data set \(X p\)), that is, returns 1 if \(\{p 1, p 2\}\) is a dominating set of AS-PCD, returns 0 otherwise.

AS proximity regions are defined with respect to the triangle tri. Point, p1, is in the region of vertex rv1 (default is NULL) and point, p2, is in the region of vertex rv2 (default is NULL); vertices (and hence rv1 and rv2) are labeled as \(1,2,3\) in the order they are stacked row-wise in tri.

Vertex regions are based on the center \(M=" C C "\) for circumcenter of tri; or \(M=\left(m_{1}, m_{2}\right)\) in Cartesian coordinates or \(M=(\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of the triangle tri; default is \(M=" C C "\) the circumcenter of tri.
ch.data.pnts is for checking whether points p 1 and p 2 are data points in Xp or not (default is FALSE), so by default this function checks whether the points p 1 and p 2 would constitute dominating set if they actually were in the data set.
See also (Ceyhan \((2005,2010)\)).

\section*{Usage}

Idom.num2AStri (
p1,
p2,
Xp,
tri,
M = "CC",
rv1 = NULL,
rv2 = NULL,
ch. data. pnts = FALSE
)

\section*{Arguments}
p1, p2 Two 2D points to be tested for constituting a dominating set of the AS-PCD.
Xp A set of 2D points which constitutes the vertices of the AS-PCD.
tri Three 2D points, stacked row-wise, each row representing a vertex of the triangle.
M The center of the triangle. "CC" stands for circumcenter of the triangle tri or a 2D point in Cartesian coordinates or a 3D point in barycentric coordinates which serves as a center in the interior of the triangle \(T_{b}\); default is \(M=\) "CC" i.e., the circumcenter of tri.
rv1, rv2 The indices of the vertices whose regions contains p1 and p2, respectively. They take the vertex labels as \(1,2,3\) as in the row order of the vertices in tri (default is NULL for both).
ch.data.pnts A logical argument for checking whether points p 1 and p 2 are data points in Xp or not (default is FALSE).

\section*{Value}
\(I(\{\mathrm{p} 1, \mathrm{p} 2\}\) is a dominating set of the AS-PCD \()\) where vertices of the AS-PCD are the 2 D data set \(X p)\), that is, returns 1 if \(\{p 1, p 2\}\) is a dominating set of AS-PCD, returns 0 otherwise

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). "An investigation of new graph invariants related to the domination number of random proximity catch digraphs." Methodology and Computing in Applied Probability, 14(2), 299-334.

\section*{See Also}

Idom.num2ASbasic.tri

\section*{Examples}
```

A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
n<-10
set.seed(1)
Xp<-runif.tri(n,Tr)$g
M<-as.numeric(runif.tri(1,Tr)$g) \#try also M<-c(1.6,1.2)
Idom.num2AStri(Xp[1,],Xp[2,],Xp,Tr,M)
Idom.num2AStri(Xp[1,],Xp[1,],Xp,Tr,M) \#same two points cannot be a dominating set of size 2
Idom.num2AStri(c(.2,.4),Xp[2,],Xp,Tr,M)
Idom.num2AStri(c(.2,.4),c(.2,.5),Xp,Tr,M)
Idom.num2AStri(c(.2,.4),c(.2,.5),rbind(c(.2,.4),c(.2,.5)),Tr,M)
\#or try
rv1<-rel.vert.triCC(c(.2,.4),Tr)$rv
rv2<-rel.vert.triCC(c(.2,.5),Tr)$rv
Idom.num2AStri(c(.2,.4),c(.2,.5),rbind(c(.2,.4),c(.2,.5)),Tr,M,rv1,rv2)
ind.gam2<-vector()
for (i in 1:(n-1))
for (j in (i+1):n)
{if (Idom.num2AStri(Xp[i,],Xp[j,],Xp,Tr,M)==1)
ind.gam2<-rbind(ind.gam2,c(i,j))}
ind.gam2
\#or try
rv1<-rel.vert.triCC(Xp[1,],Tr)$rv
rv2<-rel.vert.triCC(Xp[2,],Tr)$rv
Idom.num2AStri(Xp[1,],Xp[2,],Xp,Tr,M,rv1,rv2)

```
```

\#or try
rv1<-rel.vert.triCC(Xp[1,],Tr)$rv
Idom.num2AStri(Xp[1,],Xp[2,],Xp,Tr,M,rv1)
#or try
Rv2<-rel.vert.triCC(Xp[2,],Tr)$rv
Idom.num2AStri(Xp[1,],Xp[2,],Xp,Tr,M,rv2=Rv2)
Idom.num2AStri(c(1.3,1.2), c(1.35,1.25),Xp,Tr,M)

```

Idom. num2CS.Te.onesixth
The indicator for two points constituting a dominating set for Central Similarity Proximity Catch Digraphs (CS-PCDs) - first one-sixth of the standard equilateral triangle case

\section*{Description}

Returns \(I(\{\mathrm{p} 1, \mathrm{p} 2\}\) is a dominating set of the CS-PCD) where the vertices of the CS-PCD are the 2 D data set Xp), that is, returns 1 if \(p\) is a dominating point of CS-PCD, returns 0 otherwise.
CS proximity region is constructed with respect to the standard equilateral triangle \(T_{e}=T(A, B, C)=\) \(T((0,0),(1,0),(1 / 2, \sqrt{3} / 2))\) and with expansion parameter \(t=1\). Point, p 1 , must lie in the first one-sixth of \(T_{e}\), which is the triangle with vertices \(T\left(A, D_{3}, C M\right)=T((0,0),(1 / 2,0), C M)\).
ch.data.pnts is for checking whether points p 1 and p 2 are data points in Xp or not (default is FALSE), so by default this function checks whether the points p 1 and p 2 would be a dominating set if they actually were in the data set.
See also (Ceyhan (2005)).

\section*{Usage}

Idom.num2CS.Te.onesixth(p1, p2, Xp, ch.data.pnts = FALSE)

\section*{Arguments}
\begin{tabular}{ll}
\(\mathrm{p} 1, \mathrm{p} 2\) & Two 2D points to be tested for constituting a dominating set of the CS-PCD. \\
Xp & A set of 2D points which constitutes the vertices of the CS-PCD. \\
ch. data.pnts & \begin{tabular}{l}
A logical argument for checking whether points p1 and p2 are data points in Xp \\
or not (default is FALSE).
\end{tabular}
\end{tabular}

\section*{Value}
\(I(\{\mathrm{p} 1, \mathrm{p} 2\}\) is a dominating set of the CS-PCD \()\) where the vertices of the CS-PCD are the 2D data set Xp), that is, returns 1 if \(\{p 1, p 2\}\) is a dominating set of CS-PCD, returns 0 otherwise

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

\section*{See Also}

Idom.num2CSstd.tri

\section*{Idom.num2PEbasic.tri The indicator for two points being a dominating set for Proportional Edge Proximity Catch Digraphs (PE-PCDs) - standard basic triangle case}

\section*{Description}

Returns \(I(\{\mathrm{p} 1, \mathrm{p} 2\}\) is a dominating set of the PE-PCD) where the vertices of the PE-PCD are the 2D data set Xp in the standard basic triangle \(T_{b}=T\left((0,0),(1,0),\left(c_{1}, c_{2}\right)\right)\), that is, returns 1 if \(\{p 1, p 2\}\) is a dominating set of PE-PCD, and returns 0 otherwise.
PE proximity regions are defined with respect to \(T_{b}\). In the standard basic triangle, \(T_{b}, c_{1}\) is in \([0,1 / 2], c_{2}>0\) and \(\left(1-c_{1}\right)^{2}+c_{2}^{2} \leq 1\).
Any given triangle can be mapped to the standard basic triangle by a combination of rigid body motions (i.e., translation, rotation and reflection) and scaling, preserving uniformity of the points in the original triangle. Hence, standard basic triangle is useful for simulation studies under the uniformity hypothesis.

Vertex regions are based on center \(M=\left(m_{1}, m_{2}\right)\) in Cartesian coordinates or \(M=(\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of a standard basic triangle \(T_{b}\); default is \(M=(1,1,1)\), i.e., the center of mass of \(T_{b}\). Point, p 1 , is in the vertex region of vertex rv1 (default is NULL); and point, p 2 , is in the vertex region of vertex rv2 (default is NULL); vertices are labeled as \(1,2,3\) in the order they are stacked row-wise.
ch.data.pnts is for checking whether points p 1 and p 2 are both data points in Xp or not (default is FALSE), so by default this function checks whether the points p1 and p2 would constitute a dominating set if they both were actually in the data set.
See also (Ceyhan (2005, 2011)).

\section*{Usage}

Idom.num2PEbasic.tri(
p1,
p2,
Xp,
```

    r,
    c1,
    c2,
    M = c(1, 1, 1),
    rv1 = NULL,
    rv2 = NULL,
    ch.data.pnts = FALSE
    )

```

\section*{Arguments}
p1, p2 Two 2D points to be tested for constituting a dominating set of the PE-PCD.
Xp A set of 2D points which constitutes the vertices of the PE-PCD.
\(r \quad\) A positive real number which serves as the expansion parameter in PE proximity region; must be \(\geq 1\).
c1, c2 Positive real numbers which constitute the vertex of the standard basic triangle. adjacent to the shorter edges; \(c_{1}\) must be in \([0,1 / 2], c_{2}>0\) and \(\left(1-c_{1}\right)^{2}+c_{2}^{2} \leq\) 1.

M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates which serves as a center in the interior of the standard basic triangle \(T_{b}\) or the circumcenter of \(T_{b}\) which may be entered as "CC" as well; default is \(M=\) \((1,1,1)\), i.e., the center of mass of \(T_{b}\).
rv1, rv2 The indices of the vertices whose regions contains p1 and p2, respectively. They take the vertex labels as \(1,2,3\) as in the row order of the vertices in \(T_{b}\) (default is NULL for both).
ch.data.pnts A logical argument for checking whether points p 1 and p 2 are data points in Xp or not (default is FALSE).

\section*{Value}
\(I(\{\mathrm{p} 1, \mathrm{p} 2\}\) is a dominating set of the PE-PCD) where the vertices of the PE-PCD are the 2D data set \(X p\), that is, returns 1 if \(\{p 1, p 2\}\) is a dominating set of PE-PCD, and returns 0 otherwise.

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2011). "Spatial Clustering Tests Based on Domination Number of a New Random Digraph Family." Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

\section*{See Also}

Idom.num2PEtri, Idom.num2ASbasic.tri, and Idom.num2AStri

\section*{Examples}
```

c1<-.4; c2<-.6;
A<-c(0,0); B<-c(1,0); C<-c(c1,c2);
Tb<-rbind(A,B,C)
n<-10 \#try also n<-20
set.seed(1)
Xp<-runif.basic.tri(n, c1,c2)$g
M<-as.numeric(runif.basic.tri(1,c1,c2)$g) \#try also M<-c(.6,.3)
r<-2
Idom.num2PEbasic.tri(Xp[1,],Xp[2,],Xp,r,c1,c2,M)
Idom.num2PEbasic.tri (c(1,2), c(1,3),rbind(c(1,2), c(1,3)),r, c1, c2,M)
Idom.num2PEbasic.tri (c(1,2),c(1,3),rbind(c(1,2),c(1,3)),r,c1, c2,M,
ch.data.pnts = TRUE)
ind.gam2<-vector()
for (i in 1:(n-1))
for (j in (i+1):n)
{if (Idom.num2PEbasic.tri(Xp[i,],Xp[j,],Xp,r,c1,c2,M)==1)
ind.gam2<-rbind(ind.gam2,c(i,j))}
ind.gam2
\#or try
rv1<-rel.vert.basic.tri(Xp[1,],c1,c2,M)$rv;
rv2<-rel.vert.basic.tri(Xp[2,],c1,c2,M)$rv;
Idom.num2PEbasic.tri(Xp[1,],Xp[2,],Xp,r,c1,c2,M,rv1,rv2)
\#or try
rv1<-rel.vert.basic.tri(Xp[1,],c1,c2,M)$rv;
Idom.num2PEbasic.tri(Xp[1,],Xp[2,],Xp,r,c1,c2,M,rv1)
#or try
rv2<-rel.vert.basic.tri(Xp[2,],c1,c2,M)$rv;
Idom.num2PEbasic.tri(Xp[1,],Xp[2,],Xp,r,c1,c2,M,rv2=rv2)
Idom.num2PEbasic.tri(c(1,2),Xp[2,],Xp,r, c1, c2,M,ch.data.pnts = FALSE)
\#gives an error message if ch.data.pnts = TRUE since not both points are data points in Xp

```

Idom.num2PEstd. tetra The indicator for two 3D points constituting a dominating set for Proportional Edge Proximity Catch Digraphs (PE-PCDs) - standard regular tetrahedron case

\section*{Description}

Returns \(I(\{\mathrm{p} 1, \mathrm{p} 2\}\) is a dominating set of the PE-PCD \()\) where the vertices of the PE-PCD are the 3D data set Xp in the standard regular tetrahedron \(T_{h}=T((0,0,0),(1,0,0),(1 / 2, \sqrt{3} / 2,0),(1 / 2, \sqrt{3} / 6, \sqrt{6} / 3))\), that is, returns 1 if \(\{p 1, p 2\}\) is a dominating set of PE-PCD, returns 0 otherwise.
Point, p 1 , is in the region of vertex rv1 (default is NULL) and point, p 2 , is in the region of vertex rv2 (default is NULL); vertices (and hence rv1 and rv2) are labeled as \(1,2,3,4\) in the order they are stacked row-wise in \(T_{h}\).
PE proximity region is constructed with respect to the tetrahedron \(T_{h}\) with expansion parameter \(r \geq 1\) and vertex regions are based on center of mass \(C M\) (equivalent to circumcenter in this case).
ch.data.pnts is for checking whether points p1 and p2 are data points in Xp or not (default is FALSE), so by default this function checks whether the points \(p 1\) and p2 would constitute a dominating set if they actually were both in the data set.

See also (Ceyhan (2005, 2010)).

\section*{Usage}

Idom. num2PEstd.tetra(
p1,
p2,
Xp,
\(r\),
rv1 = NULL,
rv2 = NULL, ch. data.pnts = FALSE
)

\section*{Arguments}
p1, p2 Two 3D points to be tested for constituting a dominating set of the PE-PCD.
Xp A set of 3D points which constitutes the vertices of the PE-PCD.
\(r \quad\) A positive real number which serves as the expansion parameter in PE proximity region; must be \(\geq 1\).
rv1, rv2 The indices of the vertices whose regions contains p1 and p2, respectively. They take the vertex labels as \(1,2,3,4\) as in the row order of the vertices in \(T_{h}\) (default is NULL for both).
ch.data.pnts A logical argument for checking whether points p 1 and p 2 are data points in Xp or not (default is FALSE).

\section*{Value}
\(I(\{\mathrm{p} 1, \mathrm{p} 2\}\) is a dominating set of the PE-PCD \()\) where the vertices of the PE-PCD are the 3D data set \(X p\)), that is, returns 1 if \(\{p 1, p 2\}\) is a dominating set of PE-PCD, returns 0 otherwise

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

\section*{See Also}

Idom. num2PEtetra, Idom.num2PEtri and Idom.num2PEbasic.tri

\section*{Examples}
```

A<-c(0,0,0); B<-c(1,0,0); C<-c(1/2,sqrt(3)/2,0); D<-c(1/2,sqrt(3)/6,sqrt(6)/3)
tetra<-rbind(A,B,C,D)
n<-5 \#try also n<-20
Xp<-runif.std.tetra(n)$g #try also Xp<-cbind(runif(n),runif(n),runif(n))
r<-1.5
Idom.num2PEstd.tetra(Xp[1,],Xp[2,],Xp,r)
ind.gam2<-vector()
for (i in 1:(n-1))
    for (j in (i+1):n)
    {if (Idom.num2PEstd.tetra(Xp[i,],Xp[j,],Xp,r)==1)
        ind.gam2<-rbind(ind.gam2,c(i,j))}
ind.gam2
#or try
rv1<-rel.vert.tetraCC(Xp[1,],tetra)$rv;rv2<-rel.vert.tetraCC(Xp[2,],tetra)$rv
Idom.num2PEstd.tetra(Xp[1,],Xp[2,],Xp,r,rv1,rv2)
#or try
rv1<-rel.vert.tetraCC(Xp[1,],tetra)$rv;
Idom.num2PEstd.tetra(Xp[1,],Xp[2,],Xp,r,rv1)
\#or try
rv2<-rel.vert.tetraCC(Xp[2,],tetra)\$rv
Idom.num2PEstd.tetra(Xp[1,],Xp[2,],Xp,r,rv2=rv2)
P1<-c(.1,.1,.1)
P2<-c(.4,.1,.2)
Idom.num2PEstd.tetra(P1,P2,Xp,r)
Idom.num2PEstd.tetra(c(-1, -1, -1), Xp[2,],Xp,r,ch.data.pnts = FALSE)
\#gives an error message if ch.data.pnts = TRUE
\#since not both points, p1 and p2, are data points in Xp

```

The indicator for two 3D points constituting a dominating set for Proportional Edge Proximity Catch Digraphs (PE-PCDs) - one tetrahedron case

\section*{Description}

Returns \(I(\{\mathrm{p} 1, \mathrm{p} 2\}\) is a dominating set of the PE-PCD) where the vertices of the PE-PCD are the \(3 D\) data set \(X p\) in the tetrahedron th, that is, returns 1 if \(\{p 1, p 2\}\) is a dominating set of PE-PCD, returns 0 otherwise.

Point, p 1 , is in the region of vertex rv1 (default is NULL) and point, p 2 , is in the region of vertex rv2 (default is NULL); vertices (and hence rv1 and rv2) are labeled as \(1,2,3,4\) in the order they are stacked row-wise in th.
PE proximity region is constructed with respect to the tetrahedron th with expansion parameter \(r \geq 1\) and vertex regions are based on center of mass (\(\mathrm{M}=" \mathrm{CM}\) ") or circumcenter (\(\mathrm{M}=\) " \(\mathrm{CC} "\) ") only.
ch.data.pnts is for checking whether points p1 and p2 are both data points in Xp or not (default is FALSE), so by default this function checks whether the points \(p 1\) and \(p 2\) would constitute a dominating set if they actually were both in the data set.
See also (Ceyhan \((2005,2010)\)).

\section*{Usage}

Idom.num2PEtetra(p1,
p2,
Xp,
th,
\(r\),
M = "CM",
rv1 = NULL,
rv2 = NULL, ch. data. pnts = FALSE
)

\section*{Arguments}
p1, p2 Two 3D points to be tested for constituting a dominating set of the PE-PCD.
Xp A set of 3D points which constitutes the vertices of the PE-PCD.
th
A \(4 \times 3\) matrix with each row representing a vertex of the tetrahedron.
\(r\)
A positive real number which serves as the expansion parameter in PE proximity region; must be \(\geq 1\).

M The center to be used in the construction of the vertex regions in the tetrahedron, th. Currently it only takes "CC" for circumcenter and "CM" for center of mass; default="CM".
rv1, rv2 The indices of the vertices whose regions contains p1 and p2, respectively. They take the vertex labels as \(1,2,3,4\) as in the row order of the vertices in th (default is NULL for both).
ch.data.pnts A logical argument for checking whether both points p 1 and p 2 are data points in Xp or not (default is FALSE).

\section*{Value}
\(I(\{\mathrm{p} 1, \mathrm{p} 2\}\) is a dominating set of the PE-PCD \()\) where the vertices of the PE-PCD are the 3D data set \(X p\)), that is, returns 1 if \(\{p 1, p 2\}\) is a dominating set of PE-PCD, returns 0 otherwise

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

\section*{See Also}

Idom.num2PEstd.tetra, Idom.num2PEtri and Idom.num2PEbasic.tri

\section*{Examples}
```

A<-c(0,0,0); B<-c(1,0,0); C<-c(1/2,sqrt(3)/2,0); D<-c(1/2,sqrt(3)/6,sqrt(6)/3)
tetra<-rbind(A,B,C,D)
n<-5
set.seed(1)
Xp<-runif.tetra(n,tetra)\$g \#try also Xp<-cbind(runif(n),runif(n),runif(n))
M<-"CM"; \#try also M<-"CC";
r<-1.5
Idom.num2PEtetra(Xp[1,],Xp[2,],Xp,tetra,r,M)
Idom.num2PEtetra(c(-1,-1,-1), Xp[2,],Xp,tetra,r,M)
ind.gam2<-ind.gamn2<-vector()
for (i in 1:(n-1))
for (j in (i+1):n)

```
```

{if (Idom.num2PEtetra(Xp[i,],Xp[j,],Xp,tetra,r,M)==1)
{ind.gam2<-rbind(ind.gam2,c(i,j))
}
}
ind.gam2
\#or try
rv1<-rel.vert.tetraCC(Xp[1,],tetra)$rv;rv2<-rel.vert.tetraCC(Xp[2,],tetra)$rv
Idom.num2PEtetra(Xp[1,],Xp[2,],Xp,tetra,r,M,rv1,rv2)
\#or try
rv1<-rel.vert.tetraCC(Xp[1,],tetra)$rv;
Idom.num2PEtetra(Xp[1,],Xp[2,],Xp,tetra,r,M,rv1)
#or try
rv2<-rel.vert.tetraCC(Xp[2,],tetra)$rv
Idom.num2PEtetra(Xp[1,],Xp[2,],Xp,tetra,r,M,rv2=rv2)
P1<-c(.1,.1,.1)
P2<-c(.4,.1,.2)
Idom.num2PEtetra(P1, P2, Xp, tetra, r,M)
Idom.num2PEtetra(c(-1, -1, -1) , Xp[2,],Xp, tetra,r,M, ch.data.pnts = FALSE)
\#gives an error message if ch.data.pnts = TRUE
\#since not both points, p1 and p2, are data points in Xp

```

Idom.num2PEtri The indicator for two points constituting a dominating set for Proportional Edge Proximity Catch Digraphs (PE-PCDs) - one triangle case

\section*{Description}

Returns \(I(\{\mathrm{p} 1, \mathrm{p} 2\}\) is a dominating set of the PE-PCD) where the vertices of the PE-PCD are the \(2 D\) data set \(X p\), that is, returns 1 if \(\{p 1, p 2\}\) is a dominating set of PE-PCD, and returns 0 otherwise.
Point, p 1 , is in the region of vertex rv1 (default is NULL) and point, p 2 , is in the region of vertex rv2 (default is NULL); vertices (and hence rv1 and rv2) are labeled as \(1,2,3\) in the order they are stacked row-wise in tri.
PE proximity regions are defined with respect to the triangle tri and vertex regions are based on center \(M=\left(m_{1}, m_{2}\right)\) in Cartesian coordinates or \(M=(\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of the triangle tri or circumcenter of \(\operatorname{tri}\); default is \(M=(1,1,1)\), i.e., the center of mass of tri.
ch.data.pnts is for checking whether points p 1 and p 2 are data points in Xp or not (default is FALSE), so by default this function checks whether the points p 1 and p 2 would be a dominating set if they actually were in the data set.
See also (Ceyhan (2005); Ceyhan and Priebe (2007); Ceyhan (2011, 2012)).

\section*{Usage}
```

Idom.num2PEtri(
p1,
p2,
Xp,
tri,
r,
$M=c(1,1,1)$,
rv1 = NULL,
rv2 = NULL,
ch. data. pnts = FALSE
)

```

\section*{Arguments}
p1, p2 Two 2D points to be tested for constituting a dominating set of the PE-PCD.
Xp A set of 2D points which constitutes the vertices of the PE-PCD.
tri A \(3 \times 2\) matrix with each row representing a vertex of the triangle.
\(r \quad\) A positive real number which serves as the expansion parameter in PE proximity region; must be \(\geq 1\).
M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates which serves as a center in the interior of the triangle tri or the circumcenter of tri which may be entered as "CC" as well; default is \(M=(1,1,1)\), i.e., the center of mass of tri.
rv1, rv2 The indices of the vertices whose regions contains p1 and p2, respectively. They take the vertex labels as \(1,2,3\) as in the row order of the vertices in tri (default is NULL for both).
ch. data.pnts A logical argument for checking whether points p 1 and p 2 are data points in Xp or not (default is FALSE).

\section*{Value}
\(I(\{\mathrm{p} 1, \mathrm{p} 2\}\) is a dominating set of the PE-PCD \()\) where the vertices of the PE-PCD are the 2 D data set \(X p\), that is, returns 1 if \(\{p 1, p 2\}\) is a dominating set of PE-PCD, and returns 0 otherwise.

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2011). "Spatial Clustering Tests Based on Domination Number of a New Random Digraph Family." Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

Ceyhan E (2012). "An investigation of new graph invariants related to the domination number of random proximity catch digraphs." Methodology and Computing in Applied Probability, 14(2), 299-334.

Ceyhan E, Priebe CE (2007). "On the Distribution of the Domination Number of a New Family of Parametrized Random Digraphs." Model Assisted Statistics and Applications, 1(4), 231-255.

\section*{See Also}

Idom.num2PEbasic.tri, Idom.num2AStri, and Idom.num2PEtetra

\section*{Examples}
```

A<-C(1,1); B<-C(2,0); C<-C (1.5, 2);
Tr<-rbind(A,B,C);
n<-10 \#try also n<-20
set.seed(1)
Xp<-runif.tri(n,Tr)$g
M<-as.numeric(runif.tri(1,Tr)$g) \#try also M<-c(1.6,1.0)
r<-1.5 \#try also r<-2
Idom.num2PEtri(Xp[1,],Xp[2,],Xp,Tr,r,M)
ind.gam2<-vector()
for (i in 1:(n-1))
for (j in (i+1):n)
{if (Idom.num2PEtri(Xp[i,],Xp[j,],Xp,Tr,r,M)==1)
ind.gam2<-rbind(ind.gam2,c(i,j))}
ind.gam2
\#or try
rv1<-rel.vert.tri(Xp[1,],Tr,M)$rv;
rv2<-rel.vert.tri(Xp[2,],Tr,M)$rv
Idom.num2PEtri(Xp[1,],Xp[2,],Xp,Tr, r,M,rv1,rv2)
Idom.num2PEtri(Xp[1,],c(1, 2),Xp,Tr,r,M, ch.data.pnts = FALSE)
\#gives an error message if ch.data.pnts = TRUE
\#since not both points, p1 and p2, are data points in Xp

```

Idom.num3PEstd.tetra The indicator for three 3D points constituting a dominating set for Proportional Edge Proximity Catch Digraphs (PE-PCDs) - standard regular tetrahedron case

\section*{Description}

Returns \(I(\{\mathrm{p} 1, \mathrm{p} 2, \mathrm{pt} 3\}\) is a dominating set of the PE-PCD \()\) where the vertices of the PE-PCD are the 3D data set Xp in the standard regular tetrahedron \(T_{h}=T((0,0,0),(1,0,0),(1 / 2, \sqrt{3} / 2,0),(1 / 2, \sqrt{3} / 6, \sqrt{6} / 3))\), that is, returns 1 if \(\{p 1, p 2, p t 3\}\) is a dominating set of PE-PCD, returns 0 otherwise.

Point, p 1 , is in the region of vertex rv1 (default is NULL), point, p 2 , is in the region of vertex rv2 (default is NULL); point, pt3), is in the region of vertex rv3) (default is NULL); vertices (and hence rv1, rv2 and rv3) are labeled as 1,2,3,4 in the order they are stacked row-wise in \(T_{h}\).
PE proximity region is constructed with respect to the tetrahedron \(T_{h}\) with expansion parameter \(r \geq 1\) and vertex regions are based on center of mass \(C M\) (equivalent to circumcenter in this case).
ch. data. pnts is for checking whether points \(\mathrm{p} 1, \mathrm{p} 2\) and pt3 are all data points in Xp or not (default is FALSE), so by default this function checks whether the points \(\mathrm{p} 1, \mathrm{p} 2\) and pt 3 would constitute a dominating set if they actually were all in the data set.
See also (Ceyhan \((2005,2010)\)).

\section*{Usage}
```

Idom.num3PEstd.tetra(
p1,
p2,
pt3,
Xp,
r,
rv1 = NULL,
rv2 = NULL,
rv3 = NULL,
ch.data.pnts = FALSE
)

```

\section*{Arguments}
\[
\begin{array}{ll}
\mathrm{p} 1, \mathrm{p} 2, \mathrm{pt} 3 & \text { Three 3D points to be tested for constituting a dominating set of the PE-PCD. } \\
\mathrm{Xp} & \begin{array}{l}
\text { A set of 3D points which constitutes the vertices of the PE-PCD. }
\end{array} \\
\mathrm{r} & \begin{array}{l}
\text { A positive real number which serves as the expansion parameter in PE proximity } \\
\text { region; must be } \geq 1 .
\end{array} \\
\mathrm{rv1}, \mathrm{rv2}, \mathrm{rv3} & \begin{array}{l}
\text { The indices of the vertices whose regions contains p1, p2 and pt3, respectively. } \\
\text { They take the vertex labels as } 1,2,3,4 \text { as in the row order of the vertices in } T_{h} \\
\text { (default is NULL for all). }
\end{array} \\
\text { ch.data.pnts } & \begin{array}{l}
\text { A logical argument for checking whether points p1 and p2 are data points in Xp } \\
\text { or not (default is FALSE). }
\end{array}
\end{array}
\]

\section*{Value}
\(I(\{\mathrm{p} 1, \mathrm{p} 2, \mathrm{pt} 3\}\) is a dominating set of the PE-PCD \()\) where the vertices of the PE-PCD are the 3D data set \(X p\)), that is, returns 1 if \(\{p 1, p 2, p t 3\}\) is a dominating set of PE-PCD, returns 0 otherwise

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

\section*{See Also}
```

Idom.num3PEtetra

```

\section*{Examples}
```

set.seed(123)
A<-c(0,0,0); B<-c(1,0,0); C<-c(1/2,sqrt(3)/2,0); D<-c(1/2,sqrt(3)/6,sqrt(6)/3)
tetra<-rbind(A,B,C,D)
n<-5 \#try 20, 40, 100 (larger n may take a long time)
Xp<-runif.std.tetra(n)$g #try also Xp<-cbind(runif(n),runif(n),runif(n))
r<-1.25
Idom.num3PEstd.tetra(Xp[1,],Xp[2,],Xp[3,],Xp,r)
ind.gam3<-vector()
for (i in 1:(n-2))
    for (j in (i+1):(n-1))
        for (k in (j+1):n)
    {if (Idom.num3PEstd.tetra(Xp[i,],Xp[j,],Xp[k,],Xp,r)==1)
    ind.gam3<-rbind(ind.gam3,c(i,j,k))}
ind.gam3
#or try
rv1<-rel.vert.tetraCC(Xp[1,],tetra)$rv; rv2<-rel.vert.tetraCC(Xp[2,],tetra)$rv;
rv3<-rel.vert.tetraCC(Xp[3,],tetra)$rv
Idom.num3PEstd.tetra(Xp[1,],Xp[2,],Xp[3,],Xp,r,rv1,rv2,rv3)
\#or try
rv1<-rel.vert.tetraCC(Xp[1,],tetra)$rv;
Idom.num3PEstd.tetra(Xp[1,],Xp[2,],Xp[3,],Xp,r,rv1)
#or try
rv2<-rel.vert.tetraCC(Xp[2,],tetra)$rv
Idom.num3PEstd.tetra(Xp[1,],Xp[2,],Xp[3,],Xp,r,rv2=rv2)
P1<-c(.1,.1,.1)

```

P2<-c (.3, .3, .3)
P3<-c (. 4, . 1, . 2)
Idom. num3PEstd.tetra(P1, P2, P3, Xp,r)
Idom. num3PEstd.tetra(Xp[1,], \(c(1,1,1), X p[3],, X p, r, c h . d a t a . p n t s=F A L S E)\)
\#gives an error message if ch.data.pnts = TRUE since not all points are data points in Xp

Idom.num3PEtetra The indicator for three 3D points constituting a dominating set for Proportional Edge Proximity Catch Digraphs (PE-PCDs) - one tetrahedron case

\section*{Description}

Returns \(I(\{\mathrm{p} 1, \mathrm{p} 2, \mathrm{pt} 3\}\) is a dominating set of the PE-PCD) where the vertices of the PE-PCD are the 3D data set \(X p\) in the tetrahedron th, that is, returns 1 if \(\{p 1, p 2, p t 3\}\) is a dominating set of PE-PCD, returns 0 otherwise.
Point, p 1 , is in the region of vertex rv1 (default is NULL), point, p 2 , is in the region of vertex rv2 (default is NULL); point, pt3), is in the region of vertex rv3) (default is NULL); vertices (and hence rv1, rv2 and rv3) are labeled as \(1,2,3,4\) in the order they are stacked row-wise in th.
PE proximity region is constructed with respect to the tetrahedron th with expansion parameter \(r \geq 1\) and vertex regions are based on center of mass \(C M\) (equivalent to circumcenter in this case).
ch. data. pnts is for checking whether points \(\mathrm{p} 1, \mathrm{p} 2\) and pt 3 are all data points in Xp or not (default is FALSE), so by default this function checks whether the points \(\mathrm{p} 1, \mathrm{p} 2\) and pt 3 would constitute a dominating set if they actually were all in the data set.
See also (Ceyhan \((2005,2010)\)).

\section*{Usage}
```

Idom.num3PEtetra(
p1,
p2,
pt3,
Xp,
th,
r,
M = "CM",
rv1 = NULL,
rv2 = NULL,
rv3 = NULL,
ch.data.pnts = FALSE
)

```

\section*{Arguments}
\(\mathrm{p} 1, \mathrm{p} 2, \mathrm{pt} 3 \quad\) Three 3D points to be tested for constituting a dominating set of the PE-PCD.
\(\mathrm{Xp} \quad\) A set of 3D points which constitutes the vertices of the PE-PCD.
th A \(4 \times 3\) matrix with each row representing a vertex of the tetrahedron.
\(r \quad\) A positive real number which serves as the expansion parameter in PE proximity region; must be \(\geq 1\).
M The center to be used in the construction of the vertex regions in the tetrahedron, th. Currently it only takes "CC" for circumcenter and "CM" for center of mass; default="CM".
\(r v 1, r v 2, r v 3\) The indices of the vertices whose regions contains \(p 1, p 2\) and \(p t 3\), respectively. They take the vertex labels as \(1,2,3,4\) as in the row order of the vertices in th (default is NULL for all).
ch.data.pnts A logical argument for checking whether points p 1 and p 2 are data points in Xp or not (default is FALSE).

\section*{Value}
\(I(\{\mathrm{p} 1, \mathrm{p} 2, \mathrm{pt} 3\}\) is a dominating set of the PE-PCD) where the vertices of the PE-PCD are the 3D data set Xp), that is, returns 1 if \(\{\mathrm{p} 1, \mathrm{p} 2, \mathrm{pt} 3\}\) is a dominating set of PE-PCD, returns 0 otherwise

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

\section*{See Also}

Idom.num3PEstd.tetra

\section*{Examples}
```

set.seed(123)
A<-c(0,0,0); B<-c(1,0,0); C<-c(1/2,sqrt(3)/2,0); D<-c(1/2,sqrt(3)/6,sqrt(6)/3)
tetra<-rbind(A,B,C,D)
n<-5 \#try 20, 40, 100 (larger n may take a long time)
Xp<-runif.tetra(n,tetra)\$g
M<-"CM"; \#try also M<-"CC";
r<-1.25

```
```

Idom.num3PEtetra(Xp[1,],Xp[2,],Xp[3,],Xp,tetra,r,M)
ind.gam3<-vector()
for (i in 1:(n-2))
for (j in (i+1):(n-1))
for (k in (j+1):n)
{if (Idom.num3PEtetra(Xp[i,],Xp[j,],Xp[k,],Xp,tetra,r,M)==1)
ind.gam3<-rbind(ind.gam3,c(i,j,k))}
ind.gam3
\#or try
rv1<-rel.vert.tetraCC(Xp[1,],tetra)$rv; rv2<-rel.vert.tetraCC(Xp[2,],tetra)$rv;
rv3<-rel.vert.tetraCC(Xp[3,],tetra)$rv
Idom.num3PEtetra(Xp[1,],Xp[2,],Xp[3,],Xp,tetra,r,M,rv1,rv2,rv3)
#or try
rv1<-rel.vert.tetraCC(Xp[1,],tetra)$rv;
Idom.num3PEtetra(Xp[1,],Xp[2,],Xp[3,],Xp,tetra,r,M,rv1)
\#or try
rv2<-rel.vert.tetraCC(Xp[2,],tetra)\$rv
Idom.num3PEtetra(Xp[1,],Xp[2,],Xp[3,],Xp,tetra,r,M,rv2=rv2)
P1<-c(.1,.1,.1)
P2<-c(.3,.3,.3)
P3<-c(.4,.1,.2)
Idom.num3PEtetra(P1,P2,P3,Xp, tetra,r,M)
Idom.num3PEtetra(Xp[1,],c(1,1,1),Xp[3,],Xp,tetra,r,M,ch.data.pnts = FALSE)
\#gives an error message if ch.data.pnts = TRUE since not all points are data points in Xp

```

Idom. numASup.bnd. tri Indicator for an upper bound for the domination number of Arc Slice Proximity Catch Digraph (AS-PCD) by the exact algorithm - one triangle case

\section*{Description}

Returns \(I\) (domination number of AS-PCD whose vertices are the data points Xp is less than or equal to \(k\)), that is, returns 1 if the domination number of AS-PCD is less than the prespecified value \(k\), returns 0 otherwise. It also provides the vertices (i.e., data points) in a dominating set of size \(k\) of AS-PCD.
AS proximity regions are constructed with respect to the triangle tri and vertex regions are based on the center, \(M=\left(m_{1}, m_{2}\right)\) in Cartesian coordinates or \(M=(\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of the triangle tri or based on circumcenter of tri; default is \(\mathrm{M}=\) " CC ", i.e., circumcenter of tri.

The vertices of triangle, tri, are labeled as \(1,2,3\) according to the row number the vertex is recorded in tri. Loops are allowed in the digraph. It takes a long time for large number of vertices (i.e., large number of row numbers).

\section*{Usage}

Idom.numASup.bnd.tri(Xp, k, tri, \(M=\) "CC")

\section*{Arguments}

Xp A set of 2D points which constitute the vertices of the AS-PCD.
\(\mathrm{k} \quad\) A positive integer to be tested for an upper bound for the domination number of AS-PCDs.
tri Three 2D points, stacked row-wise, each row representing a vertex of the triangle.
M The center of the triangle. "CC" stands for circumcenter of the triangle tri or a 2D point in Cartesian coordinates or a 3D point in barycentric coordinates which serves as a center in the interior of tri; default is \(M=\) "CC" i.e., the circumcenter of tri.

\section*{Value}

A list with the elements
domUB The suggested upper bound (to be checked) for the domination number of ASPCD. It is prespecified as \(k\) in the function arguments.
Idom.num. up.bnd
The indicator for the upper bound for domination number of AS-PCD being the specified value \(k\) or not. It returns 1 if the upper bound is \(k\), and 0 otherwise.
ind.dom.set The vertices (i.e., data points) in the dominating set of size \(k\) if it exists, otherwise it yields NULL.

\section*{Author(s)}

Elvan Ceyhan

\section*{See Also}

Idom.numCSup.bnd.tri, Idom.numCSup.bnd.std.tri, Idom.num.up.bnd, and dom.num.exact

\section*{Examples}
\(A<-c(1,1) ; B<-c(2,0) ; C<-c(1.5,2)\);
Tr<-rbind (A, B, C);
\(n<-10\)
set.seed(1)
```

Xp<-runif.tri(n,Tr)$gen.points
M<-as.numeric(runif.tri(1,Tr)$g) \#try also M<-c(1.6,1.2)
Idom.numASup.bnd.tri(Xp,1,Tr)
for (k in 1:n)
print(c(k,Idom.numASup.bnd.tri (Xp,k,Tr,M)))
Idom.numASup.bnd.tri(Xp,k=4,Tr,M)
P<-c(.4,.2)
Idom.numASup.bnd.tri(P,1,Tr,M)
Idom.numASup.bnd.tri(rbind(Xp,Xp),k=2,Tr,M)

```
Idom.numCSup.bnd.std.tri

The indicator for k being an upper bound for the domination number of Central Similarity Proximity Catch Digraph (CS-PCD) by the exact algorithm - standard equilateral triangle case

\section*{Description}

Returns \(I\) (domination number of CS-PCD is less than or equal to k) where the vertices of the CSPCD are the data points Xp , that is, returns 1 if the domination number of CS-PCD is less than the prespecified value \(k\), returns 0 otherwise. It also provides the vertices (i.e., data points) in a dominating set of size \(k\) of CS-PCD.
CS proximity region is constructed with respect to the standard equilateral triangle \(T_{e}=T(A, B, C)=\) \(T((0,0),(1,0),(1 / 2, \sqrt{3} / 2))\) with expansion parameter \(t>0\) and edge regions are based on the center \(M=\left(m_{1}, m_{2}\right)\) in Cartesian coordinates or \(M=(\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of \(T_{e}\); default is \(M=(1,1,1)\) i.e., the center of mass of \(T_{e}\) (which is equivalent to the circumcenter of \(T_{e}\)).
Edges of \(T_{e}, A B, B C, A C\), are also labeled as 3,1 , and 2 , respectively. Loops are allowed in the digraph. It takes a long time for large number of vertices (i.e., large number of row numbers).
See also (Ceyhan (2012)).

\section*{Usage}

Idom.numCSup.bnd.std.tri \((X p, k, t, M=c(1,1,1))\)

\section*{Arguments}

Xp
A set of 2D points which constitute the vertices of CS-PCD.
\(k \quad\) A positive integer representing an upper bound for the domination number of CS-PCD.

A positive real number which serves as the expansion parameter in CS proximity region in the standard equilateral triangle \(T_{e}=T((0,0),(1,0),(1 / 2, \sqrt{3} / 2))\).
M
A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates which serves as a center in the interior of the standard equilateral triangle \(T_{e}\); default is \(M=(1,1,1)\) i.e. the center of mass of \(T_{e}\).

\section*{Value}

A list with two elements
domUB The upper bound k (to be checked) for the domination number of CS-PCD. It is prespecified as \(k\) in the function arguments.
Idom.num.up.bnd
The indicator for the upper bound for domination number of CS-PCD being the specified value \(k\) or not. It returns 1 if the upper bound is \(k\), and 0 otherwise.
ind. domset The vertices (i.e., data points) in the dominating set of size k if it exists, otherwise it is NULL.

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2012). "An investigation of new graph invariants related to the domination number of random proximity catch digraphs." Methodology and Computing in Applied Probability, 14(2), 299-334.

\section*{See Also}

Idom.numCSup.bnd.tri, Idom.num.up.bnd, Idom.numASup.bnd.tri, and dom.num.exact

\section*{Examples}
```

A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C);
n<-10
set.seed(1)
Xp<-runif.std.tri(n)$gen.points
M<-as.numeric(runif.std.tri(1)$g) \#try also M<-c(.6,.2)
t<-. }
Idom.numCSup.bnd.std.tri(Xp,1,t,M)
for (k in 1:n)
print(c(k,Idom.numCSup.bnd.std.tri(Xp,k,t,M)$Idom.num.up.bnd))
    print(c(k,Idom.numCSup.bnd.std.tri(Xp,k,t,M)$domUB))

```

\section*{Idom.numCSup.bnd.tri Indicator for an upper bound for the domination number of Central Similarity Proximity Catch Digraph (CS-PCD) by the exact algorithm - one triangle case}

\section*{Description}

Returns \(I\) (domination number of CS-PCD is less than or equal to \(k\)) where the vertices of the CSPCD are the data points Xp , that is, returns 1 if the domination number of CS-PCD is less than the prespecified value \(k\), returns 0 otherwise. It also provides the vertices (i.e., data points) in a dominating set of size \(k\) of CS-PCD.
CS proximity region is constructed with respect to the triangle \(\operatorname{tri}=T(A, B, C)\) with expansion parameter \(t>0\) and edge regions are based on the center \(M=\left(m_{1}, m_{2}\right)\) in Cartesian coordinates or \(M=(\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of tri; default is \(M=(1,1,1)\) i.e., the center of mass of tri.
Edges of tri, \(A B, B C, A C\), are also labeled as 3, 1, and 2, respectively. Loops are allowed in the digraph.
See also (Ceyhan (2012)).
Caveat: It takes a long time for large number of vertices (i.e., large number of row numbers).

\section*{Usage}

Idom.numCSup.bnd.tri \(\mathrm{Xp}, \mathrm{k}\), tri, \(\mathrm{t}, \mathrm{M}=\mathrm{c}(1,1,1)\))

\section*{Arguments}

Xp A set of 2D points which constitute the vertices of CS-PCD.
\(k \quad\) A positive integer to be tested for an upper bound for the domination number of CS-PCDs.
tri A \(3 \times 2\) matrix with each row representing a vertex of the triangle.
\(t \quad\) A positive real number which serves as the expansion parameter in CS proximity region in the triangle tri.
M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates which serves as a center in the interior of the triangle tri; default is \(M=\) \((1,1,1)\), i.e. the center of mass of tri.

\section*{Value}

A list with two elements
domUB The upper bound \(k\) (to be checked) for the domination number of CS-PCD. It is prespecified as \(k\) in the function arguments.

Idom.num.up.bnd
The indicator for the upper bound for domination number of CS-PCD being the specified value \(k\) or not. It returns 1 if the upper bound is \(k\), and 0 otherwise.
ind. domset The vertices (i.e., data points) in the dominating set of size k if it exists, otherwise it is NULL.

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2012). "An investigation of new graph invariants related to the domination number of random proximity catch digraphs." Methodology and Computing in Applied Probability, 14(2), 299-334.

\section*{See Also}

Idom. numCSup.bnd.std.tri, Idom. num. up.bnd, Idom.numASup.bnd.tri, and dom.num. exact

\section*{Examples}
```

A<-c(1,1); B<-c(2,0); C<-C(1.5,2);
Tr<-rbind(A,B,C);
n<-10
set.seed(1)
Xp<-runif.tri(n,Tr)$gen.points
M<-as.numeric(runif.tri(1,Tr)$g) \#try also M<-c(1.6,1.0)
t<-. 5
Idom.numCSup.bnd.tri(Xp,1,Tr,t,M)
for (k in 1:n)
print(c(k,Idom.numCSup.bnd.tri(Xp,k,Tr,t,M)))

```
 Idom.setAStri

\section*{Description}

Returns \(I(\mathrm{~S}\) a dominating set of AS-PCD), that is, returns 1 if S is a dominating set of AS-PCD, returns 0 otherwise.
AS-PCD has vertex set Xp and AS proximity region is constructed with vertex regions are based on the center, \(M=\left(m_{1}, m_{2}\right)\) in Cartesian coordinates or \(M=(\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of the triangle tri or based on circumcenter of tri; default is \(M=\) " \(C C\) ", i.e., circumcenter of tri whose vertices are also labeled as edges 1,2 , and 3, respectively.
See also (Ceyhan (2005, 2010)).

\section*{Usage}

Idom.setAStri(S, Xp, tri, \(M=" C C ")\)

\section*{Arguments}

S A set of 2D points which is to be tested for being a dominating set for the ASPCDs.
Xp A set of 2D points which constitute the vertices of the AS-PCD.
tri Three 2D points, stacked row-wise, each row representing a vertex of the triangle.
M The center of the triangle. "CC" stands for circumcenter of the triangle tri or a 2D point in Cartesian coordinates or a 3D point in barycentric coordinates which serves as a center in the interior of tri; default is \(M=\) " \(C C\) " i.e., the circumcenter of tri.

\section*{Value}
\(I(\mathrm{~S}\) a dominating set of AS-PCD), that is, returns 1 if S is a dominating set of AS-PCD whose vertices are the data points in Xp ; returns 0 otherwise, where AS proximity region is constructed in the triangle tri.

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). "An investigation of new graph invariants related to the domination number of random proximity catch digraphs." Methodology and Computing in Applied Probability, 14(2), 299-334.

\section*{See Also}

IarcASset2pnt.tri, Idom.setPEtri and Idom.setCStri

\section*{Examples}
```

A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
n<-10
set.seed(1)
Xp<-runif.tri(n,Tr)$gen.points
M<-as.numeric(runif.tri(1,Tr)$g) \#try also M<-c(1.6,1.2)
S<-rbind(Xp[1,],Xp[2,])
Idom.setAStri(S,Xp,Tr,M)
S<-rbind(Xp[1,],Xp[2,],Xp[3,],Xp[5,])
Idom.setAStri(S,Xp,Tr,M)
S<-rbind(c(.1,.1),c(.3,.4),c(.5,.3))
Idom.setAStri(S, Xp,Tr,M)
Idom.setAStri(c(.2,.5),Xp,Tr,M)
Idom.setAStri(c(.2,.5),c(.2,.5),Tr,M)
Idom.setAStri(Xp[5,],Xp[2,],Tr,M)
S<-rbind(Xp[1,],Xp[2,],Xp[3,],Xp[5,],c(.2,.5))
Idom.setAStri(S,Xp[3,],Tr,M)
Idom.setAStri(Xp,Xp,Tr,M)
P<-c(.4,.2)
S<-Xp[c(1, 3, 4),]
Idom.setAStri(Xp,P,Tr,M)
Idom.setAStri(S,P,Tr,M)
Idom.setAStri(S,Xp,Tr,M)
Idom.setAStri(rbind(S,S),Xp,Tr,M)

```

\section*{Description}

Returns \(I\) (S a dominating set of the CS-PCD) where the vertices of the CS-PCD are the data set \(X p\)), that is, returns 1 if \(S\) is a dominating set of CS-PCD, returns 0 otherwise.

CS proximity region is constructed with respect to the standard equilateral triangle \(T_{e}=T(A, B, C)=\) \(T((0,0),(1,0),(1 / 2, \sqrt{3} / 2))\) with expansion parameter \(t>0\) and edge regions are based on the center \(M=\left(m_{1}, m_{2}\right)\) in Cartesian coordinates or \(M=(\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of \(T_{e}\); default is \(M=(1,1,1)\) i.e., the center of mass of \(T_{e}\) (which is equivalent to the circumcenter of \(T_{e}\)).
Edges of \(T_{e}, A B, B C, A C\), are also labeled as 3,1 , and 2 , respectively.
See also (Ceyhan (2012)).

\section*{Usage}

Idom. setCSstd.tri \((S, X p, t, M=c(1,1,1))\)

\section*{Arguments}

S

Xp A set of 2D points which constitute the vertices of the CS-PCD.
\(t \quad\) A positive real number which serves as the expansion parameter in CS proximity region in the standard equilateral triangle \(T_{e}=T((0,0),(1,0),(1 / 2, \sqrt{3} / 2))\).
M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates which serves as a center in the interior of the standard equilateral triangle \(T_{e}\); default is \(M=(1,1,1)\) i.e. the center of mass of \(T_{e}\).

\section*{Value}
\(I(\mathrm{~S}\) a dominating set of the CS-PCD), that is, returns 1 if S is a dominating set of CS-PCD, returns 0 otherwise, where CS proximity region is constructed in the standard equilateral triangle \(T_{e}\)

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2012). "An investigation of new graph invariants related to the domination number of random proximity catch digraphs." Methodology and Computing in Applied Probability, 14(2), 299-334.

\section*{See Also}

Idom.setCStri and Idom. setPEstd.tri

\section*{Examples}
```

A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C);
n<-10
set.seed(1)
Xp<-runif.std.tri(n)$gen.points
M<-as.numeric(runif.std.tri(1)$g) \#try also M<-c(.6,.2)
t<-. }
S<-rbind(Xp[1,],Xp[2,])
Idom.setCSstd.tri(S, Xp,t,M)
S<-rbind(Xp[1,],Xp[2,],Xp[3,],Xp[5,])
Idom.setCSstd.tri(S,Xp,t,M)

```
Idom.setCStri

The indicator for the set of points S being a dominating set or not for Central Similarity Proximity Catch Digraphs (CS-PCDs) - one triangle case

\section*{Description}

Returns \(I\) (S a dominating set of CS-PCD whose vertices are the data set Xp), that is, returns 1 if S is a dominating set of CS-PCD, returns 0 otherwise.

CS proximity region is constructed with respect to the triangle tri with the expansion parameter \(t>0\) and edge regions are based on the center \(M=\left(m_{1}, m_{2}\right)\) in Cartesian coordinates or \(M=\) \((\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of the triangle tri; default is \(M=(1,1,1)\) i.e., the center of mass of tri.
The triangle tri \(=T(A, B, C)\) has edges \(A B, B C, A C\) which are also labeled as edges 3 , 1 , and 2 , respectively.

See also (Ceyhan (2012)).

\section*{Usage}

Idom.setCStri(S, Xp, tri, \(\mathrm{t}, \mathrm{M}=\mathrm{c}(1,1,1)\))

\section*{Arguments}

S
A set of 2D points which is to be tested for being a dominating set for the CSPCDs.

Xp
A set of 2D points which constitute the vertices of the CS-PCD.
tri A \(3 \times 2\) matrix with each row representing a vertex of the triangle.
\(t \quad\) A positive real number which serves as the expansion parameter in CS proximity region constructed in the triangle tri.
M
A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates which serves as a center in the interior of the triangle tri; default is \(M=\) \((1,1,1)\) i.e., the center of mass of tri.

\section*{Value}
\(I(\mathrm{~S}\) a dominating set of the CS-PCD), that is, returns 1 if S is a dominating set of CS-PCD whose vertices are the data points in Xp ; returns 0 otherwise, where CS proximity region is constructed in the triangle tri

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2012). "An investigation of new graph invariants related to the domination number of random proximity catch digraphs." Methodology and Computing in Applied Probability, 14(2), 299-334.

\section*{See Also}

Idom.setCSstd.tri, Idom.setPEtri and Idom.setAStri

\section*{Examples}
```

A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
n<-10
set.seed(1)
Xp<-runif.tri(n,Tr)$gen.points
M<-as.numeric(runif.tri(1,Tr)$g) \#try also M<-c(1.6,1.0)
tau<-. }
S<-rbind(Xp[1,],Xp[2,])
Idom.setCStri(S, Xp,Tr,tau,M)
S<-rbind(Xp[1,],Xp[2,],Xp[3,],Xp[5,])
Idom.setCStri(S,Xp,Tr,tau,M)

```

Idom.setPEstd.tri The indicator for the set of points S being a dominating set or not for Proportional Edge Proximity Catch Digraphs (PE-PCDs) - standard equilateral triangle case

\section*{Description}

Returns \(I\) (S a dominating set of PE-PCD whose vertices are the data points Xp) for S in the standard equilateral triangle, that is, returns 1 if \(S\) is a dominating set of PE-PCD, and returns 0 otherwise.

PE proximity region is constructed with respect to the standard equilateral triangle \(T_{e}=T(A, B, C)=\) \(T((0,0),(1,0),(1 / 2, \sqrt{3} / 2))\) with expansion parameter \(r \geq 1\) and vertex regions are based on the center \(M=\left(m_{1}, m_{2}\right)\) in Cartesian coordinates or \(M=(\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of \(T_{e}\); default is \(M=(1,1,1)\), i.e., the center of mass of \(T_{e}\) (which is also equivalent to the circumcenter of \(T_{e}\)). Vertices of \(T_{e}\) are also labeled as 1,2 , and 3 , respectively.

See also (Ceyhan (2005); Ceyhan and Priebe (2007); Ceyhan \((2011,2012)\)).

\section*{Usage}

Idom.setPEstd.tri(S, Xp, r, \(M=c(1,1,1))\)

\section*{Arguments}

S

Xp
\(r\)

M

A set of 2D points whose PE proximity regions are considered.
A set of 2D points which constitutes the vertices of the PE-PCD.
A positive real number which serves as the expansion parameter in PE proximity region in the standard equilateral triangle \(T_{e}=T((0,0),(1,0),(1 / 2, \sqrt{3} / 2))\); must be \(\geq 1\).

A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates which serves as a center in the interior of the standard equilateral triangle \(T_{e}\); default is \(M=(1,1,1)\) i.e. the center of mass of \(T_{e}\).

\section*{Value}
\(I(\mathrm{~S}\) a dominating set of PE-PCD) for S in the standard equilateral triangle, that is, returns 1 if S is a dominating set of PE-PCD, and returns 0 otherwise, where PE proximity region is constructed in the standard equilateral triangle \(T_{e}\).

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2011). "Spatial Clustering Tests Based on Domination Number of a New Random Digraph Family." Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

Ceyhan E (2012). "An investigation of new graph invariants related to the domination number of random proximity catch digraphs." Methodology and Computing in Applied Probability, 14(2), 299-334.

Ceyhan E, Priebe CE (2007). "On the Distribution of the Domination Number of a New Family of Parametrized Random Digraphs." Model Assisted Statistics and Applications, 1(4), 231-255.

\section*{See Also}

Idom.setPEtri and Idom.setCSstd.tri

\section*{Examples}
```

A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C);
n<-10
set.seed(1)
Xp<-runif.std.tri(n)$gen.points
M<-as.numeric(runif.std.tri(1)$g) \#try also M<-c(.6,.2)
r<-1.5
S<-rbind(Xp[1,],Xp[2,])
Idom.setPEstd.tri(S,Xp,r,M)
S<-rbind(Xp[1,],Xp[2,],Xp[3,],Xp[5,],c(.2,.5))
Idom.setPEstd.tri(S,Xp[3,],r,M)

``` for Proportional Edge Proximity Catch Digraphs (PE-PCDs) - one triangle case

\section*{Description}

Returns \(I\) (S a dominating set of PE-PCD whose vertices are the data set Xp), that is, returns 1 if S is a dominating set of PE-PCD, and returns 0 otherwise.
PE proximity region is constructed with respect to the triangle tri with the expansion parameter \(r \geq 1\) and vertex regions are based on the center \(M=\left(m_{1}, m_{2}\right)\) in Cartesian coordinates or \(M=\) \((\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of the triangle tri or based on the circumcenter of tri; default is \(M=(1,1,1)\), i.e., the center of mass of tri. The triangle \(\operatorname{tri}=T(A, B, C)\) has edges \(A B, B C, A C\) which are also labeled as edges 3,1 , and 2 , respectively.
See also (Ceyhan (2005); Ceyhan and Priebe (2007); Ceyhan (2011, 2012)).

\section*{Usage}

Idom.setPEtri(S, Xp, tri, r, M = c(1, 1, 1))

\section*{Arguments}

S A set of 2D points which is to be tested for being a dominating set for the PEPCDs.

Xp A set of 2D points which constitute the vertices of the PE-PCD.
tri A \(3 \times 2\) matrix with each row representing a vertex of the triangle.
\(r \quad\) A positive real number which serves as the expansion parameter in PE proximity region constructed in the triangle tri; must be \(\geq 1\).
M
A 2D point in Cartesian coordinates or a 3 D point in barycentric coordinates which serves as a center in the interior of the triangle tri or the circumcenter of tri which may be entered as "CC" as well; default is \(M=(1,1,1)\), i.e., the center of mass of tri.

\section*{Value}
\(I(\mathrm{~S}\) a dominating set of PE-PCD), that is, returns 1 if S is a dominating set of PE-PCD whose vertices are the data points in Xp ; and returns 0 otherwise, where PE proximity region is constructed in the triangle tri.

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2011). "Spatial Clustering Tests Based on Domination Number of a New Random Digraph Family." Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

Ceyhan E (2012). "An investigation of new graph invariants related to the domination number
of random proximity catch digraphs." Methodology and Computing in Applied Probability, 14(2), 299-334.

Ceyhan E, Priebe CE (2007). "On the Distribution of the Domination Number of a New Family of Parametrized Random Digraphs." Model Assisted Statistics and Applications, 1(4), 231-255.

\section*{See Also}

Idom.setPEstd.tri, IarcPEset2pnt.tri, Idom.setCStri, and Idom.setAStri

\section*{Examples}
```

A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
n<-10
set.seed(1)
Xp<-runif.tri(n,Tr)$gen.points
M<-as.numeric(runif.tri(1,Tr)$g) \#try also M<-c(1.6,1.0)
r<-1.5
S<-rbind(Xp[1,],Xp[2,])
Idom.setPEtri(S,Xp,Tr,r,M)
S<-rbind(Xp[1,],Xp[2,],Xp[3,],Xp[5,])
Idom.setPEtri(S,Xp,Tr,r,M)
S<-rbind(c(.1,.1),c(.3,.4),c(.5,.3))
Idom.setPEtri(S, Xp,Tr,r,M)

```
in.circle \(\quad\) Check whether a point is inside a circle

\section*{Description}

Checks if the point \(p\) lies in the circle with center cent and radius rad, denoted as \(C\) (cent, rad). So, it returns 1 or TRUE if p is inside the circle, and 0 otherwise.
boundary is a logical argument (default=FALSE) to include boundary or not, so if it is TRUE, the function checks if the point, \(p\), lies in the closure of the circle (i.e., interior and boundary combined) else it checks if \(p\) lies in the interior of the circle.

\section*{Usage}
in.circle(p, cent, rad, boundary = TRUE)

\section*{Arguments}
p
cent
rad A positive real number which serves as the radius of the circle.
boundary A logical parameter (default=TRUE) to include boundary or not, so if it is TRUE, the function checks if the point, \(p\), lies in the closure of the circle (i.e., interior and boundary combined); else, it checks if p lies in the interior of the circle.

\section*{Value}

Indicator for the point \(p\) being inside the circle or not, i.e., returns 1 or TRUE if \(p\) is inside the circle, and 0 otherwise.

\section*{Author(s)}

Elvan Ceyhan

\section*{See Also}
in.triangle, in.tetrahedron, and on.convex. hull from the interp package for documentation for in. convex. hull

\section*{Examples}
```

cent<-c(1,1); rad<-1; p<-c(1.4,1.2)
\#try also cent<-runif(2); rad<-runif(1); p<-runif(2);
in.circle(p,cent,rad)
p<-c(.4,-.2)
in.circle(p,cent,rad)
p<-c(1,0)
in.circle(p,cent,rad)
in.circle(p,cent,rad,boundary=FALSE)

```

\section*{Description}

Checks if the point p lies in the tetrahedron, th, using the barycentric coordinates, generally denoted as \((\alpha, \beta, \gamma)\). If all (normalized or non-normalized) barycentric coordinates are positive then the point \(p\) is inside the tetrahedron, if all are nonnegative with one or more are zero, then \(p\) falls on the boundary. If some of the barycentric coordinates are negative, then \(p\) falls outside the tetrahedron.
boundary is a logical argument (default=FALSE) to include boundary or not, so if it is TRUE, the function checks if the point, \(p\), lies in the closure of the tetrahedron (i.e., interior and boundary combined) else it checks if \(p\) lies in the interior of the tetrahedron.

\section*{Usage}
in.tetrahedron(\(p\), th, boundary \(=\) TRUE \()\)

\section*{Arguments}
\(\mathrm{p} \quad\) A 3D point to be checked whether it is inside the tetrahedron or not.
th A \(4 \times 3\) matrix with each row representing a vertex of the tetrahedron.
boundary A logical parameter (default=TRUE) to include boundary or not, so if it is TRUE, the function checks if the point, \(p\), lies in the closure of the tetrahedron (i.e., interior and boundary combined); else, it checks if \(p\) lies in the interior of the tetrahedron.

\section*{Value}

A list with two elements
in.tetra A logical output, if the point, \(p\), is inside the tetrahedron, th, it is TRUE, else it is FALSE.
barycentric The barycentric coordinates of the point p with respect to the tetrahedron, th.

\section*{Author(s)}

Elvan Ceyhan

\section*{See Also}
in.triangle

\section*{Examples}
```

A<-c(0,0,0); B<-c(1,0,0); C<-c(1/2,sqrt(3)/2,0);
D<-c(1/2,sqrt(3)/6,sqrt(6)/3); P<-c(.1,.1,.1)
tetra<-rbind(A,B,C,D)
in.tetrahedron(P,tetra,boundary = FALSE)
in.tetrahedron(C,tetra)
in.tetrahedron(C,tetra,boundary = FALSE)

```
```

n1<-5; n2<-5; n<-n1+n2
Xp<-rbind(cbind(runif(n1),runif(n1,0,sqrt(3)/2),runif(n1,0,sqrt(6)/3)),
runif.tetra(n2,tetra)$g)
in.tetra<-vector()
for (i in 1:n)
{in.tetra<-c(in.tetra,in.tetrahedron(Xp[i,],tetra,boundary = TRUE)$in.tetra) }
in.tetra
dat.tet<-Xp[in.tetra,]
if (is.vector(dat.tet)) {dat.tet<-matrix(dat.tet,nrow=1)}
Xlim<-range(tetra[,1],Xp[,1])
Ylim<-range(tetra[,2],Xp[,2])
Zlim<-range(tetra[,3],Xp[,3])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
zd<-Zlim[2]-Zlim[1]
plot3D::scatter3D(Xp[,1],Xp[,2],Xp[,3], phi=40,theta=40,
bty = "g", pch = 20, cex = 1,
ticktype="detailed",xlim=Xlim+xd*c(-.05,.05),
ylim=Ylim+yd*c(-.05,.05),zlim=Zlim+zd*c(-.05,.05))
\#add the vertices of the tetrahedron
plot3D::points3D(tetra[,1],tetra[,2],tetra[,3], add=TRUE)
plot3D::points3D(dat.tet[,1],dat.tet[,2],dat.tet[,3],pch=4, add=TRUE)
L<-rbind(A,A,A,B,B,C); R<-rbind(B,C,D,C,D,D)
plot3D::segments3D(L[,1], L[,2], L[,3], R[,1], R[,2],R[,3], add=TRUE,lwd=2)
plot3D::text3D(tetra[,1],tetra[, 2],tetra[,3],
labels=c("A","B","C","D"), add=TRUE)
in.tetrahedron(P,tetra) \#this works fine

```

\section*{Description}

Checks if all the data points in the 2 D data set, Xp , lie in the triangle, tri, using the barycentric coordinates, generally denoted as \((\alpha, \beta, \gamma)\).

If all (normalized or non-normalized) barycentric coordinates of a point are positive then the point is inside the triangle, if all are nonnegative with one or more are zero, then the point falls in the boundary. If some of the barycentric coordinates are negative, then the point falls outside the triangle.
boundary is a logical argument (default=TRUE) to include boundary or not, so if it is TRUE, the function checks if a point lies in the closure of the triangle (i.e., interior and boundary combined); else, it checks if the point lies in the interior of the triangle.

\section*{Usage}
in.tri.all(Xp, tri, boundary = TRUE)

\section*{Arguments}

Xp A set of 2D points representing the set of data points.
tri A \(3 \times 2\) matrix with each row representing a vertex of the triangle.
boundary A logical parameter (default=FALSE) to include boundary or not, so if it is TRUE, the function checks if a point lies in the closure of the triangle (i.e., interior and boundary combined) else it checks if the point lies in the interior of the triangle.

\section*{Value}

A logical output, if all data points in Xp are inside the triangle, tri, the output is TRUE, else it is FALSE.

\section*{Author(s)}

Elvan Ceyhan

\section*{See Also}
in. triangle and on. convex. hull from the interp package for documentation for in. convex. hull

\section*{Examples}
```

A<-c(1,1); B<-c(2,0); C<-c(1.5,2); p<-c(1.4,1.2)
Tr<-rbind(A,B,C)
in.tri.all(p,Tr)
\#for the vertex A
in.tri.all(A,Tr)
in.tri.all(A,Tr,boundary = FALSE)
\#for a point on the edge AB
D3<-(A+B)/2
in.tri.all(D3,Tr)
in.tri.all(D3,Tr,boundary = FALSE)
\#data set
n<-10
Xp<-cbind(runif(n),runif(n))
in.tri.all(Xp,Tr,boundary = TRUE)

```
```

Xp<-runif.std.tri(n)$gen.points
in.tri.all(Xp,Tr)
in.tri.all(Xp,Tr,boundary = FALSE)
Xp<-runif.tri(n,Tr)$g
in.tri.all(Xp,Tr)
in.tri.all(Xp,Tr,boundary = FALSE)

```
```

in.triangle Check whether a point is inside a triangle

```

\section*{Description}

Checks if the point p lies in the triangle, tri, using the barycentric coordinates, generally denoted as \((\alpha, \beta, \gamma)\).

If all (normalized or non-normalized) barycentric coordinates are positive then the point p is inside the triangle, if all are nonnegative with one or more are zero, then \(p\) falls in the boundary. If some of the barycentric coordinates are negative, then \(p\) falls outside the triangle.
boundary is a logical argument (default=TRUE) to include boundary or not, so if it is TRUE, the function checks if the point, \(p\), lies in the closure of the triangle (i.e., interior and boundary combined); else, it checks if \(p\) lies in the interior of the triangle.

\section*{Usage}
in.triangle(p, tri, boundary = TRUE)

\section*{Arguments}
\[
\begin{array}{ll}
\mathrm{p} & \text { A 2D point to be checked whether it is inside the triangle or not. } \\
\text { tri } & \text { A } 3 \times 2 \text { matrix with each row representing a vertex of the triangle. } \\
\text { boundary } & \begin{array}{l}
\text { A logical parameter (default=TRUE) to include boundary or not, so if it is TRUE, } \\
\text { the function checks if the point, } \mathrm{p}, \text { lies in the closure of the triangle (i.e., interior } \\
\text { and boundary combined); else, it checks if } \mathrm{p} \text { lies in the interior of the triangle. }
\end{array}
\end{array}
\]

\section*{Value}

A list with two elements
in.tri A logical output, it is TRUE, if the point, \(p\), is inside the triangle, tri, else it is FALSE.
barycentric The barycentric coordinates \((\alpha, \beta, \gamma)\) of the point p with respect to the triangle, tri.

\section*{Author(s)}

Elvan Ceyhan

\section*{See Also}
in. tri.all and on. convex. hull from the interp package for documentation for in. convex. hull

\section*{Examples}
```

A<-c(1,1); B<-c(2,0); C<-c(1.5,2); p<-c(1.4,1.2)
Tr<-rbind(A,B,C)
in.triangle(p,Tr)
p<-c(.4,-.2)
in.triangle(p,Tr)
\#for the vertex A
in.triangle(A,Tr)
in.triangle(A,Tr,boundary = FALSE)
\#for a point on the edge AB
D3<-(A+B)/2
in.triangle(D3,Tr)
in.triangle(D3,Tr,boundary = FALSE)
\#for a NA entry point
p<-c(NA,.2)
in.triangle(p,Tr)

```
\begin{tabular}{ll}
inci.matAS & Incidence matrix for Arc Slice Proximity Catch Digraphs (AS-PCDs) \\
- multiple triangle case
\end{tabular}

\section*{Description}

Returns the incidence matrix for the AS-PCD whose vertices are a given 2D numerical data set, Xp , in the convex hull of \(Y p\) which is partitioned by the Delaunay triangles based on \(Y p\) points.
AS proximity regions are defined with respect to the Delaunay triangles based on Yp points and vertex regions are based on the center \(\mathrm{M}=\) " CC " for circumcenter of each Delaunay triangle or \(M=\) \((\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of each Delaunay triangle; default is \(\mathrm{M}={ }^{\prime} \mathrm{CC}^{\prime \prime}\) i.e., circumcenter of each triangle.
Each Delaunay triangle is first converted to an (nonscaled) basic triangle so that \(M\) will be the same type of center for each Delaunay triangle (this conversion is not necessary when M is \(C M\)).

Convex hull of \(Y p\) is partitioned by the Delaunay triangles based on Yp points (i.e., multiple triangles are the set of these Delaunay triangles whose union constitutes the convex hull of Yp points). For the incidence matrix loops are allowed, so the diagonal entries are all equal to 1 .
See (Ceyhan (2005, 2010)) for more on AS-PCDs. Also see (Okabe et al. (2000); Ceyhan (2010); Sinclair (2016)) for more on Delaunay triangulation and the corresponding algorithm.

\section*{Usage}
inci.matAS(Xp, Yp, \(M=\) "CC")

\section*{Arguments}

Xp A set of 2D points which constitute the vertices of the AS-PCD.
Yp A set of 2D points which constitute the vertices of the Delaunay triangles.
M The center of the triangle. "CC" stands for circumcenter of each Delaunay triangle or 3D point in barycentric coordinates which serves as a center in the interior of each Delaunay triangle; default is \(M={ }^{\prime \prime} C C\) " i.e., the circumcenter of each triangle.

\section*{Value}

Incidence matrix for the AS-PCD whose vertices are the 2 D data set, Xp , and AS proximity regions are defined in the Delaunay triangles based on Yp points.

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). "An investigation of new graph invariants related to the domination number of random proximity catch digraphs." Methodology and Computing in Applied Probability, 14(2), 299-334.

Okabe A, Boots B, Sugihara K, Chiu SN (2000). Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. Wiley, New York.

Sinclair D (2016). "S-hull: a fast radial sweep-hull routine for Delaunay triangulation." 1604.01428.

\section*{See Also}
inci.matAStri, inci.matPE, and inci.matCS

\section*{Examples}
```

\#nx is number of X points (target) and ny is number of }Y\mathrm{ points (nontarget)
nx<-15; ny<-5; \#try also nx<-40; ny<-10 or nx<-1000; ny<-10;
set.seed(1)
Xp<-cbind(runif(nx,0,1),runif(nx,0,1))
Yp<-cbind(runif(ny,0,.25),runif(ny,0,.25))+cbind(c(0,0,0.5,1,1),c(0,1,.5,0,1))
\#try also Yp<-cbind(runif(ny,0,1),runif(ny,0,1))
M<-"CC" \#try also M<-c(1,1,1)
IM<-inci.matAS(Xp,Yp,M)
IM
dom.num.greedy(IM) \#try also dom.num.exact(IM) \#this might take a long time for large nx
IM<-inci.matAS(Xp,Yp[1:3,],M)
inci.matAS(Xp,rbind(Yp,Yp))

```
inci.matAStri

Incidence matrix for Arc Slice Proximity Catch Digraphs (AS-PCDs) - one triangle case

\section*{Description}

Returns the incidence matrix of the AS-PCD whose vertices are the given 2D numerical data set, \(\mathrm{X} p\), in the triangle \(\operatorname{tri}=T(v=1, v=2, v=3)\).
AS proximity regions are defined with respect to the triangle \(\operatorname{tri}=T(v=1, v=2, v=3)\) and vertex regions are based on the center, \(M=\left(m_{1}, m_{2}\right)\) in Cartesian coordinates or \(M=(\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of the triangle tri or based on circumcenter of tri; default is \(M=" C C\) ", i.e., circumcenter of tri. Loops are allowed, so the diagonal entries are all equal to 1 .
See also (Ceyhan \((2005,2010)\)).

\section*{Usage}
inci.matAStri(Xp, tri, M = "CC")

\section*{Arguments}

Xp A set of 2D points which constitute the vertices of AS-PCD.
tri Three 2D points, stacked row-wise, each row representing a vertex of the triangle.
M The center of the triangle. "CC" stands for circumcenter of the triangle tri or a 2D point in Cartesian coordinates or a 3D point in barycentric coordinates which serves as a center in the interior of tri; default is \(M=\) "CC" i.e., the circumcenter of tri.

Value
Incidence matrix for the AS-PCD whose vertices are the 2 D data set, Xp , and AS proximity regions are defined with respect to the triangle tri and vertex regions based on the center \(M\).

\section*{Author(s)}

\author{
Elvan Ceyhan
}

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). "An investigation of new graph invariants related to the domination number of random proximity catch digraphs." Methodology and Computing in Applied Probability, 14(2), 299-334.

\section*{See Also}
```

inci.matAS, inci.matPEtri, and inci.matCStri

```

\section*{Examples}
```

A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
n<-10
set.seed(1)
Xp<-runif.tri(n,Tr)$g
M<-as.numeric(runif.tri(1,Tr)$g) \#try also M<-c(1.6,1.2)
IM<-inci.matAStri(Xp,Tr,M)
IM
dom.num.greedy(IM)
dom.num.exact(IM)

```
inci.matCS Incidence matrix for Central Similarity Proximity Catch Digraphs (CS-PCDs) - multiple triangle case

\section*{Description}

Returns the incidence matrix of Central Similarity Proximity Catch Digraph (CS-PCD) whose vertices are the data points in Xp in the multiple triangle case.
CS proximity regions are defined with respect to the Delaunay triangles based on Yp points with expansion parameter \(t>0\) and edge regions in each triangle are based on the center \(M=(\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of each Delaunay triangle (default for \(M=(1,1,1)\) which is the center of mass of the triangle). Each Delaunay triangle is first converted to an (nonscaled) basic triangle so that \(M\) will be the same type of center for each Delaunay triangle (this conversion is not necessary when M is \(C M\)).

Convex hull of \(Y p\) is partitioned by the Delaunay triangles based on Yp points (i.e., multiple triangles are the set of these Delaunay triangles whose union constitutes the convex hull of Yp points). For the incidence matrix loops are allowed, so the diagonal entries are all equal to 1 .
See (Ceyhan (2005); Ceyhan et al. (2007); Ceyhan (2014)) for more on CS-PCDs. Also see (Okabe et al. (2000); Ceyhan (2010); Sinclair (2016)) for more on Delaunay triangulation and the corresponding algorithm.

\section*{Usage}
inci.matCS(Xp, Yp, t, M = c(1, 1, 1))

\section*{Arguments}

Xp A set of 2D points which constitute the vertices of the CS-PCD.
Yp A set of 2D points which constitute the vertices of the Delaunay triangles.
\(t \quad\) A positive real number which serves as the expansion parameter in CS proximity region.

M
A 3D point in barycentric coordinates which serves as a center in the interior of each Delaunay triangle, default for \(M=(1,1,1)\) which is the center of mass of each triangle.

\section*{Value}

Incidence matrix for the CS-PCD with vertices being 2D data set, Xp. CS proximity regions are constructed with respect to the Delaunay triangles and M-edge regions.

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2014). "Comparison of Relative Density of Two Random Geometric Digraph Families in Testing Spatial Clustering." TEST, 23(1), 100-134.

Ceyhan E, Priebe CE, Marchette DJ (2007). "A new family of random graphs for testing spatial segregation." Canadian Journal of Statistics, 35(1), 27-50.

Okabe A, Boots B, Sugihara K, Chiu SN (2000). Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. Wiley, New York.

Sinclair D (2016). "S-hull: a fast radial sweep-hull routine for Delaunay triangulation." 1604.01428.

\section*{See Also}
inci.matCStri, inci.matCSstd.tri, inci.matAS, and inci.matPE

\section*{Examples}
```

\#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-20; ny<-5; \#try also nx<-40; ny<-10 or nx<-1000; ny<-10;
set.seed(1)
Xp<-cbind(runif(nx,0,1),runif(nx,0,1))
Yp<-cbind(runif(ny,0,.25),runif(ny,0,.25))+cbind(c(0,0,0.5,1,1),c(0,1,.5,0,1))
\#try also Yp<-cbind(runif(ny,0,1),runif(ny,0,1))
M<-c(1,1,1) \#try also M<-c(1,2,3)
t<-1.5 \#try also t<-2
IM<-inci.matCS(Xp,Yp,t,M)
IM
dom.num.greedy(IM) \#try also dom.num.exact(IM) \#takes a very long time for large nx, try smaller nx
Idom.num.up.bnd(IM,3) \#takes a very long time for large nx, try smaller nx

```

\section*{Description}

Returns the incidence matrix for the CS-PCD for a given 1D numerical data set, Xp , as the vertices of the digraph and \(Y p\) determines the end points of the intervals (in the multi-interval case). If there are duplicates of \(Y p\) points, only one point is retained for each duplicate value, and a warning message is printed. Loops are allowed, so the diagonal entries are all equal to 1.
CS proximity region is constructed with an expansion parameter \(t>0\) and a centrality parameter \(c \in(0,1)\).
See also (Ceyhan (2016)).

\section*{Usage}
inci.matCS1D(Xp, Yp, \(t, c=0.5)\)

\section*{Arguments}
\(\mathrm{Xp} \quad\) a set of 1D points which constitutes the vertices of the digraph.
Yp a set of 1D points which constitutes the end points of the intervals that partition the real line.
\(t \quad\) A positive real number which serves as the expansion parameter in CS proximity region.
c A positive real number in \((0,1)\) parameterizing the center inside middle intervals with the default \(\mathrm{c}=.5\). For the interval, int \(=(a, b)\), the parameterized center is \(M_{c}=a+c(b-a)\).

\section*{Value}

Incidence matrix for the CS-PCD with vertices being 1D data set, \(X p\), and \(Y p\) determines the end points of the intervals (the multi-interval case)

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2016). "Density of a Random Interval Catch Digraph Family and its Use for Testing Uniformity." REVSTAT, 14(4), 349-394.

\section*{See Also}
inci.matCS1D, inci.matPEtri, and inci.matPE

\section*{Examples}
\[
\begin{aligned}
& \mathrm{t}<-2 \\
& \mathrm{c}<-.4 \\
& \mathrm{a}<-0 ; \mathrm{b}<-10 ; \\
& \mathrm{nx}<-10 ; \mathrm{ny}<-4
\end{aligned}
\]
```

set.seed(1)
Xp<-runif(nx,a,b)
Yp<-runif(ny,a,b)
IM<-inci.matCS1D(Xp,Yp, t, c)
IM
dom.num.greedy(IM)
dom.num.exact(IM) \#might take a long time depending on nx
Idom.num.up.bnd(IM, 5)
Arcs<-arcsCS1D(Xp,Yp, t, c)
Arcs
summary(Arcs)
plot(Arcs)
inci.matCS1D(Xp,Yp+10,t,c)
t<-2
c<-.4
a<-0; b<-10;
\#nx is number of X points (target) and ny is number of }Y\mathrm{ points (nontarget)
nx<-20; ny<-4; \#try also nx<-40; ny<-10 or nx<-1000; ny<-10;
Xp<-runif(nx,a,b)
Yp<-runif(ny,a,b)
inci.matCS1D(Xp,Yp,t,c)

```
inci.matCSint Incidence matrix for Central Similarity Proximity Catch Digraphs
(CS-PCDs) for \(1 D\) data - one interval case

\section*{Description}

Returns the incidence matrix for the CS-PCD for a given 1D numerical data set, Xp , as the vertices of the digraph and int determines the end points of the interval (in the one interval case). Loops are allowed, so the diagonal entries are all equal to 1 .
CS proximity region is constructed with an expansion parameter \(t>0\) and a centrality parameter \(c \in(0,1)\).

See also (Ceyhan (2016)).

\section*{Usage}
inci.matCSint(Xp, int, t, \(c=0.5)\)

\section*{Arguments}

Xp
int
t

C
a set of 1D points which constitutes the vertices of the digraph.
A vector of two real numbers representing an interval.
A positive real number which serves as the expansion parameter in CS proximity region.
A positive real number in \((0,1)\) parameterizing the center inside middle intervals with the default \(\mathrm{c}=.5\). For the interval, int \(=(a, b)\), the parameterized center is \(M_{c}=a+c(b-a)\).

\section*{Value}

Incidence matrix for the CS-PCD with vertices being 1D data set, \(X p\), and int determines the end points of the intervals (in the one interval case)

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2016). "Density of a Random Interval Catch Digraph Family and its Use for Testing Uniformity." REVSTAT, 14(4), 349-394.

\section*{See Also}
inci.matCS1D, inci.matPE1D, inci.matPEtri, and inci.matPE

\section*{Examples}
```

c<-.4
t<-1
a<-0; b<-10; int<-c(a,b)
xf<-(int[2]-int[1])*. }
set.seed(123)
n<-10
Xp<-runif(n,a-xf,b+xf)
IM<-inci.matCSint(Xp,int,t,c)
IM
dom.num.greedy(IM)
Idom.num.up.bnd(IM,3)
dom.num.exact(IM)
inci.matCSint(Xp,int+10,t,c)

```

\section*{Description}

Returns the incidence matrix for the CS-PCD whose vertices are the given 2D numerical data set, Xp , in the standard equilateral triangle \(T_{e}=T(v=1, v=2, v=3)=T((0,0),(1,0),(1 / 2, \sqrt{3} / 2))\).
CS proximity region is defined with respect to the standard equilateral triangle \(T_{e}=T(v=1, v=\) \(2, v=3)=T((0,0),(1,0),(1 / 2, \sqrt{3} / 2))\) and edge regions are based on the center \(M=\left(m_{1}, m_{2}\right)\) in Cartesian coordinates or \(M=(\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of \(T_{e}\); default is \(M=(1,1,1)\) i.e., the center of mass of \(T_{e}\). Loops are allowed, so the diagonal entries are all equal to 1 .
See also (Ceyhan (2005); Ceyhan et al. (2007); Ceyhan (2014)).

\section*{Usage}
inci.matCSstd.tri(Xp, \(t, M=c(1,1,1))\)

\section*{Arguments}

Xp A set of 2D points which constitute the vertices of the CS-PCD.
\(\mathrm{t} \quad\) A positive real number which serves as the expansion parameter in CS proximity region.

M
A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates. which serves as a center in the interior of the standard equilateral triangle \(T_{e}\); default is \(M=(1,1,1)\) i.e. the center of mass of \(T_{e}\).

\section*{Value}

Incidence matrix for the CS-PCD with vertices being 2D data set, Xp and CS proximity regions are defined in the standard equilateral triangle \(T_{e}\) with M-edge regions.

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2014). "Comparison of Relative Density of Two Random Geometric Digraph Families in Testing Spatial Clustering." TEST, 23(1), 100-134.

Ceyhan E, Priebe CE, Marchette DJ (2007). "A new family of random graphs for testing spatial segregation." Canadian Journal of Statistics, 35(1), 27-50.

\section*{See Also}
inci.matCStri, inci.matCS and inci.matPEstd.tri

\section*{Examples}
```

A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C);
n<-10
set.seed(1)
Xp<-runif.std.tri(n)$gen.points
M<-as.numeric(runif.std.tri(1)$g) \#try also M<-c(.6,.2)
inc.mat<-inci.matCSstd.tri(Xp,t=1.25,M)
inc.mat
sum(inc.mat)-n
num.arcsCSstd.tri(Xp,t=1.25)
dom.num.greedy(inc.mat) \#try also dom.num.exact(inc.mat) \#might take a long time for large n
Idom.num.up.bnd(inc.mat,1)

```
inci.matCStri Incidence matrix for Central Similarity Proximity Catch Digraphs (CS-PCDs) - one triangle case

\section*{Description}

Returns the incidence matrix for the CS-PCD whose vertices are the given 2D numerical data set, \(\mathrm{X} p\), in the triangle \(\operatorname{tri}=T(v=1, v=2, v=3)\).
CS proximity regions are constructed with respect to triangle tri with expansion parameter \(t>0\) and edge regions are based on the center \(M=\left(m_{1}, m_{2}\right)\) in Cartesian coordinates or \(M=(\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of the triangle tri; default is \(M=(1,1,1)\) i.e., the center of mass of tri. Loops are allowed, so the diagonal entries are all equal to 1 .

See also (Ceyhan (2005); Ceyhan et al. (2007); Ceyhan (2014)).

\section*{Usage}
inci.matCStri (Xp, tri, t, \(M=c(1,1,1))\)

\section*{Arguments}

Xp
tri
t

M

A set of 2D points which constitute the vertices of CS-PCD.
A \(3 \times 2\) matrix with each row representing a vertex of the triangle.
\(t \quad\) A positive real number which serves as the expansion parameter in CS proximity region.

A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates which serves as a center in the interior of the triangle tri; default is \(M=\) \((1,1,1)\) i.e., the center of mass of tri.

\section*{Value}

Incidence matrix for the CS-PCD with vertices being 2 D data set, Xp , in the triangle tri with edge regions based on center \(M\)

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2014). "Comparison of Relative Density of Two Random Geometric Digraph Families in Testing Spatial Clustering." TEST, 23(1), 100-134.

Ceyhan E, Priebe CE, Marchette DJ (2007). "A new family of random graphs for testing spatial segregation." Canadian Journal of Statistics, 35(1), 27-50.

\section*{See Also}
inci.matCS, inci.matPEtri, and inci.matAStri

\section*{Examples}
```

A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
n<-10
set.seed(1)
Xp<-runif.tri(n,Tr)$g
M<-as.numeric(runif.tri(1,Tr)$g) \#try also M<-c(1.6,1.0)
IM<-inci.matCStri(Xp,Tr,t=1.25,M)
IM

```
```

dom.num.greedy(IM) \#try also dom.num.exact(IM)
Idom.num.up.bnd(IM,3)
inci.matCStri(Xp,Tr,t=1.5,M)

```
```

inci.matPE Incidence matrix for Proportional Edge Proximity Catch Digraphs

```
 (PE-PCDs) - multiple triangle case

\section*{Description}

Returns the incidence matrix of Proportional Edge Proximity Catch Digraph (PE-PCD) whose vertices are the data points in \(X p\) in the multiple triangle case.
PE proximity regions are defined with respect to the Delaunay triangles based on Yp points with expansion parameter \(r \geq 1\) and vertex regions in each triangle are based on the center \(M=(\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of each Delaunay triangle or based on circumcenter of each Delaunay triangle (default for \(M=(1,1,1)\) which is the center of mass of the triangle).
Convex hull of \(Y p\) is partitioned by the Delaunay triangles based on \(Y p\) points (i.e., multiple triangles are the set of these Delaunay triangles whose union constitutes the convex hull of Yp points). For the incidence matrix loops are allowed, so the diagonal entries are all equal to 1 .

See (Ceyhan (2005); Ceyhan et al. (2006); Ceyhan (2011)) for more on the PE-PCDs. Also, see (Okabe et al. (2000); Ceyhan (2010); Sinclair (2016)) for more on Delaunay triangulation and the corresponding algorithm.

\section*{Usage}
inci.matPE(Xp, Yp, \(r, M=c(1,1,1))\)

\section*{Arguments}

Xp A set of 2D points which constitute the vertices of the PE-PCD.
Yp A set of 2D points which constitute the vertices of the Delaunay triangles.
\(r \quad\) A positive real number which serves as the expansion parameter in PE proximity region; must be \(\geq 1\).

M
A 3D point in barycentric coordinates which serves as a center in the interior of each Delaunay triangle or circumcenter of each Delaunay triangle (for this, argument should be set as \(M=\) "CC"), default for \(M=(1,1,1)\) which is the center of mass of each triangle.

\section*{Value}

Incidence matrix for the PE-PCD with vertices being 2D data set, Xp. PE proximity regions are constructed with respect to the Delaunay triangles and \(M\)-vertex regions.

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2011). "Spatial Clustering Tests Based on Domination Number of a New Random Digraph Family." Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

Ceyhan E, Priebe CE, Wierman JC (2006). "Relative density of the random \(r\)-factor proximity catch digraphs for testing spatial patterns of segregation and association." Computational Statistics \& Data Analysis, 50(8), 1925-1964.

Okabe A, Boots B, Sugihara K, Chiu SN (2000). Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. Wiley, New York.

Sinclair D (2016). "S-hull: a fast radial sweep-hull routine for Delaunay triangulation." 1604.01428.

\section*{See Also}
inci.matPEtri, inci.matPEstd.tri, inci.matAS, and inci.matCS

\section*{Examples}
```

nx<-20; ny<-5; \#try also nx<-40; ny<-10 or nx<-1000; ny<-10;
set.seed(1)
Xp<-cbind(runif(nx,0,1),runif(nx,0,1))
Yp<-cbind(runif(ny,0,.25),
runif(ny,0,.25))+cbind(c(0,0,0.5,1,1),c(0,1,.5,0,1))
\#try also Yp<-cbind(runif(ny,0,1),runif(ny,0,1))
M<-c(1,1,1) \#try also M<-c(1,2,3)
r<-1.5 \#try also r<-2
IM<-inci.matPE(Xp,Yp,r,M)
IM
dom.num.greedy(IM)
\#try also dom.num.exact(IM)
\#might take a long time in this brute-force fashion ignoring the
\#disconnected nature of the digraph inherent by the geometric construction of it

```
```

inci.matPE1D Incidence matrix for Proportional-Edge Proximity Catch Digraphs

```
 (PE-PCDs) for \(1 D\) data - multiple interval case

\section*{Description}

Returns the incidence matrix for the PE-PCD for a given 1D numerical data set, Xp , as the vertices of the digraph and \(Y p\) determines the end points of the intervals (in the multi-interval case). If there are duplicates of \(Y p\) points, only one point is retained for each duplicate value, and a warning message is printed. Loops are allowed, so the diagonal entries are all equal to 1.
PE proximity region is constructed with an expansion parameter \(r \geq 1\) and a centrality parameter \(c \in(0,1)\).

See also (Ceyhan (2012)).

\section*{Usage}
inci.matPE1D(Xp, Yp, r, \(c=0.5)\)

\section*{Arguments}

Xp a set of 1D points which constitutes the vertices of the digraph.
Yp a set of 1D points which constitutes the end points of the intervals that partition the real line.
\(r \quad\) A positive real number which serves as the expansion parameter in PE proximity region; must be \(\geq 1\).
c A positive real number in \((0,1)\) parameterizing the center inside middle intervals with the default \(\mathrm{c}=.5\). For the interval, \((a, b)\), the parameterized center is \(M_{c}=\) \(a+c(b-a)\).

\section*{Value}

Incidence matrix for the PE-PCD with vertices being 1D data set, \(X p\), and \(Y p\) determines the end points of the intervals (in the multi-interval case)

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2012). "The Distribution of the Relative Arc Density of a Family of Interval Catch Digraph Based on Uniform Data." Metrika, 75(6), 761-793.

\section*{See Also}
```

inci.matCS1D, inci.matPEtri, and inci.matPE

```

\section*{Examples}
```

r<-2
c<-.4
a<-0; b<-10;
nx<-10; ny<-4
set.seed(1)
Xp<-runif(nx,a,b)
Yp<-runif(ny,a,b)
IM<-inci.matPE1D(Xp,Yp,r, c)
IM
dom.num.greedy(IM)
Idom.num.up.bnd(IM, 6)
dom.num.exact(IM)

```
inci.matPEint Incidence matrix for Proportional-Edge Proximity Catch Digraphs
(PE-PCDs) for \(1 D\) data - one interval case

\section*{Description}

Returns the incidence matrix for the PE-PCD for a given 1D numerical data set, Xp , as the vertices of the digraph and int determines the end points of the interval (in the one interval case). Loops are allowed, so the diagonal entries are all equal to 1.
PE proximity region is constructed with an expansion parameter \(r \geq 1\) and a centrality parameter \(c \in(0,1)\).
See also (Ceyhan (2012)).

\section*{Usage}
inci.matPEint(Xp, int, \(r, c=0.5)\)

\section*{Arguments}

Xp a set of 1D points which constitutes the vertices of the digraph.
int A vector of two real numbers representing an interval.
\(r \quad\) A positive real number which serves as the expansion parameter in PE proximity region; must be \(\geq 1\).
c
A positive real number in \((0,1)\) parameterizing the center inside middle intervals with the default \(\mathrm{c}=.5\). For the interval, int \(=(a, b)\), the parameterized center is \(M_{c}=a+c(b-a)\).

\section*{Value}

Incidence matrix for the PE-PCD with vertices being 1D data set, Xp , and int determines the end points of the intervals (in the one interval case)

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2012). "The Distribution of the Relative Arc Density of a Family of Interval Catch Digraph Based on Uniform Data." Metrika, 75(6), 761-793.

\section*{See Also}
inci.matCSint, inci.matPE1D, inci.matPEtri, and inci.matPE

\section*{Examples}
```

c<-.4
r<-2
a<-0; b<-10; int<-c(a,b)
xf<-(int[2]-int[1])*. }
set.seed(123)
n<-10
Xp<-runif(n,a-xf,b+xf)
IM<-inci.matPEint(Xp,int,r, c)
IM
dom.num.greedy(IM)
Idom.num.up.bnd(IM,6)
dom.num.exact(IM)
inci.matPEint(Xp,int+10,r,c)

```
inci.matPEstd.tri Incidence matrix for Proportional Edge Proximity Catch Digraphs (PE-PCDs) - standard equilateral triangle case

\section*{Description}

Returns the incidence matrix for the PE-PCD whose vertices are the given 2D numerical data set, Xp , in the standard equilateral triangle \(T_{e}=T(v=1, v=2, v=3)=T((0,0),(1,0),(1 / 2, \sqrt{3} / 2))\).
PE proximity region is constructed with respect to the standard equilateral triangle \(T_{e}\) with expansion parameter \(r \geq 1\) and vertex regions are based on the center \(M=\left(m_{1}, m_{2}\right)\) in Cartesian coordinates or \(M=(\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of \(T_{e}\); default is \(M=(1,1,1)\), i.e., the center of mass of \(T_{e}\). Loops are allowed, so the diagonal entries are all equal to 1 .

See also (Ceyhan \((2005,2010)\)).

\section*{Usage}
inci.matPEstd.tri(Xp, r, M = c(1, 1, 1))

\section*{Arguments}

Xp A set of 2D points which constitute the vertices of the PE-PCD.
\(r \quad\) A positive real number which serves as the expansion parameter in PE proximity region; must be \(\geq 1\).
M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates which serves as a center in the interior of the standard equilateral triangle \(T_{e}\); default is \(M=(1,1,1)\) i.e. the center of mass of \(T_{e}\).

\section*{Value}

Incidence matrix for the PE-PCD with vertices being 2D data set, \(X p\) in the standard equilateral triangle where PE proximity regions are defined with M-vertex regions.

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2011). "Spatial Clustering Tests Based on Domination Number of a New Random Digraph Family." Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

\section*{See Also}
inci.matPEtri, inci.matPE, and inci.matCSstd.tri

\section*{Examples}
```

A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C)
n<-10
set.seed(1)
Xp<-runif.std.tri(n)$gen.points
M<-as.numeric(runif.std.tri(1)$g) \#try also M<-c(.6,.2)
inc.mat<-inci.matPEstd.tri(Xp,r=1.25,M)
inc.mat
sum(inc.mat)-n
num.arcsPEstd.tri(Xp,r=1.25)
dom.num.greedy(inc.mat)
Idom.num.up.bnd(inc.mat,2) \#try also dom.num.exact(inc.mat)

```
inci.matPEtetra Incidence matrix for Proportional Edge Proximity Catch Digraphs
 (PE-PCDs) - one tetrahedron case

\section*{Description}

Returns the incidence matrix for the PE-PCD whose vertices are the given 3D numerical data set, Xp , in the tetrahedron \(t h=T(v=1, v=2, v=3, v=4)\).
PE proximity regions are constructed with respect to tetrahedron th with expansion parameter \(r \geq 1\) and vertex regions are based on the center M which is circumcenter ("CC") or center of mass ("CM") of th with default="CM". Loops are allowed, so the diagonal entries are all equal to 1 .

See also (Ceyhan \((2005,2010)\)).

\section*{Usage}
inci.matPEtetra(Xp, th, r, \(M=\) "CM")

\section*{Arguments}

Xp
th

A set of 3D points which constitute the vertices of PE-PCD.
A \(4 \times 3\) matrix with each row representing a vertex of the tetrahedron.

A positive real number which serves as the expansion parameter in PE proximity region; must be \(\geq 1\).

M
The center to be used in the construction of the vertex regions in the tetrahedron, th. Currently it only takes "CC" for circumcenter and "CM" for center of mass; default="CM".

\section*{Value}

Incidence matrix for the PE-PCD with vertices being 3D data set, \(X p\), in the tetrahedron th with vertex regions based on circumcenter or center of mass

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

\section*{See Also}
```

inci.matPEtri, inci.matPE1D, and inci.matPE

```

\section*{Examples}
```

A<-c(0,0,0); B<-c(1,0,0); C<-c(1/2,sqrt(3)/2,0); D<-c(1/2,sqrt(3)/6,sqrt (6)/3)
tetra<-rbind(A,B,C,D)
n<-5
Xp<-runif.tetra(n,tetra)\$g \#try also Xp<-c(.5,.5,.5)
M<-"CM" \#try also M<-"CC"
r<-1.5
IM<-inci.matPEtetra(Xp,tetra,r=1.25) \#uses the default M="CM"
IM<-inci.matPEtetra(Xp,tetra,r=1.25,M)
IM
dom.num.greedy(IM)
Idom.num.up.bnd(IM, 3) \#try also dom.num.exact(IM) \#this might take a long time for large n

```
inci.matPEtri Incidence matrix for Proportional Edge Proximity Catch Digraphs (PE-PCDs) - one triangle case

\section*{Description}

Returns the incidence matrix for the PE-PCD whose vertices are the given 2D numerical data set, Xp , in the triangle \(\mathrm{tri}=T(v=1, v=2, v=3)\).
PE proximity regions are constructed with respect to triangle tri with expansion parameter \(r \geq\) 1 and vertex regions are based on the center \(M=\left(m_{1}, m_{2}\right)\) in Cartesian coordinates or \(M=\) \((\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of the triangle tri; default is \(M=(1,1,1)\), i.e., the center of mass of tri. Loops are allowed, so the diagonal entries are all equal to 1 .
See also (Ceyhan (2005); Ceyhan et al. (2006); Ceyhan (2011)).

\section*{Usage}
inci.matPEtri(Xp, tri, r, M = c(1, 1, 1))

\section*{Arguments}

Xp A set of 2D points which constitute the vertices of PE-PCD.
tri A \(3 \times 2\) matrix with each row representing a vertex of the triangle.
\(r \quad\) A positive real number which serves as the expansion parameter in PE proximity region; must be \(\geq 1\).
M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates which serves as a center in the interior of the triangle tri or the circumcenter of tri which may be entered as "CC" as well; default is \(M=(1,1,1)\), i.e., the center of mass of tri.

\section*{Value}

Incidence matrix for the PE-PCD with vertices being 2D data set, Xp , in the triangle tri with vertex regions based on center \(M\)

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2011). "Spatial Clustering Tests Based on Domination Number of a New Random Digraph Family." Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

Ceyhan E, Priebe CE, Wierman JC (2006). "Relative density of the random \(r\)-factor proximity catch digraphs for testing spatial patterns of segregation and association." Computational Statistics \& Data Analysis, 50(8), 1925-1964.

\section*{See Also}
```

inci.matPE, inci.matCStri, and inci.matAStri

```

\section*{Examples}
```

A<-c(1,1); B<-c(2,0); C<-C(1.5,2);
Tr<-rbind(A,B,C);
n<-10
set.seed(1)
Xp<-runif.tri(n,Tr)$g
M<-as.numeric(runif.tri(1,Tr)$g) \#try also M<-c(1.6,1.0)
IM<-inci.matPEtri(Xp,Tr,r=1.25,M)
IM
dom.num.greedy(IM) \#try also dom.num.exact(IM)
Idom.num.up.bnd(IM,3)

```

Region index inside the Gamma-1 region

\section*{Description}

Returns the region index of the point p for the 6 regions in standard equilateral triangle \(T_{e}=\) \(T((0,0),(1,0),(1 / 2, \sqrt{3} / 2))\), starting with 1 on the first one-sixth of the triangle, and numbering follows the counter-clockwise direction (see the plot in the examples). These regions are in the inner hexagon which is the Gamma-1 region for CS-PCD with \(t=1\) if p is not in any of the 6 regions the function returns NA.

\section*{Usage}
index.six.Te(p)

\section*{Arguments}
p
A 2D point whose index for the 6 regions in standard equilateral triangle \(T_{e}\) is determined.

\section*{Value}
rel An integer between 1-6 (inclusive) or NA

\section*{Author(s)}

Elvan Ceyhan

\section*{See Also}
runif.std.tri.onesixth

\section*{Examples}
```

P<-c(.4, . 2)
index.six.Te(P)
A<-c(0,0); B<-c(1,0); C<-c(0.5,sqrt(3)/2);
Te<-rbind(A,B,C)
CM<-(A+B+C)/3
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
Ds<-rbind(D1,D2,D3)
h1<-c(1/2,sqrt(3)/18); h2<-c(2/3, sqrt(3)/9); h3<-c(2/3, 2*sqrt(3)/9);
h4<-c(1/2, 5*sqrt(3)/18); h5<-c(1/3, 2*sqrt(3)/9); h6<-c(1/3, sqrt(3)/9);
r1<-(h1+h6+CM)/3;r2<-(h1+h2+CM)/3;r3<-(h2+h3+CM)/3;
r4<-(h3+h4+CM)/3;r5<-(h4+h5+CM)/3;r6<-(h5+h6+CM)/3;
Xlim<-range(Te[,1])
Ylim<-range(Te[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(A,pch=".",xlab="",ylab="",axes=TRUE,xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Te)
L<-Te; R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)
polygon(rbind(h1,h2,h3,h4,h5,h6))
txt<-rbind(h1,h2,h3,h4,h5,h6)
xc<-txt[, 1]+c(-.02,.02,.02,0,0,0)
yc<-txt[, 2]+c(.02,.02,.02,0,0,0)
txt.str<-c("h1","h2", "h3", "h4", "h5", "h6")
text(xc,yc,txt.str)
txt<-rbind(Te,CM,r1,r2,r3,r4,r5,r6)
xc<-txt[,1]+c(-.02,.02,.02,0,0,0,0,0,0,0)
yc<-txt[,2]+c(.02,.02,.02,0,0,0,0,0,0,0)
txt.str<-c("A", "B", "C", "CM", "1", "2", "3", "4", "5", "6")
text(xc,yc,txt.str)

```
```

n<-10 \#try also n<-40
Xp<-runif.std.tri(n)\$gen.points
Xlim<-range(Te[,1],Xp[,1])
Ylim<-range(Te[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
rsix<-vector()
for (i in 1:n)
rsix<-c(rsix,index.six.Te(Xp[i,]))
rsix
plot(A,pch=".",xlab="",ylab="",axes=TRUE,xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Te)
points(Xp,pch=".")
L<-Te; R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)
polygon(rbind(h1,h2,h3,h4,h5,h6))
text(Xp,labels=factor(rsix))
txt<-rbind(Te,CM)
xc<-txt[,1]+c(-.02,.02,.02,0)
yc<-txt[,2]+c(.02,.02,.02,-.05)
txt.str<-c("A","B", "C", "CM")
text(xc,yc,txt.str)

```
intersect.line.circle The points of intersection of a line and a circle

\section*{Description}

Returns the intersection point(s) of a line and a circle. The line is determined by the two points p1 and p 2 and the circle is centered at point cent and has radius rad. If the circle does not intersect the line, the function yields NULL; if the circle intersects at only one point, it yields only that point; otherwise it yields both intersection points as output. When there are two intersection points, they are listed in the order of the \(x\)-coordinates of p 1 and p 2 ; and if the \(x\)-coordinates of p 1 and p 2 are equal, intersection points are listed in the order of \(y\)-coordinates of p 1 and p 2 .

\section*{Usage}
intersect.line.circle(p1, p2, cent, rad)

\section*{Arguments}
p1, p2
2D points that determine the straight line (i.e., through which the straight line passes).

\section*{cent A 2D point representing the center of the circle.}
rad A positive real number representing the radius of the circle.

\section*{Value}
point(s) of intersection between the circle and the line (if they do not intersect, the function yields NULL as the output)

\section*{Author(s)}

Elvan Ceyhan

\section*{See Also}
intersect2lines

\section*{Examples}
```

P1<-c(.3,.2)*100
P2<-c(.6,.3)*100
cent<-c(1.1,1.1)*100
rad<-2*100
intersect.line.circle(P1, P2, cent,rad)
intersect.line.circle(P2,P1,cent,rad)
intersect.line.circle(P1,P1+c(0,1),cent,rad)
intersect.line.circle(P1+c(0,1),P1,cent,rad)
dist.point2line(cent,P1,P2)
rad2<-dist.point2line(cent,P1,P2)$d
intersect.line.circle(P1,P2,cent,rad2)
intersect.line.circle(P1,P2,cent,rad=.8)
intersect.line.circle(P1,P2, cent,rad=.78)
#plot of the line and the circle
A<-c(.3,.2); B<-c(.6,.3); cent<-c(1,1); rad<-2 #check dist.point2line(cent,A,B)$dis, . }
IPs<-intersect.line.circle(A,B,cent,rad)
xr<-range(A[1],B[1],cent[1])
xf<-(xr[2]-xr[1])*.1 \#how far to go at the lower and upper ends in the x-coordinate
x<-seq(xr[1]-rad-xf,xr[2]+rad+xf,l=20) \#try also l=100
lnAB<-Line(A,B,x)
y<-lnAB\$y
Xlim<-range(x,cent[1])
Ylim<-range(y,A[2],B[2],cent[2]-rad,cent[2]+rad)
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(rbind(A,B, cent),pch=1,asp=1,xlab="x",ylab="y",

```
```

xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
lines(x,y,lty=1)
interp::circles(cent[1],cent[2],rad)
IP.txt<-c()
if (!is.null(IPs))
{
for (i in 1:(length(IPs)/2))
IP.txt<-c(IP.txt,paste("I",i, sep = ""))
}
txt<-rbind(A,B,cent,IPs)
text(txt+cbind(rep(xd*.03,nrow(txt)),rep(-yd*.03,nrow(txt))),c("A", "B", "M",IP.txt))

```
intersect.line.plane The point of intersection of a line and a plane

\section*{Description}

Returns the point of the intersection of the line determined by the 3 D points \(p_{1}\) and \(p_{2}\) and the plane spanned by 3 D points p 3 , p4, and p5.

\section*{Usage}
intersect.line.plane(p1, p2, p3, p4, p5)

\section*{Arguments}
p1, p2
3D points that determine the straight line (i.e., through which the straight line passes).
p3, p4, p5
3D points that determine the plane (i.e., through which the plane passes).

\section*{Value}

The coordinates of the point of intersection the line determined by the 3 D points \(p_{1}\) and \(p_{2}\) and the plane determined by 3D points p 3 , p 4 , and p 5 .

\section*{Author(s)}

Elvan Ceyhan

\section*{See Also}
intersect2lines and intersect.line.circle

\section*{Examples}
```

L1<-c(2,4,6); L2<-c(1, 3, 5);
A<-c(1,10, 3); B<-c(1, 1,3); C<-C (3, 9, 12)
Pint<-intersect.line.plane(L1,L2,A,B,C)
Pint
pts<-rbind(L1,L2,A,B,C,Pint)
tr<-max(Dist(L1,L2),Dist(L1,Pint),Dist(L2,Pint))
tf<-tr*1.1 \#how far to go at the lower and upper ends in the x-coordinate
tsq<-seq(-tf,tf,l=5) \#try also l=10, 20, or 100
lnAB3D<-Line3D(L1,L2,tsq)
xl<-lnAB3D$x
yl<-lnAB3D$y
zl<-lnAB3D$z
xr<-range(pts[,1]); yr<-range(pts[,2])
xf<-(xr[2]-xr[1])*. 1
#how far to go at the lower and upper ends in the x-coordinate
yf<-(yr[2]-yr[1])*. }
#how far to go at the lower and upper ends in the y-coordinate
xp<-seq(xr[1]-xf,xr[2]+xf,l=5) #try also l=10, 20, or 100
yp<-seq(yr[1]-yf,yr[2]+yf,l=5) #try also l=10, 20, or 100
plABC<-Plane(A,B,C,xp,yp)
z.grid<-plABC$z
res<-persp(xp,yp,z.grid, xlab="x",ylab="y",zlab="z",theta = -30,
phi = 30, expand = 0.5,
col = "lightblue", ltheta = 120, shade = 0.05, ticktype = "detailed")
lines (trans3d(xl, yl, zl, pmat = res), col = 3)
Xlim<-range(xl,pts[,1])
Ylim<-range(yl,pts[,2])
Zlim<-range(zl,pts[,3])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
zd<-Zlim[2]-Zlim[1]
plot3D::persp3D(z = z.grid, x = xp, y = yp, theta =225, phi = 30,
ticktype = "detailed"
,xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05),zlim=Zlim+zd*c(-.1, .1),
expand = 0.7, facets = FALSE, scale = TRUE)
\#plane spanned by points A, B, C
\#add the defining points
plot3D::points3D(pts[,1],pts[,2],pts[,3], pch = ".", col = "black",
bty = "f", cex = 5,add=TRUE)
plot3D::points3D(Pint[1],Pint[2],Pint[3], pch = "*", col = "red",
bty = "f", cex = 5,add=TRUE)

```
```

plot3D::lines3D(xl, yl, zl, bty = "g", cex = 2,
ticktype = "detailed",add=TRUE)

```
intersect2lines The point of intersection of two lines defined by two pairs of points

\section*{Description}

Returns the intersection of two lines, first line passing through points \(p 1\) and q1 and second line passing through points p 2 and q2. The points are chosen so that lines are well defined.

\section*{Usage}
intersect2lines(p1, q1, p2, q2)

\section*{Arguments}
p1, q1 2D points that determine the first straight line (i.e., through which the first straight line passes).
p2, q2 2D points that determine the second straight line (i.e., through which the second straight line passes).

\section*{Value}

The coordinates of the point of intersection of the two lines, first passing through points p1 and q1 and second passing through points p2 and q2.

\section*{Author(s)}

Elvan Ceyhan

\section*{See Also}
intersect.line.circle and dist.point2line

\section*{Examples}
```

A<-c(-1.22,-2.33); B<-c(2.55,3.75); C<-c(0,6); D<-c(3,-2)
ip<-intersect2lines(A,B,C,D)
ip
pts<-rbind(A,B,C,D,ip)
xr<-range(pts[,1])
xf<-abs(xr[2]-xr[1])*.1
\#how far to go at the lower and upper ends in the x-coordinate
x<-seq(xr[1]-xf,xr[2]+xf,l=5) \#try also l=10, 20, or 100

```
```

lnAB<-Line(A,B,x)
lnCD<-Line(C,D,x)
y1<-lnAB$y
y2<-lnCD$y
Xlim<-range(x,pts)
Ylim<-range(y1,y2,pts)
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
pf<-c(xd,-yd)*.025
\#plot of the line joining A and B
plot(rbind(A,B,C,D),pch=1,xlab="x",ylab="y",
main="Point of Intersection of Two Lines",
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
lines(x,y1,lty=1,col=1)
lines(x,y2,lty=1,col=2)
text(rbind(A+pf,B+pf),c("A","B"))
text(rbind(C+pf,D+pf),c("C","D"))
text(rbind(ip+pf),c("intersection\n point"))

```
interval.indices.set Indices of the intervals where the \(1 D\) point(s) reside

\section*{Description}

Returns the indices of intervals for all the points in 1D data set, Xp, as a vector.
Intervals are based on Yp and left end interval is labeled as 1, the next interval as 2, and so on. If there are duplicates of \(Y p\) points, only one point is retained for each duplicate value, and a warning message is printed.

\section*{Usage}
interval.indices.set(Xp, Yp)

\section*{Arguments}

Xp A set of 1D points for which the indices of intervals are to be determined.
Yp A set of 1D points from which intervals are constructed.

\section*{Value}

The vector of indices of the intervals in which points in the 1 D data set, Xp , reside

\section*{Author(s)}

Elvan Ceyhan

\section*{Examples}
```

a<-0; b<-10; int<-c(a,b)
\#nx is number of X points (target) and ny is number of }Y\mathrm{ points (nontarget)
nx<-15; ny<-4; \#try also nx<-40; ny<-10 or nx<-1000; ny<-10;
set.seed(1)
xf<-(int[2]-int[1])*.1
Xp<-runif(nx,a-xf,b+xf)
Yp<-runif(ny,a,b) \#try also Yp<-runif(ny,a+1,b-1)
ind<-interval.indices.set(Xp,Yp)
ind
jit<-. }
yjit<-runif(nx,-jit,jit)
Xlim<-range(a,b,Xp,Yp)
xd<-Xlim[2]-Xlim[1]
plot(cbind(a,0), xlab=" ", ylab=" ",xlim=Xlim+xd*c(-.05,.05),ylim=3*c(-jit,jit),pch=".")
abline(h=0)
points(Xp, yjit,pch=".",cex=3)
abline(v=Yp,lty=2)
text(Xp,yjit,labels=factor(ind))

```

\section*{Description}
returns TRUE if the point \(p\) of any dimension is inside the data set \(X p\) of the same dimension as \(p\); otherwise returns FALSE.

\section*{Usage}
is.in.data(p, Xp)

\section*{Arguments}
p
Xp
A 2D point for which the function checks membership to the data set \(X p\).
A set of 2D points representing the set of data points.

\section*{Value}

TRUE if \(p\) belongs to the data set \(X p\).

\section*{Author(s)}

Elvan Ceyhan

\section*{Examples}
```

n<-10
Xp<-cbind(runif(n),runif(n))
P<-Xp[7,]
is.in.data(P, Xp)
is.in.data(P,Xp[7,])
P<-Xp[7,]+10^(-7)
is.in.data(P,Xp)
P<-Xp[7,]+10^(-9)
is.in.data(P,Xp)
is.in.data(P,P)
is.in.data(c(2,2),c(2,2))
\#for 1D data
n<-10
Xp<-runif(n)
P<-Xp[7]
is.in.data(P, Xp[7]) \#this works because both entries are treated as 1D vectors but
\#is.in.data(P,Xp) does not work since entries are treated as vectors of different dimensions
Xp<-as.matrix(Xp)
is.in.data(P, Xp)
\#this works, because P is a 1D point, and Xp is treated as a set of 10 1D points
P<-Xp[7]+10^(-7)
is.in.data(P,Xp)
P<-Xp[7]+10^(-9)
is.in.data(P,Xp)
is.in.data(P,P)
\#for 3D data
n<-10
Xp<-cbind(runif(n),runif(n),runif(n))
P<-Xp[7,]
is.in.data(P, Xp)
is.in.data(P, Xp[7,])
P<-Xp[7,]+10^(-7)

```
```

is.in.data(P,Xp)
P<-Xp[7,]+10^(-9)
is.in.data(P,Xp)
is.in.data(P,P)
n<-10
Xp<-cbind(runif(n),runif(n))
P<-Xp[7,]
is.in.data(P, Xp)

```

\section*{Description}

Returns TRUE if the argument \(p\) is a numeric point of dimension dim (default is dim=2); otherwise returns FALSE.

\section*{Usage}
is.point(p, dim = 2)

\section*{Arguments}
p A vector to be checked to see it is a point of dimension dim or not.
\(\operatorname{dim} \quad\) A positive integer representing the dimension of the argument p .

\section*{Value}

TRUE if \(p\) is a vector of dimension dim.

\section*{Author(s)}

Elvan Ceyhan

\section*{See Also}
dimension

\section*{Examples}
```

A<-c(-1.22,-2.33); B<-c(2.55,3.75,4)
is.point(A)
is.point(A,1)
is.point(B)
is.point(B,3)

```
is.std.eq.tri \(\quad\) Check whether a triangle is a standard equilateral triangle

\section*{Description}

Checks whether the triangle, tri, is the standard equilateral triangle \(T_{e}=T((0,0),(1,0),(1 / 2, \sqrt{3} / 2))\) or not.

\section*{Usage}
is.std.eq.tri(tri)

\section*{Arguments}
tri A \(3 \times 2\) matrix with each row representing a vertex of the triangle.

\section*{Value}

TRUE if \(t r i\) is a standard equilateral triangle, else FALSE.

\section*{Author(s)}

Elvan Ceyhan

\section*{Examples}
```

A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C) \#try adding +10^(-16) to each vertex
is.std.eq.tri(Te)
is.std.eq.tri(rbind(B,C,A))
Tr<-rbind(A,B,-C)
is.std.eq.tri(Tr)
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);

```
```

is.std.eq.tri(Tr)

```
kfr2vertsCCvert.reg \(\quad\) The k furthest points in a data set from vertices in each \(C C\)-vertex region in a triangle

\section*{Description}

An object of class "Extrema". Returns the k furthest data points among the data set, Xp , in each \(C C\)-vertex region from the vertex in the triangle, \(\operatorname{tri}=T(A, B, C)\), vertices are stacked row-wise. Vertex region labels/numbers correspond to the row number of the vertex in tri.
ch.all.intri is for checking whether all data points are inside tri (default is FALSE). If some of the data points are not inside tri and ch.all.intri=TRUE, then the function yields an error message. If some of the data points are not inside tri and ch.all.intri=FALSE, then the function yields the closest points to edges among the data points inside tri (yields NA if there are no data points inside tri).

In the extrema, ext, in the output, the first \(k\) entries are the \(k\) furthest points from vertex 1 , second \(k\) entries are \(k\) furthest points are from vertex 2 , and last \(k\) entries are the \(k\) furthest points from vertex 3. If data size does not allow, NA's are inserted for some or all of the \(k\) furthest points for each vertex.

\section*{Usage}
kfr2vertsCCvert.reg(Xp, tri, k, ch.all.intri = FALSE)

\section*{Arguments}

Xp A set of 2D points representing the set of data points.
tri A \(3 \times 2\) matrix with each row representing a vertex of the triangle.
\(\mathrm{k} \quad\) A positive integer. k furthest data points in each \(C C\)-vertex region are to be found if exists, else NA are provided for (some of) the \(k\) furthest points.
ch.all.intri A logical argument (default=FALSE) to check whether all data points are inside the triangle tri. So, if it is TRUE, the function checks if all data points are inside the closure of the triangle (i.e., interior and boundary combined) else it does not.

\section*{Value}

A list with the elements
txt1 Vertex labels are \(A=1, B=2\), and \(C=3\) (correspond to row number in Extremum Points).
txt2 A shorter description of the distances as "Distances of \(k\) furthest points in the vertex regions to Vertices".
type Type of the extrema points
\begin{tabular}{|c|c|}
\hline desc & A short description of the extrema points \\
\hline mtitle & The "main" title for the plot of the extrema \\
\hline ext & The extrema points, here, k furthest points from vertices in each \(C C\)-vertex region in the triangle tri. \\
\hline X & The input data, Xp , can be a matrix or data frame \\
\hline num. points & The number of data points, i.e., size of \(X p\) \\
\hline supp & Support of the data points, it is tri for this function. \\
\hline cent & The center point used for construction of vertex regions \\
\hline ncent & Name of the center, cent, it is circumcenter "CC" for this function. \\
\hline regions & Vertex regions inside the triangle, tri, provided as a list \\
\hline region.names & Names of the vertex regions as "vr=1", "vr=2", and "vr=3" \\
\hline region.centers & Centers of mass of the vertex regions inside \(T_{b}\). \\
\hline dist2ref & Distances from \(k\) furthest points in each vertex region to the corresponding vertex (each row representing a vertex in tri). Among the distances the first k entries are the distances from the \(k\) furthest points from vertex 1 to vertex 1 , second \(k\) entries are distances from the \(k\) furthest points from vertex 2 to vertex 2 , and the last k entries are the distances from the k furthest points from vertex 3 to vertex 3 . \\
\hline
\end{tabular}

\section*{Author(s)}

Elvan Ceyhan

\section*{See Also}
fr2vertsCCvert.reg.basic.tri, fr2vertsCCvert.reg.basic.tri, fr2vertsCCvert.reg, and
fr2edgesCMedge.reg.std.tri

\section*{Examples}
```

A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
n<-10 \#try also n<-20
k<-3
set.seed(1)
Xp<-runif.tri(n,Tr)\$g
Ext<-kfr2vertsCCvert.reg(Xp,Tr,k)
Ext
summary(Ext)
plot(Ext)
Xp2<-rbind(Xp,c(.2,.4))
kfr2vertsCCvert.reg(Xp2,Tr,k)
\#try also kfr2vertsCCvert.reg(Xp2,Tr,k,ch.all.intri = TRUE)

```
```

kf2v<-Ext
CC<-circumcenter.tri(Tr) \#the circumcenter
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
Ds<-rbind(D1,D2,D3)
Xlim<-range(Tr[,1],Xp[,1])
Ylim<-range(Tr[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(A,pch=".",asp=1,xlab="",ylab="",
main=paste(k," Furthest Points in CC-Vertex Regions \n from the Vertices",sep=""),
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)
L<-matrix(rep(CC,3),ncol=2,byrow=TRUE); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty=2)
points(Xp)
points(kf2v\$ext,pch=4,col=2)
txt<-rbind(Tr,CC,Ds)
xc<-txt[,1]+c(-.06,.08,.05,.12,-.1,-.1,-.09)
yc<-txt[,2]+c(.02,-.02,.04,.0,.02,.06,-.04)
txt.str<-c("A", "B", "C", "CC", "D1", "D2", "D3")
text(xc,yc,txt.str)

```

\section*{kfr2vertsCCVert.reg.basic.tri}

The k furthest points from vertices in each \(C C\)-vertex region in a standard basic triangle

\section*{Description}

An object of class "Extrema". Returns the k furthest data points among the data set, Xp , in each \(C C\) vertex region from the vertex in the standard basic triangle \(T_{b}=T(A=(0,0), B=(1,0), C=\) \(\left.\left(c_{1}, c_{2}\right)\right)\).
Any given triangle can be mapped to the standard basic triangle by a combination of rigid body motions (i.e., translation, rotation and reflection) and scaling, preserving uniformity of the points in the original triangle. Hence, standard basic triangle is useful for simulation studies under the uniformity hypothesis.
ch.all.intri is for checking whether all data points are inside \(T_{b}\) (default is FALSE). In the extrema, ext, in the output, the first \(k\) entries are the \(k\) furthest points from vertex 1 , second \(k\) entries are \(k\) furthest points are from vertex 2 , and last \(k\) entries are the \(k\) furthest points from vertex 3 If data size does not allow, NA's are inserted for some or all of the \(k\) furthest points for each vertex.

\section*{Usage}
kfr2vertsCCvert.reg.basic.tri(Xp, c1, c2, k, ch.all.intri = FALSE)

\section*{Arguments}

Xp A set of 2D points representing the set of data points.
c1, c2 Positive real numbers which constitute the vertex of the standard basic triangle. adjacent to the shorter edges; \(c_{1}\) must be in \([0,1 / 2], c_{2}>0\) and \(\left(1-c_{1}\right)^{2}+c_{2}^{2} \leq\) 1
\(\mathrm{k} \quad\) A positive integer. k furthest data points in each \(C C\)-vertex region are to be found if exists, else NA are provided for (some of) the \(k\) furthest points.
ch.all.intri A logical argument for checking whether all data points are inside \(T_{b}\) (default is FALSE).

\section*{Value}

A list with the elements
txt1 Vertex labels are \(A=1, B=2\), and \(C=3\) (correspond to row number in Extremum Points).
txt2 A shorter description of the distances as "Distances of \(k\) furthest points in the vertex regions to Vertices".
type Type of the extrema points
desc A short description of the extrema points
mtitle The "main" title for the plot of the extrema
ext The extrema points, here, \(k\) furthest points from vertices in each vertex region.
\(X \quad\) The input data, \(X p\), can be a matrix or data frame
num. points The number of data points, i.e., size of \(X p\)
supp \(\quad\) Support of the data points, here, it is \(T_{b}\).
cent The center point used for construction of edge regions.
ncent Name of the center, cent, it is circumcenter "CC" for this function.
regions Vertex regions inside the triangle, \(T_{b}\), provided as a list.
region. names Names of the vertex regions as "vr=1", "vr=2", and "vr=3"
region. centers Centers of mass of the vertex regions inside \(T_{b}\).
dist2ref Distances from \(k\) furthest points in each vertex region to the corresponding vertex (each row representing a vertex).

\section*{Author(s)}

Elvan Ceyhan

\section*{See Also}
fr2vertsCCvert.reg.basic.tri, fr2vertsCCvert.reg, fr2edgesCMedge.reg.std.tri, and kfr2vertsCCvert.reg

\section*{Examples}
```

c1<-.4; c2<-.6;
A<-C(0,0); B<-C(1,0); C<-C (c1, c2);
Tb<-rbind(A,B,C)
n<-20
k<-3
set.seed(1)
Xp<-runif.basic.tri(n, c1,c2)$g
Ext<-kfr2vertsCCvert.reg.basic.tri(Xp,c1,c2,k)
Ext
summary(Ext)
plot(Ext)
kf2v<-Ext
CC<-circumcenter.basic.tri(c1,c2) #the circumcenter
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
Ds<-rbind(D1,D2,D3)
Xlim<-range(Tb[,1],Xp[,1])
Ylim<-range(Tb[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(A, pch=".", asp=1,xlab="",ylab="",
main=paste(k," Furthest Points in CC-Vertex Regions \n from the Vertices",sep=""),
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tb)
L<-matrix(rep(CC, 3),ncol=2, byrow=TRUE); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty=2)
points(Xp)
points(kf2v$ext,pch=4,col=2)
txt<-rbind(Tb,CC,Ds)
xc<-txt[,1]+c(-.03,.03,.02,.07,.06,-.05,.01)
yc<-txt[, 2]+c(.02,.02,.03,-.02,.02,.03,-.04)
txt.str<-c("A", "B", "C", "CC", "D1", "D2", "D3")
text(xc,yc,txt.str)

```

Line

\section*{Description}

An object of class "Lines". Returns the equation, slope, intercept, and \(y\)-coordinates of the line crossing two distinct 2 D points a and b with \(x\)-coordinates provided in vector x .

This function is different from the line function in the standard stats package in \(R\) in the sense that Line \((a, b, x)\) fits the line passing through points \(a\) and \(b\) and returns various quantities (see below) for this line and x is the \(x\)-coordinates of the points we want to find on the \(\operatorname{Line}(\mathrm{a}, \mathrm{b}, \mathrm{x})\) while line \((\mathrm{a}, \mathrm{b})\) fits the line robustly whose \(x\)-coordinates are in a and \(y\)-coordinates are in b .

Line \((a, b, x)\) and line (\(x, \operatorname{Line}(A, B, x) \$ y\)) would yield the same straight line (i.e., the line with the same coefficients.)

\section*{Usage}

Line (a, b, x)

\section*{Arguments}
a, b
2D points that determine the straight line (i.e., through which the straight line passes).
x
A scalar or a vector of scalars representing the \(x\)-coordinates of the line.

\section*{Value}

A list with the elements
desc A description of the line
mtitle The "main" title for the plot of the line
points The input points a and \(b\) through which the straight line passes (stacked rowwise, i.e., row 1 is point a and row 2 is point \(b\)).
\(\mathrm{x} \quad\) The input scalar or vector which constitutes the \(x\)-coordinates of the point(s) of interest on the line.
y
The output scalar or vector which constitutes the \(y\)-coordinates of the point(s) of interest on the line. If \(x\) is a scalar, then \(y\) will be a scalar and if \(x\) is a vector of scalars, then \(y\) will be a vector of scalars.
slope \(\quad\) Slope of the line, Inf is allowed, passing through points \(a\) and \(b\)
intercept Intercept of the line passing through points \(a\) and \(b\)
equation Equation of the line passing through points \(a\) and \(b\)

\section*{Author(s)}

Elvan Ceyhan

\section*{See Also}
slope, paraline, perpline, line in the generic stats package and and Line3D

\section*{Examples}
```

A<-C(-1.22, -2.33); B<-C}(2.55,3.75
xr<-range(A,B);
xf<-(xr[2]-xr[1])*. }
\#how far to go at the lower and upper ends in the x-coordinate
x<-seq(xr[1]-xf,xr[2]+xf,l=5) \#try also l=10, 20, or 100
lnAB<-Line(A,B,x)
lnAB
summary(lnAB)
plot(lnAB)
line(A,B)
\#this takes vector A as the x points and vector B as the y points and fits the line
\#for example, try
x=runif(100); y=x+(runif(100,-.05,.05))
plot(x,y)
line(x,y)
x<-lnAB$x
y<-lnAB$y
Xlim<-range(x,A,B)
if (!is.na(y[1])) {Ylim<-range(y,A,B)} else {Ylim<-range(A,B)}
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
pf<-c(xd,-yd)*.025
\#plot of the line joining A and B
plot(rbind(A,B),pch=1,xlab="x",ylab="y",
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
if (!is.na(y[1])) {lines(x,y,lty=1)} else {abline(v=A[1])}
text(rbind(A+pf,B+pf),c("A","B"))
int<-round(lnAB$intercep,2) #intercept
sl<-round(lnAB$slope,2) \#slope
text(rbind((A+B)/2+pf*3),ifelse(is.na(int), paste("x=",A[1]),
ifelse(sl==0, paste("y=",int),
ifelse(sl==1,ifelse(sign(int)<0,paste("y=x",int), paste("y=x+",int)),
ifelse(sign(int)<0,paste("y=", sl, "x",int), paste("y=", sl, "x+",int))))))

```

\section*{Line3D}

The line crossing \(3 D\) point p in the direction of vector v (or if v is a point, in direction of \(v-r _0\))

\section*{Description}

An object of class "Lines3D". Returns the equation, \(x\)-, \(y\)-, and \(z\)-coordinates of the line crossing 3 D point \(r_{0}\) in the direction of vector v (of if v is a point, in the direction of \(v-r_{0}\)) with the parameter \(t\) being provided in vector \(t\).

\section*{Usage}

Line3D(p, v, t, dir.vec = TRUE)

\section*{Arguments}
p A 3D point through which the straight line passes.
\(v \quad\) A 3D vector which determines the direction of the straight line (i.e., the straight line would be parallel to this vector) if the dir. vec=TRUE, otherwise it is 3D point and \(v-r_{0}\) determines the direction of the the straight line.
t
A scalar or a vector of scalars representing the parameter of the coordinates of the line (for the form: \(x=p_{0}+a t, y=y_{0}+b t\), and \(z=z_{0}+c t\) where \(r_{0}=\left(p_{0}, y_{0}, z_{0}\right)\) and \(v=(a, b, c)\) if dir.vec=TRUE, else \(\left.v-r_{0}=(a, b, c)\right)\).
dir.vec A logical argument about v , if TRUE v is treated as a vector, else v is treated as a point and so the direction vector is taken to be \(v-r_{0}\).

\section*{Value}

A list with the elements
\begin{tabular}{ll}
desc & A description of the line \\
mtitle & The "main" title for the plot of the line \\
pts & The input points that determine a line and/or a plane, NULL for this function. \\
pnames & \begin{tabular}{l}
The names of the input points that determine a line and/or a plane, NULL for this \\
function.
\end{tabular} \\
vecs & The point p and the vector v (if dir. vec=TRUE) or the point v (if dir.vec=FALSE). \\
The first row is p and the second row is v . \\
vec. names & \begin{tabular}{l}
The names of the point p and the vector v (if dir. vec=TRUE) or the point v (if \\
dir. vec=FALSE).
\end{tabular} \\
\(\mathrm{x}, \mathrm{y}, \mathrm{z}\) & \begin{tabular}{l}
The \(x-, y-\), and \(z\)-coordinates of the point(s\()\) of interest on the line.
\end{tabular} \\
tsq & \begin{tabular}{l}
The scalar or the vector of the parameter in defining each coordinate of the line \\
for the form: \(x=p_{0}+a t, y=y_{0}+b t\), and \(z=z_{0}+c t\) where \(r_{0}=\left(p_{0}, y_{0}, z_{0}\right)\) \\
and \(v=(a, b, c)\) if dir.vec=TRUE, else \(v-r_{0}=(a, b, c)\).
\end{tabular}
\end{tabular}
equation Equation of the line passing through point \(p\) in the direction of the vector \(v\) (if dir.vec=TRUE) else in the direction of \(v-r_{0}\). The line equation is in the form: \(x=p_{0}+a t, y=y_{0}+b t\), and \(z=z_{0}+c t\) where \(r_{0}=\left(p_{0}, y_{0}, z_{0}\right)\) and \(v=(a, b, c)\) if dir. vec=TRUE, else \(v-r_{0}=(a, b, c)\).

\section*{Author(s)}

Elvan Ceyhan

\section*{See Also}
line, paraline3D, and Plane

\section*{Examples}
```

A<-c(1,10,3); B<-c(1,1,3);
vecs<-rbind(A,B)
Line3D(A,B,.1)
Line3D(A, B, .1,dir.vec=FALSE)
tr<-range(vecs);
tf<-(tr[2]-tr[1])*. }
\#how far to go at the lower and upper ends in the x-coordinate
tsq<-seq(-tf*10-tf,tf*10+tf,l=5) \#try also l=10, 20, or 100
lnAB3D<-Line3D(A,B,tsq)
\#try also lnAB3D<-Line3D(A,B,tsq,dir.vec=FALSE)
lnAB3D
summary(lnAB3D)
plot(lnAB3D)
x<-lnAB3D$x
y<-lnAB3D$y
z<-lnAB3D\$z
zr<-range(z)
zf<-(zr[2]-zr[1])*.2
Bv<-B*tf*5
Xlim<-range(x)
Ylim<-range(y)
Zlim<-range(z)
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
zd<-Zlim[2]-Zlim[1]
Dr<-A+min(tsq)*B
plot3D::lines3D(x, y, z, phi = 0, bty = "g",
main="Line Crossing A \n in the Direction of OB",
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05),
zlim=Zlim+zd*c(-.1,.1),
pch = 20, cex = 2, ticktype = "detailed")
plot3D::arrows3D(Dr[1],Dr[2],Dr[3]+zf,Dr[1]+Bv[1],
Dr[2]+Bv[2],Dr[3]+zf+Bv[3], add=TRUE)
plot3D::points3D(A[1],A[2],A[3],add=TRUE)
plot3D::arrows3D(A[1],A[2],A[3]-2*zf,A[1],A[2],A[3],lty=2, add=TRUE)
plot3D::text3D(A[1],A[2],A[3]-2*zf,labels="initial point",add=TRUE)

```
```

plot3D::text3D(A[1],A[2],A[3]+zf/2,labels=expression(r[0]),add=TRUE)
plot3D::arrows3D(\operatorname{Dr}[1]+Bv[1]/2,\operatorname{Dr}[2]+Bv[2]/2,Dr[3]+3*zf+Bv[3]/2,
Dr[1]+Bv[1]/2, Dr[2]+Bv[2]/2,\operatorname{Dr}[3]+zf+Bv[3]/2,lty=2, add=TRUE)
plot3D: :text3D(\operatorname{Dr}[1]+Bv[1]/2,\operatorname{Dr}[2]+Bv[2]/2,\operatorname{Dr}[3]+3*zf+Bv[3]/2,
labels="direction vector",add=TRUE)
plot3D::text3D(Dr[1]+Bv[1]/2,Dr[2]+Bv[2]/2,
Dr[3]+zf+Bv[3]/2, labels="v", add=TRUE)
plot3D::text3D(0,0,0,labels="0", add=TRUE)

```

NASbasic.tri The vertices of the Arc Slice (AS) Proximity Region in the standard basic triangle

\section*{Description}

Returns the end points of the line segments and arc-slices that constitute the boundary of AS proximity region for a point in the standard basic triangle \(T_{b}=T\left((0,0),(1,0),\left(c_{1}, c_{2}\right)\right)\) where \(c_{1}\) is in \([0,1 / 2], c_{2}>0\) and \(\left(1-c_{1}\right)^{2}+c_{2}^{2} \leq 1\).
Vertex regions are based on the center, \(M=\left(m_{1}, m_{2}\right)\) in Cartesian coordinates or \(M=(\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of the standard basic triangle \(T_{b}\) or based on circumcenter of \(T_{b}\); default is \(\mathrm{M}=\) "CC", i.e., circumcenter of \(T_{b} . \mathrm{rv}\) is the index of the vertex region p resides, with default=NULL.
If \(p\) is outside \(T_{b}\), it returns NULL for the proximity region. dec is the number of decimals (default is 4) to round the barycentric coordinates when checking whether the end points fall on the boundary of the triangle \(T_{b}\) or not (so as not to miss the intersection points due to precision in the decimals).
Any given triangle can be mapped to the standard basic triangle by a combination of rigid body motions (i.e., translation, rotation and reflection) and scaling, preserving uniformity of the points in the original triangle. Hence standard basic triangle is useful for simulation studies under the uniformity hypothesis.
See also (Ceyhan \((2005,2010)\)).

\section*{Usage}

NASbasic.tri(p, c1, c2, \(M=" C C ", r v=\) NULL, dec = 4)

\section*{Arguments}
p
A 2D point whose AS proximity region is to be computed.
c1, c2

M
Positive real numbers representing the top vertex in standard basic triangle \(T_{b}=\) \(T\left((0,0),(1,0),\left(c_{1}, c_{2}\right)\right), c_{1}\) must be in \([0,1 / 2], c_{2}>0\) and \(\left(1-c_{1}\right)^{2}+c_{2}^{2} \leq 1\). The center of the triangle. "CC" stands for circumcenter of the triangle \(T_{b}\) or
a 2D point in Cartesian coordinates or a 3D point in barycentric coordinates which serves as a center in the interior of the triangle \(T_{b}\); default is \(\mathrm{M}=\) " CC " i.e., the circumcenter of \(T_{b}\).
\begin{tabular}{|c|c|}
\hline rv & The index of the M-vertex region containing the point, either \(1,2,3\) or NULL (default is NULL). \\
\hline dec & a positive integer the number of decimals (default is 4) to round the barycentric coordinates when checking whether the end points fall on the boundary of the triangle \(T_{b}\) or not. \\
\hline
\end{tabular}

\section*{Value}

A list with the elements
\(L, R \quad\) The end points of the line segments on the boundary of the AS proximity region. Each row in \(L\) and \(R\) constitute a line segment on the boundary.
Arc.Slices The end points of the arc-slices on the circular parts of the AS proximity region. Here points in row 1 and row 2 constitute the end points of one arc-slice, points on row 3 and row 4 constitute the end points for the next arc-slice and so on.

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). "An investigation of new graph invariants related to the domination number of random proximity catch digraphs." Methodology and Computing in Applied Probability, 14(2), 299-334.

\section*{See Also}

NAStri and IarcASbasic.tri

\section*{Examples}
```

c1<-.4; c2<-.6 \#try also c1<-.2; c2<-.2;
A<-c(0,0); B<-c(1,0); C<-c(c1,c2);
Tb<-rbind(A,B,C)
set.seed(1)
M<-as.numeric(runif.basic.tri(1,c1,c2)$g) #try also M<-c(.6,.2)
P1<-as.numeric(runif.basic.tri(1,c1,c2)$g); \#try also P1<-c(.3,.2)
NASbasic.tri(P1,c1,c2) \#default with M="CC"
NASbasic.tri(P1,c1,c2,M)

```
```

\#or try
Rv<-rel.vert.basic.triCC(P1,c1,c2)$rv
NASbasic.tri(P1,c1, c2,M,Rv)
NASbasic.tri(c(3,5),c1,c2,M)
P2<-c(.5,.4)
NASbasic.tri(P2,c1,c2,M)
P3<-c(1.5,.4)
NASbasic.tri(P3, c1,c2,M)
if (dimension(M)==3) {M<-bary2cart(M,Tr)}
#need to run this when M is given in barycentric coordinates
#plot of the NAS region
P1<-as.numeric(runif.basic.tri(1,c1,c2)$g);
CC<-circumcenter.basic.tri(c1,c2)
if (isTRUE(all.equal(M,CC)) || identical(M,"CC"))
{cent<-CC
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
Ds<-rbind(D1,D2,D3)
cent.name<-"CC"
rv<-rel.vert.basic.triCC(P1,c1,c2)$rv
} else
{cent<-M
cent.name<-"M"
Ds<-prj.cent2edges.basic.tri(c1, c2,M)
rv<-rel.vert.basic.tri(P1,c1,c2,M)$rv
}
RV<-Tb[rv,]
rad<-Dist(P1,RV)
Int.Pts<-NASbasic.tri(P1, c1, c2,M)
Xlim<-range(Tb[,1],P1[1]+rad,P1[1]-rad)
Ylim<-range(Tb[,2],P1[2]+rad,P1[2]-rad)
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(A,pch=".",asp=1,xlab="",ylab="",xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tb)
points(rbind(Tb,P1,rbind(Int.Pts$L,Int.Pts$R)))
L<-rbind(cent,cent,cent); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty=2)
interp::circles(P1[1],P1[2],rad,lty=2)
L<-Int.Pts$L; R<-Int.Pts$R
segments(L[,1], L[,2], R[,1], R[,2], lty=1,col=2)
Arcs<-Int.Pts\$a;
if (!is.null(Arcs))
{

```
```

    K<-nrow(Arcs)/2
    for (i in 1:K)
    {A1<-Arcs[2*i-1,]; A2<-Arcs[2*i,];
    angles<-angle.str2end(A1,P1,A2)$c
    plotrix::draw.arc(P1[1],P1[2],rad,angle1=angles[1],angle2=angles[2],col=2)
    }
    }
\#proximity region with the triangle (i.e., for labeling the vertices of the NAS)
IP.txt<-intpts<-c()
if (!is.null(Int.Pts$a))
{
    intpts<-unique(round(Int.Pts$a,7))
\#this part is for labeling the intersection points of the spherical
for (i in 1:(length(intpts)/2))
IP.txt<-c(IP.txt,paste("I",i+1, sep = ""))
}
txt<-rbind(Tb,P1,cent,intpts)
txt.str<-c("A", "B", "C", "P1", cent.name,IP.txt)
text(txt+cbind(rep(xd*.02,nrow(txt)),rep(-xd*.03,nrow(txt))),txt.str)
c1<-.4; c2<-.6;
P1<-c(.3,.2)
NASbasic.tri(P1, c1,c2,M)

```

NAStri The vertices of the Arc Slice (AS) Proximity Region in a general triangle

\section*{Description}

Returns the end points of the line segments and arc-slices that constitute the boundary of AS proximity region for a point in the triangle \(\operatorname{tri}=T(A, B, C)=(r v=1, r v=2, r v=3)\).

Vertex regions are based on the center, \(M=\left(m_{1}, m_{2}\right)\) in Cartesian coordinates or \(M=(\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of the triangle tri or based on circumcenter of tri; default is \(M=" C C\) ", i.e., circumcenter of tri. \(r v\) is the index of the vertex region \(p 1\) resides, with default=NULL.
If \(p\) is outside of tri, it returns NULL for the proximity region. dec is the number of decimals (default is 4) to round the barycentric coordinates when checking the points fall on the boundary of the triangle tri or not (so as not to miss the intersection points due to precision in the decimals).

See also (Ceyhan \((2005,2010)\)).

\section*{Usage}

NAStri (p, tri, \(M=\) "CC", rv = NULL, dec = 4)

\section*{Arguments}
p
tri

M The center of the triangle. "CC" stands for circumcenter of the triangle tri or a 2D point in Cartesian coordinates or a 3D point in barycentric coordinates which serves as a center in the interior of the triangle tri; default is \(M=" C C\) " i.e., the circumcenter of tri.
rv Index of the M-vertex region containing the point \(p\), either 1, 2, 3 or NULL (default is NULL).
dec a positive integer the number of decimals (default is 4) to round the barycentric coordinates when checking whether the end points fall on the boundary of the triangle tri or not.

\section*{Value}

A list with the elements
\(L, R \quad\) End points of the line segments on the boundary of the AS proximity region. Each row in \(L\) and \(R\) constitute a pair of points that determine a line segment on the boundary.
arc.slices The end points of the arc-slices on the circular parts of the AS proximity region. Here points in rows 1 and 2 constitute the end points of the first arc-slice, points on rows 3 and 4 constitute the end points for the next arc-slice and so on.
Angles The angles (in radians) between the vectors joining arc slice end points to the point \(p\) with the horizontal line crossing the point \(p\)

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). "An investigation of new graph invariants related to the domination number of random proximity catch digraphs." Methodology and Computing in Applied Probability, 14(2), 299-334.

\section*{See Also}

NASbasic.tri, NPEtri, NCStri and IarcAStri

\section*{Examples}
```

A<-c(1,1); B<-c(2,0); C<-c(1.5, 2);
Tr<-rbind(A,B,C);
M<-as.numeric(runif.tri(1,Tr)$g) #try also M<-c(.6,.2)
P1<-as.numeric(runif.tri(1,Tr)$g) \#try also P1<-c(1.3,1.2)
NAStri(P1,Tr,M)
\#or try
Rv<-rel.vert.triCC(P1,Tr)$rv
NAStri(P1,Tr,M,Rv)
NAStri(c(3,5),Tr,M)
P2<-c(1.5,1.4)
NAStri(P2,Tr,M)
P3<-c(1.5,.4)
NAStri(P3,Tr,M)
if (dimension(M)==3) {M<-bary2cart(M,Tr)}
#need to run this when M is given in barycentric coordinates
CC<-circumcenter.tri(Tr) #the circumcenter
if (isTRUE(all.equal(M,CC)) || identical(M,"CC"))
{cent<-CC
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
Ds<-rbind(D1,D2,D3)
cent.name<-"CC"
rv<-rel.vert.triCC(P1,Tr)$rv
} else
{cent<-M
cent.name<-"M"
Ds<-prj.cent2edges(Tr,M)
rv<-rel.vert.tri(P1,Tr,M)\$rv
}
RV<-Tr[rv,]
rad<-Dist(P1,RV)
Int.Pts<-NAStri(P1,Tr,M)
\#plot of the NAS region
Xlim<-range(Tr[,1],P1[1]+rad,P1[1]-rad)
Ylim<-range(Tr[,2],P1[2]+rad,P1[2]-rad)
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(A,pch=".",asp=1,xlab="",ylab="",xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
\#asp=1 must be the case to have the arc properly placed in the figure

```
```

polygon(Tr)
points(rbind(Tr,P1,rbind(Int.Pts$L,Int.Pts$R)))
L<-rbind(cent,cent,cent); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty=2)
interp::circles(P1[1],P1[2],rad,lty=2)
L<-Int.Pts$L; R<-Int.Pts$R
segments(L[,1], L[,2], R[,1], R[,2], lty=1,col=2)
Arcs<-Int.Pts$a;
if (!is.null(Arcs))
{
    K<-nrow(Arcs)/2
    for (i in 1:K)
    {A1<-Int.Pts$arc[2*i-1,]; A2<-Int.Pts$arc[2*i,];
    angles<-angle.str2end(A1,P1,A2)$c
test.ang1<-angles[1]+(.01)*(angles[2]-angles[1])
test.Pnt<-P1+rad*c(cos(test.ang1),sin(test.ang1))
if (!in.triangle(test.Pnt,Tr,boundary = TRUE)$i) {angles<-c(min(angles),max(angles)-2*pi)}
    plotrix::draw.arc(P1[1],P1[2],rad,angle1=angles[1],angle2=angles[2],col=2)
    }
}
#proximity region with the triangle (i.e., for labeling the vertices of the NAS)
IP.txt<-intpts<-c()
if (!is.null(Int.Pts$a))
{
intpts<-unique(round(Int.Pts\$a,7))
\#this part is for labeling the intersection points of the spherical
for (i in 1:(length(intpts)/2))
IP.txt<-c(IP.txt,paste("I",i+1, sep = ""))
}
txt<-rbind(Tr,P1,cent,intpts)
txt.str<-c("A", "B","C","P1", cent.name,IP.txt)
text(txt+cbind(rep(xd*.02,nrow(txt)),rep(-xd*.03,nrow(txt))),txt.str)
P1<-c(.3,.2)
NAStri(P1,Tr,M)

```

\section*{NCSint}

The end points of the Central Similarity (CS) Proximity Region for a point - one interval case

\section*{Description}

Returns the end points of the interval which constitutes the CS proximity region for a point in the interval int \(=(a, b)=(r v=1, r v=2)\).
CS proximity region is constructed with respect to the interval int with expansion parameter \(t>0\) and centrality parameter \(c \in(0,1)\).

Vertex regions are based on the (parameterized) center, \(M_{c}\), which is \(M_{c}=a+c(b-a)\) for the interval, int \(=(a, b)\). The CS proximity region is constructed whether x is inside or outside the interval int.
See also (Ceyhan (2016)).

\section*{Usage}

NCSint(x, int, \(t, c=0.5)\)

\section*{Arguments}
\(x \quad\) A 1D point for which CS proximity region is constructed.
int A vector of two real numbers representing an interval.
\(t \quad\) A positive real number which serves as the expansion parameter in CS proximity region.
c A positive real number in \((0,1)\) parameterizing the center inside int \(=(a, b)\) with the default \(\mathrm{c}=.5\). For the interval, int \(=(a, b)\), the parameterized center is \(M_{c}=a+c(b-a)\).

\section*{Value}

The interval which constitutes the CS proximity region for the point x

\section*{Author(s)}

\section*{Elvan Ceyhan}

\section*{References}

Ceyhan E (2016). "Density of a Random Interval Catch Digraph Family and its Use for Testing Uniformity." REVSTAT, 14(4), 349-394.

\section*{See Also}

NPEint and NCStri

\section*{Examples}
```

c<-.4
t<-2
a<-0; b<-10; int<-c(a,b)
NCSint(7,int,t,c)
NCSint(17, int,t,c)
NCSint(1,int,t,c)
NCSint(-1,int,t,c)
NCSint(3,int,t,c)
NCSint(4,int,t,c)
NCSint(a,int,t,c)

```

\section*{NCStri \(\quad\) The vertices of the Central Similarity (CS) Proximity Region in a gen-} eral triangle

\section*{Description}

Returns the vertices of the CS proximity region (which is itself a triangle) for a point in the triangle \(\mathrm{tri}=T(A, B, C)=(\mathrm{rv}=1, \mathrm{rv}=2, \mathrm{rv}=3)\).
CS proximity region is defined with respect to the triangle tri with expansion parameter \(t>0\) and edge regions based on center \(M=\left(m_{1}, m_{2}\right)\) in Cartesian coordinates or \(M=(\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of the triangle tri; default is \(M=(1,1,1)\) i.e., the center of mass of tri.

Edge regions are labeled as \(1,2,3\) rowwise for the corresponding vertices of the triangle tri. re is the index of the edge region \(p\) resides, with default=NULL. If \(p\) is outside of tri, it returns NULL for the proximity region.
See also (Ceyhan (2005, 2010); Ceyhan et al. (2007)).

\section*{Usage}

NCStri (p, tri, t, \(M=c(1,1,1), r e=N U L L)\)

\section*{Arguments}
\(\mathrm{p} \quad\) A 2D point whose CS proximity region is to be computed.
tri A \(3 \times 2\) matrix with each row representing a vertex of the triangle.
\(t \quad\) A positive real number which serves as the expansion parameter in CS proximity region.

M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates which serves as a center in the interior of the triangle tri; default is \(M=\) \((1,1,1)\) i.e., the center of mass of tri.
re Index of the M-edge region containing the point \(p\), either 1, 2, 3 or NULL (default is NULL).

\section*{Value}

Vertices of the triangular region which constitutes the CS proximity region with expansion parameter \(t>0\) and center \(M\) for a point p

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E, Priebe CE, Marchette DJ (2007). "A new family of random graphs for testing spatial segregation." Canadian Journal of Statistics, 35(1), 27-50.

\section*{See Also}

NPEtri, NAStri, and IarcCStri

\section*{Examples}
```

A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
tau<-1.5
M<-as.numeric(runif.tri(1,Tr)$g) #try also M<-c(1.6,1.2)
n<-3
set.seed(1)
Xp<-runif.tri(n,Tr)$g
NCStri(Xp[1,],Tr,tau,M)
P1<-as.numeric(runif.tri(1,Tr)$g) #try also P1<-c(.4,.2)
NCStri(P1,Tr,tau,M)
#or try
re<-rel.edges.tri(P1,Tr,M)$re
NCStri(P1,Tr,tau,M,re)

```

NPEbasic.tri The vertices of the Proportional Edge (PE) Proximity Region in a standard basic triangle

\section*{Description}

Returns the vertices of the PE proximity region (which is itself a triangle) for a point in the standard basic triangle \(T_{b}=T\left((0,0),(1,0),\left(c_{1}, c_{2}\right)\right)=(r v=1, r v=2, r v=3)\).

PE proximity region is defined with respect to the standard basic triangle \(T_{b}\) with expansion parameter \(r \geq 1\) and vertex regions based on center \(M=\left(m_{1}, m_{2}\right)\) in Cartesian coordinates or \(M=(\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of the basic triangle \(T_{b}\) or based on the circumcenter of \(T_{b}\); default is \(M=(1,1,1)\), i.e., the center of mass of \(T_{b}\).
Vertex regions are labeled as \(1,2,3\) rowwise for the vertices of the triangle \(T_{b}\). rv is the index of the vertex region \(p\) resides, with default=NULL. If \(p\) is outside of tri, it returns NULL for the proximity region.
See also (Ceyhan \((2005,2010)\)).

\section*{Usage}

NPEbasic.tri(p, r, c1, c2, \(M=c(1,1,1), r v=N U L L)\)

\section*{Arguments}
p A 2D point whose PE proximity region is to be computed.
\(r \quad\) A positive real number which serves as the expansion parameter in PE proximity region; must be \(\geq 1\).
c1, c2 Positive real numbers representing the top vertex in standard basic triangle \(T_{b}=\) \(T\left((0,0),(1,0),\left(c_{1}, c_{2}\right)\right), c_{1}\) must be in \([0,1 / 2], c_{2}>0\) and \(\left(1-c_{1}\right)^{2}+c_{2}^{2} \leq 1\).

M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates which serves as a center in the interior of the standard basic triangle \(T_{b}\) or the circumcenter of \(T_{b}\) which may be entered as " CC " as well; default is \(M=\) \((1,1,1)\), i.e., the center of mass of \(T_{b}\).
rv Index of the M-vertex region containing the point \(p\), either 1,2,3 or NULL (default is NULL).

\section*{Value}

Vertices of the triangular region which constitutes the PE proximity region with expansion parameter \(r\) and center \(M\) for a point \(p\)

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). "An investigation of new graph invariants related to the domination number of random proximity catch digraphs." Methodology and Computing in Applied Probability, 14(2), 299-334.

\section*{See Also}

NPEtri, NAStri, NCStri, and IarcPEbasic.tri

\section*{Examples}
```

c1<-.4; c2<-.6
A<-c(0,0); B<-c(1,0); C<-c(c1,c2);
Tb<-rbind(A,B,C);
M<-as.numeric(runif.basic.tri(1,c1,c2)$g) #try also M<-c(.6,.2)
r<-2
P1<-as.numeric(runif.basic.tri(1,c1,c2)$g) \#try also P1<-c(.4,.2)
NPEbasic.tri(P1,r,c1,c2,M)
\#or try
Rv<-rel.vert.basic.tri(P1,c1, c2,M)\$rv
NPEbasic.tri(P1,r,c1,c2,M,Rv)
P1<-c(1.4,1.2)
P2<-c(1.5,1.26)
NPEbasic.tri(P1,r,c1,c2,M) \#gives an error if M=c(1.3,1.3)
\#since center is not the circumcenter or not in the interior of the triangle

```

NPEint The end points of the Proportional Edge (PE) Proximity Region for a point - one interval case

\section*{Description}

Returns the end points of the interval which constitutes the PE proximity region for a point in the interval int \(=(a, b)=(r v=1, r v=2)\). PE proximity region is constructed with respect to the interval int with expansion parameter \(r \geq 1\) and centrality parameter \(c \in(0,1)\).

Vertex regions are based on the (parameterized) center, \(M_{c}\), which is \(M_{c}=a+c(b-a)\) for the interval, int \(=(a, b)\). The PE proximity region is constructed whether x is inside or outside the interval int.
See also (Ceyhan (2012)).

\section*{Usage}

NPEint(x, int, \(r, c=0.5)\)

\section*{Arguments}

X
int
\(r\)

C

A 1D point for which PE proximity region is constructed.
A vector of two real numbers representing an interval.
A positive real number which serves as the expansion parameter in PE proximity region; must be \(\geq 1\).

A positive real number in \((0,1)\) parameterizing the center inside int \(=(a, b)\) with the default \(\mathrm{c}=.5\). For the interval, int \(=(a, b)\), the parameterized center is \(M_{c}=a+c(b-a)\).

\section*{Value}

The interval which constitutes the PE proximity region for the point \(x\)

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2012). "The Distribution of the Relative Arc Density of a Family of Interval Catch Digraph Based on Uniform Data." Metrika, 75(6), 761-793.

\section*{See Also}

NCSint, NPEtri and NPEtetra

\section*{Examples}
```

c<-.4
r<-2
a<-0; b<-10; int<-c(a,b)
NPEint(7,int,r,c)
NPEint(17,int,r,c)
NPEint(1,int,r,c)
NPEint(-1,int,r,c)

```
NPEstd.tetra

The vertices of the Proportional Edge (PE) Proximity Region in the standard regular tetrahedron

\section*{Description}

Returns the vertices of the PE proximity region (which is itself a tetrahedron) for a point in the standard regular tetrahedron \(T_{h}=T((0,0,0),(1,0,0),(1 / 2, \sqrt{3} / 2,0),(1 / 2, \sqrt{3} / 6, \sqrt{6} / 3))=\) (\(r v=1, r v=2, r v=3, r v=4\)).

PE proximity region is defined with respect to the tetrahedron \(T_{h}\) with expansion parameter \(r \geq 1\) and vertex regions based on the circumcenter of \(T_{h}\) (which is equivalent to the center of mass in the standard regular tetrahedron).
Vertex regions are labeled as \(1,2,3,4\) rowwise for the vertices of the tetrahedron \(T_{h}\). rv is the index of the vertex region p resides, with default=NULL. If p is outside of \(T_{h}\), it returns NULL for the proximity region.

See also (Ceyhan \((2005,2010)\)).

\section*{Usage}

NPEstd.tetra(p, r, rv = NULL)

\section*{Arguments}
p
\(r\)
rv Index of the vertex region containing the point, either 1, 2, 3, 4 or NULL (default is NULL).

\section*{Value}

Vertices of the tetrahedron which constitutes the PE proximity region with expansion parameter \(r\) and circumcenter (or center of mass) for a point \(p\) in the standard regular tetrahedron

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

\section*{See Also}

NPEtetra, NPEtri and NPEint

\section*{Examples}
```

A<-c(0,0,0); B<-c(1,0,0); C<-c(1/2,sqrt(3)/2,0); D<-c(1/2,\operatorname{sqrt}(3)/6,\operatorname{sqrt (6)/3)}
tetra<-rbind(A,B,C,D)
n<-3
Xp<-runif.std.tetra(n)$g
r<-1.5
NPEstd.tetra(Xp[1,],r)
#or try
RV<-rel.vert.tetraCC(Xp[1,], tetra)$rv
NPEstd.tetra(Xp[1,],r,rv=RV)
NPEstd.tetra(c(-1, -1, -1),r,rv=NULL)

```

NPEtetra The vertices of the Proportional Edge (PE) Proximity Region in a tetrahedron

\section*{Description}

Returns the vertices of the PE proximity region (which is itself a tetrahedron) for a point in the tetrahedron th.
PE proximity region is defined with respect to the tetrahedron th with expansion parameter \(r \geq 1\) and vertex regions based on the center \(M\) which is circumcenter ("CC") or center of mass ("CM") of th with default="CM".
Vertex regions are labeled as \(1,2,3,4\) rowwise for the vertices of the tetrahedron \(t h . r v\) is the index of the vertex region \(p\) resides, with default=NULL. If \(p\) is outside of \(t h\), it returns NULL for the proximity region.
See also (Ceyhan \((2005,2010)\)).

\section*{Usage}

NPEtetra(p, th, r, M = "CM", rv = NULL)

\section*{Arguments}
p
th
\(r \quad\) A positive real number which serves as the expansion parameter in PE proximity region; must be \(\geq 1\).
M
rv

\section*{Value}

Vertices of the tetrahedron which constitutes the PE proximity region with expansion parameter \(r\) and circumcenter (or center of mass) for a point \(p\) in the tetrahedron

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

\section*{See Also}

NPEstd. tetra, NPEtri and NPEint

\section*{Examples}
```

A<-c(0,0,0); B<-c(1,0,0); C<-c(1/2,sqrt(3)/2,0); D<-c(1/2, sqrt(3)/6,sqrt(6)/3)
set.seed(1)
tetra<-rbind(A,B,C,D)+matrix(runif(12,-.25,.25),ncol=3)
n<-3 \#try also n<-20
Xp<-runif.tetra(n,tetra)$g
M<-"CM" #try also M<-"CC"
r<-1.5
NPEtetra(Xp[1,],tetra,r) #uses the default M="CM"
NPEtetra(Xp[1,],tetra,r,M="CC")
#or try
RV<-rel.vert.tetraCM(Xp[1,],tetra)$rv
NPEtetra(Xp[1,],tetra,r,M,rv=RV)
P1<-c(.1,.1,.1)
NPEtetra(P1,tetra,r,M)

```
NPEtri \begin{tabular}{l}
The vertices of the Proportional Edge (PE) Proximity Region in a gen- \\
eral triangle
\end{tabular}

\section*{Description}

Returns the vertices of the PE proximity region (which is itself a triangle) for a point in the triangle \(\mathrm{tri}=T(A, B, C)=(\mathrm{rv}=1, \mathrm{rv}=2, \mathrm{rv}=3)\).

PE proximity region is defined with respect to the triangle tri with expansion parameter \(r \geq 1\) and vertex regions based on center \(M=\left(m_{1}, m_{2}\right)\) in Cartesian coordinates or \(M=(\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of the triangle tri or based on the circumcenter of tri; default is \(M=(1,1,1)\), i.e., the center of mass of tri.

Vertex regions are labeled as \(1,2,3\) rowwise for the vertices of the triangle tri. rv is the index of the vertex region \(p\) resides, with default=NULL. If \(p\) is outside of tri, it returns NULL for the proximity region.

See also (Ceyhan (2005); Ceyhan et al. (2006); Ceyhan (2011)).

\section*{Usage}

NPEtri(p, tri, r, \(M=c(1,1,1), r v=N U L L)\)

\section*{Arguments}
p
tri A \(3 \times 2\) matrix with each row representing a vertex of the triangle.
\(r\)

M
rv
A 2D point whose PE proximity region is to be computed.

A positive real number which serves as the expansion parameter in PE proximity region; must be \(\geq 1\).
A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates which serves as a center in the interior of the triangle tri or the circumcenter of tri which may be entered as "CC" as well; default is \(M=(1,1,1)\), i.e., the center of mass of tri.
Index of the \(M\)-vertex region containing the point \(p\), either \(1,2,3\) or NULL (default is NULL).

\section*{Value}

Vertices of the triangular region which constitutes the PE proximity region with expansion parameter \(r\) and center \(M\) for a point \(p\)

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2011). "Spatial Clustering Tests Based on Domination Number of a New Random Digraph Family." Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

Ceyhan E, Priebe CE, Wierman JC (2006). "Relative density of the random \(r\)-factor proximity catch digraphs for testing spatial patterns of segregation and association." Computational Statistics \& Data Analysis, 50(8), 1925-1964.

\section*{See Also}

NPEbasic.tri, NAStri, NCStri, and IarcPEtri

\section*{Examples}
```

A<-c(1,1); B<-c(2,0); C<-C(1.5,2);
Tr<-rbind(A,B,C);
M<-as.numeric(runif.tri(1,Tr)$g) #try also M<-c(1.6,1.0)
r<-1.5
n<-3
set.seed(1)
Xp<-runif.tri(n,Tr)$g
NPEtri(Xp[3,],Tr,r,M)
P1<-as.numeric(runif.tri(1,Tr)$g) #try also P1<-c(.4,.2)
NPEtri(P1,Tr,r,M)
M<-c(1.3,1.3)
r<-2
P1<-c(1.4,1.2)
P2<-c(1.5,1.26)
NPEtri(P1,Tr,r,M)
NPEtri(P2,Tr,r,M)
#or try
Rv<-rel.vert.tri(P1,Tr,M)$rv
NPEtri(P1,Tr,r,M,Rv)

```
num. arcsAS
Number of arcs of Arc Slice Proximity Catch Digraphs (AS-PCDs) and related quantities of the induced subdigraphs for points in the Delaunay triangles - multiple triangle case

\section*{Description}

An object of class "NumArcs". Returns the number of arcs and various other quantities related to the Delaunay triangles for Arc Slice Proximity Catch Digraph (AS-PCD) whose vertices are the data points in \(X p\) in the multiple triangle case (with triangulation based on Yp points).
AS proximity regions are defined with respect to the Delaunay triangles based on Yp points and vertex regions in each triangle are based on the center \(\mathrm{M}=\) " \(C C\) " for circumcenter of each Delaunay triangle or \(M=(\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of each Delaunay triangle; default is \(M=" C C "\) i.e., circumcenter of each triangle.
Convex hull of Yp is partitioned by the Delaunay triangles based on Yp points (i.e., multiple triangles are the set of these Delaunay triangles whose union constitutes the convex hull of Yp points). For the number of arcs, loops are not allowed so arcs are only possible for points inside the convex hull of \(Y p\) points.

See (Ceyhan (2005, 2010)) for more on AS-PCDs. Also see (Okabe et al. (2000); Ceyhan (2010); Sinclair (2016)) for more on Delaunay triangulation and the corresponding algorithm.

\section*{Usage}
num.arcsAS(Xp, Yp, \(M=\) "CC")

\section*{Arguments}

Xp A set of 2D points which constitute the vertices of the AS-PCD.
Yp A set of 2D points which constitute the vertices of the Delaunay triangles.
M The center of the triangle. "CC" stands for circumcenter of each Delaunay triangle or 3D point in barycentric coordinates which serves as a center in the interior of each Delaunay triangle; default is \(M=" C C\) " i.e., the circumcenter of each triangle.

\section*{Value}

A list with the elements
desc A short description of the output: number of arcs and related quantities for the induced subdigraphs in the Delaunay triangles
num. arcs Total number of arcs in all triangles, i.e., the number of arcs for the entire ASPCD
num.in.conv.hull
Number of \(X p\) points in the convex hull of \(Y p\) points
num. in.tris The vector of number of Xp points in the Delaunay triangles based on Yp points
\(\left.\begin{array}{ll}\text { weight.vec } & \begin{array}{l}\text { The vector of the areas of Delaunay triangles based on Yp points } \\ \text { tri.num.arcs }\end{array} \\ \text { The vector of the number of arcs of the components of the AS-PCD in the } \\ \text { Delaunay triangles based on Yp points }\end{array}\right\}\)

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). "An investigation of new graph invariants related to the domination number of random proximity catch digraphs." Methodology and Computing in Applied Probability, 14(2), 299-334.

Okabe A, Boots B, Sugihara K, Chiu SN (2000). Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. Wiley, New York.

Sinclair D (2016). "S-hull: a fast radial sweep-hull routine for Delaunay triangulation." 1604.01428.

\section*{See Also}
num. arcsAStri, num. arcsPE, and num. arcsCS

\section*{Examples}
```

nx<-15; ny<-5; \#try also nx<-40; ny<-10 or nx<-1000; ny<-10;
set.seed(1)
Xp<-cbind(runif(nx),runif(nx))
Yp<-cbind(runif(ny,0,.25),runif(ny,0,.25))+cbind(c(0,0,0.5,1,1),c(0,1,.5,0,1))
\#try also Yp<-cbind(runif(ny,0,1),runif(ny,0,1))
M<-"CC" \#try also M<-c(1,1,1)
Narcs = num.arcsAS(Xp,Yp,M)

```

Narcs
summary (Narcs)
plot(Narcs)
```

num.arcsAStri

```

Number of arcs of Arc Slice Proximity Catch Digraphs (AS-PCDs) and quantities related to the triangle - one triangle case

\section*{Description}

An object of class "NumArcs". Returns the number of arcs of Arc Slice Proximity Catch Digraphs (AS-PCDs) whose vertices are the 2D data set, Xp . It also provides number of vertices (i.e., number of data points inside the triangle) and indices of the data points that reside in the triangle.
The data points could be inside or outside a general triangle \(\mathrm{tri}=T(A, B, C)=(\mathrm{rv}=1, \mathrm{rv}=2, \mathrm{rv}=3)\), with vertices of tri stacked row-wise.

AS proximity regions are defined with respect to the triangle tri and vertex regions are based on the center, \(M=\left(m_{1}, m_{2}\right)\) in Cartesian coordinates or \(M=(\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of the triangle tri or based on circumcenter of tri; default is \(\mathrm{M}=\) "CC", i.e., circumcenter of tri. For the number of arcs, loops are not allowed, so arcs are only possible for points inside the triangle, tri.
See also (Ceyhan (2005, 2010)).

\section*{Usage}
num. arcsAStri(Xp, tri, \(M=\) "CC")

\section*{Arguments}

Xp A set of 2D points which constitute the vertices of the digraph (i.e., AS-PCD).
tri Three 2D points, stacked row-wise, each row representing a vertex of the triangle.
M The center of the triangle. "CC" stands for circumcenter of the triangle tri or a 2D point in Cartesian coordinates or a 3D point in barycentric coordinates which serves as a center in the interior of tri; default is \(M=\) " \(C C\) " i.e., the circumcenter of tri.

\section*{Value}

A list with the elements
desc A short description of the output: number of arcs and quantities related to the triangle
num.arcs \(\quad\) Number of arcs of the AS-PCD
tri.num.arcs Number of arcs of the induced subdigraph of the AS-PCD for vertices in the triangle tri
num.in.tri \(\quad\) Number of \(X p\) points in the triangle, tri
ind.in.tri The vector of indices of the \(X p\) points that reside in the triangle
tess.points Tessellation points, i.e., points on which the tessellation of the study region is performed, here, tessellation points are the vertices of the support triangle tri.
vertices Vertices of the digraph, Xp .

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). "An investigation of new graph invariants related to the domination number of random proximity catch digraphs." Methodology and Computing in Applied Probability, 14(2), 299-334.

\section*{See Also}
```

num.arcsAS, num.arcsPEtri, and num.arcsCStri

```

\section*{Examples}
```

A<-c(1,1); B<-c(2,0); C<-C(1.5,2);
Tr<-rbind(A,B,C);
n<-10 \#try also n<-20
set.seed(1)
Xp<-runif.tri(n,Tr)$g
M<-as.numeric(runif.tri(1,Tr)$g) \#try also M<-c(1.6,1.2)
Narcs = num.arcsAStri(Xp,Tr,M)
Narcs
summary(Narcs)
plot(Narcs)

```
num. arcsCS
Number of arcs of Central Similarity Proximity Catch Digraphs (CS\(P C D s\)) and related quantities of the induced subdigraphs for points in the Delaunay triangles - multiple triangle case

\section*{Description}

An object of class "NumArcs". Returns the number of arcs and various other quantities related to the Delaunay triangles for Central Similarity Proximity Catch Digraph (CS-PCD) whose vertices are the data points in \(X p\) in the multiple triangle case.
CS proximity regions are defined with respect to the Delaunay triangles based on Yp points with expansion parameter \(t>0\) and edge regions in each triangle is based on the center \(M=(\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of each Delaunay triangle or based on circumcenter of each Delaunay triangle (default for \(M=(1,1,1)\) which is the center of mass of the triangle). Each Delaunay triangle is first converted to an (nonscaled) basic triangle so that \(M\) will be the same type of center for each Delaunay triangle (this conversion is not necessary when M is \(C M\)).
Convex hull of \(Y p\) is partitioned by the Delaunay triangles based on \(Y p\) points (i.e., multiple triangles are the set of these Delaunay triangles whose union constitutes the convex hull of Yp points). For the number of arcs, loops are not allowed so arcs are only possible for points inside the convex hull of Yp points.
See (Ceyhan (2005); Ceyhan et al. (2007); Ceyhan (2014)) for more on CS-PCDs. Also see (Okabe et al. (2000); Ceyhan (2010); Sinclair (2016)) for more on Delaunay triangulation and the corresponding algorithm.

\section*{Usage}
num. \(\operatorname{arcsCS}(X p, Y p, t, M=c(1,1,1))\)

\section*{Arguments}

Xp A set of 2D points which constitute the vertices of the CS-PCD.
Yp A set of 2D points which constitute the vertices of the Delaunay triangles.
t A positive real number which serves as the expansion parameter in CS proximity region.
M A 3D point in barycentric coordinates which serves as a center in the interior of each Delaunay triangle, default for \(M=(1,1,1)\) which is the center of mass of each triangle.

\section*{Value}

A list with the elements
desc A short description of the output: number of arcs and related quantities for the induced subdigraphs in the Delaunay triangles
num.arcs Total number of arcs in all triangles, i.e., the number of arcs for the entire CSPCD
num.in.conv.hull
Number of \(X p\) points in the convex hull of Yp points
num.in.tris The vector of number of \(X p\) points in the Delaunay triangles based on Yp points
weight.vec The vector of the areas of Delaunay triangles based on Yp points
tri.num.arcs The vector of the number of arcs of the components of the CS-PCD in the Delaunay triangles based on Yp points
del.tri.ind A matrix of indices of vertices of the Delaunay triangles based on Yp points, each column corresponds to the vector of indices of the vertices of one triangle.
data.tri.ind A vector of indices of vertices of the Delaunay triangles in which data points reside, i.e., column number of del.tri.ind for each Xp point.
tess.points Tessellation points, i.e., points on which the tessellation of the study region is performed, here, tessellation is the Delaunay triangulation based on Yp points.
vertices \(\quad\) Vertices of the digraph, Xp .

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2014). "Comparison of Relative Density of Two Random Geometric Digraph Families in Testing Spatial Clustering." TEST, 23(1), 100-134.

Ceyhan E, Priebe CE, Marchette DJ (2007). "A new family of random graphs for testing spatial segregation." Canadian Journal of Statistics, 35(1), 27-50.

Okabe A, Boots B, Sugihara K, Chiu SN (2000). Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. Wiley, New York.

Sinclair D (2016). "S-hull: a fast radial sweep-hull routine for Delaunay triangulation." 1604.01428.

\section*{See Also}
num. arcsCStri, num. arcsCSstd. tri, num. arcsPE, and num. arcsAS

\section*{Examples}
\(\# n x\) is number of \(X\) points (target) and ny is number of \(Y\) points (nontarget)
\(n x<-20\); ny<-5; \#try also \(n x<-40\); ny<-10 or nx<-1000; ny<-10;
```

set.seed(1)
Xp<-cbind(runif(nx),runif(nx))
Yp<-cbind(runif(ny,0,.25),runif(ny,0,.25))+cbind(c(0,0,0.5,1,1),c(0,1,.5,0,1))
\#try also Yp<-cbind(runif(ny,0,1),runif(ny,0,1))
M<-c(1,1,1) \#try also M<-c(1,2,3)
Narcs = num.arcsCS(Xp,Yp,t=1,M)
Narcs
summary(Narcs)
plot(Narcs)

```
num. \(\operatorname{arcsCS} 1 \mathrm{D}\)

Number of arcs of Central Similarity Proximity Catch Digraphs (CS\(P C D s)\) and related quantities of the induced subdigraphs for points in the partition intervals - multiple interval case

\section*{Description}

An object of class "NumArcs". Returns the number of arcs and various other quantities related to the partition intervals for Central Similarity Proximity Catch Digraph (CS-PCD) whose vertices are the data points in Xp in the multiple interval case.
For this function, CS proximity regions are constructed data points inside or outside the intervals based on Yp points with expansion parameter \(t \geq 0\) and centrality parameter \(c \in(0,1)\). That is, for this function, arcs may exist for points in the middle or end-intervals.
Range (or convex hull) of \(Y p\) (i.e., the interval \((\min (Y p), \max (Y p))\)) is partitioned by the spacings based on Yp points (i.e., multiple intervals are these partition intervals based on the order statistics of Yp points whose union constitutes the range of Yp points). If there are duplicates of Yp points, only one point is retained for each duplicate value, and a warning message is printed. For the number of arcs, loops are not counted.

\section*{Usage}
num. \(\operatorname{arcsCS1D}(X p, Y p, t, c=0.5)\)

\section*{Arguments}

Xp A set or vector of 1D points which constitute the vertices of the CS-PCD.
Yp A set or vector of 1D points which constitute the end points of the partition intervals.
t
A positive real number which serves as the expansion parameter in CS proximity region; must be \(>0\).

C
A positive real number in \((0,1)\) parameterizing the center inside the middle (partition) intervals with the default \(\mathrm{c}=.5\). For an interval, int \(=(a, b)\), the parameterized center is \(M_{c}=a+c(b-a)\).

\section*{Value}

A list with the elements
desc A short description of the output: number of arcs and related quantities for the induced subdigraphs in the partition intervals
num.arcs Total number of arcs in all intervals (including the end-intervals), i.e., the number of arcs for the entire CS-PCD
num. in. range Number of \(X p\) points in the range or convex hull of \(Y p\) points
num.in.ints The vector of number of \(X p\) points in the partition intervals (including the endintervals) based on \(Y p\) points
weight.vec The vector of the lengths of the middle partition intervals (i.e., end-intervals excluded) based on \(Y p\) points
int.num.arcs The vector of the number of arcs of the components of the CS-PCD in the partition intervals (including the end-intervals) based on Yp points
part.int A list of partition intervals based on Yp points
data.int.ind A vector of indices of partition intervals in which data points reside, i.e., column number of part.int is provided for each Xp point. Partition intervals are numbered from left to right with 1 being the left end-interval.
tess.points Tessellation points, i.e., points on which the tessellation of the study region is performed, here, tessellation is the partition intervals based on Yp points.
vertices Vertices of the digraph, Xp.

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

There are no references for Rd macro \insertAllCites on this help page.

\section*{See Also}
num. arcsCSint, num. arcsCSmid.int, num. arcsCSend.int, and num. arcsPE1D

\section*{Examples}
```

tau<-1.5
c<-.4
a<-0; b<-10; int<-c(a,b);
\#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-20; ny<-4; \#try also nx<-40; ny<-10 or nx<-1000; ny<-10;
set.seed(1)
xf<-(int[2]-int[1])*. }
Xp<-runif(nx,a-xf,b+xf)

```
```

Yp<-runif(ny,a,b)
Narcs = num.arcsCS1D(Xp,Yp,tau,c)
Narcs
summary(Narcs)
plot(Narcs)

```
num. arcsCSend.int Number of arcs of Central Similarity Proximity Catch Digraphs (CS-
PCDs) - end-interval case

\section*{Description}

Returns the number of arcs of Central Similarity Proximity Catch Digraphs (CS-PCDs) whose vertices are a 1D numerical data set, Xp , outside the interval int \(=(a, b)\).
CS proximity region is constructed only with expansion parameter \(t>0\) for points outside the interval \((a, b)\).
End vertex regions are based on the end points of the interval, i.e., the corresponding end vertex region is an interval as \((-\infty, a)\) or \((b, \infty)\) for the interval \((a, b)\). For the number of arcs, loops are not allowed, so arcs are only possible for points outside the interval, int, for this function.
See also (Ceyhan (2016)).

\section*{Usage}
num. arcsCSend.int(Xp, int, t)

\section*{Arguments}

Xp A vector of 1D points which constitute the vertices of the digraph.
int A vector of two real numbers representing an interval.
\(t \quad\) A positive real number which serves as the expansion parameter in CS proximity region.

\section*{Value}

Number of arcs for the CS-PCD with vertices being 1D data set, Xp , expansion parameter, t , for the end-intervals.

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2016). "Density of a Random Interval Catch Digraph Family and its Use for Testing Uniformity." REVSTAT, 14(4), 349-394.

\section*{See Also}
num. arcsCSmid.int, num. arcsPEmid.int, and num.arcsPEend.int

\section*{Examples}
```

a<-0; b<-10; int<-c(a,b)
n<-5
XpL<-runif(n,a-5,a)
XpR<-runif(n,b,b+5)
Xp<-c(XpL,XpR)
num.arcsCSend.int(Xp,int,t=2)
num.arcsCSend.int(Xp,int,t=1.2)
num.arcsCSend.int(Xp,int,t=4)
num. arcsCSend.int(Xp,int, t=2+5)
\#num.arcsCSend.int(Xp,int,t=c(-5,15))
n<-10 \#try also n<-20
Xp2<-runif(n,a-5,b+5)
num. arcsCSend.int(Xp2,int, t=2)
t<-. }
num.arcsCSend.int(Xp,int,t)

```

\section*{Description}

An object of class "NumArcs". Returns the number of arcs of Central Similarity Proximity Catch Digraphs (CS-PCDs) whose vertices are the data points in Xp in the one middle interval case. It also provides number of vertices (i.e., number of data points inside the intervals) and indices of the data points that reside in the intervals.
The data points could be inside or outside the interval is int \(=(a, b)\).
CS proximity region is constructed with an expansion parameter \(t>0\) and a centrality parameter \(c \in(0,1)\). CS proximity region is constructed for both points inside and outside the interval, hence the arcs may exist for all points inside or outside the interval.
See also (Ceyhan (2016)).

\section*{Usage}
num. \(\operatorname{arcsCSint(Xp,int,~} t, c=0.5)\)
num.arcsCSint

\section*{Arguments}

Xp A set of 1D points which constitute the vertices of CS-PCD.
int A vector of two real numbers representing an interval.
\(t \quad\) A positive real number which serves as the expansion parameter in CS proximity region.
c
A positive real number in \((0,1)\) parameterizing the center inside int \(=(a, b)\) with the default \(\mathrm{c}=.5\). For the interval, int \(=(a, b)\), the parameterized center is \(M_{c}=a+c(b-a)\).

\section*{Value}

A list with the elements
desc A short description of the output: number of arcs and quantities related to the interval
num.arcs Total number of arcs in all intervals (including the end-intervals), i.e., the number of arcs for the entire CS-PCD
num. in. range Number of \(X p\) points in the interval int
num.in.ints The vector of number of \(X p\) points in the partition intervals (including the endintervals)
int.num.arcs The vector of the number of arcs of the components of the CS-PCD in the partition intervals (including the end-intervals)
data.int.ind A vector of indices of partition intervals in which data points reside. Partition intervals are numbered from left to right with 1 being the left end-interval.
ind.left.end, ind.mid, ind.right.end
Indices of data points in the left end-interval, middle interval, and right endinterval (respectively)
tess.points Tessellation points, i.e., points on which the tessellation of the study region is performed, here, tessellation points are the end points of the support interval int.
vertices Vertices of the digraph, Xp.

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2016). "Density of a Random Interval Catch Digraph Family and its Use for Testing Uniformity." REVSTAT, 14(4), 349-394.

\section*{See Also}
num. arcsCSmid.int, num. arcsCSend.int, and num. arcsPEint

\section*{Examples}
```

c<-. }
t<-2
a<-0; b<-10; int<-c(a,b)
n<-10
set.seed(1)
Xp<-runif(n,a,b)
Narcs = num.arcsCSint(Xp,int,t,c)
Narcs
summary(Narcs)
plot(Narcs)

```
num.arcsCSmid.int Number of Arcs of of Central Similarity Proximity Catch Digraphs (CS-PCDs) - middle interval case

\section*{Description}

Returns the number of arcs of of Central Similarity Proximity Catch Digraphs (CS-PCDs) whose vertices are the given 1D numerical data set, Xp .
CS proximity region \(N_{C S}(x, t, c)\) is defined with respect to the interval int \(=(a, b)\) for this function. CS proximity region is constructed with expansion parameter \(t>0\) and centrality parameter \(c \in(0,1)\).
Vertex regions are based on the center associated with the centrality parameter \(c \in(0,1)\). For the interval, int \(=(a, b)\), the parameterized center is \(M_{c}=a+c(b-a)\) and for the number of arcs, loops are not allowed so arcs are only possible for points inside the middle interval int for this function.
See also (Ceyhan (2016)).

\section*{Usage}
num. arcsCSmid.int(Xp, int, \(t, c=0.5)\)

\section*{Arguments}

Xp A set or vector of 1D points which constitute the vertices of CS-PCD.
int A vector of two real numbers representing an interval.
t
A positive real number which serves as the expansion parameter in CS proximity region.

C
A positive real number in \((0,1)\) parameterizing the center inside int \(=(a, b)\) with the default \(\mathrm{c}=.5\). For the interval, int \(=(a, b)\), the parameterized center is \(M_{c}=a+c(b-a)\).

\section*{Value}

Number of arcs for the CS-PCD whose vertices are the 1D data set, \(X p\), with expansion parameter, \(r \geq 1\), and centrality parameter, \(c \in(0,1)\). PE proximity regions are defined only for Xp points inside the interval int, i.e., arcs are possible for such points only.

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2016). "Density of a Random Interval Catch Digraph Family and its Use for Testing Uniformity." REVSTAT, 14(4), 349-394.

\section*{See Also}
num. arcsCSend.int, num. arcsPEmid.int, and num. arcsPEend.int

\section*{Examples}
```

c<-.4
t<-2
a<-0; b<-10; int<-c(a,b)
n<-10
Xp<-runif(n,a,b)
num.arcsCSmid.int(Xp,int,t,c)
num.arcsCSmid.int(Xp,int,t,c=.3)
num.arcsCSmid.int(Xp,int,t=1.5,c)
\#num.arcsCSmid.int(Xp,int,t,c+5) \#gives error
\#num.arcsCSmid.int(Xp,int,t,c+10)
n<-10 \#try also n<-20
Xp<-runif(n,a-5,b+5)
num.arcsCSint(Xp,int,t,c)
Xp<-runif(n, a+10,b+10)
num.arcsCSmid.int(Xp,int,t,c)
n<-10
Xp<-runif(n,a,b)
num.arcsCSmid.int(Xp,int,t,c)

```

\title{
Number of arcs of Central Similarity Proximity Catch Digraphs (CS- \\ \(P C D s)\) and quantities related to the triangle - standard equilateral triangle case
}

\section*{Description}

An object of class "NumArcs". Returns the number of arcs of Central Similarity Proximity Catch Digraphs (CS-PCDs) whose vertices are the given 2D numerical data set, Xp. It also provides number of vertices (i.e., number of data points inside the standard equilateral triangle \(T_{e}\)) and indices of the data points that reside in \(T_{e}\).
CS proximity region \(N_{C S}(x, t)\) is defined with respect to the standard equilateral triangle \(T_{e}=\) \(T(v=1, v=2, v=3)=T((0,0),(1,0),(1 / 2, \sqrt{3} / 2))\) with expansion parameter \(t>0\) and edge regions are based on the center \(M=\left(m_{1}, m_{2}\right)\) in Cartesian coordinates or \(M=(\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of \(T_{e}\); default is \(M=(1,1,1)\) i.e., the center of mass of \(T_{e}\). For the number of arcs, loops are not allowed so arcs are only possible for points inside \(T_{e}\) for this function.
See also (Ceyhan (2005); Ceyhan et al. (2007); Ceyhan (2014)).

\section*{Usage}
num. arcsCSstd.tri(Xp, t, \(M=c(1,1,1))\)

\section*{Arguments}

Xp A set of 2D points which constitute the vertices of the digraph.
\(t \quad\) A positive real number which serves as the expansion parameter in CS proximity region.
M
A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates. which serves as a center in the interior of the standard equilateral triangle \(T_{e}\); default is \(M=(1,1,1)\) i.e. the center of mass of \(T_{e}\).

\section*{Value}

A list with the elements
\begin{tabular}{ll}
desc & \begin{tabular}{l}
A short description of the output: number of arcs and quantities related to the \\
standard equilateral triangle
\end{tabular} \\
num.arcs & \begin{tabular}{l}
Number of arcs of the CS-PCD
\end{tabular} \\
tri.num.arcs & \begin{tabular}{l}
Number of arcs of the induced subdigraph of the CS-PCD for vertices in the \\
standard equilateral triangle \(T_{e}\)
\end{tabular} \\
num.in.tri & Number of Xp points in the standard equilateral triangle, \(T_{e}\) \\
ind.in.tri & \begin{tabular}{l}
The vector of indices of the Xp points that reside in \(T_{e}\) \\
tess.points
\end{tabular} \\
\begin{tabular}{l}
Tessellation points, i.e., points on which the tessellation of the study region is \\
performed, here, tessellation points are the vertices of the support triangle \(T_{e}\).
\end{tabular} \\
vertices & \begin{tabular}{l}
Vertices of the digraph, Xp.
\end{tabular}
\end{tabular}
num.arcsCStri

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2014). "Comparison of Relative Density of Two Random Geometric Digraph Families in Testing Spatial Clustering." TEST, 23(1), 100-134.

Ceyhan E, Priebe CE, Marchette DJ (2007). "A new family of random graphs for testing spatial segregation." Canadian Journal of Statistics, 35(1), 27-50.

\section*{See Also}
num. arcsCStri, num. arcsCS, and num. arcsPEstd.tri,

\section*{Examples}
```

A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
n<-10 \#try also n<-20
set.seed(1)
Xp<-runif.std.tri(n)$gen.points
M<-as.numeric(runif.std.tri(1)$g) \#try also M<-c(.6,.2)
Narcs = num.arcsCSstd.tri(Xp,t=.5,M)
Narcs
summary(Narcs)
oldpar <- par(pty="s")
plot(Narcs,asp=1)
par(oldpar)

```
num. arcsCStri

Number of arcs of Central Similarity Proximity Catch Digraphs (CS\(P C D s)\) and quantities related to the triangle - one triangle case

\section*{Description}

An object of class "NumArcs". Returns the number of arcs of Central Similarity Proximity Catch Digraphs (CS-PCDs) whose vertices are the given 2D numerical data set, Xp. It also provides
number of vertices (i.e., number of data points inside the triangle) and indices of the data points that reside in the triangle.

CS proximity region \(N_{C S}(x, t)\) is defined with respect to the triangle, tri with expansion parameter \(t>0\) and edge regions are based on the center \(M=\left(m_{1}, m_{2}\right)\) in Cartesian coordinates or \(M=\) \((\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of tri; default is \(M=(1,1,1)\) i.e., the center of mass of tri. For the number of arcs, loops are not allowed so arcs are only possible for points inside tri for this function.

See also (Ceyhan (2005); Ceyhan et al. (2007); Ceyhan (2014)).

\section*{Usage}
num. \(\operatorname{arcsCStri}(X p, \operatorname{tri}, \mathrm{t}, \mathrm{M}=\mathrm{c}(1,1,1))\)

\section*{Arguments}

Xp A set of 2D points which constitute the vertices of CS-PCD.
tri A \(3 \times 2\) matrix with each row representing a vertex of the triangle.
t
A positive real number which serves as the expansion parameter in CS proximity region.
M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates which serves as a center in the interior of the triangle tri; default is \(M=\) \((1,1,1)\) i.e. the center of mass of tri.

\section*{Value}

A list with the elements
desc A short description of the output: number of arcs and quantities related to the triangle
num.arcs \(\quad\) Number of arcs of the CS-PCD
tri.num.arcs Number of arcs of the induced subdigraph of the CS-PCD for vertices in the triangle tri
num.in.tri \(\quad\) Number of \(X p\) points in the triangle, tri
ind.in.tri The vector of indices of the Xp points that reside in the triangle
tess.points Tessellation points, i.e., points on which the tessellation of the study region is performed, here, tessellation points are the vertices of the support triangle tri.
vertices Vertices of the digraph, Xp .

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2014). "Comparison of Relative Density of Two Random Geometric Digraph Families in Testing Spatial Clustering." TEST, 23(1), 100-134.

Ceyhan E, Priebe CE, Marchette DJ (2007). "A new family of random graphs for testing spatial segregation." Canadian Journal of Statistics, 35(1), 27-50.

\section*{See Also}
num. arcsCSstd.tri, num. arcsCS, num. arcsPEtri, and num. arcsAStri

\section*{Examples}
```

A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
n<-10 \#try also n<-20
set.seed(1)
Xp<-runif.tri(n,Tr)$g
M<-as.numeric(runif.tri(1,Tr)$g) \#try also M<-c(1.6,1.0)
Narcs = num.arcsCStri(Xp,Tr,t=.5,M)
Narcs
summary(Narcs)
plot(Narcs)

```
num. arcsPE

Number of arcs of Proportional Edge Proximity Catch Digraphs (PE\(P C D s\)) and related quantities of the induced subdigraphs for points in the Delaunay triangles - multiple triangle case

\section*{Description}

An object of class "NumArcs". Returns the number of arcs and various other quantities related to the Delaunay triangles for Proportional Edge Proximity Catch Digraph (PE-PCD) whose vertices are the data points in Xp in the multiple triangle case.

PE proximity regions are defined with respect to the Delaunay triangles based on Yp points with expansion parameter \(r \geq 1\) and vertex regions in each triangle is based on the center \(M=(\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of each Delaunay triangle or based on circumcenter of each Delaunay triangle (default for \(M=(1,1,1)\) which is the center of mass of the triangle). Each

Delaunay triangle is first converted to an (nonscaled) basic triangle so that \(M\) will be the same type of center for each Delaunay triangle (this conversion is not necessary when M is \(C M\)).
Convex hull of Yp is partitioned by the Delaunay triangles based on Yp points (i.e., multiple triangles are the set of these Delaunay triangles whose union constitutes the convex hull of Yp points). For the number of arcs, loops are not allowed so arcs are only possible for points inside the convex hull of Yp points.

See (Ceyhan (2005); Ceyhan et al. (2006)) for more on PE-PCDs. Also, see (Okabe et al. (2000); Ceyhan (2010); Sinclair (2016)) for more on Delaunay triangulation and the corresponding algorithm.

\section*{Usage}
num. \(\operatorname{arcsPE}(X p, Y p, r, M=c(1,1,1))\)

\section*{Arguments}

Xp A set of 2D points which constitute the vertices of the PE-PCD.
Yp A set of 2D points which constitute the vertices of the Delaunay triangles.
\(r \quad\) A positive real number which serves as the expansion parameter in PE proximity region; must be \(\geq 1\).
M A 3D point in barycentric coordinates which serves as a center in the interior of each Delaunay triangle or circumcenter of each Delaunay triangle (for this, argument should be set as \(M=" C C "\)), default for \(M=(1,1,1)\) which is the center of mass of each triangle.

\section*{Value}

A list with the elements
desc A short description of the output: number of arcs and related quantities for the induced subdigraphs in the Delaunay triangles
num.arcs Total number of arcs in all triangles, i.e., the number of arcs for the entire PEPCD
num. in. conv.hull
Number of Xp points in the convex hull of Yp points
num.in.tris The vector of number of \(X p\) points in the Delaunay triangles based on Yp points
weight.vec The vector of the areas of Delaunay triangles based on Yp points
tri.num.arcs The vector of the number of arcs of the components of the PE-PCD in the Delaunay triangles based on \(Y p\) points
del.tri.ind A matrix of indices of vertices of the Delaunay triangles based on Yp points, each column corresponds to the vector of indices of the vertices of one triangle.
data.tri.ind A vector of indices of vertices of the Delaunay triangles in which data points reside, i.e., column number of del.tri. ind for each Xp point.
tess.points Tessellation points, i.e., points on which the tessellation of the study region is performed, here, tessellation is the Delaunay triangulation based on Yp points.
vertices Vertices of the digraph, Xp.

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E, Priebe CE, Wierman JC (2006). "Relative density of the random \(r\)-factor proximity catch digraphs for testing spatial patterns of segregation and association." Computational Statistics \& Data Analysis, 50(8), 1925-1964.

Okabe A, Boots B, Sugihara K, Chiu SN (2000). Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. Wiley, New York.

Sinclair D (2016). "S-hull: a fast radial sweep-hull routine for Delaunay triangulation." 1604.01428.

\section*{See Also}
num. arcsPEtri, num. arcsPEstd.tri, num. arcsCS, and num. arcsAS

\section*{Examples}
```

\#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-15; ny<-5; \#try also nx<-40; ny<-10 or nx<-1000; ny<-10;
set.seed(1)
Xp<-cbind(runif(nx),runif(nx))
Yp<-cbind(runif(ny,0,.25),
runif(ny,0,.25))+cbind(c(0,0,0.5,1,1),c(0,1,.5,0,1))
\#try also Yp<-cbind(runif(ny,0,1),runif(ny,0,1))
M<-c(1,1,1) \#try also M<-c(1,2,3)
Narcs = num.arcsPE(Xp,Yp,r=1.25,M)
Narcs
summary(Narcs)
plot(Narcs)

```
```

num.arcsPE1D

```

Number of arcs of Proportional Edge Proximity Catch Digraphs (PE\(P C D s\)) and related quantities of the induced subdigraphs for points in the partition intervals - multiple interval case

\section*{Description}

An object of class "NumArcs". Returns the number of arcs and various other quantities related to the partition intervals for Proportional Edge Proximity Catch Digraph (PE-PCD) whose vertices are the data points in Xp in the multiple interval case.
For this function, PE proximity regions are constructed data points inside or outside the intervals based on Yp points with expansion parameter \(r \geq 1\) and centrality parameter \(c \in(0,1)\). That is, for this function, arcs may exist for points in the middle or end-intervals.

Range (or convex hull) of \(Y p\) (i.e., the interval \((\min (Y p), \max (Y p))\)) is partitioned by the spacings based on Yp points (i.e., multiple intervals are these partition intervals based on the order statistics of Yp points whose union constitutes the range of \(Y p\) points). If there are duplicates of \(Y p\) points, only one point is retained for each duplicate value, and a warning message is printed. For the number of arcs, loops are not counted.
See also (Ceyhan (2012)).

\section*{Usage}
num. \(\operatorname{arcsPE1D}(X p, Y p, r, c=0.5)\)

\section*{Arguments}

Xp A set or vector of 1D points which constitute the vertices of the PE-PCD.
Yp A set or vector of 1D points which constitute the end points of the partition intervals.
\(r \quad\) A positive real number which serves as the expansion parameter in PE proximity region; must be \(\geq 1\).
c
A positive real number in \((0,1)\) parameterizing the center inside the middle (partition) intervals with the default \(\mathrm{c}=.5\). For an interval, \((a, b)\), the parameterized center is \(M_{c}=a+c(b-a)\).

\section*{Value}

A list with the elements
desc A short description of the output: number of arcs and related quantities for the induced subdigraphs in the partition intervals
num.arcs Total number of arcs in all intervals (including the end-intervals), i.e., the number of arcs for the entire PE-PCD
num. in. range Number of \(X p\) points in the range or convex hull of \(Y p\) points
num.in.ints The vector of number of \(X p\) points in the partition intervals (including the endintervals) based on Yp points
weight.vec The vector of the lengths of the middle partition intervals (i.e., end-intervals excluded) based on Yp points
int.num.arcs The vector of the number of arcs of the components of the PE-PCD in the partition intervals (including the end-intervals) based on \(Y p\) points
part.int A matrix with columns corresponding to the partition intervals based on Yp points.
data.int.ind A vector of indices of partition intervals in which data points reside, i.e., column number of part.int is provided for each Xp point. Partition intervals are numbered from left to right with 1 being the left end-interval.
tess.points Tessellation points, i.e., points on which the tessellation of the study region is performed, here, tessellation is the partition intervals based on Yp points.
vertices Vertices of the digraph, Xp.

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2012). "The Distribution of the Relative Arc Density of a Family of Interval Catch Digraph Based on Uniform Data." Metrika, 75(6), 761-793.

\section*{See Also}
num. arcsPEint, num. arcsPEmid.int, num. arcsPEend.int, and num. arcsCS1D

\section*{Examples}
```

r<-2
c<-.4
a<-0; b<-10; int<-c(a,b);
\#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-15; ny<-4; \#try also nx<-40; ny<-10 or nx<-1000; ny<-10;
set.seed(1)
xf<-(int[2]-int[1])*. }
Xp<-runif(nx,a-xf,b+xf)
Yp<-runif(ny,a,b)
Narcs = num.arcsPE1D(Xp,Yp,r,c)
Narcs
summary(Narcs)
plot(Narcs)

```
num. arcsPEend.int Number of arcs of Proportional Edge Proximity Catch Digraphs (PEPCDs) - end-interval case

\section*{Description}

Returns the number of arcs of Proportional Edge Proximity Catch Digraphs (PE-PCDs) whose vertices are a 1D numerical data set, Xp , outside the interval int \(=(a, b)\).

PE proximity region is constructed only with expansion parameter \(r \geq 1\) for points outside the interval \((a, b)\). End vertex regions are based on the end points of the interval, i.e., the corresponding vertex region is an interval as \((-\infty, a)\) or \((b, \infty)\) for the interval \((a, b)\). For the number of arcs, loops are not allowed, so arcs are only possible for points outside the interval, int, for this function.
See also (Ceyhan (2012)).

\section*{Usage}
num. arcsPEend.int(Xp, int, r)

\section*{Arguments}

Xp A vector of 1D points which constitute the vertices of the digraph.
int A vector of two real numbers representing an interval.
\(r \quad\) A positive real number which serves as the expansion parameter in PE proximity region; must be \(\geq 1\).

\section*{Value}

Number of arcs for the PE-PCD with vertices being 1D data set, Xp, expansion parameter, \(r \geq 1\), for the end-intervals.

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2012). "The Distribution of the Relative Arc Density of a Family of Interval Catch Digraph Based on Uniform Data." Metrika, 75(6), 761-793.

\section*{See Also}
num. arcsPEmid.int, num. arcsPE1D, num. arcsCSmid.int, and num. arcsCSend.int

\section*{Examples}
```

a<-0; b<-10; int<-c(a,b)
n<-5
XpL<-runif(n,a-5,a)
XpR<-runif(n,b,b+5)
Xp<-c(XpL,XpR)
r<-1.2
num.arcsPEend.int(Xp,int,r)
num.arcsPEend.int(Xp,int,r=2)

```
num. arcsPEint

Number of arcs of Proportional Edge Proximity Catch Digraphs (PE\(P C D s)\) and quantities related to the interval - one interval case

\section*{Description}

An object of class "NumArcs". Returns the number of arcs of Proportional Edge Proximity Catch Digraph (PE-PCD) whose vertices are the data points in Xp in the one middle interval case. It also provides number of vertices (i.e., number of data points inside the intervals) and indices of the data points that reside in the intervals.
The data points could be inside or outside the interval is int \(=(a, b)\). PE proximity region is constructed with an expansion parameter \(r \geq 1\) and a centrality parameter \(c \in(0,1)\). int determines the end points of the interval.
The PE proximity region is constructed for both points inside and outside the interval, hence the arcs may exist for all points inside or outside the interval.
See also (Ceyhan (2012)).

\section*{Usage}
num. arcsPEint(Xp, int, \(r, c=0.5)\)

\section*{Arguments}

Xp A set of 1D points which constitute the vertices of PE-PCD.
int A vector of two real numbers representing an interval.
\(r \quad\) A positive real number which serves as the expansion parameter in PE proximity region; must be \(\geq 1\).
c
A positive real number in \((0,1)\) parameterizing the center inside int \(=(a, b)\) with the default \(\mathrm{c}=.5\). For the interval, int \(=(a, b)\), the parameterized center is \(M_{c}=a+c(b-a)\).

\section*{Value}

A list with the elements
\begin{tabular}{ll}
desc & \begin{tabular}{l}
A short description of the output: number of arcs and quantities related to the \\
interval
\end{tabular} \\
num.arcs & \begin{tabular}{l}
Total number of arcs in all intervals (including the end-intervals), i.e., the num- \\
ber of arcs for the entire PE-PCD
\end{tabular} \\
num.in.range \\
number of Xp points in the interval int
\end{tabular}

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2012). "The Distribution of the Relative Arc Density of a Family of Interval Catch Digraph Based on Uniform Data." Metrika, 75(6), 761-793.

\section*{See Also}
num. arcsPEmid.int, num. arcsPEend.int, and num. arcsCSint

\section*{Examples}
```

c<-.4
r<-2
a<-0; b<-10; int<-c(a,b)
xf<-(int[2]-int[1])*.1
set.seed(123)
n<-10
Xp<-runif(n,a-xf,b+xf)

```
```

Narcs = num.arcsPEint(Xp,int,r,c)

```

Narcs
summary (Narcs)
plot(Narcs)
num. arcsPEmid.int Number of Arcs for Proportional Edge Proximity Catch Digraphs (PE\(P C D s)\) - middle interval case

\section*{Description}

Returns the number of arcs of Proportional Edge Proximity Catch Digraphs (PE-PCDs) whose vertices are the given 1D numerical data set, Xp . PE proximity region \(N_{P E}(x, r, c)\) is defined with respect to the interval int \(=(a, b)\) for this function.
PE proximity region is constructed with expansion parameter \(r \geq 1\) and centrality parameter \(c \in\) \((0,1)\).

Vertex regions are based on the center associated with the centrality parameter \(c \in(0,1)\). For the interval, int \(=(a, b)\), the parameterized center is \(M_{c}=a+c(b-a)\) and for the number of arcs, loops are not allowed so arcs are only possible for points inside the middle interval int for this function.

See also (Ceyhan (2012)).

\section*{Usage}
num.arcsPEmid.int(Xp, int, r, \(c=0.5)\)

\section*{Arguments}

Xp A set or vector of 1D points which constitute the vertices of PE-PCD.
int A vector of two real numbers representing an interval.
\(r \quad\) A positive real number which serves as the expansion parameter in PE proximity region; must be \(\geq 1\).

C
A positive real number in \((0,1)\) parameterizing the center inside int \(=(a, b)\) with the default \(\mathrm{c}=.5\). For the interval, int \(=(a, b)\), the parameterized center is \(M_{c}=a+c(b-a)\).

\section*{Value}

Number of arcs for the PE-PCD whose vertices are the 1D data set, Xp , with expansion parameter, \(r \geq 1\), and centrality parameter, \(c \in(0,1)\). PE proximity regions are defined only for Xp points inside the interval int, i.e., arcs are possible for such points only.

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2012). "The Distribution of the Relative Arc Density of a Family of Interval Catch Digraph Based on Uniform Data." Metrika, 75(6), 761-793.

\section*{See Also}
num. arcsPEend.int, num. arcsPE1D, num. arcsCSmid.int, and num. arcsCSend.int

\section*{Examples}
```

c<-.4
r<-2
a<-0; b<-10; int<-c(a,b)
n<-10
Xp<-runif(n,a,b)
num.arcsPEmid.int(Xp,int,r,c)
num.arcsPEmid.int(Xp,int,r=1.5,c)

```

\section*{Description}

An object of class "NumArcs". Returns the number of arcs of Proportional Edge Proximity Catch Digraphs (PE-PCDs) whose vertices are the given 2D numerical data set, Xp in the standard equilateral triangle. It also provides number of vertices (i.e., number of data points inside the standard equilateral triangle \(T_{e}\)) and indices of the data points that reside in \(T_{e}\).
PE proximity region \(N_{P E}(x, r)\) is defined with respect to the standard equilateral triangle \(T_{e}=\) \(T(v=1, v=2, v=3)=T((0,0),(1,0),(1 / 2, \sqrt{3} / 2))\) with expansion parameter \(r \geq 1\) and vertex regions are based on the center \(M=\left(m_{1}, m_{2}\right)\) in Cartesian coordinates or \(M=(\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of \(T_{e}\); default is \(M=(1,1,1)\), i.e., the center of mass of \(T_{e}\). For the number of arcs, loops are not allowed so arcs are only possible for points inside \(T_{e}\) for this function.
See also (Ceyhan et al. (2006)).

\section*{Usage}
num.arcsPEstd.tri(Xp, r, \(M=c(1,1,1))\)

\section*{Arguments}

Xp A set of 2D points which constitute the vertices of the PE-PCD.
\(r \quad\) A positive real number which serves as the expansion parameter for PE proximity region; must be \(\geq 1\).
M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates which serves as a center in the interior of the standard equilateral triangle \(T_{e}\); default is \(M=(1,1,1)\) i.e. the center of mass of \(T_{e}\).

\section*{Value}

A list with the elements
desc A short description of the output: number of arcs and quantities related to the standard equilateral triangle
num.arcs \(\quad\) Number of arcs of the PE-PCD
tri.num.arcs Number of arcs of the induced subdigraph of the PE-PCD for vertices in the standard equilateral triangle \(T_{e}\)
num.in.tri \(\quad\) Number of Xp points in the standard equilateral triangle, \(T_{e}\)
ind.in.tri The vector of indices of the Xp points that reside in \(T_{e}\)
tess.points Tessellation points, i.e., points on which the tessellation of the study region is performed, here, tessellation points are the vertices of the support triangle \(T_{e}\).
vertices Vertices of the digraph, Xp .

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E, Priebe CE, Wierman JC (2006). "Relative density of the random \(r\)-factor proximity catch digraphs for testing spatial patterns of segregation and association." Computational Statistics \& Data Analysis, 50(8), 1925-1964.

\section*{See Also}
num. arcsPEtri, num. arcsPE, and num. arcsCSstd.tri

\section*{Examples}
\(A<-c(0,0) ; B<-c(1,0) ; C<-c(1 / 2, \operatorname{sqrt}(3) / 2)\);
\(\mathrm{n}<-10\) \#try also \(\mathrm{n}<-20\)
set.seed(1)
Xp<-runif.std.tri(n)\$gen.points
\(M<-c(.6, .2)\) \#try also \(M<-c(1,1,1)\)
```

Narcs = num.arcsPEstd.tri(Xp,r=1.25,M)
Narcs
summary (Narcs)
oldpar <- par(pty="s")
plot(Narcs,asp=1)
par(oldpar)

```
num. arcsPEtetra Number of arcs of Proportional Edge Proximity Catch Digraphs (PE-
\(P C D s\)) and quantities related to the tetrahedron - one tetrahedron case

\section*{Description}

An object of class "NumArcs". Returns the number of arcs of Proportional Edge Proximity Catch Digraphs (PE-PCDs) whose vertices are the given 3D numerical data set, Xp. It also provides number of vertices (i.e., number of data points inside the tetrahedron) and indices of the data points that reside in the tetrahedron.

PE proximity region is constructed with respect to the tetrahedron th and vertex regions are based on the center \(M\) which is circumcenter ("CC") or center of mass ("CM") of th with default="CM". For the number of arcs, loops are not allowed so arcs are only possible for points inside the tetrahedron th for this function.
See also (Ceyhan \((2005,2010)\)).

\section*{Usage}
num.arcsPEtetra(Xp, th, r, \(M=\) "CM")

\section*{Arguments}

Xp A set of 3D points which constitute the vertices of PE-PCD.
th A \(4 \times 3\) matrix with each row representing a vertex of the tetrahedron.
\(r \quad\) A positive real number which serves as the expansion parameter in PE proximity region; must be \(\geq 1\).

M
The center to be used in the construction of the vertex regions in the tetrahedron, th. Currently it only takes "CC" for circumcenter and "CM" for center of mass; default="CM".

\section*{Value}

A list with the elements
desc A short description of the output: number of arcs and quantities related to the tetrahedron
num.arcs \(\quad\) Number of arcs of the PE-PCD
tri.num.arcs Number of arcs of the induced subdigraph of the PE-PCD for vertices in the tetrahedron th
num. in.tetra Number of \(X p\) points in the tetrahedron, th
ind.in.tetra The vector of indices of the Xp points that reside in the tetrahedron
tess.points Tessellation points, i.e., points on which the tessellation of the study region is performed, here, tessellation points are the vertices of the support tetrahedron th.
vertices \(\quad\) Vertices of the digraph, Xp .

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

\section*{See Also}
num. arcsPEtri, num. arcsCStri, and num. arcsAStri

\section*{Examples}
```

A<-c(0,0,0); B<-c(1,0,0); C<-c(1/2,sqrt(3)/2,0); D<-c(1/2,sqrt(3)/6,sqrt(6)/3)
tetra<-rbind(A,B,C,D)
n<-10 \#try also n<-20
set.seed(1)
Xp<-runif.tetra(n,tetra)\$g
M<-"CM" \#try also M<-"CC"
r<-1.25
Narcs = num.arcsPEtetra(Xp,tetra,r,M)
Narcs
summary(Narcs)
\#plot(Narcs)

```

\section*{Description}

An object of class "NumArcs". Returns the number of arcs of Proportional Edge Proximity Catch Digraphs (PE-PCDs) whose vertices are the given 2D numerical data set, Xp. It also provides number of vertices (i.e., number of data points inside the triangle) and indices of the data points that reside in the triangle.

PE proximity region \(N_{P E}(x, r)\) is defined with respect to the triangle, tri with expansion parameter \(r \geq 1\) and vertex regions are based on the center \(M=\left(m_{1}, m_{2}\right)\) in Cartesian coordinates or \(M=(\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of the triangle tri or based on circumcenter of tri; default is \(M=(1,1,1)\), i.e., the center of mass of tri. For the number of arcs, loops are not allowed so arcs are only possible for points inside the triangle tri for this function.
See also (Ceyhan \((2005,2016)\)).

\section*{Usage}
num. \(\operatorname{arcsPEtri}(X p, \operatorname{tri}, r, M=c(1,1,1))\)

\section*{Arguments}

Xp A set of 2D points which constitute the vertices of PE-PCD.
tri A \(3 \times 2\) matrix with each row representing a vertex of the triangle.
\(r \quad\) A positive real number which serves as the expansion parameter in PE proximity region; must be \(\geq 1\).
M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates which serves as a center in the interior of the triangle tri or the circumcenter of tri which may be entered as "CC" as well; default is \(M=(1,1,1)\), i.e., the center of mass of tri.

\section*{Value}

A list with the elements
\begin{tabular}{ll}
desc & \begin{tabular}{l}
A short description of the output: number of arcs and quantities related to the \\
triangle
\end{tabular} \\
num.arcs & \begin{tabular}{l}
Number of arcs of the PE-PCD \\
tri.num.arcs
\end{tabular} \\
\begin{tabular}{l}
Number of arcs of the induced subdigraph of the PE-PCD for vertices in the \\
triangle tri
\end{tabular} \\
num.in.tri & \begin{tabular}{l}
Number of Xp points in the triangle, tri
\end{tabular} \\
ind.in.tri & \begin{tabular}{l}
The vector of indices of the Xp points that reside in the triangle
\end{tabular} \\
tess.points & \begin{tabular}{l}
Tessellation points, i.e., points on which the tessellation of the study region is \\
performed, here, tessellation points are the vertices of the support triangle tri.
\end{tabular} \\
vertices & \begin{tabular}{l}
Vertices of the digraph, Xp.
\end{tabular}
\end{tabular}
num.delaunay.tri

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2016). "Edge Density of New Graph Types Based on a Random Digraph Family." Statistical Methodology, 33, 31-54.

\section*{See Also}
num. arcsPEstd.tri, num. arcsPE, num. arcsCStri, and num. arcsAStri

\section*{Examples}
```

A<-c(1,1); B<-c(2,0); C<-C(1.5,2);
Tr<-rbind(A,B,C);
n<-10 \#try also n<-20
set.seed(1)
Xp<-runif.tri(n,Tr)$g
M<-as.numeric(runif.tri(1,Tr)$g) \#try also M<-c(1.6,1.0)
Narcs = num.arcsPEtri(Xp,Tr,r=1.25,M)
Narcs
summary(Narcs)
plot(Narcs)

```
 num. delaunay.tri \(\quad\) Number of Delaunay triangles based on a \(2 D\) data set

\section*{Description}

Returns the number of Delaunay triangles based on the 2D set of points Yp. See (Okabe et al. (2000); Sinclair (2016)) for more on Delaunay triangulation and the corresponding algorithm.

\section*{Usage}
num.delaunay.tri(Yp)

\section*{Arguments}

Yp A set of 2D points which constitute the vertices of Delaunay triangles.

\section*{Value}

Number of Delaunay triangles based on Yp points.

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Okabe A, Boots B, Sugihara K, Chiu SN (2000). Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. Wiley, New York.

Sinclair D (2016). "S-hull: a fast radial sweep-hull routine for Delaunay triangulation." 1604.01428.

\section*{See Also}
```

plotDelaunay.tri

```

\section*{Examples}
```

ny<-10
set.seed(1)
Yp<-cbind(runif(ny,0,1),runif(ny,0,1))
num.delaunay.tri(Yp)

```
paraline The line at a point p parallel to the line segment joining two distinct \(2 D\) points a and b

\section*{Description}

An object of class "Lines". Returns the equation, slope, intercept, and \(y\)-coordinates of the line crossing the point p and parallel to the line passing through the points a and b with \(x\)-coordinates are provided in vector \(x\).

\section*{Usage}
paraline(p, a, b, x)

\section*{Arguments}
p
\(a, b\)
x

A 2D point at which the parallel line to line segment joining a and b crosses.
2D points that determine the line segment (the line will be parallel to this line segment).
A scalar or a vector of scalars representing the \(x\)-coordinates of the line parallel to ab and crossing p .

\section*{Value}

A list with the elements
desc Description of the line passing through point \(p\) and parallel to line segment joining \(a\) and \(b\)
mtitle The "main" title for the plot of the line passing through point p and parallel to line segment joining \(a\) and \(b\)
points The input points p , a , and b (stacked row-wise, i.e., point p is in row 1, point a is in row 2 and point \(b\) is in row 3). Line parallel to \(a b\) crosses \(p\).
\(x \quad\) The input vector. It can be a scalar or a vector of scalars, which constitute the \(x\)-coordinates of the point(s) of interest on the line passing through point p and parallel to line segment joining \(a\) and \(b\).
\(y \quad\) The output scalar or vector which constitutes the \(y\)-coordinates of the point(s) of interest on the line passing through point \(p\) and parallel to line segment joining \(a\) and \(b\). If \(x\) is a scalar, then \(y\) will be a scalar and if \(x\) is a vector of scalars, then \(y\) will be a vector of scalars.
slope \(\quad\) Slope of the line, Inf is allowed, passing through point \(p\) and parallel to line segment joining \(a\) and \(b\)
intercept Intercept of the line passing through point \(p\) and parallel to line segment joining \(a\) and \(b\)
equation Equation of the line passing through point \(p\) and parallel to line segment joining \(a\) and \(b\)

\section*{Author(s)}

Elvan Ceyhan

\section*{See Also}
slope, Line, and perpline, line in the generic stats package, and paraline3D

\section*{Examples}
```

A<-c(1.1,1.2); B<-c(2.3,3.4); p<-c(.51,2.5)
paraline(p,A,B,.45)
pts<-rbind(A,B,p)

```
```

xr<-range(pts[,1])
xf<-(xr[2]-xr[1])*. 25
\#how far to go at the lower and upper ends in the x-coordinate
x<-seq(xr[1]-xf,xr[2]+xf,l=5) \#try also l=10, 20, or 100
plnAB<-paraline(p,A,B,x)
plnAB
summary(plnAB)
plot(plnAB)
y<-plnAB$y
Xlim<-range(x,pts[,1])
if (!is.na(y[1])) {Ylim<-range(y,pts[,2])} else {Ylim<-range(pts[,2])}
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
pf<-c(xd,-yd)*.025
plot(A,pch=".",xlab="",ylab="",main="Line Crossing P and Parallel to AB",
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
points(pts)
txt.str<-c("A","B","p")
text(pts+rbind(pf,pf,pf),txt.str)
segments(A[1],A[2],B[1],B[2],1ty=2)
if (!is.na(y[1])) {lines(x,y,type="l",lty=1,xlim=Xlim,ylim=Ylim)} else {abline(v=p[1])}
tx<-(A[1]+B[1])/2;
if (!is.na(y[1])) {ty<-paraline(p,A,B,tx)$y} else {ty=p[2]}
text(tx,ty,"line parallel to AB\n and crossing p")

```
paraline3D

The line crossing the \(3 D\) point p and parallel to line joining \(3 D\) points a and b

\section*{Description}

An object of class "Lines3D". Returns the equation, \(x\)-, \(y\)-, and \(z\)-coordinates of the line crossing 3 D point p and parallel to the line joining 3 D points a and b (i.e., the line is in the direction of vector \(b-a\)) with the parameter \(t\) being provided in vector \(t\).

\section*{Usage}
paraline3D(p, a, b, t)

\section*{Arguments}

\section*{p}

A 3D point through which the straight line passes.
\(\mathrm{a}, \mathrm{b} \quad 3 \mathrm{D}\) points which determine the straight line to which the line passing through point p would be parallel (i.e., \(b-a\) determines the direction of the straight line passing through p).
t
A scalar or a vector of scalars representing the parameter of the coordinates of the line (for the form: \(x=p_{0}+A t, y=y_{0}+B t\), and \(z=z_{0}+C t\) where \(p=\left(p_{0}, y_{0}, z_{0}\right)\) and \(\left.b-a=(A, B, C)\right)\).

\section*{Value}

A list with the elements
\begin{tabular}{ll}
desc & A description of the line \\
mtitle & The "main" title for the plot of the line
\end{tabular}
points The input points that determine the line to which the line crossing point \(p\) would be parallel.
pnames The names of the input points that determine the line to which the line crossing point \(p\) would be parallel.
vecs \(\quad\) The points \(p, a\), and \(b\) stacked row-wise in this order.
vec. names
\(x, y, z\)
tsq The scalar or the vector of the parameter in defining each coordinate of the line for the form: \(x=p_{0}+A t, y=y_{0}+B t\), and \(z=z_{0}+C t\) where \(p=\left(p_{0}, y_{0}, z_{0}\right)\) and \(b-a=(A, B, C)\).
equation Equation of the line passing through point \(p\) and parallel to the line joining points a and b (i.e., in the direction of the vector \(\mathrm{b}-\mathrm{a}\)). The line equation is in the form: \(x=p_{0}+A t, y=y_{0}+B t\), and \(z=z_{0}+C t\) where \(p=\left(p_{0}, y_{0}, z_{0}\right)\) and \(b-a=(A, B, C)\).

\section*{Author(s)}

Elvan Ceyhan

\section*{See Also}

Line3D, perpline2plane, and paraline

\section*{Examples}
```

P<-c(1,10,4); Q<-c(1,1,3); R<-c(3,9,12)
vecs<-rbind(P,R-Q)
pts<-rbind(P,Q,R)
paraline3D(P,Q,R,.1)
tr<-range(pts,vecs);
tf<-(tr[2]-tr[1])*.1

```
```

\#how far to go at the lower and upper ends in the x-coordinate
tsq<-seq(-tf*10-tf,tf*10+tf,l=5) \#try also l=10, 20, or 100
pln3D<-paraline3D(P,Q,R,tsq)
pln3D
summary(pln3D)
plot(pln3D)
x<-pln3D$x
y<-pln3D$y
z<-pln3D\$z
zr<-range(z)
zf<-(zr[2]-zr[1])*. 2
Qv<-(R-Q)*tf*5
Xlim<-range(x,pts[,1])
Ylim<-range(y,pts[,2])
Zlim<-range(z,pts[,3])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
zd<-Zlim[2]-Zlim[1]
Dr<-P+min(tsq)*(R-Q)
plot3D::lines3D(x, y, z, phi = 0, bty = "g",
main="Line Crossing P \n in the direction of R-Q",
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05),
zlim=Zlim+zd*c(-.1,.1)+c(-zf,zf),
pch = 20, cex = 2, ticktype = "detailed")
plot3D::arrows3D(Dr[1],Dr[2],Dr[3]+zf,Dr[1]+Qv[1],
Dr[2]+Qv[2],Dr[3]+zf+Qv[3], add=TRUE)
plot3D::points3D(pts[,1],pts[,2],pts[,3],add=TRUE)
plot3D::text3D(pts[,1],pts[,2],pts[,3],labels=c("P","Q","R"),add=TRUE)
plot3D::arrows3D(P[1],P[2],P[3]-2*zf,P[1],P[2],P[3],lty=2, add=TRUE)
plot3D::text3D(P[1],P[2],P[3]-2*zf,labels="initial point",add=TRUE)
plot3D::arrows3D(Dr[1]+Qv[1]/2,Dr[2]+Qv[2]/2,
Dr[3]+3*zf+Qv[3]/2,Dr[1]+Qv[1]/2,
Dr[2]+Qv[2]/2,Dr[3]+zf+Qv[3]/2,lty=2, add=TRUE)
plot3D::text3D(Dr[1]+Qv[1]/2,Dr[2]+Qv[2]/2,Dr[3]+3*zf+Qv[3]/2,
labels="direction vector",add=TRUE)
plot3D::text3D(Dr[1]+Qv[1]/2,Dr[2]+Qv[2]/2,
Dr[3]+zf+Qv[3]/2, labels="R-Q",add=TRUE)

```

\section*{Description}

An object of class "Planes". Returns the equation and \(z\)-coordinates of the plane passing through point p and parallel to the plane spanned by three distinct 3 D points \(\mathrm{a}, \mathrm{b}\), and c with \(x\) - and \(y\) coordinates are provided in vectors \(x\) and \(y\), respectively.

\section*{Usage}
paraplane(p, a, b, c, x, y)

\section*{Arguments}
p
\(a, b, c \quad 3 D\) points that determine the plane to which the plane crossing point \(p\) is parallel to.
\(\mathrm{x}, \mathrm{y} \quad\) Scalars or vectors of scalars representing the \(x\) - and \(y\)-coordinates of the plane parallel to the plane spanned by points \(a, b\), and \(c\) and passing through point \(p\).

\section*{Value}

A list with the elements
desc Description of the plane passing through point \(p\) and parallel to plane spanned by points \(a, b\) and \(c\)
points The input points \(a, b, c\), and \(p\). Plane is parallel to the plane spanned \(b y a, b\), and \(c\) and passes through point \(p\) (stacked row-wise, i.e., row 1 is point a, row 2 is point \(b\), row 3 is point \(c\), and row 4 is point \(p\)).
\(\mathrm{x}, \mathrm{y} \quad\) The input vectors which constitutes the \(x\) - and \(y\)-coordinates of the point(s) of interest on the plane. \(x\) and \(y\) can be scalars or vectors of scalars.
The output vector which constitutes the \(z\)-coordinates of the point(s) of interest on the plane. If \(x\) and \(y\) are scalars, \(z\) will be a scalar and if \(x\) and \(y\) are vectors of scalars, then \(z\) needs to be a matrix of scalars, containing the \(z\)-coordinate for each pair of \(x\) and \(y\) values.
coeff \(\quad\) Coefficients of the plane (in the \(z=A x+B y+C\) form).
equation Equation of the plane in long form
equation2 Equation of the plane in short form, to be inserted on the plot

\section*{Author(s)}

Elvan Ceyhan

\section*{See Also}

Plane

\section*{Examples}
```

Q<-c(1,10,3); R<-c(1,1,3); S<-c(3,9,12); P<-c(1,1,0)
pts<-rbind(Q,R,S,P)
paraplane(P,Q,R,S,.1,.2)
xr<-range(pts[,1]); yr<-range(pts[,2])
xf<-(xr[2]-xr[1])*. 25
\#how far to go at the lower and upper ends in the x-coordinate
yf<-(yr[2]-yr[1])*. }2
\#how far to go at the lower and upper ends in the y-coordinate
x<-seq(xr[1]-xf,xr[2]+xf,l=5) \#try also l=10, 20, or 100
y<-seq(yr[1]-yf,yr[2]+yf,l=5) \#try also l=10, 20, or 100
plP2QRS<-paraplane(P,Q,R,S,x,y)
plP2QRS
summary(plP2QRS)
plot(plP2QRS,theta = 225, phi = 30, expand = 0.7, facets = FALSE, scale = TRUE)
paraplane(P,Q,R,Q+R,.1,.2)
z.grid<-plP2QRS$z
plQRS<-Plane(Q,R,S,x,y)
plQRS
pl.grid<-plQRS$z
zr<-max(z.grid)-min(z.grid)
Pts<-rbind(Q,R,S,P)+rbind(c(0,0,zr*.1),c(0,0,zr*.1),
c(0,0,zr*.1),c(0,0,zr*.1))
Mn.pts<-apply(Pts[1:3,],2,mean)
plot3D::persp3D(z = pl.grid, x = x, y = y, theta =225, phi = 30,
ticktype = "detailed",
main="Plane Crossing Points Q, R, S\n and Plane Passing P Parallel to it")
\#plane spanned by points Q, R, S
plot3D::persp3D(z = z.grid, x = x, y = y,add=TRUE)
\#plane parallel to the original plane and passing thru point \code{P}
plot3D::persp3D(z = z.grid, x = x, y = y, theta =225, phi = 30,
ticktype = "detailed",
main="Plane Crossing Point P \n and Parallel to the Plane Crossing Q, R, S")
\#plane spanned by points Q, R, S
\#add the defining points
plot3D::points3D(Pts[,1],Pts[,2],Pts[,3], add=TRUE)
plot3D::text3D(Pts[,1],Pts[,2],Pts[,3], c("Q","R","S","P"),add=TRUE)
plot3D::text3D(Mn.pts[1],Mn.pts[2],Mn.pts[3],plP2QRS\$equation,add=TRUE)
plot3D::polygon3D(Pts[1:3,1],Pts[1:3,2],Pts[1:3,3], add=TRUE)

```

Pdom.num2PE1Dasy \(\quad\) The asymptotic probability of domination number \(=2\) for Proportional Edge Proximity Catch Digraphs (PE-PCDs) - middle interval case

\section*{Description}

Returns the asymptotic \(P\) (domination number \(\leq 1\)) for PE-PCD whose vertices are a uniform data set in a finite interval \((a, b)\).

The PE proximity region \(N_{P E}(x, r, c)\) is defined with respect to \((a, b)\) with centrality parameter c in \((0,1)\) and expansion parameter \(r=1 / \max (c, 1-c)\).

\section*{Usage}

Pdom.num2PE1Dasy(c)

\section*{Arguments}
c A positive real number in \((0,1)\) parameterizing the center inside int \(=(a, b)\). For the interval, \((a, b)\), the parameterized center is \(M_{c}=a+c(b-a)\).

\section*{Value}

The asymptotic \(P(\) domination number \(\leq 1)\) for PE-PCD whose vertices are a uniform data set in a finite interval \((a, b)\)

\section*{Author(s)}

Elvan Ceyhan

\section*{See Also}

Pdom.num2PE1D and Pdom.num2PEtri

\section*{Examples}
\(c<-.5\)
Pdom.num2PE1Dasy (c)
Pdom.num2PE1Dasy (c=1/1.5)
Pdom. num2PE1D (\(r=1.5, c=1 / 1.5, n=10\))
Pdom. num2PE1D (\(r=1.5, c=1 / 1.5, n=100\))

Pdom.num2PEtri Asymptotic probability that domination number of Proportional Edge Proximity Catch Digraphs (PE-PCDs) equals 2 where vertices of the digraph are uniform points in a triangle

\section*{Description}

Returns \(P\) (domination number \(=2\)) for PE-PCD for uniform data in a triangle, when the sample size \(n\) goes to infinity (i.e., asymptotic probability of domination number \(=2\)).
PE proximity regions are constructed with respect to the triangle with the expansion parameter \(r \geq 1\) and \(M\)-vertex regions where \(M\) is the vertex that renders the asymptotic distribution of the domination number non-degenerate for the given value of \(r\) in \((1,1.5]\).
See also (Ceyhan (2005); Ceyhan and Priebe (2007); Ceyhan (2011)).

\section*{Usage}

Pdom.num2PEtri(r)

\section*{Arguments}
\(r \quad\) A positive real number which serves as the expansion parameter in PE proximity region; must be in \((1,1.5]\) to attain non-degenerate asymptotic distribution for the domination number.

\section*{Value}
\(P(\) domination number \(=2)\) for \(\mathrm{PE}-\mathrm{PCD}\) for uniform data on an triangle as the sample size \(n\) goes to infinity

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2011). "Spatial Clustering Tests Based on Domination Number of a New Random Digraph Family." Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

Ceyhan E, Priebe CE (2007). "On the Distribution of the Domination Number of a New Family of Parametrized Random Digraphs." Model Assisted Statistics and Applications, 1(4), 231-255.

\section*{See Also}

Pdom.num2PE1D

\section*{Examples}
```

Pdom.num2PEtri(r=1.5)
Pdom.num2PEtri(r=1.4999999999)
Pdom.num2PEtri(r=1.5) / Pdom.num2PEtri(r=1.4999999999)
rseq<-seq(1.01,1.49999999999,l=20) \#try also l=100
lrseq<-length(rseq)
pg2<-vector()
for (i in 1:lrseq)
{
pg2<-c(pg2,Pdom.num2PEtri(rseq[i]))
}
plot(rseq, pg2,type="l",xlab="r",
ylab=expression(paste("P(", gamma, "=2)")),
lty=1,xlim=range(rseq)+c(0,.01),ylim=c (0,1))
points(rbind(c(1.50,Pdom.num2PEtri(1.50))),pch=".", cex=3)

```

\section*{Description}

An object of class "htest" (i.e., hypothesis test) function which performs a hypothesis test of complete spatial randomness (CSR) or uniformity of Xp points in the convex hull of Yp points against the alternatives of segregation (where \(X p\) points cluster away from \(Y p\) points) and association (where Xp points cluster around Yp points) based on the normal approximation of the arc density of the PE-PCD for uniform 2D data.

The function yields the test statistic, \(p\)-value for the corresponding alternative, the confidence interval, estimate and null value for the parameter of interest (which is the arc density), and method and name of the data set used.
Under the null hypothesis of uniformity of \(X p\) points in the convex hull of \(Y p\) points, arc density of PE-PCD whose vertices are Xp points equals to its expected value under the uniform distribution and alternative could be two-sided, or left-sided (i.e., data is accumulated around the Yp points, or association) or right-sided (i.e., data is accumulated around the centers of the triangles, or segregation).
PE proximity region is constructed with the expansion parameter \(r \geq 1\) and \(C M\)-vertex regions (i.e., the test is not available for a general center \(M\) at this version of the function).
Caveat: This test is currently a conditional test, where Xp points are assumed to be random, while Yp points are assumed to be fixed (i.e., the test is conditional on Yp points). Furthermore, the test is a large sample test when \(X p\) points are substantially larger than \(Y p\) points, say at least 5
times more. This test is more appropriate when supports of \(X p\) and \(Y p\) have a substantial overlap. Currently, the \(X p\) points outside the convex hull of Yp points are handled with a convex hull correction factor, ch. cor, which is derived under the assumption of uniformity of \(X p\) and \(Y p\) points in the study window, (see the description below and the function code.) However, in the special case of no Xp points in the convex hull of Yp points, arc density is taken to be 1 , as this is clearly a case of segregation. Removing the conditioning and extending it to the case of non-concurring supports is an ongoing topic of research of the author of the package.
ch. cor is for convex hull correction (default is "no convex hull correction", i.e., ch. cor=FALSE) which is recommended when both \(X p\) and \(Y p\) have the same rectangular support.
See also (Ceyhan (2005); Ceyhan et al. (2006)) for more on the test based on the arc density of PE-PCDs.
```

Usage
PEarc.dens.test(
Xp,
Yp,
r,
ch.cor = FALSE,
alternative = c("two.sided", "less", "greater"),
conf.level = 0.95
)

```

\section*{Arguments}

Xp A set of 2D points which constitute the vertices of the PE-PCD.
Yp A set of 2D points which constitute the vertices of the Delaunay triangles.
\(r \quad\) A positive real number which serves as the expansion parameter in PE proximity region; must be \(\geq 1\).
ch.cor A logical argument for convex hull correction, default ch.cor=FALSE, recommended when both \(X p\) and \(Y p\) have the same rectangular support.
alternative Type of the alternative hypothesis in the test, one of "two.sided", "less", "greater".
conf.level Level of the confidence interval, default is 0.95 , for the arc density of PE-PCD based on the 2D data set Xp .

\section*{Value}

A list with the elements
statistic Test statistic
p .value The \(p\)-value for the hypothesis test for the corresponding alternative
conf.int Confidence interval for the arc density at the given confidence level conf.level and depends on the type of alternative.
estimate Estimate of the parameter, i.e., arc density
```

null.value Hypothesized value for the parameter, i.e., the null arc density, which is usually
the mean arc density under uniform distribution.
alternative Type of the alternative hypothesis in the test, one of "two.sided", "less",
"greater"
method Description of the hypothesis test
data.name Name of the data set

```

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E, Priebe CE, Wierman JC (2006). "Relative density of the random \(r\)-factor proximity catch digraphs for testing spatial patterns of segregation and association." Computational Statistics \& Data Analysis, 50(8), 1925-1964.

\section*{See Also}
```

CSarc.dens.test and PEarc.dens.test1D

```

\section*{Examples}
```

\#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-100; ny<-5; \#try also nx<-40; ny<-10 or nx<-1000; ny<-10;
set.seed(1)
Xp<-cbind(runif(nx),runif(nx))
Yp<-cbind(runif(ny,0,.25),
runif(ny,0,.25))+cbind(c(0,0,0.5,1,1),c(0,1,.5,0,1))
\#try also Yp<-cbind(runif(ny,0,1),runif(ny,0,1))
plotDelaunay.tri(Xp,Yp,xlab="",ylab="")
PEarc.dens.test(Xp,Yp,r=1.25)
PEarc.dens.test(Xp,Yp,r=1.25,ch=TRUE)
\#since Y points are not uniform, convex hull correction is invalid here

```

PEarc.dens.test.int A test of uniformity of \(1 D\) data in a given interval based on Proportional Edge Proximity Catch Digraph (PE-PCD)

\section*{Description}

An object of class "htest". This is an "htest" (i.e., hypothesis test) function which performs a hypothesis test of uniformity of 1D data in one interval based on the normal approximation of the arc density of the PE-PCD with expansion parameter \(r \geq 1\) and centrality parameter \(c \in(0,1)\).
The function yields the test statistic, \(p\)-value for the corresponding alternative, the confidence interval, estimate and null value for the parameter of interest (which is the arc density), and method and name of the data set used.

The null hypothesis is that data is uniform in a finite interval (i.e., arc density of PE-PCD equals to its expected value under uniform distribution) and alternative could be two-sided, or left-sided (i.e., data is accumulated around the end points) or right-sided (i.e., data is accumulated around the mid point or center \(M_{c}\)).

See also (Ceyhan (2012, 2016)).

\section*{Usage}
```

    PEarc.dens.test.int(
    Xp,
    int,
    r,
    c = 0.5,
    alternative = c("two.sided", "less", "greater"),
    conf.level = 0.95
    )
    ```

\section*{Arguments}

Xp A set or vector of 1D points which constitute the vertices of PE-PCD.
int A vector of two real numbers representing an interval.
\(r\)
A positive real number which serves as the expansion parameter in PE proximity region; must be \(\geq 1\).
c
A positive real number in \((0,1)\) parameterizing the center inside int \(=(a, b)\) with the default \(\mathrm{c}=.5\). For the interval, int \(=(a, b)\), the parameterized center is \(M_{c}=a+c(b-a)\).
alternative Type of the alternative hypothesis in the test, one of "two.sided", "less", "greater".
conf.level Level of the confidence interval, default is 0.95 , for the arc density of PE-PCD based on the 1D data set Xp .

\section*{Value}

A list with the elements
\begin{tabular}{ll}
statistic & Test statistic \\
p.value & The \(p\)-value for the hypothesis test for the corresponding alternative \\
conf.int & \begin{tabular}{l}
Confidence interval for the arc density at the given confidence level conf. level \\
and depends on the type of alternative.
\end{tabular} \\
estimate & \begin{tabular}{l}
Estimate of the parameter, i.e., arc density
\end{tabular} \\
null.value & \begin{tabular}{l}
Hypothesized value for the parameter, i.e., the null arc density, which is usually \\
the mean arc density under uniform distribution.
\end{tabular} \\
alternative & \begin{tabular}{l}
Type of the alternative hypothesis in the test, one of "two.sided", "less", \\
"greater"
\end{tabular} \\
method & \begin{tabular}{l}
Description of the hypothesis test \\
data.name
\end{tabular}
\end{tabular}

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2012). "The Distribution of the Relative Arc Density of a Family of Interval Catch Digraph Based on Uniform Data." Metrika, 75(6), 761-793.

Ceyhan E (2016). "Density of a Random Interval Catch Digraph Family and its Use for Testing Uniformity." REVSTAT, 14(4), 349-394.

\section*{See Also}

CSarc.dens.test.int

\section*{Examples}
```

c<-.4
r<-2
a<-0; b<-10; int<-c(a,b)
n<-100 \#try also n<-20, 1000
Xp<-runif(n,a,b)
PEarc.dens.test.int(Xp,int,r,c)
PEarc.dens.test.int(Xp,int,r,c,alt="g")
PEarc.dens.test.int(Xp,int,r,c,alt="l")

```

PEarc.dens.test1D A test of segregation/association based on arc density of Proportional Edge Proximity Catch Digraph (PE-PCD) for 1D data

\section*{Description}

An object of class "htest" (i.e., hypothesis test) function which performs a hypothesis test of complete spatial randomness (CSR) or uniformity of \(X p\) points in the range (i.e., range) of Yp points against the alternatives of segregation (where \(X p\) points cluster away from \(Y p\) points) and association (where Xp points cluster around \(Y p\) points) based on the normal approximation of the arc density of the PE-PCD for uniform 1D data.
The function yields the test statistic, \(p\)-value for the corresponding alternative, the confidence interval, estimate and null value for the parameter of interest (which is the arc density), and method and name of the data set used.
Under the null hypothesis of uniformity of \(X p\) points in the range of \(Y p\) points, arc density of PEPCD whose vertices are Xp points equals to its expected value under the uniform distribution and alternative could be two-sided, or left-sided (i.e., data is accumulated around the Yp points, or association) or right-sided (i.e., data is accumulated around the centers of the intervals, or segregation).
PE proximity region is constructed with the expansion parameter \(r \geq 1\) and centrality parameter c which yields \(M\)-vertex regions. More precisely, for a middle interval \(\left(y_{(i)}, y_{(i+1)}\right)\), the center is \(M=y_{(i)}+c\left(y_{(i+1)}-y_{(i)}\right)\) for the centrality parameter \(c \in(0,1)\). If there are duplicates of \(Y p\) points, only one point is retained for each duplicate value, and a warning message is printed.
Caveat: This test is currently a conditional test, where Xp points are assumed to be random, while \(Y p\) points are assumed to be fixed (i.e., the test is conditional on Yp points). Furthermore, the test is a large sample test when \(X p\) points are substantially larger than Yp points, say at least 5 times more. This test is more appropriate when supports of \(X p\) and \(Y p\) have a substantial overlap. Currently, the Xp points outside the range of \(Y p\) points are handled with a range correction (or endinterval correction) factor (see the description below and the function code.) However, in the special case of no Xp points in the range of \(Y p\) points, arc density is taken to be 1 , as this is clearly a case of segregation. Removing the conditioning and extending it to the case of non-concurring supports is an ongoing line of research of the author of the package.
end. int. cor is for end-interval correction, (default is "no end-interval correction", i.e., end. int. cor=FALSE), recommended when both \(X p\) and \(Y p\) have the same interval support.
See also (Ceyhan (2012)) for more on the uniformity test based on the arc density of PE-PCDs.
```

Usage
PEarc.dens.test1D(
Xp,
Yp,
r,
c = 0.5,
support.int = NULL,
end.int.cor = FALSE,

```
```

    alternative = c("two.sided", "less", "greater"),
    conf.level = 0.95
    )

```

\section*{Arguments}

Xp A set of 1D points which constitute the vertices of the PE-PCD.
Yp A set of 1D points which constitute the end points of the partition intervals.
\(r \quad\) A positive real number which serves as the expansion parameter in PE proximity region; must be \(\geq 1\).
c A positive real number which serves as the centrality parameter in PE proximity region; must be in \((0,1)\) (default \(\mathrm{c}=.5\)).
support.int Support interval \((a, b)\) with \(a<b\). Uniformity of Xp points in this interval is tested. Default is NULL.
end.int.cor A logical argument for end-interval correction, default is FALSE, recommended when both Xp and Yp have the same interval support.
alternative Type of the alternative hypothesis in the test, one of "two.sided", "less", "greater".
conf.level Level of the confidence interval, default is 0.95 , for the arc density PE-PCD whose vertices are the 1D data set Xp .

\section*{Value}

A list with the elements
\begin{tabular}{ll}
statistic & Test statistic \\
p.value & The \(p\)-value for the hypothesis test for the corresponding alternative. \\
conf.int & \begin{tabular}{l}
Confidence interval for the arc density at the given confidence level conf. level \\
and depends on the type of alternative.
\end{tabular} \\
estimate & \begin{tabular}{l}
Estimate of the parameter, i.e., arc density
\end{tabular} \\
null.value & \begin{tabular}{l}
Hypothesized value for the parameter, i.e., the null arc density, which is usually \\
the mean arc density under uniform distribution.
\end{tabular} \\
alternative & \begin{tabular}{l}
Type of the alternative hypothesis in the test, one of "two.sided", "less", \\
"greater"
\end{tabular} \\
method & \begin{tabular}{l}
Description of the hypothesis test \\
data.name
\end{tabular}
\end{tabular}

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2012). "The Distribution of the Relative Arc Density of a Family of Interval Catch Digraph Based on Uniform Data." Metrika, 75(6), 761-793.

\section*{See Also}

PEarc.dens.test, PEdom.num.binom.test1D, and PEarc.dens.test.int

\section*{Examples}
```

r<-2
c<-.4
a<-0; b<-10; int=c(a,b)
\#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-100; ny<-4; \#try also nx<-40; ny<-10 or nx<-1000; ny<-10;
set.seed(1)
xf<-(int[2]-int[1])*. }
Xp<-runif(nx,a-xf,b+xf)
Yp<-runif(ny,a,b)
PEarc.dens.test1D(Xp,Yp,r,c,int)
\#try also PEarc.dens.test1D(Xp,Yp,r,c,int,alt="l") and PEarc.dens.test1D(Xp,Yp,r,c,int,alt="g")
PEarc.dens.test1D(Xp,Yp,r,c,int,end.int.cor = TRUE)

```

PEarc.dens.tetra Arc density of Proportional Edge Proximity Catch Digraphs (PEPCDs) - one tetrahedron case

\section*{Description}

Returns the arc density of PE-PCD whose vertex set is the given 2D numerical data set, Xp , (some of its members are) in the tetrahedron th.
PE proximity region is constructed with respect to the tetrahedron th and vertex regions are based on the center M which is circumcenter ("CC") or center of mass ("CM") of th with default="CM". For the number of arcs, loops are not allowed so arcs are only possible for points inside the tetrahedron th for this function.
th. cor is a logical argument for tetrahedron correction (default is TRUE), if TRUE, only the points inside the tetrahedron are considered (i.e., digraph induced by these vertices are considered) in computing the arc density, otherwise all points are considered (for the number of vertices in the denominator of arc density).
See also (Ceyhan (2005, 2010)).

\section*{Usage}

PEarc.dens.tetra(Xp, th, r, \(M=\) "CM", th.cor = FALSE)

\section*{Arguments}

Xp A set of 2D points which constitute the vertices of the PE-PCD.
th A \(4 \times 3\) matrix with each row representing a vertex of the tetrahedron.
\(r \quad\) A positive real number which serves as the expansion parameter in PE proximity region; must be \(\geq 1\).
M The center to be used in the construction of the vertex regions in the tetrahedron, th. Currently it only takes "CC" for circumcenter and "CM" for center of mass; default="CM".
th.cor A logical argument for computing the arc density for only the points inside the tetrahedron, th. (default is th.cor=FALSE), i.e., if th.cor=TRUE only the induced digraph with the vertices inside th are considered in the computation of arc density.

\section*{Value}

Arc density of PE-PCD whose vertices are the 2D numerical data set, Xp ; PE proximity regions are defined with respect to the tetrahedron th and \(M\)-vertex regions

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

\section*{See Also}
```

PEarc.dens.tri and num.arcsPEtetra

```

\section*{Examples}
```

A<-c(0,0,0); B<-c(1,0,0); C<-c(1/2,sqrt(3)/2,0); D<-c(1/2,sqrt(3)/6,sqrt(6)/3)
tetra<-rbind(A,B,C,D)
n<-10 \#try also n<-20
set.seed(1)
Xp<-runif.tetra(n,tetra)\$g
M<-"CM" \#try also M<-"CC"
r<-1.5
num.arcsPEtetra(Xp,tetra,r,M)

```

PEarc.dens.tetra(Xp, tetra, \(r, M\))
PEarc.dens.tetra(Xp, tetra, r, M, th.cor = FALSE)

PEarc.dens.tri Arc density of Proportional Edge Proximity Catch Digraphs (PEPCDs) - one triangle case

\section*{Description}

Returns the arc density of PE-PCD whose vertex set is the given 2D numerical data set, Xp , (some of its members are) in the triangle tri.
PE proximity regions is defined with respect to tri with expansion parameter \(r \geq 1\) and vertex regions are based on center \(M=\left(m_{1}, m_{2}\right)\) in Cartesian coordinates or \(M=(\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of the triangle tri or based on circumcenter of tri; default is \(M=(1,1,1)\), i.e., the center of mass of tri. The function also provides arc density standardized by the mean and asymptotic variance of the arc density of PE-PCD for uniform data in the triangle tri only when \(M\) is the center of mass. For the number of arcs, loops are not allowed.
in. tri. only is a logical argument (default is FALSE) for considering only the points inside the triangle or all the points as the vertices of the digraph. if in.tri.only=TRUE, arc density is computed only for the points inside the triangle (i.e., arc density of the subdigraph induced by the vertices in the triangle is computed), otherwise arc density of the entire digraph (i.e., digraph with all the vertices) is computed.
See also (Ceyhan (2005); Ceyhan et al. (2006)).

\section*{Usage}

PEarc.dens.tri(Xp, tri, \(r, M=c(1,1,1)\), in.tri.only = FALSE)

\section*{Arguments}
\(X p\)
tri
\(r\)

M
in.tri.only

A set of 2D points which constitute the vertices of the PE-PCD.
A \(3 \times 2\) matrix with each row representing a vertex of the triangle.
A positive real number which serves as the expansion parameter in PE proximity region; must be \(\geq 1\).
A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates which serves as a center in the interior of the triangle tri or the circumcenter of tri which may be entered as "CC" as well; default is \(M=(1,1,1)\), i.e., the center of mass of tri.

A logical argument (default is in.tri.only=FALSE) for computing the arc density for only the points inside the triangle, tri. That is, if in.tri.only=TRUE arc density of the induced subdigraph with the vertices inside tri is computed, otherwise otherwise arc density of the entire digraph (i.e., digraph with all the vertices) is computed.

\section*{Value}

A list with the elements
arc.dens Arc density of PE-PCD whose vertices are the 2D numerical data set, Xp ; PE proximity regions are defined with respect to the triangle tri and \(M\)-vertex regions
std.arc.dens Arc density standardized by the mean and asymptotic variance of the arc density of PE-PCD for uniform data in the triangle tri. This will only be returned, if M is the center of mass.

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E, Priebe CE, Wierman JC (2006). "Relative density of the random \(r\)-factor proximity catch digraphs for testing spatial patterns of segregation and association." Computational Statistics \& Data Analysis, 50(8), 1925-1964.

\section*{See Also}

ASarc.dens.tri, CSarc.dens.tri, and num.arcsPEtri

\section*{Examples}
```

A<-C(1,1); B<-C(2,0); C<-C (1.5,2);
Tr<-rbind(A,B,C);
n<-10 \#try also n<-20
set.seed(1)
Xp<-runif.tri(n,Tr)$g
M<-as.numeric(runif.tri(1,Tr)$g) \#try also M<-c(1.6,1.0)
num.arcsPEtri(Xp,Tr,r=1.5,M)
PEarc.dens.tri(Xp,Tr,r=1.5,M)
PEarc.dens.tri(Xp,Tr,r=1.5,M,in.tri.only = TRUE)

```

PEdom.num
The domination number of Proportional Edge Proximity Catch Digraph (PE-PCD) - multiple triangle case

\section*{Description}

Returns the domination number, indices of a minimum dominating set of PE-PCD whose vertices are the data points in \(X p\) in the multiple triangle case and domination numbers for the Delaunay triangles based on Yp points.
PE proximity regions are defined with respect to the Delaunay triangles based on Yp points with expansion parameter \(r \geq 1\) and vertex regions in each triangle are based on the center \(M=(\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of each Delaunay triangle or based on circumcenter of each Delaunay triangle (default for \(M=(1,1,1)\) which is the center of mass of the triangle). Each Delaunay triangle is first converted to an (nonscaled) basic triangle so that \(M\) will be the same type of center for each Delaunay triangle (this conversion is not necessary when M is \(C M\)).
Convex hull of Yp is partitioned by the Delaunay triangles based on Yp points (i.e., multiple triangles are the set of these Delaunay triangles whose union constitutes the convex hull of Yp points). Loops are allowed for the domination number.
See (Ceyhan (2005); Ceyhan and Priebe (2007); Ceyhan (2011, 2012)) for more on the domination number of PE-PCDs. Also, see (Okabe et al. (2000); Ceyhan (2010); Sinclair (2016)) for more on Delaunay triangulation and the corresponding algorithm.

\section*{Usage}

PEdom.num(Xp, Yp, r, \(M=c(1,1,1))\)

\section*{Arguments}

Xp A set of 2D points which constitute the vertices of the PE-PCD.
Yp A set of 2D points which constitute the vertices of the Delaunay triangles.
\(r \quad\) A positive real number which serves as the expansion parameter in PE proximity region; must be \(\geq 1\).
M A 3D point in barycentric coordinates which serves as a center in the interior of each Delaunay triangle or circumcenter of each Delaunay triangle (for this, argument should be set as \(M=\) "CC"), default for \(M=(1,1,1)\) which is the center of mass of each triangle.

\section*{Value}

A list with three elements
dom. num Domination number of the PE-PCD whose vertices are Xp points. PE proximity regions are constructed with respect to the Delaunay triangles based on the \(Y p\) points with expansion parameter \(r \geq 1\).
\#
\[
\begin{array}{ll}
\text { mds } & \text { A minimum dominating set of the PE-PCD whose vertices are Xp points } \\
\text { ind.mds } & \begin{array}{l}
\text { The vector of data indices of the minimum dominating set of the PE-PCD whose } \\
\text { vertices are Xp points. }
\end{array} \\
\text { tri.dom. nums } & \begin{array}{l}
\text { The vector of domination numbers of the PE-PCD components for the Delaunay } \\
\text { triangles. }
\end{array}
\end{array}
\]

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2011). "Spatial Clustering Tests Based on Domination Number of a New Random Digraph Family." Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

Ceyhan E (2012). "An investigation of new graph invariants related to the domination number of random proximity catch digraphs." Methodology and Computing in Applied Probability, 14(2), 299-334.

Ceyhan E, Priebe CE (2007). "On the Distribution of the Domination Number of a New Family of Parametrized Random Digraphs." Model Assisted Statistics and Applications, 1(4), 231-255.

Okabe A, Boots B, Sugihara K, Chiu SN (2000). Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. Wiley, New York.

Sinclair D (2016). "S-hull: a fast radial sweep-hull routine for Delaunay triangulation." 1604.01428.

\section*{See Also}

PEdom.num.tri, PEdom.num.tetra, dom.num.exact, and dom.num.greedy

\section*{Examples}
```

\#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-20; ny<-5; \#try also nx<-40; ny<-10 or nx<-1000; ny<-10;
set.seed(1)
Xp<-cbind(runif(nx,0,1),runif(nx,0,1))
Yp<-cbind(runif(ny,0,.25),
runif(ny,0,.25))+cbind(c(0,0,0.5,1,1),c(0,1,.5,0,1))
\#try also Yp<-cbind(runif(ny,0,1),runif(ny,0,1))

```
```

M<-c(1,1,1) \#try also M<-c(1,2,3)
r<-1.5 \#try also r<-2
PEdom.num(Xp, Yp,r,M)

```

PEdom.num.binom. test A test of segregation/association based on domination number of Proportional Edge Proximity Catch Digraph (PE-PCD) for 2D data-Binomial Approximation

\section*{Description}

An object of class "htest" (i.e., hypothesis test) function which performs a hypothesis test of complete spatial randomness (CSR) or uniformity of Xp points in the convex hull of Yp points against the alternatives of segregation (where \(X p\) points cluster away from \(Y p\) points i.e., cluster around the centers of the Delaunay triangles) and association (where Xp points cluster around \(Y p\) points) based on the (asymptotic) binomial distribution of the domination number of PE-PCD for uniform 2D data in the convex hull of Yp points.

The function yields the test statistic, \(p\)-value for the corresponding alternative, the confidence interval, estimate and null value for the parameter of interest (which is \(\operatorname{Pr}\) (domination number \(\leq\) \(2)\)), and method and name of the data set used.
Under the null hypothesis of uniformity of \(X p\) points in the convex hull of \(Y p\) points, probability of success (i.e., \(\operatorname{Pr}(\) domination number \(\leq 2)\)) equals to its expected value under the uniform distribution) and alternative could be two-sided, or right-sided (i.e., data is accumulated around the Yp points, or association) or left-sided (i.e., data is accumulated around the centers of the triangles, or segregation).
PE proximity region is constructed with the expansion parameter \(r \geq 1\) and \(M\)-vertex regions where \(M\) is a center that yields non-degenerate asymptotic distribution of the domination number.
The test statistic is based on the binomial distribution, when success is defined as domination number being less than or equal to 2 in the one triangle case (i.e., number of failures is equal to number of times restricted domination number \(=3\) in the triangles). That is, the test statistic is based on the domination number for Xp points inside convex hull of Yp points for the PE-PCD and default convex hull correction, ch. cor, is FALSE where M is the center that yields nondegenerate asymptotic distribution for the domination number. For this approximation to work, number of Xp points must be at least 7 times more than number of \(Y p\) points.
PE proximity region is constructed with the expansion parameter \(r \geq 1\) and \(C M\)-vertex regions (i.e., the test is not available for a general center \(M\) at this version of the function).
Caveat: This test is currently a conditional test, where Xp points are assumed to be random, while \(Y p\) points are assumed to be fixed (i.e., the test is conditional on Yp points). Furthermore, the test is a large sample test when Xp points are substantially larger than Yp points, say at least 7 times more. This test is more appropriate when supports of \(X p\) and \(Y p\) have a substantial overlap. Currently, the Xp points outside the convex hull of Yp points are handled with a convex hull correction factor (see the description below and the function code.) Removing the conditioning and
extending it to the case of non-concurring supports is an ongoing topic of research of the author of the package.
See also (Ceyhan (2011)).

\section*{Usage}
```

PEdom.num.binom.test(
Xp,
Yp,
r,
ch.cor = FALSE,
ndt = NULL,
alternative = c("two.sided", "less", "greater"),
conf.level = 0.95
)

```

\section*{Arguments}
\begin{tabular}{ll}
Xp & A set of 2D points which constitute the vertices of the PE-PCD. \\
Yp & A set of 2D points which constitute the vertices of the Delaunay triangles. \\
\(r\) & A positive real number which serves as the expansion parameter in PE proximity \\
region; must be in \((1,1.5]\).
\end{tabular}

\section*{Value}

A list with the elements
\begin{tabular}{|c|c|}
\hline statistic & Test statistic \\
\hline p.value & The \(p\)-value for the hypothesis test for the corresponding alternative \\
\hline conf.int & Confidence interval for \(\operatorname{Pr}(\) Domination Number \(\leq 2)\) at the given level conf. level and depends on the type of alternative. \\
\hline estimate & A vector with two entries: first is is the estimate of the parameter, i.e., \(\operatorname{Pr}\) (Domination Number \(=3\)) and second is the domination number \\
\hline null.value & Hypothesized value for the parameter, i.e., the null value for \(\operatorname{Pr}\) (Domination Number \(\leq 2\)) \\
\hline alternative & Type of the alternative hypothesis in the test, one of "two.sided", "less", "greater" \\
\hline method & Description of the hypothesis test \\
\hline data. name & Name of the data set \\
\hline
\end{tabular}

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2011). "Spatial Clustering Tests Based on Domination Number of a New Random Digraph Family." Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

\section*{See Also}

PEdom.num.norm.test

\section*{Examples}
```

nx<-100; ny<-5 \#try also nx<-1000; ny<-10
r<-1.4 \#try also r<-1.5
set.seed(1)
Xp<-cbind(runif(nx,0,1),runif(nx,0,1))
Yp<-cbind(runif(ny,0,.25),
runif(ny,0,.25))+cbind(c(0,0,0.5,1,1),c(0,1,.5,0,1))
\#try also Yp<-cbind(runif(ny,0,1),runif(ny,0,1))
plotDelaunay.tri(Xp,Yp,xlab="",ylab="")
PEdom.num.binom.test(Xp,Yp,r) \#try also \#PEdom.num.binom.test(Xp,Yp,r,alt="l") and

# PEdom.num.binom.test(Xp,Yp,r,alt="g")

PEdom.num.binom.test(Xp,Yp,r,ch=TRUE)
\#or try
ndt<-num.delaunay.tri(Yp)
PEdom.num.binom.test(Xp, Yp,r,ndt=ndt)
\#values might differ due to the random of choice of the three centers M1,M2,M3
\#for the non-degenerate asymptotic distribution of the domination number

```
```

PEdom.num.binom.test1D

```

A test of segregation/association based on domination number of Proportional Edge Proximity Catch Digraph (PE-PCD) for 1D data-Binomial Approximation

\section*{Description}

An object of class "htest" (i.e., hypothesis test) function which performs a hypothesis test of complete spatial randomness (CSR) or uniformity of Xp points within the partition intervals based on Yp points (both residing in the support interval \((a, b)\)). The test is for testing the spatial interaction between \(X p\) and \(Y p\) points.

The null hypothesis is uniformity of \(X p\) points on \(\left(y_{\min }, y_{\max }\right)\) (by default) where \(y_{\min }\) and \(y_{\max }\) are minimum and maximum of \(Y p\) points, respectively. \(Y p\) determines the end points of the intervals (i.e., partition the real line via its spacings called intervalization) where end points are the order statistics of \(Y p\) points. If there are duplicates of \(Y p\) points, only one point is retained for each duplicate value, and a warning message is printed.
The alternatives are segregation (where \(X p\) points cluster away from \(Y p\) points i.e., cluster around the centers of the partition intervals) and association (where \(X p\) points cluster around \(Y p\) points). The test is based on the (asymptotic) binomial distribution of the domination number of PE-PCD for uniform 1D data in the partition intervals based on Yp points.
The test by default is restricted to the range of \(Y p\) points, and so ignores \(X p\) points outside this range. However, a correction for the \(X p\) points outside the range of \(Y p\) points is available by setting end. int. cor=TRUE, which is recommended when both \(X p\) and \(Y p\) have the same interval support.
The function yields the test statistic, \(p\)-value for the corresponding alternative, the confidence interval, estimate and null value for the parameter of interest (which is \(\operatorname{Pr}\) (domination number \(\leq 1\))), and method and name of the data set used.
Under the null hypothesis of uniformity of \(X p\) points in the intervals based on \(Y p\) points, probability of success (i.e., \(\operatorname{Pr}(\) domination number \(\leq 1)\)) equals to its expected value) and alternative could be two-sided, or left-sided (i.e., data is accumulated around the Yp points, or association) or rightsided (i.e., data is accumulated around the centers of the partition intervals, or segregation).

PE proximity region is constructed with the expansion parameter \(r \geq 1\) and centrality parameter c which yields \(M\)-vertex regions. More precisely, for a middle interval \(\left(y_{(i)}, y_{(i+1)}\right)\), the center is \(M=y_{(i)}+c\left(y_{(i+1)}-y_{(i)}\right)\) for the centrality parameter \(c\). For a given \(c \in(0,1)\), the expansion parameter \(r\) is taken to be \(1 / \max (c, 1-c)\) which yields non-degenerate asymptotic distribution of the domination number.

The test statistic is based on the binomial distribution, when success is defined as domination number being less than or equal to 1 in the one interval case (i.e., number of successes is equal to domination number \(\leq 1\) in the partition intervals). That is, the test statistic is based on the domination number for Xp points inside range of Yp points (the domination numbers are summed over the \(|Y p|-1\) middle intervals) for the PE-PCD and default end-interval correction, end.int.cor, is FALSE and the center \(M c\) is chosen so that asymptotic distribution for the domination number is nondegenerate. For this test to work, Xp must be at least 10 times more than Yp points (or Xp must be at least 5 or more per partition interval). Probability of success is the exact probability of success for the binomial distribution.
Caveat: This test is currently a conditional test, where Xp points are assumed to be random, while \(Y p\) points are assumed to be fixed (i.e., the test is conditional on \(Y p\) points). This test is more appropriate when supports of \(X p\) and \(Y p\) have a substantial overlap. Currently, the \(X p\) points outside the range of \(Y p\) points are handled with an end-interval correction factor (see the description below and the function code.) Removing the conditioning and extending it to the case of non-concurring supports is an ongoing line of research of the author of the package.
See also (Ceyhan (2020)) for more on the uniformity test based on the arc density of PE-PCDs.

\section*{Usage}

PEdom.num.binom.test1D(
Xp,
Yp,
```

    c = 0.5,
    support.int = NULL,
    end.int.cor = FALSE,
    alternative = c("two.sided", "less", "greater"),
    conf.level = 0.95
    )

```

\section*{Arguments}

Xp A set of 1D points which constitute the vertices of the PE-PCD.
Yp A set of 1D points which constitute the end points of the partition intervals.
c A positive real number which serves as the centrality parameter in PE proximity region; must be in \((0,1)\) (default \(\mathrm{c}=.5\)).
support.int Support interval \((a, b)\) with \(a<b\). Uniformity of Xp points in this interval is tested. Default is NULL.
end.int.cor A logical argument for end-interval correction, default is FALSE, recommended when both \(X p\) and \(Y p\) have the same interval support.
alternative Type of the alternative hypothesis in the test, one of "two.sided", "less", "greater".
conf.level Level of the confidence interval, default is 0.95 , for the probability of success (i.e., \(\operatorname{Pr}(\) domination number \(\leq 1)\) for PE-PCD whose vertices are the 1D data set Xp.

\section*{Value}

A list with the elements
statistic Test statistic
p.value The \(p\)-value for the hypothesis test for the corresponding alternative.
conf.int Confidence interval for \(\operatorname{Pr}(\) domination number \(\leq 1)\) at the given level conf. level and depends on the type of alternative.
estimate A vector with two entries: first is is the estimate of the parameter, i.e., \(\operatorname{Pr}\) (domination number \(\leq 1\)) and second is the domination number
null.value Hypothesized value for the parameter, i.e., the null value for \(\operatorname{Pr}\) (domination number \(\leq 1\))
alternative Type of the alternative hypothesis in the test, one of "two.sided", "less", "greater"
method Description of the hypothesis test
data.name Name of the data set

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2020). "Domination Number of an Interval Catch Digraph Family and Its Use for Testing Uniformity." Statistics, 54(2), 310-339.

\section*{See Also}

PEdom.num.binom. test and PEdom.num1D

\section*{Examples}
```

a<-0; b<-10; supp<-c(a,b)
c<-.4
r<-1/max(c,1-c)
\#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-100; ny<-4; \#try also nx<-40; ny<-10 or nx<-1000; ny<-10;
set.seed(1)
Xp<-runif(nx,a,b)
Yp<-runif(ny,a,b)
PEdom.num.binom.test1D(Xp, Yp, c, supp)
PEdom.num.binom.test1D(Xp,Yp,c,supp,alt="l")
PEdom.num.binom.test1D(Xp,Yp,c,supp,alt="g")
PEdom.num.binom.test1D(Xp,Yp,c, supp, end=TRUE)

```

PEdom.num.binom.test1Dint
A test of uniformity for \(1 D\) data based on domination number of Proportional Edge Proximity Catch Digraph (PE-PCD) - Binomial Approximation

\section*{Description}

An object of class "htest" (i.e., hypothesis test) function which performs a hypothesis test of uniformity of Xp points in the support interval \((a, b))\).
The support interval \((a, b)\) is partitioned as \((b-a) *(0: n i n t) / n i n t\) where nint=round (sqrt (nx), 0) and \(n x\) is number of \(X p\) points, and the test is for testing the uniformity of \(X p\) points in the interval \((a, b)\).

The null hypothesis is uniformity of Xp points on \((a, b)\). The alternative is deviation of distribution of \(X p\) points from uniformity. The test is based on the (asymptotic) binomial distribution of the domination number of PE-PCD for uniform 1D data in the partition intervals based on partition of \((a, b)\).

The function yields the test statistic, \(p\)-value for the corresponding alternative, the confidence interval, estimate and null value for the parameter of interest (which is \(\operatorname{Pr}(\) domination number \(\leq 1\)), and method and name of the data set used.
Under the null hypothesis of uniformity of Xp points in the support interval, probability of success (i.e., \(\operatorname{Pr}(\) domination number \(\leq 1)\)) equals to its expected value) and alternative could be twosided, or left-sided (i.e., data is accumulated around the end points of the partition intervals of the support) or right-sided (i.e., data is accumulated around the centers of the partition intervals).
PE proximity region is constructed with the expansion parameter \(r \geq 1\) and centrality parameter c which yields \(M\)-vertex regions. More precisely \(M_{c}=a+c(b-a)\) for the centrality parameter c and for a given \(c \in(0,1)\), the expansion parameter \(r\) is taken to be \(1 / \max (c, 1-c)\) which yields non-degenerate asymptotic distribution of the domination number.
The test statistic is based on the binomial distribution, when success is defined as domination number being less than or equal to 1 in the one interval case (i.e., number of failures is equal to number of times restricted domination number \(=1\) in the intervals). That is, the test statistic is based on the domination number for Xp points inside the partition intervals for the PE-PCD. For this approach to work, Xp must be large for each partition interval, but 5 or more per partition interval seems to work in practice.
Probability of success is chosen in the following way for various parameter choices. asy.bin is a logical argument for the use of asymptotic probability of success for the binomial distribution, default is asy.bin=FALSE. When asy.bin=TRUE, asymptotic probability of success for the binomial distribution is used. When asy. bin=FALSE, the finite sample probability of success for the binomial distribution is used with number of trials equals to expected number of \(X p\) points per partition interval.

\section*{Usage}
```

PEdom.num.binom.test1Dint(
Xp,
support.int,
c = 0.5,
asy.bin = FALSE,
alternative = c("two.sided", "less", "greater"),
conf.level = 0.95
)

```

\section*{Arguments}

Xp
A set of 1D points which constitute the vertices of the PE-PCD.
support.int
c
asy.bin
Support interval \((a, b)\) with \(a<b\). Uniformity of Xp points in this interval is tested.
A positive real number which serves as the centrality parameter in PE proximity region; must be in \((0,1)\) (default \(\mathrm{c}=.5\)).

A logical argument for the use of asymptotic probability of success for the bi-
nomial distribution, default asy.bin=FALSE. When asy.bin=TRUE, asymptotic probability of success for the binomial distribution is used. When asy. bin=FALSE, the finite sample asymptotic probability of success for the binomial distribution
is used with number of trials equals to expected number of \(X p\) points per partition interval.
alternative Type of the alternative hypothesis in the test, one of "two.sided", "less", "greater".
conf.level Level of the confidence interval, default is 0.95 , for the probability of success (i.e., \(\operatorname{Pr}(\) domination number \(\leq 1)\) for PE-PCD whose vertices are the 1D data set Xp.

\section*{Value}

A list with the elements
statistic Test statistic
p.value The \(p\)-value for the hypothesis test for the corresponding alternative
conf.int Confidence interval for \(\operatorname{Pr}(\) domination number \(\leq 1)\) at the given level conf. level and depends on the type of alternative.
estimate A vector with two entries: first is is the estimate of the parameter, i.e., \(\operatorname{Pr}\) (domination number \(\leq 1\)) and second is the domination number
null.value Hypothesized value for the parameter, i.e., the null value for \(\operatorname{Pr}\) (domination number \(\leq 1\))
alternative Type of the alternative hypothesis in the test, one of "two.sided", "less", "greater"
method Description of the hypothesis test
data.name Name of the data set

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

There are no references for Rd macro \insertAllCites on this help page.

\section*{See Also}

PEdom.num.binom. test, PEdom.num1D and PEdom.num1Dnondeg

\section*{Examples}
```

a<-0; b<-10; supp<-c(a,b)
c<-.4
r<-1/max(c,1-c)
\#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-100; ny<-4; \#try also nx<-40; ny<-10 or nx<-1000; ny<-10;

```
```

set.seed(1)
Xp<-runif(nx,a,b)
PEdom.num.binom.test1Dint(Xp,supp,c,alt="t")
PEdom.num.binom.test1Dint(Xp, support.int = supp,c=c,alt="t")
PEdom.num.binom.test1Dint(Xp,supp, c,alt="l")
PEdom.num.binom. test1Dint(Xp, supp, c, alt="g")
PEdom.num.binom.test1Dint(Xp,supp,c,alt="t",asy.bin = TRUE)

```

PEdom.num.nondeg The domination number of Proportional Edge Proximity Catch Digraph (PE-PCD) with non-degeneracy centers - multiple triangle case

\section*{Description}

Returns the domination number, indices of a minimum dominating set of PE-PCD whose vertices are the data points in \(X p\) in the multiple triangle case and domination numbers for the Delaunay triangles based on Yp points when PE-PCD is constructed with vertex regions based on non-degeneracy centers.

PE proximity regions are defined with respect to the Delaunay triangles based on Yp points with expansion parameter \(r \geq 1\) and vertex regions in each triangle are based on the center \(M\) which is one of the 3 centers that renders the asymptotic distribution of domination number to be nondegenerate for a given value of \(r\) in \((1,1.5)\) and M is center of mass for \(r=1.5\).
Convex hull of \(Y p\) is partitioned by the Delaunay triangles based on \(Y p\) points (i.e., multiple triangles are the set of these Delaunay triangles whose union constitutes the convex hull of Yp points). Loops are allowed for the domination number.

See (Ceyhan (2005); Ceyhan and Priebe (2007); Ceyhan (2011, 2012)) more on the domination number of PE-PCDs. Also, see (Okabe et al. (2000); Ceyhan (2010); Sinclair (2016)) for more on Delaunay triangulation and the corresponding algorithm.

\section*{Usage}

PEdom.num.nondeg (Xp, Yp, r)

\section*{Arguments}

Xp
A set of 2D points which constitute the vertices of the PE-PCD.
Yp A set of 2D points which constitute the vertices of the Delaunay triangles.
\(r\)

A positive real number which serves as the expansion parameter in PE proximity region; must be in \((1,1.5]\) here.

\section*{Value}

A list with three elements
dom.num Domination number of the PE-PCD whose vertices are Xp points. PE proximity regions are constructed with respect to the Delaunay triangles based on the \(Y p\) points with expansion parameter \(\operatorname{rin}(1,1.5]\).
\#
mds A minimum dominating set of the PE-PCD whose vertices are Xp points.
ind.mds The data indices of the minimum dominating set of the PE-PCD whose vertices are \(X p\) points.
tri.dom.nums Domination numbers of the PE-PCD components for the Delaunay triangles.

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2011). "Spatial Clustering Tests Based on Domination Number of a New Random Digraph Family." Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

Ceyhan E (2012). "An investigation of new graph invariants related to the domination number of random proximity catch digraphs." Methodology and Computing in Applied Probability, 14(2), 299-334.

Ceyhan E, Priebe CE (2007). "On the Distribution of the Domination Number of a New Family of Parametrized Random Digraphs." Model Assisted Statistics and Applications, 1(4), 231-255.

Okabe A, Boots B, Sugihara K, Chiu SN (2000). Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. Wiley, New York.

Sinclair D (2016). "S-hull: a fast radial sweep-hull routine for Delaunay triangulation." 1604.01428.

\section*{See Also}

PEdom.num. tri, PEdom.num. tetra, dom.num.exact, and dom.num.greedy

\section*{Examples}
```

\#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-20; ny<-5; \#try also nx<-40; ny<-10 or nx<-1000; ny<-10;
r<-1.5 \#try also r<-2
set.seed(1)
Xp<-cbind(runif(nx,0,1),runif(nx,0,1))
Yp<-cbind(runif(ny,0,.25),
runif(ny,0,.25))+cbind(c(0,0,0.5,1,1),c(0,1,.5,0,1))
\#try also Yp<-cbind(runif(ny,0,1),runif(ny,0,1))
PEdom.num.nondeg(Xp, Yp,r)

```

PEdom. num. norm. test A test of segregation/association based on domination number of Proportional Edge Proximity Catch Digraph (PE-PCD) for 2D data - Normal Approximation

\section*{Description}

An object of class "htest" (i.e., hypothesis test) function which performs a hypothesis test of complete spatial randomness (CSR) or uniformity of \(X p\) points in the convex hull of \(Y p\) points against the alternatives of segregation (where \(X p\) points cluster away from \(Y p\) points i.e., cluster around the centers of the Delaunay triangles) and association (where \(X p\) points cluster around \(Y p\) points) based on the normal approximation to the binomial distribution of the domination number of PE-PCD for uniform 2D data in the convex hull of Yp points
The function yields the test statistic, \(p\)-value for the corresponding alternative, the confidence interval, estimate and null value for the parameter of interest (which is \(\operatorname{Pr}\) (domination number \(\leq\) \(2)\)), and method and name of the data set used.
Under the null hypothesis of uniformity of \(X p\) points in the convex hull of \(Y p\) points, probability of success (i.e., \(\operatorname{Pr}(\) domination number \(\leq 2)\)) equals to its expected value under the uniform distribution) and alternative could be two-sided, or right-sided (i.e., data is accumulated around the Yp points, or association) or left-sided (i.e., data is accumulated around the centers of the triangles, or segregation).
PE proximity region is constructed with the expansion parameter \(r \geq 1\) and \(M\)-vertex regions where M is a center that yields non-degenerate asymptotic distribution of the domination number.
The test statistic is based on the normal approximation to the binomial distribution, when success is defined as domination number being less than or equal to 2 in the one triangle case (i.e., number of failures is equal to number of times restricted domination number \(=3\) in the triangles). That is, the test statistic is based on the domination number for \(X p\) points inside convex hull of \(Y p\) points for the PE-PCD and default convex hull correction, ch. cor, is FALSE where M is the center that yields nondegenerate asymptotic distribution for the domination number.

For this approximation to work, number of \(Y p\) points must be at least 5 (i.e., about 7 or more Delaunay triangles) and number of \(X p\) points must be at least 7 times more than the number of \(Y p\) points.
See also (Ceyhan (2011)).

\section*{Usage}
```

PEdom.num.norm.test(
Xp,
Yp,
r,
ch.cor = FALSE,
ndt = NULL,
alternative = c("two.sided", "less", "greater"),
conf.level = 0.95
)

```

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline Xp & A set of 2D points which constitute the vertices of the PE-PCD. \\
\hline Yp & A set of 2D points which constitute the vertices of the Delaunay triangles. \\
\hline \(r\) & A positive real number which serves as the expansion parameter in PE proximity region; must be in \((1,1.5]\). \\
\hline ch.cor & A logical argument for convex hull correction, default ch.cor=FALSE, recommended when both \(X p\) and \(Y p\) have the same rectangular support. \\
\hline ndt & Number of Delaunay triangles based on Yp points, default is NULL. \\
\hline alternative & Type of the alternative hypothesis in the test, one of "two.sided", "less", "greater". \\
\hline conf.level & Level of the confidence interval, default is 0.95 , for the domination number of PE-PCD whose vertices are the 2D data set Xp. \\
\hline
\end{tabular}

\section*{Value}

A list with the elements
\(\left.\left.\begin{array}{ll}\text { statistic } & \begin{array}{l}\text { Test statistic } \\
\text { p.value }\end{array} \\
\begin{array}{ll}\text { The } p \text {-value for the hypothesis test for the corresponding alternative }\end{array} \\
\text { estimate } & \begin{array}{l}\text { Confidence interval for the domination number at the given level conf. level } \\
\text { and depends on the type of alternative. }\end{array} \\
\text { A vector with two entries: first is the domination number, and second is the } \\
\text { estimate of the parameter, i.e., } \operatorname{Pr}(\text { Domination Number=3) }\end{array}\right] \begin{array}{l}\text { Hypothesized value for the parameter, i.e., the null value for expected domina- } \\
\text { tion number }\end{array}\right]\)\begin{tabular}{l}
Type of the alternative hypothesis in the test, one of "two.sided", "less", \\
"greater"
\end{tabular}

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2011). "Spatial Clustering Tests Based on Domination Number of a New Random Digraph Family." Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

\section*{See Also}

PEdom.num.binom.test

\section*{Examples}
```

nx<-100; ny<-5 \#try also nx<-1000; ny<-10
r<-1.5 \#try also r<-2 or r<-1.25
set.seed(1)
Xp<-cbind(runif(nx,0,1),runif(nx,0,1))
Yp<-cbind(runif(ny,0,.25),
runif(ny,0,.25))+cbind(c(0,0,0.5,1,1),c(0,1,.5,0,1))
\#try also Yp<-cbind(runif(ny,0,1),runif(ny,0,1))
plotDelaunay.tri(Xp,Yp,xlab="", ylab="")
PEdom.num.norm.test(Xp,Yp,r) \#try also PEdom.num.norm.test(Xp,Yp,r, alt="l")
PEdom.num.norm.test(Xp,Yp,1.25,ch=TRUE)
\#or try
ndt<-num.delaunay.tri(Yp)
PEdom.num.norm.test(Xp,Yp,r,ndt=ndt)
\#values might differ due to the random of choice of the three centers M1,M2,M3
\#for the non-degenerate asymptotic distribution of the domination number

```
PEdom.num.tetra The domination number of Proportional Edge Proximity Catch Di-
graph (PE-PCD) - one tetrahedron case

\section*{Description}

Returns the domination number of PE-PCD whose vertices are the data points in Xp .
PE proximity region is defined with respect to the tetrahedron th with expansion parameter \(r \geq 1\) and vertex regions are based on the center M which is circumcenter ("CC") or center of mass ("CM") of th with default="CM".
See also (Ceyhan \((2005,2010)\)).

\section*{Usage}

PEdom.num.tetra(Xp, th, r, \(\mathrm{M}=\) " \(\mathrm{CM} ")\)

\section*{Arguments}

Xp A set of 3D points which constitute the vertices of the digraph.
th A \(4 \times 3\) matrix with each row representing a vertex of the tetrahedron.
\(r \quad\) A positive real number which serves as the expansion parameter in PE proximity region; must be \(\geq 1\).

M The center to be used in the construction of the vertex regions in the tetrahedron, th. Currently it only takes "CC" for circumcenter and "CM" for center of mass; default="CM".

\section*{Value}

A list with two elements
\begin{tabular}{ll}
dom. num & \begin{tabular}{l}
Domination number of PE-PCD with vertex set \(=\mathrm{Xp}\) and expansion parameter \\
\\
mds \\
ind. mds
\end{tabular} \\
& A minimum dominating set of PE-PCD with vertex set \(=\mathrm{Xp}\) and expansion pa- \\
rameter \(r \geq 1\) and center M
\end{tabular}\(\quad\)\begin{tabular}{l}
Indices of the minimum dominating set mds
\end{tabular}

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

\section*{See Also}

PEdom.num.tri

\section*{Examples}
```

A<-C(0,0,0); B<-c(1,0,0); C<-c(1/2,sqrt(3)/2,0); D<-c(1/2,sqrt(3)/6,sqrt (6)/3)
tetra<-rbind(A,B,C,D)
n<-10 \#try also n<-20
Xp<-runif.tetra(n,tetra)\$g

```
```

M<-"CM" \#try also M<-"CC"
r<-1.25
PEdom.num.tetra(Xp,tetra,r,M)
P1<-c(.5,.5,.5)
PEdom.num.tetra(P1,tetra,r,M)

```

The domination number of Proportional Edge Proximity Catch Digraph (PE-PCD) - one triangle case

\section*{Description}

Returns the domination number of PE-PCD whose vertices are the data points in Xp .
PE proximity region is defined with respect to the triangle tri with expansion parameter \(r \geq 1\) and vertex regions are constructed with center \(M=\left(m_{1}, m_{2}\right)\) in Cartesian coordinates or \(M=\) \((\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of the triangle tri or the circumcenter of tri .
See also (Ceyhan (2005); Ceyhan and Priebe (2007); Ceyhan (2011, 2012)).

\section*{Usage}

PEdom.num.tri \((\mathrm{Xp}, \operatorname{tri}, \mathrm{r}, \mathrm{M}=\mathrm{c}(1,1,1))\)

\section*{Arguments}

Xp A set of 2D points which constitute the vertices of the digraph.
tri A \(3 \times 2\) matrix with each row representing a vertex of the triangle.
\(r \quad\) A positive real number which serves as the expansion parameter in PE proximity region; must be \(\geq 1\).
M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates which serves as a center in the interior of the triangle tri or the circumcenter of tri which may be entered as "CC" as well; default is \((1,1,1)\), i.e., the center of mass.

\section*{Value}

A list with two elements
dom.num Domination number of PE-PCD with vertex set \(=X p\) and expansion parameter \(r \geq 1\) and center M
mds \(\quad\) A minimum dominating set of PE-PCD with vertex set \(=X p\) and expansion parameter \(r \geq 1\) and center M
ind.mds Indices of the minimum dominating set mds

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2011). "Spatial Clustering Tests Based on Domination Number of a New Random Digraph Family." Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

Ceyhan E (2012). "An investigation of new graph invariants related to the domination number of random proximity catch digraphs." Methodology and Computing in Applied Probability, 14(2), 299-334.

Ceyhan E, Priebe CE (2007). "On the Distribution of the Domination Number of a New Family of Parametrized Random Digraphs." Model Assisted Statistics and Applications, 1(4), 231-255.

\section*{See Also}

PEdom. num.nondeg, PEdom. num, and PEdom.num1D

\section*{Examples}
```

A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2)
Tr<-rbind(A,B,C)
n<-10 \#try also n<-20
Xp<-runif.tri(n,Tr)$g
M<-as.numeric(runif.tri(1,Tr)$g) \#try also M<-c(1,1,1)
r<-1.4
PEdom.num.tri(Xp,Tr,r,M)
IM<-inci.matPEtri(Xp,Tr,r,M)
dom.num.greedy \#try also dom.num.exact(IM)
gr.gam<-dom.num.greedy(IM)
gr.gam
Xp[gr.gam\$i,]
PEdom.num.tri(Xp,Tr,r,M=c(.4,.4))

```

\section*{Description}

Returns the domination number, a minimum dominating set of PE-PCD whose vertices are the 1D data set Xp , and the domination numbers for partition intervals based on Yp.
Yp determines the end points of the intervals (i.e., partition the real line via intervalization). It also includes the domination numbers in the end-intervals, with interval label 1 for the left end-interval and \(\$ \mid \mathrm{Ypl}+1 \$\) for the right end-interval.

If there are duplicates of Yp points, only one point is retained for each duplicate value, and a warning message is printed.
PE proximity region is constructed with expansion parameter \(r \geq 1\) and centrality parameter \(c \in\) \((0,1)\).

\section*{Usage}

PEdom.num1D(Xp, Yp, r, c = 0.5)

\section*{Arguments}

Xp A set of 1D points which constitute the vertices of the PE-PCD.
Yp A set of 1D points which constitute the end points of the intervals which partition the real line.
\(r \quad\) A positive real number which serves as the expansion parameter in PE proximity region; must be \(\geq 1\).
c A positive real number in \((0,1)\) parameterizing the center inside int (default \(\mathrm{c}=.5\)).

\section*{Value}

A list with three elements
dom.num Domination number of PE-PCD with vertex set Xp and expansion parameter \(r \geq 1\) and centrality parameter \(c \in(0,1)\).
mds A minimum dominating set of the PE-PCD.
ind.mds The data indices of the minimum dominating set of the PE-PCD whose vertices are Xp points.
int. dom. nums Domination numbers of the PE-PCD components for the partition intervals.

\section*{Author(s)}

Elvan Ceyhan

\section*{See Also}

PEdom.num.nondeg

\section*{Examples}
```

a<-0; b<-10
c<-.4
r<-2
\#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-15; ny<-4; \#try also nx<-40; ny<-10 or nx<-1000; ny<-10;
set.seed(1)
Xp<-runif(nx,a,b)
Yp<-runif(ny,a,b)
PEdom.num1D(Xp,Yp,r,c)
PEdom.num1D(Xp, Yp,r, c=.25)
PEdom.num1D(Xp, Yp,r=1.25,c)

```

\section*{Description}

Returns the domination number, a minimum dominating set of PE-PCD whose vertices are the \(1 D\) data set \(X p\), and the domination numbers for partition intervals based on \(Y p\) when PE-PCD is constructed with vertex regions based on non-degeneracy centers.

Yp determines the end points of the intervals (i.e., partition the real line via intervalization). If there are duplicates of Yp points, only one point is retained for each duplicate value, and a warning message is printed.
PE proximity regions are defined with respect to the intervals based on Yp points with expansion parameter \(r \geq 1\) and vertex regions in each interval are based on the centrality parameter c which is one of the 2 values of \(c\) (i.e., \(c \in\{(r-1) / r, 1 / r\}\)) that renders the asymptotic distribution of domination number to be non-degenerate for a given value of \(r\) in \((1,2)\) and \(c\) is center of mass for \(r=2\). These values are called non-degeneracy centrality parameters and the corresponding centers are called nondegeneracy centers.

\section*{Usage}

PEdom.num1Dnondeg(Xp, Yp, r)

\section*{Arguments}

Xp A set of 1D points which constitute the vertices of the PE-PCD.
Yp A set of 1D points which constitute the end points of the intervals which partition the real line.
\(r\)
A positive real number which serves as the expansion parameter in PE proximity region; must be in \((1,2]\) here.

Value
A list with three elements
dom.num Domination number of PE-PCD with vertex set Xp and expansion parameter \(\operatorname{rin}(1,2]\) and centrality parameter \(c \in\{(r-1) / r, 1 / r\}\).
mds A minimum dominating set of the PE-PCD.
ind.mds The data indices of the minimum dominating set of the PE-PCD whose vertices are Xp points.
int. dom. nums Domination numbers of the PE-PCD components for the partition intervals.

\section*{Author(s)}

Elvan Ceyhan

\section*{See Also}

PEdom.num.nondeg

\section*{Examples}
```

a<-0; b<-10
r<-1.5
\#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-15; ny<-4; \#try also nx<-40; ny<-10 or nx<-1000; ny<-10;
set.seed(1)
Xp<-runif(nx,a,b)
Yp<-runif(ny,a,b)
PEdom.num1Dnondeg(Xp,Yp,r)
PEdom.num1Dnondeg(Xp,Yp,r=1.25)

```

The line passing through a point and perpendicular to the line segment joining two points

\section*{Description}

An object of class "Lines". Returns the equation, slope, intercept, and \(y\)-coordinates of the line crossing the point \(p\) and perpendicular to the line passing through the points \(a\) and \(b\) with \(x\)-coordinates are provided in vector x .

\section*{Usage}
perpline(p, a, b, x)

\section*{Arguments}
\(\mathrm{p} \quad\) A 2D point at which the perpendicular line to line segment joining a and b crosses.
\(\mathrm{a}, \mathrm{b} \quad\) 2D points that determine the line segment (the line will be perpendicular to this line segment).
\(\mathrm{x} \quad\) A scalar or a vector of scalars representing the \(x\)-coordinates of the line perpendicular to line joining \(a\) and \(b\) and crossing \(p\).

\section*{Value}

A list with the elements
\begin{tabular}{ll}
desc & \begin{tabular}{l}
Description of the line passing through point \(p\) and perpendicular to line joining \\
\(a\) and \(b\)
\end{tabular} \\
mtitle & \begin{tabular}{l}
The "main" title for the plot of the line passing through point \(p\) and perpendic- \\
ular to line joining \(a\) and \(b\)
\end{tabular} \\
The input points a and \(b\) (stacked row-wise, i.e., row 1 is point a and row 2 is \\
point \(b\)). Line passing through point \(p\) is perpendicular to line joining a and \(b\) \\
The input vector, can be a scalar or a vector of scalars, which constitute the \\
\(x\)-coordinates of the point(s) of interest on the line passing through point \(p\) and \\
perpendicular to line joining a and \(b\) \\
x
\end{tabular}

\section*{Author(s)}

\section*{Elvan Ceyhan}

\section*{See Also}
slope, Line, and paraline

\section*{Examples}
```

A<-c(1.1,1.2); B<-c(2.3,3.4); p<-c(.51,2.5)
perpline(p,A,B,.45)
pts<-rbind(A,B,p)
xr<-range(pts[,1])
xf<-(xr[2]-xr[1])*. }2
\#how far to go at the lower and upper ends in the x-coordinate
x<-seq(xr[1]-xf,xr[2]+xf,l=5) \#try also l=10, 20, or 100
plnAB<-perpline(p,A,B,x)
plnAB
summary(plnAB)
plot(plnAB,asp=1)
y<-plnAB$y
Xlim<-range(x,pts[,1])
if (!is.na(y[1])) {Ylim<-range(y,pts[,2])} else {Ylim<-range(pts[,2])}
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
pf<-c(xd,-yd)*.025
plot(A, asp=1,pch=".",xlab="",ylab="",
main="Line Crossing p and Perpendicular to AB",
xlim=Xlim+xd*c(-.5,.5),ylim=Ylim+yd*c(-.05,.05))
points(pts)
txt.str<-c("A","B","p")
text(pts+rbind(pf,pf,pf),txt.str)
segments(A[1],A[2],B[1],B[2],lty=2)
if (!is.na(y[1])) {lines(x,y,type="l",lty=1,
xlim=Xlim,ylim=Ylim)} else {abline(v=p[1])}
tx<-p[1]+abs(xf-p[1])/2;
if (!is.na(y[1])) {ty<-perpline(p,A,B,tx)$y} else {ty=p[2]}
text(tx,ty,"line perpendicular to AB\n and crossing p")

```
```

perpline2plane

```

The line crossing the \(3 D\) point p and perpendicular to the plane spanned by 3D points \(\mathrm{a}, \mathrm{b}\), and c

\section*{Description}

An object of class "Lines3D". Returns the equation, \(x\)-, \(y\)-, and \(z\)-coordinates of the line crossing \(3 D\) point \(p\) and perpendicular to the plane spanned by 3 D points \(\mathrm{a}, \mathrm{b}\), and c (i.e., the line is in the direction of normal vector of this plane) with the parameter \(t\) being provided in vector \(t\).

\section*{Usage}
perpline2plane(p, a, b, c, t)

\section*{Arguments}
p
\(a, b, c\)
t

A 3D point through which the straight line passes.
3D points which determine the plane to which the line passing through point \(p\) would be perpendicular (i.e., the normal vector of this plane determines the direction of the straight line passing through \(p\)).
A scalar or a vector of scalars representing the parameter of the coordinates of the line (for the form: \(x=p_{0}+A t, y=y_{0}+B t\), and \(z=z_{0}+C t\) where \(p=\left(p_{0}, y_{0}, z_{0}\right)\) and normal vector \(\left.=(A, B, C)\right)\).

\section*{Value}

A list with the elements
\begin{tabular}{ll}
desc & A description of the line \\
mtitle & The "main" title for the plot of the line \\
points & The input points that determine the line and plane, line crosses point p and plane \\
is determined by 3 D points \(\mathrm{a}, \mathrm{b}\), and c.
\end{tabular}

\section*{Author(s)}

Elvan Ceyhan

\section*{See Also}

Line3D, paraline3D, and perpline

\section*{Examples}
```

P<-c(1,1,1); Q<-c(1,10,4); R<-c(1,1,3); S<-c(3,9,12)
cf<-as.numeric(Plane(Q,R, S, 1,1)$coeff)
a<-cf[1]; b<-cf[2]; c<- -1;
vecs<-rbind(Q,c(a,b,c))
pts<-rbind(P,Q,R,S)
perpline2plane(P,Q,R,S,.1)
tr<-range(pts,vecs);
tf<-(tr[2]-tr[1])*.1
#how far to go at the lower and upper ends in the x-coordinate
tsq<-seq(-tf*10-tf,tf*10+tf,l=5) #try also l=10, 20, or 100
pln2pl<-perpline2plane(P,Q,R,S,tsq)
pln2pl
summary(pln2pl)
plot(pln2pl,theta = 225, phi = 30, expand = 0.7,
facets = FALSE, scale = TRUE)
xc<-pln2pl$x
yc<-pln2pl$y
zc<-pln2pl$z
zr<-range(zc)
zf<-(zr[2]-zr[1])*.2
Rv<- -c(a,b,c)*zf*5
Dr<-(Q+R+S)/3
pts2<-rbind(Q,R,S)
xr<-range(pts2[,1],xc); yr<-range(pts2[,2],yc)
xf<-(xr[2]-xr[1])*.1
\#how far to go at the lower and upper ends in the x-coordinate
yf<-(yr[2]-yr[1])*. }
\#how far to go at the lower and upper ends in the y-coordinate
xs<-seq(xr[1]-xf,xr[2]+xf,l=5) \#try also l=10, 20, or 100
ys<-seq(yr[1]-yf,yr[2]+yf,l=5) \#try also l=10, 20, or 100
plQRS<-Plane(Q,R,S,xs,ys)
z.grid<-plQRS\$z

```
```

Xlim<-range(xc,xs,pts[,1])
Ylim<-range(yc,ys,pts[,2])
Zlim<-range(zc,z.grid,pts[,3])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
zd<-Zlim[2]-Zlim[1]
plot3D::persp3D(z = z.grid, x = xs, y = ys, theta =225, phi = 30,
main="Line Crossing P and \n Perpendicular to the Plane Defined by Q, R, S",
col="lightblue", ticktype = "detailed",
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05),
zlim=Zlim+zd*c(-.05,.05))
\#plane spanned by points Q, R, S
plot3D::lines3D(xc, yc, zc, bty = "g",pch = 20, cex = 2,col="red",
ticktype = "detailed",add=TRUE)
plot3D::arrows3D(Dr[1],Dr[2],Dr[3],Dr[1]+Rv[1],Dr[2]+Rv[2],
Dr[3]+Rv[3], add=TRUE)
plot3D::points3D(pts[,1],pts[,2],pts[,3],add=TRUE)
plot3D::text3D(pts[,1],pts[,2],pts[,3],labels=c("P", "Q","R","S"), add=TRUE)
plot3D::arrows3D(P[1],P[2],P[3]-zf,P[1],P[2],P[3],lty=2, add=TRUE)
plot3D::text3D(P[1],P[2],P[3]-zf,labels="initial point",add=TRUE)
plot3D::text3D(P[1],P[2],P[3]+zf/2,labels="P",add=TRUE)
plot3D::arrows3D(Dr[1],Dr[2],Dr[3],Dr[1]+Rv[1]/2,Dr[2]+Rv[2]/2,
Dr[3]+Rv[3]/2,1ty=2, add=TRUE)
plot3D::text3D(Dr[1]+Rv[1]/2,Dr[2]+Rv[2]/2,Dr[3]+Rv[3]/2,
labels="normal vector",add=TRUE)

```

\section*{Plane}

\section*{Description}

An object of class "Planes". Returns the equation and \(z\)-coordinates of the plane passing through three distinct 3 D points \(\mathrm{a}, \mathrm{b}\), and c with \(x\) - and \(y\)-coordinates are provided in vectors x and y , respectively.

\section*{Usage}

Plane (a, b, c, x, y)

\section*{Arguments}
\(a, b, c\)
3 D points that determine the plane (i.e., through which the plane is passing).
\(\mathrm{x}, \mathrm{y}\)
Scalars or vectors of scalars representing the \(x\) - and \(y\)-coordinates of the plane.

\section*{Value}

A list with the elements
\begin{tabular}{ll}
desc & \begin{tabular}{l}
A description of the plane \\
points
\end{tabular} \\
\begin{tabular}{l}
The input points \(\mathrm{a}, \mathrm{b}\), and c through which the plane is passing (stacked row- \\
wise, i.e., row 1 is point a, row 2 is point b and row 3 is point c).
\end{tabular} \\
\(\mathrm{x}, \mathrm{y}\) & \begin{tabular}{l}
The input vectors which constitutes the \(x\) - and \(y\)-coordinates of the point(s) of \\
interest on the plane. x and y can be scalars or vectors of scalars.
\end{tabular} \\
z & \begin{tabular}{l}
The output vector which constitutes the \(z\)-coordinates of the point(s) of interest \\
on the plane. If x and y are scalars, z will be a scalar and if x and y are vectors \\
of scalars, then z needs to be a matrix of scalars, containing the \(z\)-coordinate \\
for each pair of x and y values.
\end{tabular} \\
coeff & \begin{tabular}{l}
Coefficients of the plane (in the \(z=A x+B y+C\) form). \\
equation
\end{tabular} \\
equation 2 & \begin{tabular}{l}
Equation of the plane in long form
\end{tabular} \\
& Equation of the plane in short form, to be inserted on the plot
\end{tabular}

\section*{Author(s)}

Elvan Ceyhan

\section*{See Also}
paraplane

\section*{Examples}
```

P1<-c(1,10,3); P2<-c(1,1,3); P3<-c(3,9,12) \#also try P2=c(2,2,3)
pts<-rbind(P1,P2,P3)
Plane(P1,P2,P3,.1,.2)
xr<-range(pts[,1]); yr<-range(pts[,2])
xf<-(xr[2]-xr[1])*. }
\#how far to go at the lower and upper ends in the x-coordinate
yf<-(yr[2]-yr[1])*. }
\#how far to go at the lower and upper ends in the y-coordinate
x<-seq(xr[1]-xf,xr[2]+xf,l=5) \#try also l=10, 20, or 100
y<-seq(yr[1]-yf,yr[2]+yf,l=5) \#try also l=10, 20, or 100
plP123<-Plane(P1,P2,P3,x,y)
plP123
summary(plP123)
plot(plP123,theta = 225, phi = 30, expand = 0.7, facets = FALSE, scale = TRUE)
z.grid<-plP123\$z
persp(x,y,z.grid, xlab="x",ylab="y",zlab="z",
theta = -30, phi = 30, expand = 0.5, col = "lightblue",

```
```

    ltheta = 120, shade = 0.05, ticktype = "detailed")
    zr<-max(z.grid)-min(z.grid)
Pts<-rbind(P1,P2,P3)+rbind(c(0,0,zr*.1),c(0,0,zr*.1),c(0,0,zr*.1))
Mn.pts<-apply(Pts, 2,mean)
plot3D::persp3D(z = z.grid, x = x, y = y,theta = 225, phi = 30, expand = 0.3,
main = "Plane Crossing Points P1, P2, and P3", facets = FALSE, scale = TRUE)
\#plane spanned by points P1, P2, P3
\#add the defining points
plot3D::points3D(Pts[,1],Pts[,2],Pts[,3], add=TRUE)
plot3D::text3D(Pts[,1],Pts[, 2],Pts[,3], c("P1","P2","P3"),add=TRUE)
plot3D::text3D(Mn.pts[1],Mn.pts[2],Mn.pts[3],plP123\$equation,add=TRUE)
\#plot3D::polygon3D(Pts[,1],Pts[,2],Pts[,3], add=TRUE)

```
```

plot.Extrema
Plot an Extrema object

```

\section*{Description}

Plots the data points and extrema among these points together with the reference object (e.g., boundary of the support region)

\section*{Usage}
\#\# S3 method for class 'Extrema'
plot(x, asp = NA, xlab = "", ylab = "", zlab = "", ...)

\section*{Arguments}

X
asp
xlab, ylab, zlab
Titles for the \(x\) and \(y\) axes in the 2D case, and \(x, y\), and \(z\) axes in the 3D case, respectively (default is " " for all).
.. Additional parameters for plot.

\section*{Value}

None

\section*{See Also}
print.Extrema, summary.Extrema, and print.summary.Extrema

\section*{Examples}
```

n<-10
Xp<-runif.std.tri(n)\$gen.points
Ext<-cl2edges.std.tri(Xp)
Ext
plot(Ext,asp=1)

```
plot.Lines Plot \(a\) Lines object

\section*{Description}

Plots the line together with the defining points.

\section*{Usage}
```


## S3 method for class 'Lines'

plot(x, asp = NA, xlab = "x", ylab = "y", ...)

```

\section*{Arguments}
x
asp A numeric value, giving the aspect ratio for \(y\)-axis to \(x\)-axis \(y / x\) (default is NA), see the official help for asp by typing "? asp".
\(\mathrm{xlab}, \mathrm{ylab} \quad\) Titles for the \(x\) and \(y\) axes, respectively (default is \(\mathrm{xlab="x"}\) and \(\mathrm{ylab}=" \mathrm{y} "\)).
Additional parameters for plot.

\section*{Value}

None

\section*{See Also}
print.Lines, summary.Lines, and print.summary.Lines

\section*{Examples}
```

A<-c(-1.22,-2.33); B<-c(2.55,3.75)
xr<-range(A,B);
xf<-(xr[2]-xr[1])*. }
\#how far to go at the lower and upper ends in the x-coordinate
x<-seq(xr[1]-xf,xr[2]+xf,l=3) \#try also l=10, 20 or 100
lnAB<-Line(A,B,x)

```
\(\ln A B\)
plot(lnAB)
```

plot.Lines3D
Plot a Lines3D object

```

\section*{Description}

Plots the line together with the defining vectors (i.e., the initial and direction vectors).

\section*{Usage}
\#\# S3 method for class 'Lines3D'
plot(x, xlab = "x", ylab = "y", zlab = "z", phi = 40, theta = 40, ...)

\section*{Arguments}
\(x \quad\) Object of class Lines3D.
xlab, ylab, zlab
Titles for the \(x, y\), and \(z\) axes, respectively (default is \(\mathrm{xlab}=" \mathrm{x} ", \mathrm{ylab}=" \mathrm{y}\) " and zlab="z").
theta, phi The angles defining the viewing direction. theta gives the azimuthal direction and phi the colatitude. See persp3D for more details.
... Additional parameters for plot.

\section*{Value}

None

\section*{See Also}
print.Lines3D, summary.Lines3D, and print.summary.Lines3D

\section*{Examples}
```

P<-c(1,10,3); Q<-c(1,1,3);
vecs<-rbind(P,Q)
Line3D(P,Q,.1)
Line3D(P,Q,.1,dir.vec=FALSE)
tr<-range(vecs);
tf<-(tr[2]-tr[1])*. }
\#how far to go at the lower and upper ends in the x-coordinate
tsq<-seq(-tf*10-tf,tf*10+tf,l=3) \#try also l=10, 20 or 100

```
```

lnPQ3D<-Line3D(P,Q,tsq)
lnPQ3D
plot(lnPQ3D)

```
plot.NumArcs Plot a NumArcs object

\section*{Description}

Plots the scatter plot of the data points (i.e. vertices of the PCDs) and the Delaunay tessellation of the nontarget points marked with number of arcs in the centroid of the Delaunay cells.

\section*{Usage}
```


## S3 method for class 'NumArcs'

```
plot(x, Jit = 0.1, ...)

\section*{Arguments}

\section*{\(x \quad\) Object of class NumArcs.}

Jit A positive real number that determines the amount of jitter along the \(y\)-axis, default is 0.1 , for the 1D case, the vertices of the PCD are jittered according to \(U(-J i t, J i t)\) distribution along the \(y\)-axis where Jit equals to the range of vertices and the interval end points; it is redundant in the 2D case.
... Additional parameters for plot.

\section*{Value}

None

\section*{See Also}
print.NumArcs, summary. NumArcs, and print.summary. NumArcs

\section*{Examples}
```

A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
n<-10
Xp<-runif.tri(n,Tr)$g
M<-as.numeric(runif.tri(1,Tr)$g)
Arcs<-arcsAStri(Xp,Tr,M)
Arcs
plot(Arcs)

```
```

plot.Patterns Plota Patterns object

```

\section*{Description}

Plots the points generated from the pattern (color coded for each class) together with the study window

\section*{Usage}
```


## S3 method for class 'Patterns'

plot(x, asp = NA, xlab = "x", ylab = "y", ...)

```

\section*{Arguments}
\begin{tabular}{ll}
x & Object of class Patterns. \\
asp & \begin{tabular}{l}
A numeric value, giving the aspect ratio for \(y\)-axis to \(x\)-axis \(y / x\) (default is NA), \\
see the official help for asp by typing "? asp".
\end{tabular} \\
\(\mathrm{xlab}, \mathrm{ylab}\) & \begin{tabular}{l}
Titles for the \(x\) and \(y\) axes, respectively (default is \(\mathrm{xlab}=" \mathrm{x} "\) and \(\mathrm{ylab}=" \mathrm{y} ")\).
\end{tabular} \\
\(\ldots\) & Additional parameters for plot.
\end{tabular}

\section*{Value}

None

\section*{See Also}
print.Patterns, summary.Patterns, and print.summary.Patterns

\section*{Examples}
```

nx<-10; \#try also 100 and 1000
ny<-5; \#try also 1
e<-.15;
Y<-cbind(runif(ny),runif(ny))
\#with default bounding box (i.e., unit square)
Xdt<-rseg.circular(nx,Y,e)
Xdt
plot(Xdt,asp=1)

```
```

plot.PCDs Plot a PCDs object

```

\section*{Description}

Plots the vertices and the arcs of the PCD together with the vertices and boundaries of the partition cells (i.e., intervals in the 1D case and triangles in the 2D case)

\section*{Usage}
\#\# S3 method for class 'PCDs'
plot(x, Jit = 0.1, ...)

\section*{Arguments}
x
Jit
Object of class PCDs.
A positive real number that determines the amount of jitter along the \(y\)-axis, default is 0.1 , for the 1 D case, the vertices of the PCD are jittered according to \(U(-J i t, J i t)\) distribution along the \(y\)-axis where Jit equals to the range of vertices and the interval end points; it is redundant in the 2D case.
.. Additional parameters for plot.

\section*{Value}

None

\section*{See Also}
print.PCDs, summary.PCDs, and print.summary.PCDs

\section*{Examples}
```

A<-C(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
n<-10
Xp<-runif.tri(n,Tr)$g
M<-as.numeric(runif.tri(1,Tr)$g)
Arcs<-arcsAStri(Xp,Tr,M)
Arcs
plot(Arcs)

```
```

plot.Planes Plot a Planes object

```

\section*{Description}

Plots the plane together with the defining 3D points.

\section*{Usage}
```


## S3 method for class 'Planes'

plot(
x,
x.grid.size = 10,
y.grid.size = 10,
xlab = "x",
ylab = "y",
zlab = "z",
phi = 40,
theta = 40,
)

```

\section*{Arguments}
x
Object of class Planes.
x.grid.size, y.grid.size
the size of the grids for the \(x\) and \(y\) axes, default is 10 for both
xlab, ylab, zlab
Titles for the \(x, y\), and \(z\) axes, respectively (default is \(\mathrm{xlab}=" \mathrm{x} ", \mathrm{ylab}=" \mathrm{y} "\), and zlab="z").
theta, phi The angles defining the viewing direction, default is 40 for both. theta gives the azimuthal direction and phi the colatitude. see persp.
.. Additional parameters for plot.

\section*{Value}

None

\section*{See Also}
print.Planes, summary.Planes, and print.summary.Planes

\section*{Examples}
```

P<-c(1,10,3); Q<-c(1, 1, 3); C<-c(3,9,12)
pts<-rbind(P,Q,C)
xr<-range(pts[,1]); yr<-range(pts[,2])
xf<-(xr[2]-xr[1])*. }
\#how far to go at the lower and upper ends in the x-coordinate
yf<-(yr[2]-yr[1])*. }
\#how far to go at the lower and upper ends in the y-coordinate
x<-seq(xr[1]-xf,xr[2]+xf,l=5) \#try also l=10, 20 or 100
y<-seq(yr[1]-yf,yr[2]+yf,l=5) \#try also l=10, 20 or 100
plPQC<-Plane(P,Q,C,x y)
plPQC
plot(plPQC,theta = 225, phi = 30, expand = 0.7,
facets = FALSE, scale = TRUE)

```
```

plot.TriLines Plota TriLines object

```

\section*{Description}

Plots the line together with the defining triangle.

\section*{Usage}
\#\# S3 method for class 'TriLines'
plot(x, xlab = "x", ylab = "y", ...)

\section*{Arguments}
x
xlab, ylab

Object of class TriLines.
Titles for the \(x\) and \(y\) axes, respectively (default is \(\mathrm{xlab}=" \mathrm{x}\) " and \(\mathrm{yl} \mathrm{ab}=" \mathrm{y}\) ").
Additional parameters for plot.

\section*{Value}

None

\section*{See Also}
print.TriLines, summary.TriLines, and print.summary.TriLines

\section*{Examples}
```

A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C)
xfence<-abs(A[1]-B[1])*. 25
\#how far to go at the lower and upper ends in the x-coordinate
x<-seq(min(A[1],B[1])-xfence,max(A[1],B[1])+xfence,l=3)
lnACM<-lineA2CMinTe(x)
lnACM
plot(lnACM)

```
plot.Uniform Plot a Uniform object

\section*{Description}

Plots the points generated from the uniform distribution together with the support region

\section*{Usage}
\#\# S3 method for class 'Uniform'
plot(x, asp = NA, xlab = "x", ylab = "y", zlab = "z", ...)

\section*{Arguments}
\(x \quad\) Object of class Uni form.
asp A numeric value, giving the aspect ratio for \(y\)-axis to \(x\)-axis \(y / x\) for the 2D case, it is redundant in the 3D case (default is NA), see the official help for asp by typing "? asp".
xlab, ylab, zlab
Titles for the \(x\) and \(y\) axes in the 2D case, and \(x, y\), and \(z\) axes in the 3D case, respectively (default is \(x l a b=" x ", y l a b=" y "\), and \(z l a b=" z "\)).
... Additional parameters for plot.

Value
None

\section*{See Also}
print.Uniform, summary.Uniform, and print.summary.Uniform

\section*{Examples}
```

n<-10 \#try also 20, 100, and 1000
A<-C(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C)
Xdt<-runif.tri(n,Tr)
Xdt
plot(Xdt,asp=1)

```
plotASarcs The plot of the arcs of Arc Slice Proximity Catch Digraph (AS-PCD)
for a \(2 D\) data set - multiple triangle case

\section*{Description}

Plots the arcs of AS-PCD whose vertices are the data points in Xp and Delaunay triangles based on Yp points.
AS proximity regions are constructed with respect to the Delaunay triangles based on Yp points, i.e., AS proximity regions are defined only for Xp points inside the convex hull of Yp points. That is, arcs may exist for \(X p\) points only inside the convex hull of \(Y p\) points. If there are duplicates of Xp points, only one point is retained for each duplicate value, and a warning message is printed.
Vertex regions are based on the center \(M=" C C\) " for circumcenter of each Delaunay triangle or \(M=\) \((\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of each Delaunay triangle; default is \(\mathrm{M}=" \mathrm{CC} "\) i.e., circumcenter of each triangle. When the center is the circumcenter, \(C C\), the vertex regions are constructed based on the orthogonal projections to the edges, while with any interior center \(M\), the vertex regions are constructed using the extensions of the lines combining vertices with M .

Convex hull of \(Y p\) is partitioned by the Delaunay triangles based on \(Y p\) points (i.e., multiple triangles are the set of these Delaunay triangles whose union constitutes the convex hull of Yp points). Loops are not allowed so arcs are only possible for points inside the convex hull of Yp points.
See (Ceyhan (2005, 2010)) for more on AS-PCDs. Also see (Okabe et al. (2000); Ceyhan (2010); Sinclair (2016)) for more on Delaunay triangulation and the corresponding algorithm.

\section*{Usage}
plotASarcs(
Xp,
Yp,
\(M=" C C "\),
asp \(=N A\),
main \(=\) NULL,
xlab = NULL,
ylab = NULL,
xlim \(=\) NULL,
```

        ylim = NULL,
    )
    ```

\section*{Arguments}

Xp A set of 2D points which constitute the vertices of the AS-PCD.
Yp A set of 2D points which constitute the vertices of the Delaunay triangulation. The Delaunay triangles partition the convex hull of Yp points.

M
The center of the triangle. "CC" stands for circumcenter of each Delaunay triangle or 3D point in barycentric coordinates which serves as a center in the interior of each Delaunay triangle; default is \(M={ }^{\prime \prime} C C\) " i.e., the circumcenter of each triangle.
asp A numeric value, giving the aspect ratio for \(y\) axis to \(x\)-axis \(y / x\) (default is NA), see the official help page for asp by typing "? asp".
main An overall title for the plot (default=NULL).
\(\mathrm{xlab}, \mathrm{ylab} \quad\) Titles for the \(x\) and \(y\) axes, respectively (default=NULL for both).
xlim, ylim Two numeric vectors of length 2, giving the \(x\) - and \(y\)-coordinate ranges (default=NULL for both).
... Additional plot parameters.

\section*{Value}

A plot of the arcs of the AS-PCD for a 2D data set Xp where AS proximity regions are defined with respect to the Delaunay triangles based on Yp points; also plots the Delaunay triangles based on Yp points.

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). "An investigation of new graph invariants related to the domination number of random proximity catch digraphs." Methodology and Computing in Applied Probability, 14(2), 299-334.

Okabe A, Boots B, Sugihara K, Chiu SN (2000). Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. Wiley, New York.

Sinclair D (2016). "S-hull: a fast radial sweep-hull routine for Delaunay triangulation." 1604.01428.

\section*{See Also}
```

plotASarcs.tri,plotPEarcs.tri, plotPEarcs, plotCSarcs.tri, and plotCSarcs

```

\section*{Examples}
```

\#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-15; ny<-5; \#try also nx<-40; ny<-10 or nx<-1000; ny<-10;
set.seed(1)
Xp<-cbind(runif(nx,0,1),runif(nx,0,1))
Yp<-cbind(runif(ny,0,.25),runif(ny,0,.25))+cbind(c(0,0,0.5,1,1),c(0,1,.5,0,1))
\#try also Yp<-cbind(runif(ny,0,1),runif(ny,0,1))
M<-c(1,1,1) \#try also M<-c(1,2,3)
plotASarcs(Xp,Yp,M,asp=1,xlab="",ylab="")
plotASarcs(Xp,Yp[1:3,],M,asp=1,xlab="",ylab="")

```

\section*{Description}

Plots the arcs of AS-PCD whose vertices are the data points, Xp and also the triangle tri. AS proximity regions are constructed with respect to the triangle tri, i.e., only for Xp points inside the triangle tri. If there are duplicates of \(X p\) points, only one point is retained for each duplicate value, and a warning message is printed.
Vertex regions are based on the center, \(M=\left(m_{1}, m_{2}\right)\) in Cartesian coordinates or \(M=(\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of the triangle tri or based on circumcenter of tri; default is \(M=\) "CC", i.e., circumcenter of tri. When the center is the circumcenter, \(C C\), the vertex regions are constructed based on the orthogonal projections to the edges, while with any interior center \(M\), the vertex regions are constructed using the extensions of the lines combining vertices with M .
See also (Ceyhan (2005, 2010)).

\section*{Usage}
plotASarcs.tri(
Xp,
tri,
\(M=" C C "\),
asp \(=N A\),
main \(=\) NULL,
```

    xlab = NULL,
    ylab = NULL,
    xlim = NULL,
    ylim = NULL,
    vert.reg = FALSE,
    )

```

\section*{Arguments}

Xp A set of 2D points which constitute the vertices of the AS-PCD.
tri Three 2D points, stacked row-wise, each row representing a vertex of the triangle.
M The center of the triangle. "CC" stands for circumcenter of the triangle tri or a 2D point in Cartesian coordinates or a 3D point in barycentric coordinates which serves as a center in the interior of the triangle \(T_{b}\); default is \(\mathrm{M}=\) " CC " i.e., the circumcenter of tri.
asp A numeric value, giving the aspect ratio for \(y\) axis to \(x\)-axis \(y / x\) (default is NA), see the official help page for asp by typing "? asp".
main An overall title for the plot (default=NULL).
\(\mathrm{xlab}, \mathrm{ylab} \quad\) Titles for the \(x\) and \(y\) axes, respectively (default=NULL for both).
xlim, ylim Two numeric vectors of length 2 , giving the \(x\) - and \(y\)-coordinate ranges (default=NULL for both).
vert.reg A logical argument to add vertex regions to the plot, default is vert.reg=FALSE.
... Additional plot parameters.

\section*{Value}

A plot of the arcs of the AS-PCD for a 2D data set Xp where AS proximity regions are defined with respect to the triangle tri; also plots the triangle tri

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). "An investigation of new graph invariants related to the domination number of random proximity catch digraphs." Methodology and Computing in Applied Probability, 14(2), 299-334.

\section*{See Also}
plotASarcs, plotPEarcs.tri, plotPEarcs, plotCSarcs.tri, and plotCSarcs

\section*{Examples}
```

A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
n<-10
set.seed(1)
Xp<-runif.tri(n,Tr)$g #try also Xp<-cbind(runif(n,1,2),runif(n,0,2))
M<-as.numeric(runif.tri(1,Tr)$g) \#try also \#M<-c(1.6,1.2)
plotASarcs.tri(Xp,Tr,M,main="Arcs of AS-PCD",xlab="",ylab="")
plotASarcs.tri(Xp,Tr,M,main="Arcs of AS-PCD",xlab="",ylab="",vert.reg = TRUE)

# or try the default center

\#plotASarcs.tri(Xp,Tr,asp=1,main="arcs of AS-PCD",xlab="",ylab="",vert.reg = TRUE);
\#M = (arcsAStri (Xp,Tr)$param)$c \#the part "M = as.numeric(arcsAStri(Xp,Tr)\$param)" is optional,
\#for the below annotation of the plot
\#can add vertex labels and text to the figure (with vertex regions)
\#but first we need to determine whether the center used for vertex regions is CC or not
\#see the description for more detail.
CC<-circumcenter.tri(Tr)
if (isTRUE(all.equal(M,CC)) || identical(M, "CC"))
{cent<-CC
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
Ds<-rbind(D1,D2,D3)
cent.name<-"CC"
} else
{cent<-M
cent.name<-"M"
Ds<-prj.cent2edges(Tr,M)
}
\#now we add the vertex names and annotation
txt<-rbind(Tr,cent,Ds)
xc<-txt[,1]+c(-.02,.02,.02,.01,.05,-0.03,-.01)
yc<-txt[, 2]+c(.02,.02,.02,.07,.02,.05,-.06)
txt.str<-c("A","B","C",cent.name,"D1","D2","D3")
text(xc,yc,txt.str)

```
```

plotASregs
The plot of the Arc Slice (AS) Proximity Regions for a 2D data set -
multiple triangle case

```

\section*{Description}

Plots the \(X p\) points in and outside of the convex hull of Yp points and also plots the AS proximity regions for \(X p\) points and Delaunay triangles based on \(Y p\) points.
AS proximity regions are constructed with respect to the Delaunay triangles based on Yp points (these triangles partition the convex hull of \(Y p\) points), i.e., AS proximity regions are only defined for \(X p\) points inside the convex hull of \(Y p\) points.

Vertex regions are based on the center \(\mathrm{M}={ }^{\prime \prime} \mathrm{CC}\) " for circumcenter of each Delaunay triangle or \(M=\) \((\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of each Delaunay triangle; default is \(\mathrm{M}={ }^{\prime} \mathrm{CC}^{\prime \prime}\) i.e., circumcenter of each triangle.
See (Ceyhan (2005, 2010)) for more on AS-PCDs. Also see (Okabe et al. (2000); Ceyhan (2010); Sinclair (2016)) for more on Delaunay triangulation and the corresponding algorithm.

\section*{Usage}
plotASregs(
Xp,
Yp,
M = "CC",
main = NULL,
xlab = NULL,
ylab = NULL,
xlim = NULL,
ylim = NULL,
)

\section*{Arguments}

Xp
A set of 2D points for which AS proximity regions are constructed.
Yp A set of 2D points which constitute the vertices of the Delaunay triangulation. The Delaunay triangles partition the convex hull of Yp points.
M The center of the triangle. "CC" stands for circumcenter of each Delaunay triangle or 3D point in barycentric coordinates which serves as a center in the interior of each Delaunay triangle; default is \(M={ }^{\prime \prime} C C\) " i.e., the circumcenter of each triangle.
main An overall title for the plot (default=NULL).
\(\mathrm{xlab}, \mathrm{ylab} \quad\) Titles for the \(x\) and \(y\) axes, respectively (default=NULL for both).
xlim, ylim Two numeric vectors of length 2 , giving the \(x\) - and \(y\)-coordinate ranges (default=NULL for both).
... Additional plot parameters.

\section*{Value}

Plot of the Xp points, Delaunay triangles based on Yp and also the AS proximity regions for \(X p\) points inside the convex hull of Yp points

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). "An investigation of new graph invariants related to the domination number of random proximity catch digraphs." Methodology and Computing in Applied Probability, 14(2), 299-334.

Okabe A, Boots B, Sugihara K, Chiu SN (2000). Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. Wiley, New York.

Sinclair D (2016). "S-hull: a fast radial sweep-hull routine for Delaunay triangulation." 1604.01428.

\section*{See Also}
plotASregs.tri, plotPEregs.tri, plotPEregs, plotCSregs.tri, and plotCSregs

\section*{Examples}
```

nx<-10 ; ny<-5
set.seed(1)
Xp<-cbind(runif(nx,0,1),runif(nx,0,1))
Yp<-cbind(runif(ny,0,.25),runif(ny,0,.25))+cbind(c(0,0,0.5,1,1),c(0,1,.5,0,1))
\#try also Yp<-cbind(runif(ny,0,1),runif(ny,0,1))
M<-c(1,1,1) \#try also M<-c(1,2,3) \#or M="CC"
plotASregs(Xp,Yp,M, xlab="",ylab="")
plotASregs(Xp,Yp[1:3,],M,xlab="",ylab="")
Xp<-c(.5,.5)
plotASregs(Xp,Yp,M, xlab="",ylab="")

```
plotASregs.tri The plot of the Arc Slice (AS) Proximity Regions for a 2 D data set one triangle case

\section*{Description}

Plots the points in and outside of the triangle tri and also the AS proximity regions for points in data set Xp .

AS proximity regions are defined with respect to the triangle tri, so AS proximity regions are defined only for points inside the triangle tri and vertex regions are based on the center, \(M=\) \(\left(m_{1}, m_{2}\right)\) in Cartesian coordinates or \(M=(\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of the triangle tri or based on circumcenter of tri; default is \(M=" C C\) ", i.e., circumcenter of tri. When vertex regions are constructed with circumcenter, CC , the vertex regions are constructed based on the orthogonal projections to the edges, while with any interior center \(M\), the vertex regions are constructed using the extensions of the lines combining vertices with \(M\).
See also (Ceyhan (2005, 2010)).

\section*{Usage}
```

    plotASregs.tri(
        Xp,
        tri,
        M = "CC",
        main = NULL,
        xlab = NULL,
        ylab = NULL,
        xlim = NULL,
        ylim = NULL,
        vert.reg = FALSE,
        ...
    )
    ```

\section*{Arguments}

Xp A set of 2D points for which AS proximity regions are constructed.
tri Three 2D points, stacked row-wise, each row representing a vertex of the triangle.
M The center of the triangle. "CC" stands for circumcenter of the triangle tri or a 2D point in Cartesian coordinates or a 3D point in barycentric coordinates which serves as a center in the interior of the triangle \(T_{b}\); default is \(M=\) "CC" i.e., the circumcenter of tri.
main An overall title for the plot (default=NULL).
\(\mathrm{xlab}, \mathrm{ylab} \quad\) Titles for the \(x\) and \(y\) axes, respectively (default=NULL for both).
xlim, ylim Two numeric vectors of length 2 , giving the \(x\) - and \(y\)-coordinate ranges (default=NULL for both).
vert.reg A logical argument to add vertex regions to the plot, default is vert.reg=FALSE. ... Additional plot parameters.

\section*{Value}

Plot of the AS proximity regions for points inside the triangle tri (and only the points outside tri)

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). "An investigation of new graph invariants related to the domination number of random proximity catch digraphs." Methodology and Computing in Applied Probability, 14(2), 299-334.

\section*{See Also}
plotASregs, plotPEregs.tri, plotPEregs, plotCSregs.tri, and plotCSregs

\section*{Examples}
```

A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
n<-10
set.seed(1)
Xp0<-runif.tri(n,Tr)$g
M<-as.numeric(runif.tri(1,Tr)$g) \#try also \#M<-c(1.6,1.2);
plotASregs.tri(Xp0,Tr,M,main="Proximity Regions for AS-PCD", xlab="",ylab="")
Xp = Xp0[1,]
plotASregs.tri(Xp,Tr,M,main="Proximity Regions for AS-PCD", xlab="",ylab="")
\#can plot the arcs of the AS-PCD
\#plotASarcs.tri(Xp,Tr,M,main="Arcs of AS-PCD",xlab="",ylab="")
plotASregs.tri(Xp,Tr,M,main="Proximity Regions for AS-PCD", xlab="",ylab="",vert.reg=TRUE)

# or try the default center

\#plotASregs.tri(Xp,Tr,main="Proximity Regions for AS-PCD", xlab="",ylab="",vert.reg=TRUE);
M = (arcsAStri(Xp,Tr)$param)$c \#the part "M = as.numeric(arcsAStri(Xp,Tr)\$param)" is optional,

```
```

plotCSarcs
\#for the below annotation of the plot
\#can add vertex labels and text to the figure (with vertex regions)
\#but first we need to determine whether the center used for vertex regions is CC or not
\#see the description for more detail.
CC<-circumcenter.tri(Tr)
\#Arcs<-arcsAStri(Xp,Tr,M)
\#M = as.numeric(Arcs\$parameters)
if (isTRUE(all.equal(M,CC)) || identical(M,"CC"))
{cent<-CC
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
Ds<-rbind(D1,D2,D3)
cent.name<-"CC"
} else
{cent<-M
cent.name<-"M"
Ds<-prj.cent2edges(Tr,M)
}
\#now we add the vertex names and annotation
txt<-rbind(Tr,cent,Ds)
xc<-txt[,1]+c(-.02,.03,.03,.03,.05,-0.03,-.01)
yc<-txt[,2]+c(.02,.02,.02,.07,.02,.05,-.06)
txt.str<-c("A","B","C",cent.name,"D1","D2","D3")
text(xc,yc,txt.str)

```

\section*{Description}

Plots the arcs of Central Similarity Proximity Catch Digraph (CS-PCD) whose vertices are the data points in \(X p\) in the multiple triangle case and the Delaunay triangles based on \(Y p\) points. If there are duplicates of \(X p\) points, only one point is retained for each duplicate value, and a warning message is printed.
CS proximity regions are defined with respect to the Delaunay triangles based on Yp points with expansion parameter \(t>0\) and edge regions in each triangle are based on the center \(M=(\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of each Delaunay triangle (default for \(M=(1,1,1)\) which is the center of mass of the triangle).
Convex hull of \(Y p\) is partitioned by the Delaunay triangles based on \(Y p\) points (i.e., multiple triangles are the set of these Delaunay triangles whose union constitutes the convex hull of Yp points). Loops are not allowed so arcs are only possible for points inside the convex hull of \(Y p\) points.

See (Ceyhan (2005); Ceyhan et al. (2007); Ceyhan (2014)) more on the CS-PCDs. Also see (Okabe et al. (2000); Ceyhan (2010); Sinclair (2016)) for more on Delaunay triangulation and the corresponding algorithm.

\section*{Usage}
```

plotCSarcs(
Xp,
Yp,
t,
M = c(1, 1, 1),
asp = NA,
main = NULL,
xlab = NULL,
ylab = NULL,
xlim = NULL,
ylim = NULL,
)

```

\section*{Arguments}

Xp
Yp A set of 2D points which constitute the vertices of the Delaunay triangles.
t

M
asp
main An overall title for the plot (default=NULL).
\(\mathrm{xlab}, \mathrm{ylab} \quad\) Titles for the \(x\) and \(y\) axes, respectively (default=NULL for both).
xlim, ylim Two numeric vectors of length 2 , giving the \(x\) - and \(y\)-coordinate ranges (default=NULL for both)
... Additional plot parameters.

\section*{Value}

A plot of the arcs of the CS-PCD whose vertices are the points in data set Xp and the Delaunay triangles based on Yp points

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2014). "Comparison of Relative Density of Two Random Geometric Digraph Families in Testing Spatial Clustering." TEST, 23(1), 100-134.

Ceyhan E, Priebe CE, Marchette DJ (2007). "A new family of random graphs for testing spatial segregation." Canadian Journal of Statistics, 35(1), 27-50.

Okabe A, Boots B, Sugihara K, Chiu SN (2000). Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. Wiley, New York.

Sinclair D (2016). "S-hull: a fast radial sweep-hull routine for Delaunay triangulation." 1604.01428.

\section*{See Also}
plotCSarcs.tri, plotASarcs, and plotPEarcs

\section*{Examples}
```

\#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-15; ny<-5; \#try also nx<-40; ny<-10 or nx<-1000; ny<-10;
set.seed(1)
Xp<-cbind(runif(nx,0,1),runif(nx,0,1))
Yp<-cbind(runif(ny,0,.25),runif(ny,0,.25))+cbind(c(0,0,0.5,1,1),c(0,1,.5,0,1))
\#try also Yp<-cbind(runif(ny,0,1),runif(ny,0,1))
M<-c(1,1,1) \#try also M<-c(1,2,3)
t<-1.5 \#try also t<-2
plotCSarcs(Xp,Yp, t, M, xlab="",ylab="")

```
```

plotCSarcs.int The plot of the arcs of Central Similarity Proximity Catch Digraphs
(CS-PCDs) for 1D data (vertices jittered along y-coordinate) - one
interval case

```

\section*{Description}

Plots the arcs of CS-PCD whose vertices are the 1D points, Xp. CS proximity regions are constructed with expansion parameter \(t>0\) and centrality parameter \(c \in(0,1)\) and the intervals are based on the interval int \(=(a, b)\) That is, data set \(X p\) constitutes the vertices of the digraph and int determines the end points of the interval. If there are duplicates of Xp points, only one point is retained for each duplicate value, and a warning message is printed.

For better visualization, a uniform jitter from \(U(-J i t, J i t)\) (default for \(J i t=.1\)) is added to the \(y\)-direction where Jit equals to the range of \(\{\mathrm{Xp}, \mathrm{int}\}\) multiplied by Jit with default for \(J i t=.1\)). center is a logical argument, if TRUE, plot includes the center of the interval int as a vertical line in the plot, else center of the interval is not plotted.

\section*{Usage}
```

plotCSarcs.int(
Xp,
int,
t,
c = 0.5,
Jit = 0.1,
main = NULL,
xlab = NULL,
ylab = NULL,
xlim = NULL,
ylim = NULL,
center = FALSE,
)

```

\section*{Arguments}

Xp
int
t
c

Jit A positive real number that determines the amount of jitter along the \(y\)-axis, default \(=0.1\) and Xp points are jittered according to \(U(-J i t\), Jit) distribution along the \(y\)-axis where Jit equals to the range of range of \(\{\mathrm{Xp}\), int \(\}\) multiplied by Jit).
main An overall title for the plot (default=NULL).
\(\mathrm{xlab}, \mathrm{ylab} \quad\) Titles of the \(x\) and \(y\) axes in the plot (default=NULL for both).
xlim, ylim Two numeric vectors of length 2 , giving the \(x\) - and \(y\)-coordinate ranges (default=NULL for both).
center A logical argument, if TRUE, plot includes the center of the interval int as a vertical line in the plot, else center of the interval is not plotted.
... Additional plot parameters.

\section*{Value}

A plot of the arcs of CS-PCD whose vertices are the 1D data set Xp in which vertices are jittered along \(y\)-axis for better visualization.

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

There are no references for Rd macro \insertAllCites on this help page.

\section*{See Also}
plotCSarcs1D and plotPEarcs.int

\section*{Examples}
```

tau<-2
c<-.4
a<-0; b<-10; int<-c(a,b)
\#n is number of X points
n<-10; \#try also n<-20;
set.seed(1)
xf<-(int[2]-int[1])*. }
Xp<-runif(n,a-xf,b+xf)
Xlim=range(Xp,int)
Ylim=3*c(-1,1)
jit<-.1
plotCSarcs.int(Xp,int,t=tau,c,jit,xlab="",ylab="",xlim=Xlim,ylim=Ylim)
set.seed(1)
plotCSarcs.int(Xp,int,t=1.5,c=.3,jit,xlab="",ylab="",center=TRUE)
set.seed(1)
plotCSarcs.int(Xp,int, t=2, c=.4,jit,xlab="",ylab="", center=TRUE)

```
plotCSarcs.tri The plot of the arcs of Central Similarity Proximity Catch Digraph (CS-PCD) for a \(2 D\) data set - one triangle case

\section*{Description}

Plots the arcs of CS-PCD whose vertices are the data points, Xp and the triangle tri. CS proximity regions are constructed with respect to the triangle tri with expansion parameter \(t>0\), i.e., arcs may exist only for Xp points inside the triangle tri. If there are duplicates of Xp points, only one point is retained for each duplicate value, and a warning message is printed.

Edge regions are based on center \(M=\left(m_{1}, m_{2}\right)\) in Cartesian coordinates or \(M=(\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of the triangle tri; default is \(M=(1,1,1)\) i.e., the center of mass of tri.
See also (Ceyhan (2005); Ceyhan et al. (2007); Ceyhan (2014)).

\section*{Usage}
```

plotCSarcs.tri(
Xp,
tri,
t,
M = c(1, 1, 1),
asp = NA,
main = NULL,
xlab = NULL,
ylab = NULL,
xlim = NULL,
ylim = NULL,
edge.reg = FALSE,
)

```

\section*{Arguments}

Xp A set of 2D points which constitute the vertices of the CS-PCD.
tri A \(3 \times 2\) matrix with each row representing a vertex of the triangle.
\(t \quad\) A positive real number which serves as the expansion parameter in CS proximity region.
M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates which serves as a center in the interior of the triangle tri; default is \(M=\) \((1,1,1)\) i.e., the center of mass of tri.
asp A numeric value, giving the aspect ratio \(y / x\) (default is NA), see the official help page for asp by typing "? asp".
main An overall title for the plot (default=NULL).
\(\mathrm{xlab}, \mathrm{ylab} \quad\) Titles for the \(x\) and \(y\) axes, respectively (default=NULL for both).
xlim, ylim Two numeric vectors of length 2, giving the \(x\) - and \(y\)-coordinate ranges (default=NULL for both).
edge.reg A logical argument to add edge regions to the plot, default is edge.reg=FALSE.
... Additional plot parameters.

\section*{Value}

A plot of the arcs of the CS-PCD whose vertices are the points in data set Xp and the triangle tri

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2014). "Comparison of Relative Density of Two Random Geometric Digraph Families in Testing Spatial Clustering." TEST, 23(1), 100-134.

Ceyhan E, Priebe CE, Marchette DJ (2007). "A new family of random graphs for testing spatial segregation." Canadian Journal of Statistics, 35(1), 27-50.

\section*{See Also}
```

plotCSarcs, plotPEarcs.tri and plotASarcs.tri

```

\section*{Examples}
```

A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
n<-10 \#try also n<-20
set.seed(1)
Xp<-runif.tri(n,Tr)$g
M<-as.numeric(runif.tri(1,Tr)$g) \#try also M<-c(1.6,1.0)
t<-1.5 \#try also t<-2
plotCSarcs.tri(Xp,Tr,t,M,main="Arcs of CS-PCD with t=1.5",
xlab="",ylab="",edge.reg = TRUE)

# or try the default center

\#plotCSarcs.tri(Xp,Tr,t,main="Arcs of CS-PCD with t=1.5",xlab="",ylab="",edge.reg = TRUE);
\#M=(arcsCStri(Xp,Tr,r)$param)$c \#the part "M=(arcsPEtri(Xp,Tr,r)$param)$cent" is optional,
\#for the below annotation of the plot
\#can add vertex labels and text to the figure (with edge regions)
txt<-rbind(Tr,M)
xc<-txt[,1]+c(-.02,.02,.02,.03)
yc<-txt[,2]+c(.02,.02,.02,.03)
txt.str<-c("A","B","C","M")
text(xc,yc,txt.str)

```
```

plotCSarcs1D

```

The plot of the arcs of Central Similarity Proximity Catch Digraphs (CS-PCDs) for \(1 D\) data (vertices jittered along \(y\)-coordinate) - multiple interval case

\section*{Description}

Plots the arcs of CS-PCD whose vertices are the 1D points, Xp . CS proximity regions are constructed with expansion parameter \(t>0\) and centrality parameter \(c \in(0,1)\) and the intervals are based on \(Y p\) points (i.e. the intervalization is based on \(Y p\) points). That is, data set \(X p\) constitutes the vertices of the digraph and \(Y p\) determines the end points of the intervals. If there are duplicates of \(Y p\) or \(X p\) points, only one point is retained for each duplicate value, and a warning message is printed.
For better visualization, a uniform jitter from \(U(-\) Jit, Jit) (default for \(J i t=.1\)) is added to the \(y\)-direction where Jit equals to the range of Xp and Yp multiplied by Jit with default for Jit =.1). centers is a logical argument, if TRUE, plot includes the centers of the intervals as vertical lines in the plot, else centers of the intervals are not plotted.
See also (Ceyhan (2016)).

\section*{Usage}
plotCSarcs1D(
Xp,
Yp,
t,
\(c=0.5\),
Jit = 0.1,
main = NULL,
xlab = NULL,
ylab = NULL,
xlim \(=\) NULL,
ylim = NULL,
centers = FALSE,
...
)

\section*{Arguments}

Xp
Yp
t

C

A vector of 1D points constituting the vertices of the CS-PCD.
A vector of 1D points constituting the end points of the intervals.
A positive real number which serves as the expansion parameter in CS proximity region.
A positive real number in \((0,1)\) parameterizing the center inside middle intervals with the default \(\mathrm{c}=.5\). For the interval, int \(=(a, b)\), the parameterized center is \(M_{c}=a+c(b-a)\).
\begin{tabular}{ll}
Jit & \begin{tabular}{l}
A positive real number that determines the amount of jitter along the \(y\)-axis, \\
default \(=0.1\) and Xp points are jittered according to \(U\) (-Jit, Jit) distribution \\
along the \(y\)-axis where Jit equals to the range of Xp and Yp multiplied by Jit).
\end{tabular} \\
main & \begin{tabular}{l}
An overall title for the plot (default=NULL).
\end{tabular} \\
xlab, ylab & \begin{tabular}{l}
Titles of the \(x\) and \(y\) axes in the plot (default=NULL for both). \\
xlim, ylim \\
Two numeric vectors of length 2, giving the \(x\) - and \(y\)-coordinate ranges (de- \\
fault=NULL for both).
\end{tabular} \\
centers & \begin{tabular}{l}
A logical argument, if TRUE, plot includes the centers of the intervals as vertical \\
lines in the plot, else centers of the intervals are not plotted.
\end{tabular} \\
\(\ldots\) & \begin{tabular}{l}
Additional plot parameters.
\end{tabular}
\end{tabular}

\section*{Value}

A plot of the arcs of CS-PCD whose vertices are the 1D data set \(X p\) in which vertices are jittered along \(y\)-axis for better visualization.

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2016). "Density of a Random Interval Catch Digraph Family and its Use for Testing Uniformity." REVSTAT, 14(4), 349-394.

\section*{See Also}
plotPEarcs1D

\section*{Examples}
```

t<-1.5
c<-.4
a<-0; b<-10; int<-c(a,b)
\#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-20; ny<-4; \#try also nx<-40; ny<-10 or nx<-1000; ny<-10;
set.seed(1)
xr<-range(a,b)
xf<-(xr[2]-xr[1])*.1
Xp<-runif(nx,a-xf,b+xf)
Yp<-runif(ny,a,b)
Xlim=range(Xp,Yp)
Ylim=c(-.2,.2)
jit<-.1

```
```

plotCSarcs1D(Xp,Yp,t,c,jit,xlab="",ylab="",xlim=Xlim,ylim=Ylim)
set.seed(1)
plotCSarcs1D(Xp,Yp,t=1.5,c=.3,jit,main="t=1.5, c=.3",xlab="",ylab="",centers=TRUE)
set.seed(1)
plotCSarcs1D(Xp,Yp,t=2,c=.3,jit,main="t=2, c=.3",xlab="",ylab="",centers=TRUE)
set.seed(1)
plotCSarcs1D(Xp,Yp,t=1.5,c=.5,jit,main="t=1.5, c=.5",xlab="",ylab="",centers=TRUE)
set.seed(1)
plotCSarcs1D(Xp,Yp,t=2,c=.5,jit,main="t=2, c=.5",xlab="",ylab="",centers=TRUE)

```
plotCSregs The plot of the Central Similarity (CS) Proximity Regions for a 2 D
data set - multiple triangle case

\section*{Description}

Plots the points in and outside of the Delaunay triangles based on \(Y p\) points which partition the convex hull of \(Y p\) points and also plots the CS proximity regions for \(X p\) points and the Delaunay triangles based on Yp points.
CS proximity regions are constructed with respect to the Delaunay triangles with the expansion parameter \(t>0\).
Edge regions in each triangle is based on the center \(M=(\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of each Delaunay triangle (default for \(M=(1,1,1)\) which is the center of mass of the triangle).

See (Ceyhan (2005); Ceyhan et al. (2007); Ceyhan (2014)) more on the CS proximity regions. Also see (Okabe et al. (2000); Ceyhan (2010); Sinclair (2016)) for more on Delaunay triangulation and the corresponding algorithm.

\section*{Usage}
```

plotCSregs(
Xp,
Yp,
t,
M = c(1, 1, 1),
asp = NA,
main = NULL,
xlab = NULL,
ylab = NULL,
xlim = NULL,
ylim = NULL,
)

```

\section*{Arguments}
\(\mathrm{Xp} \quad\) A set of 2 D points for which CS proximity regions are constructed.
Yp A set of 2D points which constitute the vertices of the Delaunay triangles.
\(t \quad\) A positive real number which serves as the expansion parameter in CS proximity region.

M
A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates which serves as a center in the interior of the triangle tri or the circumcenter of tri.
asp A numeric value, giving the aspect ratio \(y / x\) (default is NA), see the official help page for asp by typing "? asp".
main An overall title for the plot (default=NULL).
\(\mathrm{xlab}, \mathrm{ylab} \quad\) Titles for the \(x\) and \(y\) axes, respectively (default=NULL for both).
xlim, ylim Two numeric vectors of length 2 , giving the \(x\) - and \(y\)-coordinate ranges (default=NULL for both).
... Additional plot parameters.

\section*{Value}

Plot of the \(X p\) points, Delaunay triangles based on \(Y p\) and also the CS proximity regions for \(X p\) points inside the convex hull of Yp points

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2014). "Comparison of Relative Density of Two Random Geometric Digraph Families in Testing Spatial Clustering." TEST, 23(1), 100-134.

Ceyhan E, Priebe CE, Marchette DJ (2007). "A new family of random graphs for testing spatial segregation." Canadian Journal of Statistics, 35(1), 27-50.

Okabe A, Boots B, Sugihara K, Chiu SN (2000). Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. Wiley, New York.

Sinclair D (2016). "S-hull: a fast radial sweep-hull routine for Delaunay triangulation." 1604.01428.

\section*{See Also}
```

plotCSregs.tri, plotASregs and plotPEregs

```

\section*{Examples}
```

\#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-15; ny<-5; \#try also nx<-40; ny<-10 or nx<-1000; ny<-10;
set.seed(1)
Xp<-cbind(runif(nx,0,1),runif(nx,0,1))
Yp<-cbind(runif(ny,0,.25),runif(ny,0,.25))+cbind(c(0,0,0.5,1,1),c(0,1,.5,0,1))
\#try also Yp<-cbind(runif(ny,0,1),runif(ny,0,1))
M<-c(1,1,1) \#try also M<-c(1,2,3)
tau<-1.5 \#try also tau<-2
plotCSregs(Xp,Yp, tau,M, xlab="",ylab="")

```
plotCSregs.int The plot of the Central Similarity (CS) Proximity Regions for a general
 interval (vertices jittered along y-coordinate) - one interval case

\section*{Description}

Plots the points in and outside of the interval int and also the CS proximity regions (which are also intervals). CS proximity regions are constructed with expansion parameter \(t>0\) and centrality parameter \(c \in(0,1)\).
For better visualization, a uniform jitter from \(U(-J i t, J i t)\) (default is Jit \(=.1\)) times range of proximity regions and Xp) is added to the \(y\)-direction. \#' If there are duplicates of Xp points, only one point is retained for each duplicate value, and a warning message is printed. center is a logical argument, if TRUE, plot includes the center of the interval as a vertical line in the plot, else center of the interval is not plotted.

\section*{Usage}
plotCSregs.int(
Xp,
int,
t,
\(c=0.5\),
Jit \(=0.1\),
main = NULL,
xlab \(=\) NULL,
ylab \(=\) NULL,
```

        xlim = NULL,
        ylim = NULL,
        center = FALSE,
    )
    ```

\section*{Arguments}

Xp A set of 1D points for which CS proximity regions are to be constructed.
int A vector of two real numbers representing an interval.
t
A positive real number which serves as the expansion parameter in CS proximity region.
c
A positive real number in \((0,1)\) parameterizing the center inside int \(=(a, b)\) with the default \(\mathrm{c}=.5\). For the interval, int \(=(a, b)\), the parameterized center is \(M_{c}=a+c(b-a)\).

Jit A positive real number that determines the amount of jitter along the \(y\)-axis, default \(=0.1\) and \(X p\) points are jittered according to \(U(-\) Jit, Jit) distribution along the \(y\)-axis where Jit equals to the range of Xp and proximity region intervals multiplied by Jit).
main An overall title for the plot (default=NULL).
\(\mathrm{xlab}, \mathrm{ylab} \quad\) Titles for the \(x\) and \(y\) axes, respectively (default=NULL for both).
xlim, ylim Two numeric vectors of length 2, giving the \(x\) - and \(y\)-coordinate ranges.
center A logical argument, if TRUE, plot includes the center of the interval as a vertical line in the plot, else center of the interval is not plotted.
... Additional plot parameters.

\section*{Value}

Plot of the CS proximity regions for 1D points in or outside the interval int

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

There are no references for Rd macro \insertAllCites on this help page.

\section*{See Also}
plotCSregs1D, plotCSregs, and plotPEregs.int

\section*{Examples}
```

c<-.4
tau<-2
a<-0; b<-10; int<-c(a,b)
n<-10
xf<-(int[2]-int[1])*. }
Xp<-runif(n,a-xf,b+xf) \#try also Xp<-runif(n,a-5,b+5)
plotCSregs.int(7,int, tau,c,xlab="x",ylab="")
plotCSregs.int(Xp,int, tau,c,xlab="x",ylab="")
plotCSregs.int(17,int,tau,c,xlab="x",ylab="")
plotCSregs.int(1,int,tau,c,xlab="x",ylab="")
plotCSregs.int(4,int, tau,c, xlab="x",ylab="")
plotCSregs.int(-7,int,tau,c,xlab="x",ylab="")

```
plotCSregs.tri

The plot of the Central Similarity (CS) Proximity Regions for a 2D data set - one triangle case

\section*{Description}

Plots the points in and outside of the triangle tri and also the CS proximity regions which are also triangular for points inside the triangle tri with edge regions are based on the center of mass CM.
CS proximity regions are defined with respect to the triangle tri with expansion parameter \(t>0\), so CS proximity regions are defined only for points inside the triangle tri.
Edge regions are based on center \(M=\left(m_{1}, m_{2}\right)\) in Cartesian coordinates or \(M=(\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of the triangle tri; default is \(M=(1,1,1)\) i.e., the center of mass of tri.
See also (Ceyhan (2005); Ceyhan et al. (2007); Ceyhan (2014)).

\section*{Usage}
plotCSregs.tri(
Xp,
tri,
t,
\(M=c(1,1,1)\),
asp \(=\) NA,
main \(=\) NULL,
xlab = NULL,
ylab \(=\) NULL,
```

        xlim = NULL,
        ylim = NULL,
        edge.reg = FALSE,
    )
    ```

\section*{Arguments}

Xp A set of 2D points for which CS proximity regions are constructed.
tri A \(3 \times 2\) matrix with each row representing a vertex of the triangle.
\(t \quad\) A positive real number which serves as the expansion parameter in CS proximity region.
M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates which serves as a center in the interior of the triangle tri; default is \(M=\) \((1,1,1)\) i.e., the center of mass of tri.
asp A numeric value, giving the aspect ratio \(y / x\) (default is NA), see the official help page for asp by typing "? asp".
main An overall title for the plot (default=NULL).
\(\mathrm{xlab}, \mathrm{ylab} \quad\) Titles for the \(x\) and \(y\) axes, respectively (default=NULL for both).
xlim, ylim Two numeric vectors of length 2 , giving the \(x\) - and \(y\)-coordinate ranges (default=NULL for both).
edge.reg A logical argument to add edge regions to the plot, default is edge. reg=FALSE.
... Additional plot parameters.

\section*{Value}

Plot of the CS proximity regions for points inside the triangle tri (and just the points outside tri)

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2014). "Comparison of Relative Density of Two Random Geometric Digraph Families in Testing Spatial Clustering." TEST, 23(1), 100-134.

Ceyhan E, Priebe CE, Marchette DJ (2007). "A new family of random graphs for testing spatial segregation." Canadian Journal of Statistics, 35(1), 27-50.

\section*{See Also}
plotCSregs, plotASregs.tri and plotPEregs.tri,

\section*{Examples}
```

A<-C(1,1); B<-C(2,0); C<-C(1.5,2);
Tr<-rbind(A,B,C);
n<-10
set.seed(1)
Xp0<-runif.tri(n,Tr)$g
M<-as.numeric(runif.tri(1,Tr)$g) \#try also M<-c(1.6,1.0)
t<-. }5\mathrm{ \#try also t<-2
plotCSregs.tri(Xp0,Tr,t,M,main="Proximity Regions for CS-PCD", xlab="",ylab="")
Xp = Xp0[1,]
plotCSregs.tri(Xp,Tr,t,M,main="CS Proximity Regions with t=.5", xlab="",ylab="", edge.reg=TRUE)

# or try the default center

plotCSregs.tri(Xp,Tr,t,main="CS Proximity Regions with t=.5", xlab="",ylab="",edge.reg=TRUE);
\#M=(arcsCStri(Xp,Tr,r)$param)$c \#the part "M=(arcsPEtri(Xp,Tr,r)$param)$cent" is optional,
\#for the below annotation of the plot
\#can add vertex labels and text to the figure (with edge regions)
txt<-rbind(Tr,M)
xc<-txt[,1]+c(-.02,.02,.02,.02)
yc<-txt[,2]+c(.02,.02,.02,.03)
txt.str<-c("A", "B", "C", "M")
text(xc,yc,txt.str)

```
plotCSregs1D The plot of the Central Similarity (CS) Proximity Regions (vertices
jittered along \(y\)-coordinate) - multiple interval case

\section*{Description}

Plots the points in and outside of the intervals based on Yp points and also the CS proximity regions (which are also intervals). If there are duplicates of Yp or Xp points, only one point is retained for each duplicate value, and a warning message is printed.
CS proximity region is constructed with expansion parameter \(t>0\) and centrality parameter \(c \in\) \((0,1)\). For better visualization, a uniform jitter from \(U(-J i t\), Jit) (default is \(J i t=.1)\) times range of \(X p\) and \(Y p\) and the proximity regions (intervals)) is added to the \(y\)-direction.
centers is a logical argument, if TRUE, plot includes the centers of the intervals as vertical lines in the plot, else centers of the intervals are not plotted.
See also (Ceyhan (2016)).

\section*{Usage}
```

plotCSregs1D(
Xp,
Yp,
t,
$c=0.5$,
Jit = 0.1,
main $=$ NULL,
xlab = NULL,
ylab = NULL,
xlim = NULL,
ylim = NULL,
centers = FALSE,
...
)

```

\section*{Arguments}

Xp A set of 1D points for which CS proximity regions are plotted.
Yp A set of 1D points which constitute the end points of the intervals which partition the real line.
\(t \quad\) A positive real number which serves as the expansion parameter in CS proximity region.
c

Jit A positive real number that determines the amount of jitter along the \(y\)-axis, default \(=0.1\) and Xp points are jittered according to \(U(-J i t\), Jit) distribution along the \(y\)-axis where Jit equals to the range of \(X p\) and \(Y p\) and the proximity regions (intervals) multiplied by Jit).
main An overall title for the plot (default=NULL).
\(x l a b, y l a b \quad\) Titles of the \(x\) and \(y\) axes in the plot (default=NULL for both).
xlim, ylim Two numeric vectors of length 2 , giving the \(x\) - and \(y\)-coordinate ranges (default=NULL for both).
centers A logical argument, if TRUE, plot includes the centers of the intervals as vertical lines in the plot, else centers of the intervals are not plotted.
... Additional plot parameters.

\section*{Value}

Plot of the CS proximity regions for 1D points located in the middle or end-intervals based on Yp points

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2016). "Density of a Random Interval Catch Digraph Family and its Use for Testing Uniformity." REVSTAT, 14(4), 349-394.

\section*{See Also}
plotCSregs.int and plotPEregs1D

\section*{Examples}
```

    t<-2
    c<-.4
    a<-0; b<-10;
    #nx is number of X points (target) and ny is number of Y points (nontarget)
    nx<-20; ny<-4; #try also nx<-40; ny<-10 or nx<-1000; ny<-10;
    set.seed(1)
    xr<-range(a,b)
    xf<-(xr[2]-xr[1])*. }
    Xp<-runif(nx,a-xf,b+xf)
    Yp<-runif(ny,a,b)
    plotCSregs1D(Xp,Yp,t,c,xlab="",ylab="")
    plotCSregs1D(Xp,Yp+10,t,c,xlab="",ylab="")
    ```
 plotDelaunay.tri The scatterplot of points from one class and plot of the Delaunay tri-
 angulation of the other class

\section*{Description}

Plots the scatter plot of Xp points together with the Delaunay triangles based on the Yp points. Both sets of points are of 2D.
See (Okabe et al. (2000); Ceyhan (2010); Sinclair (2016)) for more on Delaunay triangulation and the corresponding algorithm.

\section*{Usage}
plotDelaunay.tri(
Xp,
Yp,
main \(=\) NULL,
xlab = NULL,
ylab = NULL,
```

        xlim = NULL,
        ylim = NULL,
    )
    ```

\section*{Arguments}

Xp
Yp
main
xlab, ylab
xlim, ylim Two numeric vectors of length 2 , giving the \(x\) - and \(y\)-coordinate ranges (default=NULL for both)
... Additional plot parameters.

\section*{Value}

A scatterplot of Xp points and the Delaunay triangulation of \(Y p\) points.

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

Okabe A, Boots B, Sugihara K, Chiu SN (2000). Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. Wiley, New York.

Sinclair D (2016). "S-hull: a fast radial sweep-hull routine for Delaunay triangulation." 1604.01428.

\section*{See Also}
plot.triSht in interp package

\section*{Examples}
```

nx<-20; ny<-5; \#try also nx<-40; ny<-10 or nx<-1000; ny<-10;
set.seed(1)
Xp<-cbind(runif(nx,0,1),runif(nx,0,1))
Yp<-cbind(runif(ny,0,.25),runif(ny,0,.25))+cbind(c(0,0,0.5,1,1),c(0,1,.5,0,1))
\#try also Yp<-cbind(runif(ny,0,1),runif(ny,0,1))
plotDelaunay.tri(Xp, Yp,xlab="",ylab="",main="X points and Delaunay Triangulation of Y points")

```

\section*{Description}

Plots the \(X p\) points and the intervals based on \(Y p\) points. If there are duplicates of \(Y p\) points, only one point is retained for each duplicate value, and a warning message is printed.

\section*{Usage}
\[
\begin{aligned}
& \text { plotIntervals(} \\
& \text { Xp, } \\
& \text { Yp, } \\
& \text { main }=\text { NULL, } \\
& \text { xlab }=\text { NULL, } \\
& \text { ylab }=\text { NULL, } \\
& \text { xlim }=\text { NULL, } \\
& \text { ylim }=\text { NULL, } \\
& \ldots \\
& \text { (}
\end{aligned}
\]

\section*{Arguments}

Xp A set of 1D points whose scatter-plot is provided.
Yp A set of 1D points which constitute the end points of the intervals which partition the real line.
main An overall title for the plot (default=NULL).
\(\mathrm{xlab}, \mathrm{ylab} \quad\) Titles for the \(x\) and \(y\) axes, respectively (default=NULL for both).
xlim, ylim Two numeric vectors of length 2 , giving the \(x\) - and \(y\)-coordinate ranges (default=NULL for both).
... Additional plot parameters.

\section*{Value}

Plot of the intervals based on Yp points and also scatter plot of \(X p\) points

\section*{Author(s)}

Elvan Ceyhan

\section*{See Also}
plotPEregs1D and plotDelaunay.tri

\section*{Examples}
```

a<-0; b<-10;
\#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-20; ny<-4; \#try also nx<-40; ny<-10 or nx<-1000; ny<-10;
set.seed(1)
Xp<-runif(nx,a,b)
Yp<-runif(ny,a,b)
plotIntervals(Xp,Yp,xlab="", ylab="")

```
plotPEarcs The plot of the arcs of Proportional Edge Proximity Catch Digraph (PE-PCD) for a \(2 D\) data set-multiple triangle case

\section*{Description}

Plots the arcs of Proportional Edge Proximity Catch Digraph (PE-PCD) whose vertices are the data points in \(X p\) in the multiple triangle case and the Delaunay triangles based on \(Y p\) points. If there are duplicates of \(X p\) points, only one point is retained for each duplicate value, and a warning message is printed.
PE proximity regions are defined with respect to the Delaunay triangles based on Yp points with expansion parameter \(r \geq 1\) and vertex regions in each triangle are based on the center \(M=(\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of each Delaunay triangle or based on circumcenter of each Delaunay triangle (default for \(M=(1,1,1)\) which is the center of mass of the triangle).
Convex hull of \(Y p\) is partitioned by the Delaunay triangles based on \(Y p\) points (i.e., multiple triangles are the set of these Delaunay triangles whose union constitutes the convex hull of Yp points). Loops are not allowed so arcs are only possible for points inside the convex hull of \(Y p\) points.

See (Ceyhan (2005); Ceyhan et al. (2006); Ceyhan (2011)) for more on the PE-PCDs. Also, see (Okabe et al. (2000); Ceyhan (2010); Sinclair (2016)) for more on Delaunay triangulation and the corresponding algorithm.

\section*{Usage}
\[
\begin{aligned}
& \text { plotPEarcs(} \\
& \quad \text { Xp, } \\
& Y p, \\
& r, \\
& M=c(1,1,1), \\
& \text { asp }=N A, \\
& \text { main }=N U L L, \\
& \text { xlab }=N U L L,
\end{aligned}
\]
```

    ylab = NULL,
    xlim = NULL,
    ylim = NULL,
    )

```

\section*{Arguments}

Xp A set of 2D points which constitute the vertices of the PE-PCD.
Yp A set of 2D points which constitute the vertices of the Delaunay triangles.
\(r \quad\) A positive real number which serves as the expansion parameter in PE proximity region; must be \(\geq 1\).
M A 3D point in barycentric coordinates which serves as a center in the interior of each Delaunay triangle or circumcenter of each Delaunay triangle (for this, argument should be set as \(M=" C C\) "), default for \(M=(1,1,1)\) which is the center of mass of each triangle.
asp A numeric value, giving the aspect ratio \(y / x\) (default is NA), see the official help page for asp by typing "? asp".
main An overall title for the plot (default=NULL).
\(\mathrm{xlab}, \mathrm{ylab} \quad\) Titles for the \(x\) and \(y\) axes, respectively (default=NULL for both).
xlim, ylim Two numeric vectors of length 2, giving the \(x\) - and \(y\)-coordinate ranges (default=NULL for both).
... Additional plot parameters.

\section*{Value}

A plot of the arcs of the PE-PCD whose vertices are the points in data set Xp and the Delaunay triangles based on \(Y p\) points

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2011). "Spatial Clustering Tests Based on Domination Number of a New Random Digraph Family." Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

Ceyhan E, Priebe CE, Wierman JC (2006). "Relative density of the random \(r\)-factor proximity catch digraphs for testing spatial patterns of segregation and association." Computational Statistics
\& Data Analysis, 50(8), 1925-1964.

Okabe A, Boots B, Sugihara K, Chiu SN (2000). Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. Wiley, New York.

Sinclair D (2016). "S-hull: a fast radial sweep-hull routine for Delaunay triangulation." 1604.01428.

\section*{See Also}
plotPEarcs.tri, plotASarcs, and plotCSarcs

\section*{Examples}
```

\#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-20; ny<-5; \#try also nx<-40; ny<-10 or nx<-1000; ny<-10;
set.seed(1)
Xp<-cbind(runif(nx,0,1),runif(nx,0,1))
Yp<-cbind(runif(ny,0,.25),
runif(ny,0,.25))+cbind(c(0,0,0.5,1,1),c(0,1,.5,0,1))
\#try also Yp<-cbind(runif(ny,0,1),runif(ny,0,1))
M<-c(1,1,1) \#try also M<-c(1,2,3)
r<-1.5 \#try also r<-2
plotPEarcs(Xp,Yp,r,M,xlab="",ylab="")

```
\begin{tabular}{ll}
plotPEarcs.int & \begin{tabular}{l}
The plot of the arcs of Proportional Edge Proximity Catch Digraphs \\
\((P E-P C D s)\) for \(1 D\) data (vertices jittered along y-coordinate) - one \\
interval case
\end{tabular}
\end{tabular}

\section*{Description}

Plots the arcs of PE-PCD whose vertices are the 1D points, Xp. PE proximity regions are constructed with expansion parameter \(r \geq 1\) and centrality parameter \(c \in(0,1)\) and the intervals are based on the interval int \(=(a, b)\) That is, data set \(X p\) constitutes the vertices of the digraph and int determines the end points of the interval. If there are duplicates of \(X p\) points, only one point is retained for each duplicate value, and a warning message is printed.
For better visualization, a uniform jitter from \(U(-J i t, J i t)\) (default for \(J i t=.1\)) is added to the \(y\)-direction where Jit equals to the range of \(\{\mathrm{Xp}, \mathrm{int}\}\) multiplied by Jit with default for Jit \(=.1\)). center is a logical argument, if TRUE, plot includes the center of the interval int as a vertical line in the plot, else center of the interval is not plotted.

See also (Ceyhan (2012)).

\section*{Usage}
```

plotPEarcs.int(
Xp,
int,
$r$,
$c=0.5$,
Jit $=0.1$,
main $=$ NULL,
xlab = NULL,
ylab = NULL,
xlim = NULL,
ylim = NULL,
center $=$ FALSE,
)

```

\section*{Arguments}

Xp A vector of 1D points constituting the vertices of the PE-PCD.
int A vector of two 1D points constituting the end points of the interval.
\(r \quad\) A positive real number which serves as the expansion parameter in PE proximity region; must be \(\geq 1\).
c A positive real number in \((0,1)\) parameterizing the center of the interval with the default \(\mathrm{c}=.5\). For the interval, int \(=(a, b)\), the parameterized center is \(M_{c}=a+c(b-a)\).
Jit A positive real number that determines the amount of jitter along the \(y\)-axis, default \(=0.1\) and Xp points are jittered according to \(U(-J i t\), Jit \()\) distribution along the \(y\)-axis where Jit equals to the range of range of \(\{\mathrm{Xp}, \mathrm{int}\}\) multiplied by Jit).
main An overall title for the plot (default=NULL).
\(\mathrm{xlab}, \mathrm{ylab} \quad\) Titles of the \(x\) and \(y\) axes in the plot (default=NULL for both).
xlim, ylim Two numeric vectors of length 2 , giving the \(x\) - and \(y\)-coordinate ranges (default=NULL for both).
center A logical argument, if TRUE, plot includes the center of the interval int as a vertical line in the plot, else center of the interval is not plotted.
... Additional plot parameters.

\section*{Value}

A plot of the arcs of PE-PCD whose vertices are the 1D data set Xp in which vertices are jittered along \(y\)-axis for better visualization.

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2012). "The Distribution of the Relative Arc Density of a Family of Interval Catch Digraph Based on Uniform Data." Metrika, 75(6), 761-793.

\section*{See Also}
```

plotPEarcs1D and plotCSarcs.int

```

\section*{Examples}
```

r<-2
c<-.4
a<-0; b<-10; int<-c(a,b)
\#n is number of X points
n<-10; \#try also n<-20;
set.seed(1)
xf<-(int[2]-int[1])*. }
Xp<-runif(n,a-xf,b+xf)
Xlim=range(Xp,int)
Ylim=.1*c(-1,1)
jit<-. }
set.seed(1)
plotPEarcs.int(Xp,int,r=1.5,c=.3,jit,xlab="",ylab="",center=TRUE)
set.seed(1)
plotPEarcs.int(Xp,int,r=2,c=.3,jit,xlab="",ylab="", center=TRUE)

```
plotPEarcs.tri The plot of the arcs of Proportional Edge Proximity Catch Digraph
 (PE-PCD) for a \(2 D\) data set - one triangle case

\section*{Description}

Plots the arcs of PE-PCD whose vertices are the data points, Xp and the triangle tri. PE proximity regions are constructed with respect to the triangle tri with expansion parameter \(r \geq 1\), i.e., arcs may exist only for \(X p\) points inside the triangle tri. If there are duplicates of \(X p\) points, only one point is retained for each duplicate value, and a warning message is printed.

Vertex regions are based on center \(M=\left(m_{1}, m_{2}\right)\) in Cartesian coordinates or \(M=(\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of the triangle tri or based on the circumcenter of tri; default is \(M=(1,1,1)\), i.e., the center of mass of tri. When the center is the circumcenter, CC, the vertex regions are constructed based on the orthogonal projections to the edges, while with any
interior center M , the vertex regions are constructed using the extensions of the lines combining vertices with \(M\). \(M\)-vertex regions are recommended spatial inference, due to geometry invariance property of the arc density and domination number the PE-PCDs based on uniform data.
See also (Ceyhan (2005); Ceyhan et al. (2006); Ceyhan (2011)).

\section*{Usage}
```

plotPEarcs.tri(
Xp,
tri,
r,
M = c(1, 1, 1),
asp = NA,
main = NULL,
xlab = NULL,
ylab = NULL,
xlim = NULL,
ylim = NULL,
vert.reg = FALSE,
...
)

```

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline Xp & A set of 2D points which constitute the vertices of the PE-PCD. \\
\hline tri & A \(3 \times 2\) matrix with each row representing a vertex of the triangle. \\
\hline \(r\) & A positive real number which serves as the expansion parameter in PE proximity region; must be \(\geq 1\). \\
\hline M & A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates which serves as a center in the interior of the triangle tri or the circumcenter of tri which may be entered as "CC" as well; default is \(M=(1,1,1)\), i.e., the center of mass of tri. \\
\hline asp & A numeric value, giving the aspect ratio \(y / x\) (default is NA), see the official help page for asp by typing "? asp". \\
\hline main & An overall title for the plot (default=NULL). \\
\hline xlab, ylab & Titles for the \(x\) and \(y\) axes, respectively (default=NULL for both). \\
\hline \(x \mathrm{lim}, \mathrm{ylim}\) & Two numeric vectors of length 2 , giving the \(x\) - and \(y\)-coordinate ranges (default=NULL for both). \\
\hline vert.reg & A logical argument to add vertex regions to the plot, default is vert.reg=FALSE. \\
\hline & Additional plot parameters. \\
\hline
\end{tabular}

\section*{Value}

A plot of the arcs of the PE-PCD whose vertices are the points in data set Xp and the triangle tri

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2011). "Spatial Clustering Tests Based on Domination Number of a New Random Digraph Family." Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

Ceyhan E, Priebe CE, Wierman JC (2006). "Relative density of the random \(r\)-factor proximity catch digraphs for testing spatial patterns of segregation and association." Computational Statistics \& Data Analysis, 50(8), 1925-1964.

\section*{See Also}
plotASarcs.tri, plotCSarcs.tri, and plotPEarcs

\section*{Examples}
```

A<-C(1,1); B<-C(2,0); C<-C(1.5,2);
Tr<-rbind(A,B,C);
n<-10 \#try also n<-20
set.seed(1)
Xp<-runif.tri(n,Tr)$g
M<-as.numeric(runif.tri(1,Tr)$g)
\#try also M<-c(1.6,1.0) or M<-circumcenter.tri(Tr)
r<-1.5 \#try also r<-2
plotPEarcs.tri(Xp,Tr,r,M,main="Arcs of PE-PCD with r = 1.5",
xlab="",ylab="",vert.reg = TRUE)

# or try the default center

\#plotPEarcs.tri(Xp,Tr,r,main="Arcs of PE-PCD with r = 1.5",
\#xlab="",ylab="",vert.reg = TRUE);
\#M=(arcsPEtri(Xp,Tr,r)$param)$cent
\#the part "M=(arcsPEtri(Xp,Tr,r)$param)$cent" is optional,
\#for the below annotation of the plot
\#can add vertex labels and text to the figure (with vertex regions)
ifelse(isTRUE(all.equal(M, circumcenter.tri(Tr))),
{Ds<-rbind((B+C)/2,(A+C)/2,(A+B)/2); cent.name="CC"},
{Ds<-prj.cent2edges(Tr,M); cent.name="M"})
txt<-rbind(Tr,M,Ds)
xc<-txt[,1]+c(-.02,.02,.02,.02,.04,-0.03,-.01)
yc<-txt[,2]+c(.02,.02,.02,.07,.02,.04,-.06)

```
```

txt.str<-c("A", "B", "C", cent.name, "D1", "D2", "D3")
text(xc,yc,txt.str)

```
plotPEarcs1D
\begin{tabular}{l}
The plot of the arcs of Proportional Edge Proximity Catch Digraphs \\
(PE-PCDs) for \(1 D\) data (vertices jittered along \(y\)-coordinate) - multi- \\
ple interval case
\end{tabular}

\section*{Description}

Plots the arcs of PE-PCD whose vertices are the 1D points, Xp . PE proximity regions are constructed with expansion parameter \(r \geq 1\) and centrality parameter \(c \in(0,1)\) and the intervals are based on \(Y p\) points (i.e. the intervalization is based on \(Y p\) points). That is, data set \(X p\) constitutes the vertices of the digraph and \(Y p\) determines the end points of the intervals. If there are duplicates of \(Y p\) or \(X p\) points, only one point is retained for each duplicate value, and a warning message is printed.

For better visualization, a uniform jitter from \(U(-J i t, J i t)\) (default for \(J i t=.1\)) is added to the \(y\)-direction where Jit equals to the range of Xp and Yp multiplied by Jit with default for Jit \(=.1\)). centers is a logical argument, if TRUE, plot includes the centers of the intervals as vertical lines in the plot, else centers of the intervals are not plotted.
See also (Ceyhan (2012)).

\section*{Usage}
plotPEarcs1D(
Xp,
Yp,
r,
\(c=0.5\),
Jit = 0.1,
main = NULL,
xlab = NULL,
ylab = NULL,
xlim = NULL,
ylim = NULL,
centers = FALSE,
...
)

\section*{Arguments}
\begin{tabular}{ll}
\(X p\) & A vector of 1D points constituting the vertices of the PE-PCD. \\
\(Y p\) & A vector of 1D points constituting the end points of the intervals. \\
\(r\) & A positive real number which serves as the expansion parameter in PE proximity \\
region; must be \(\geq 1\).
\end{tabular}
c A positive real number in \((0,1)\) parameterizing the center inside middle intervals with the default \(\mathrm{c}=.5\). For the interval, \((a, b)\), the parameterized center is \(M_{c}=\) \(a+c(b-a)\).
Jit A positive real number that determines the amount of jitter along the \(y\)-axis, default \(=0.1\) and Xp points are jittered according to \(U(-J i t\), Jit \()\) distribution along the \(y\)-axis where Jit equals to the range of the union of \(X p\) and \(Y p\) points multiplied by Jit).
main An overall title for the plot (default=NULL).
\(\mathrm{xlab}, \mathrm{ylab} \quad\) Titles of the \(x\) and \(y\) axes in the plot (default=NULL for both).
xlim, ylim Two numeric vectors of length 2, giving the \(x\) - and \(y\)-coordinate ranges (default=NULL for both).
centers A logical argument, if TRUE, plot includes the centers of the intervals as vertical lines in the plot, else centers of the intervals are not plotted.
... Additional plot parameters.

\section*{Value}

A plot of the arcs of PE-PCD whose vertices are the 1D data set Xp in which vertices are jittered along \(y\)-axis for better visualization.

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2012). "The Distribution of the Relative Arc Density of a Family of Interval Catch Digraph Based on Uniform Data." Metrika, 75(6), 761-793.

\section*{See Also}
plotPEarcs.int and plotCSarcs1D

\section*{Examples}
```

r<-2
c<-.4
a<-0; b<-10; int<-c(a,b)
\#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-20; ny<-4; \#try also nx<-40; ny<-10 or nx<-1000; ny<-10;
set.seed(1)
xf<-(int[2]-int[1])*.1
Xp<-runif(nx,a-xf,b+xf)
Yp<-runif(ny,a,b)

```
```

Xlim=range(Xp,Yp)
Ylim=.1*c(-1,1)
jit<-. }
set.seed(1)
plotPEarcs1D(Xp,Yp,r=1.5,c=.3,jit,xlab="",ylab="", centers=TRUE)
set.seed(1)
plotPEarcs1D(Xp,Yp,r=2, c=.3,jit, xlab="",ylab="",centers=TRUE)

```
plotPEregs The plot of the Proportional Edge (PE) Proximity Regions for a \(2 D\) data set - multiple triangle case

\section*{Description}

Plots the points in and outside of the Delaunay triangles based on \(Y p\) points which partition the convex hull of \(Y p\) points and also plots the PE proximity regions for \(X p\) points and the Delaunay triangles based on \(Y p\) points.
PE proximity regions are constructed with respect to the Delaunay triangles with the expansion parameter \(r \geq 1\).
Vertex regions in each triangle is based on the center \(M=(\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of each Delaunay triangle or based on circumcenter of each Delaunay triangle (default for \(M=(1,1,1)\) which is the center of mass of the triangle).

See (Ceyhan (2005); Ceyhan et al. (2006); Ceyhan (2011)) for more on the PE proximity regions. Also, see (Okabe et al. (2000); Ceyhan (2010); Sinclair (2016)) for more on Delaunay triangulation and the corresponding algorithm.

\section*{Usage}
```

plotPEregs(
Xp,
Yp,
r,
M = c(1, 1, 1),
asp = NA,
main = NULL,
xlab = NULL,
ylab = NULL,
xlim = NULL,
ylim = NULL,
)

```

\section*{Arguments}

Xp
Yp
\(r\)

M
asp
main An overall title for the plot (default=NULL).
xlab, ylab
xlim, ylim Two numeric vectors of length 2 , giving the \(x\) - and \(y\)-coordinate ranges (default=NULL for both).
... Additional plot parameters.

\section*{Value}

Plot of the Xp points, Delaunay triangles based on Yp points and also the PE proximity regions for Xp points inside the convex hull of Yp points

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2011). "Spatial Clustering Tests Based on Domination Number of a New Random Digraph Family." Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

Ceyhan E, Priebe CE, Wierman JC (2006). "Relative density of the random \(r\)-factor proximity catch digraphs for testing spatial patterns of segregation and association." Computational Statistics \& Data Analysis, 50(8), 1925-1964.

Okabe A, Boots B, Sugihara K, Chiu SN (2000). Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. Wiley, New York.

Sinclair D (2016). "S-hull: a fast radial sweep-hull routine for Delaunay triangulation." 1604.01428.

\section*{See Also}
```

plotPEregs.tri, plotASregs, and plotCSregs

```

\section*{Examples}
```

\#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-20; ny<-5; \#try also nx<-40; ny<-10 or nx<-1000; ny<-10;
set.seed(1)
Xp<-cbind(runif(nx,0,1),runif(nx,0,1))
Yp<-cbind(runif(ny,0,.25),
runif(ny, 0,.25))+cbind(c(0,0,0.5,1,1),c(0,1,.5,0,1))
\#try also Yp<-cbind(runif(ny, 0,1),runif(ny,0,1))
M<-c(1,1,1) \#try also M<-c(1, 2,3)
r<-1.5 \#try also r<-2
plotPEregs(Xp,Yp,r,M,xlab="",ylab="")

```

\section*{Description}

Plots the points in and outside of the interval int and also the PE proximity regions (which are also intervals). PE proximity regions are constructed with expansion parameter \(r \geq 1\) and centrality parameter \(c \in(0,1)\).
For better visualization, a uniform jitter from \(U(-J i t, J i t)\) (default is \(J i t=.1\)) times range of proximity regions and \(X p\)) is added to the \(y\)-direction. If there are duplicates of \(X p\) points, only one point is retained for each duplicate value, and a warning message is printed. center is a logical argument, if TRUE, plot includes the center of the interval as a vertical line in the plot, else center of the interval is not plotted.
See also (Ceyhan (2012)).

\section*{Usage}
plotPEregs.int(
Xp,
int,
\(r\),
\(c=0.5\),
Jit \(=0.1\),
main \(=\) NULL,
```

    xlab = NULL,
    ylab = NULL,
    xlim = NULL,
    ylim = NULL,
    center = FALSE,
    )
    ```

\section*{Arguments}

Xp A set of 1D points for which PE proximity regions are to be constructed.
int A vector of two real numbers representing an interval.
\(r \quad\) A positive real number which serves as the expansion parameter in PE proximity region; must be \(\geq 1\).

C

Jit A positive real number that determines the amount of jitter along the \(y\)-axis, default \(=0.1\) and Xp points are jittered according to \(U(-\) Jit, Jit) distribution along the \(y\)-axis where Jit equals to the range of the union of \(X p\) and \(Y p\) points multiplied by Jit).
main An overall title for the plot (default=NULL).
\(\mathrm{xlab}, \mathrm{ylab} \quad\) Titles for the \(x\) and \(y\) axes, respectively (default=NULL for both).
xlim, ylim Two numeric vectors of length 2, giving the \(x\) - and \(y\)-coordinate ranges.
center A logical argument, if TRUE, plot includes the center of the interval as a vertical line in the plot, else center of the interval is not plotted.
... Additional plot parameters.

\section*{Value}

Plot of the PE proximity regions for 1D points in or outside the interval int

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2012). "The Distribution of the Relative Arc Density of a Family of Interval Catch Digraph Based on Uniform Data." Metrika, 75(6), 761-793.

\section*{See Also}
plotPEregs1D, plotCSregs.int, and plotCSregs.int

\section*{Examples}
```

c<-.4
r<-2
a<-0; b<-10; int<-c(a,b)
n<-10
xf<-(int[2]-int[1])*.1
Xp<-runif(n,a-xf,b+xf) \#try also Xp<-runif(n,a-5,b+5)
plotPEregs.int(Xp,int,r,c,xlab="x",ylab="")
plotPEregs.int(7,int,r,c,xlab="x",ylab="")

```
plotPEregs.std.tetra The plot of the Proportional Edge (PE) Proximity Regions for a \(3 D\)
data set - standard regular tetrahedron case

\section*{Description}

Plots the points in and outside of the standard regular tetrahedron \(T_{h}=T((0,0,0),(1,0,0),(1 / 2, \sqrt{3} / 2,0),(1 / 2, \sqrt{3} / 6, \sqrt{6}\), and also the PE proximity regions for points in data set Xp .
PE proximity regions are defined with respect to the standard regular tetrahedron \(T_{h}\) with expansion parameter \(r \geq 1\), so PE proximity regions are defined only for points inside \(T_{h}\).
Vertex regions are based on circumcenter (which is equivalent to the center of mass for the standard regular tetrahedron) of \(T_{h}\).

See also (Ceyhan \((2005,2010)\)).

\section*{Usage}
plotPEregs.std.tetra(
Xp,
\(r\),
main \(=\) NULL,
xlab \(=\) NULL,
ylab = NULL,
zlab = NULL,
xlim = NULL,
ylim = NULL,
zlim = NULL,
)

\section*{Arguments}

Xp A set of 3D points for which PE proximity regions are constructed.
\(r \quad\) A positive real number which serves as the expansion parameter in PE proximity region; must be \(\geq 1\).
main An overall title for the plot (default=NULL).
xlab, ylab, zlab
titles for the \(x, y\), and \(z\) axes, respectively (default=NULL for all).
xlim, ylim, zlim
Two numeric vectors of length 2 , giving the \(x\)-, \(y\)-, and \(z\)-coordinate ranges (default=NULL for all).
... Additional scatter3D parameters.

\section*{Value}

Plot of the PE proximity regions for points inside the standard regular tetrahedron \(T_{h}\) (and just the points outside \(T_{h}\))

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

\section*{See Also}
plotPEregs, plotASregs.tri, plotASregs, plotCSregs.tri, and plotCSregs

\section*{Examples}
```

A<-c(0,0,0); B<-c(1,0,0); C<-c(1/2,sqrt(3)/2,0); D<-c(1/2, sqrt(3)/6,sqrt(6)/3)
tetra<-rbind(A,B,C,D)
r<-1.5
n<-3 \#try also n<-20
Xp<-runif.std.tetra(n)\$g \#try also Xp[,1]<-Xp[,1]+1
plotPEregs.std.tetra(Xp[1:3,],r)
P1<-c(.1,.1,.1)
plotPEregs.std.tetra(rbind(P1,P1),r)

```
plotPEregs.tetra The plot of the Proportional Edge (PE) Proximity Regions for a \(3 D\) data set - one tetrahedron case

\section*{Description}

Plots the points in and outside of the tetrahedron th and also the PE proximity regions (which are also tetrahedrons) for points inside the tetrahedron \(t\).
PE proximity regions are constructed with respect to tetrahedron th with expansion parameter \(r \geq 1\) and vertex regions are based on the center M which is circumcenter ("CC") or center of mass ("CM") of th with default="CM", so PE proximity regions are defined only for points inside the tetrahedron th.

See also (Ceyhan \((2005,2010)\)).

\section*{Usage}
plotPEregs.tetra(
Xp,
th,
r,
\(M=" C M "\),
main \(=\) NULL,
xlab \(=\) NULL,
ylab = NULL,
zlab = NULL,
xlim = NULL,
ylim = NULL,
zlim = NULL,
...
)

\section*{Arguments}
\(X p\)
th
\(r\)

M
main An overall title for the plot (default=NULL).
xlab, ylab, zlab
Titles for the \(x, y\), and \(z\) axes, respectively (default=NULL for all).
xlim, ylim, zlim
Two numeric vectors of length 2 , giving the \(x-, y\)-, and \(z\)-coordinate ranges (default=NULL for all).
... Additional scatter3D parameters.

\section*{Value}

Plot of the PE proximity regions for points inside the tetrahedron th (and just the points outside th)

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

\section*{See Also}
plotPEregs.std.tetra, plotPEregs.tri and plotPEregs.int

\section*{Examples}
```

A<-c(0,0,0); B<-c(1,0,0); C<-c(1/2,sqrt(3)/2,0); D<-c(1/2, sqrt(3)/6,sqrt(6)/3)
set.seed(1)
tetra<-rbind(A,B,C,D)+matrix(runif(12,-. 25, .25),ncol=3) \#adding jitter to make it non-regular
n<-5 \#try also n<-20
Xp<-runif.tetra(n,tetra)\$g \#try also Xp[,1]<-Xp[,1]+1
M<-"CM" \#try also M<-"CC"
r<-1.5
plotPEregs.tetra(Xp,tetra,r) \#uses the default M="CM"
plotPEregs.tetra(Xp,tetra,r,M="CC")
plotPEregs.tetra(Xp[1,],tetra,r) \#uses the default M="CM"
plotPEregs.tetra(Xp[1,],tetra,r,M)

```
```

plotPEregs.tri The plot of the Proportional Edge (PE) Proximity Regions for a 2D

```
data set - one triangle case

\section*{Description}

Plots the points in and outside of the triangle tri and also the PE proximity regions for points in data set \(X p\).
PE proximity regions are defined with respect to the triangle tri with expansion parameter \(r \geq 1\), so PE proximity regions are defined only for points inside the triangle tri.
Vertex regions are based on center \(M=\left(m_{1}, m_{2}\right)\) in Cartesian coordinates or \(M=(\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of the triangle tri or based on the circumcenter of tri; default is \(M=(1,1,1)\), i.e., the center of mass of tri. When the center is the circumcenter, CC , the vertex regions are constructed based on the orthogonal projections to the edges, while with any interior center \(M\), the vertex regions are constructed using the extensions of the lines combining vertices with \(M\). M-vertex regions are recommended spatial inference, due to geometry invariance property of the arc density and domination number the PE-PCDs based on uniform data.
See also (Ceyhan (2005); Ceyhan et al. (2006); Ceyhan (2011)).
```

Usage
plotPEregs.tri(
Xp,
tri,
r,
M = c(1, 1, 1),
asp = NA,
main = NULL,
xlab = NULL,
ylab = NULL,
xlim = NULL,
ylim = NULL,
vert.reg = FALSE,
)

```

\section*{Arguments}

Xp
tri
\(r\)

M

A set of 2D points for which PE proximity regions are constructed.
A \(3 \times 2\) matrix with each row representing a vertex of the triangle.
A positive real number which serves as the expansion parameter in PE proximity region; must be \(\geq 1\).
A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates which serves as a center in the interior of the triangle tri or the circumcenter of tri which may be entered as "CC" as well; default is \(M=(1,1,1)\), i.e., the center of mass of tri.
asp A numeric value, giving the aspect ratio \(y / x\) (default is NA), see the official help page for asp by typing "? asp".
main An overall title for the plot (default=NULL).
\(\mathrm{xlab}, \mathrm{ylab} \quad\) Titles for the \(x\) and \(y\) axes, respectively (default=NULL for both).
xlim, ylim Two numeric vectors of length 2 , giving the \(x\) - and \(y\)-coordinate ranges (default=NULL for both).
vert.reg A logical argument to add vertex regions to the plot, default is vert.reg=FALSE. ... Additional plot parameters.

\section*{Value}

Plot of the PE proximity regions for points inside the triangle tri (and just the points outside tri)

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2011). "Spatial Clustering Tests Based on Domination Number of a New Random Digraph Family." Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

Ceyhan E, Priebe CE, Wierman JC (2006). "Relative density of the random \(r\)-factor proximity catch digraphs for testing spatial patterns of segregation and association." Computational Statistics \& Data Analysis, 50(8), 1925-1964.

\section*{See Also}
```

plotPEregs, plotASregs.tri, and plotCSregs.tri

```

\section*{Examples}
```

A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
n<-10
set.seed(1)
Xp0<-runif.tri(n,Tr)$g
M<-as.numeric(runif.tri(1,Tr)$g)
\#try also M<-c(1.6,1.0) or M = circumcenter.tri(Tr)
r<-1.5 \#try also r<-2
plotPEregs.tri(Xp0,Tr,r,M)

```
```

Xp = Xp0[1,]
plotPEregs.tri(Xp,Tr,r,M)
plotPEregs.tri(Xp,Tr,r,M,
main="PE Proximity Regions with r = 1.5",
xlab="",ylab="",vert.reg = TRUE)

# or try the default center

\#plotPEregs.tri(Xp,Tr,r,main="PE Proximity Regions with r = 1.5",xlab="",ylab="",vert.reg = TRUE);
\#M=(arcsPEtri(Xp,Tr,r)$param)$c
\#the part "M=(arcsPEtri(Xp,Tr,r)$param)$cent" is optional,
\#for the below annotation of the plot
\#can add vertex labels and text to the figure (with vertex regions)
ifelse(isTRUE(all.equal(M, circumcenter.tri(Tr))),
{Ds<-rbind((B+C)/2, (A+C)/2,(A+B)/2); cent.name="CC"},
{Ds<-prj.cent2edges(Tr,M); cent.name<-"M"})
txt<-rbind(Tr,M,Ds)
xc<-txt[,1]+c(-.02,.02,.02,.02,.03,-0.03,-.01)
yc<-txt[,2]+c(.02,.02,.02,.07,.02,.05,-.06)
txt.str<-c("A","B","C",cent.name,"D1","D2","D3")
text(xc,yc,txt.str)

```
```

plotPEregs1D

```

The plot of the Proportional Edge (PE) Proximity Regions (vertices jittered along \(y\)-coordinate) - multiple interval case

\section*{Description}

Plots the points in and outside of the intervals based on Yp points and also the PE proximity regions (i.e., intervals). PE proximity region is constructed with expansion parameter \(r \geq 1\) and centrality parameter \(c \in(0,1)\). If there are duplicates of \(Y p\) or \(X p\) points, only one point is retained for each duplicate value, and a warning message is printed.

For better visualization, a uniform jitter from \(U(-J i t, J i t)\) (default is \(J i t=.1\)) times range of Xp and \(Y p\) and the proximity regions (intervals)) is added to the \(y\)-direction.
centers is a logical argument, if TRUE, plot includes the centers of the intervals as vertical lines in the plot, else centers of the intervals are not plotted.
See also (Ceyhan (2012)).

\section*{Usage}
plotPEregs1D(
Xp,
Yp,
\(r\),
```

    c = 0.5,
    Jit = 0.1,
    main = NULL,
    xlab = NULL,
    ylab = NULL,
    xlim = NULL,
    ylim = NULL,
    centers = FALSE,
    )

```

\section*{Arguments}

Xp A set of 1D points for which PE proximity regions are plotted.
Yp A set of 1D points which constitute the end points of the intervals which partition the real line.
\(r \quad\) A positive real number which serves as the expansion parameter in PE proximity region; must be \(\geq 1\).
c A positive real number in \((0,1)\) parameterizing the center inside middle intervals with the default \(\mathrm{c}=.5\). For the interval, \((a, b)\), the parameterized center is \(M_{c}=\) \(a+c(b-a)\).
Jit A positive real number that determines the amount of jitter along the \(y\)-axis, default \(=0.1\) and Xp points are jittered according to \(U(-J i t\), Jit \()\) distribution along the \(y\)-axis where Jit equals to the range of the union of Xp and Yp points multiplied by Jit).
main An overall title for the plot (default=NULL).
\(\mathrm{xlab}, \mathrm{ylab} \quad\) Titles for the \(x\) and \(y\) axes, respectively (default=NULL for both).
xlim, ylim Two numeric vectors of length 2, giving the \(x\) - and \(y\)-coordinate ranges (default=NULL for both).
centers A logical argument, if TRUE, plot includes the centers of the intervals as vertical lines in the plot, else centers of the intervals are not plotted (default is FALSE).
... Additional plot parameters.

\section*{Value}

Plot of the PE proximity regions for 1D points located in the middle or end-intervals based on Yp points

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2012). "The Distribution of the Relative Arc Density of a Family of Interval Catch Digraph Based on Uniform Data." Metrika, 75(6), 761-793.

\section*{See Also}
```

plotPEregs1D, plotCSregs.int, and plotCSregs1D

```

\section*{Examples}
```

r<-2
c<-.4
a<-0; b<-10; int<-c(a,b);
\#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-15; ny<-4; \#try also nx<-40; ny<-10 or nx<-1000; ny<-10;
set.seed(1)
xf<-(int[2]-int[1])*. }
Xp<-runif(nx,a-xf,b+xf)
Yp<-runif(ny,a,b)
plotPEregs1D(Xp,Yp,r, c,xlab="x",ylab="")

```
 print.Extrema Print \(a\) Extrema object

\section*{Description}

Prints the call of the object of class "Extrema" and also the type (i.e. a brief description) of the extrema).

\section*{Usage}
\#\# S3 method for class 'Extrema'
print(x, ...)

\section*{Arguments}
x
...

A Extrema object.
Additional arguments for the S3 method 'print'.

\section*{Value}

The call of the object of class "Extrema" and also the type (i.e. a brief description) of the extrema).

See Also
summary.Extrema, print.summary.Extrema, and plot.Extrema

\section*{Examples}
```

n<-10
Xp<-runif.std.tri(n)\$gen.points
Ext<-cl2edges.std.tri(Xp)
Ext
print(Ext)
typeof(Ext)
attributes(Ext)

```
 print.Lines Print \(a\) Lines object

\section*{Description}

Prints the call of the object of class "Lines" and also the coefficients of the line (in the form: \(y=\) slope \(* x+i n t e r c e p t)\).

\section*{Usage}
```


## S3 method for class 'Lines'

print(x, ...)

```

\section*{Arguments}
x A Lines object.
... Additional arguments for the S3 method 'print'.

\section*{Value}

The call of the object of class "Lines" and the coefficients of the line (in the form: \(y=\) slope * \(x+\) intercept).

See Also
summary.Lines, print.summary.Lines, and plot.Lines

\section*{Examples}
```

A<-c(-1.22,-2.33); B<-c(2.55,3.75)
xr<-range(A,B);
xf<-(xr[2]-xr[1])*.1 \#how far to go at the lower and upper ends in the x-coordinate
x<-seq(xr[1]-xf,xr[2]+xf,l=3) \#try also l=10, 20 or 100
lnAB<-Line(A,B,x)

```
```

lnAB
print(lnAB)
typeof(lnAB)
attributes(lnAB)

```
```

print.Lines3D Print a Lines3D object

```

\section*{Description}

Prints the call of the object of class "Lines3D", the coefficients of the line (in the form: \(\mathrm{x}=\mathrm{x} 0\) \(+A * t, y=y 0+B * t\), and \(z=z 0+C * t\)), and the initial point together with the direction vector.

\section*{Usage}
```


## S3 method for class 'Lines3D'

print(x, ...)

```

\section*{Arguments}
\(\begin{array}{ll}x & \text { A Lines3D object. } \\ \ldots & \text { Additional arguments for the S3 method 'print ' }\end{array}\)

\section*{Value}

The call of the object of class "Lines3D", the coefficients of the line (in the form: \(x=x 0+\) \(A * t, y=y 0+B * t\), and \(z=z 0+C * t)\), and the initial point together with the direction vector.

\section*{See Also}
summary.Lines3D, print.summary.Lines3D, and plot.Lines3D

\section*{Examples}
```

P<-c(1,10,3); Q<-c(1,1,3);
vecs<-rbind(P,Q)
Line3D(P,Q,.1)
Line3D(P,Q,.1,dir.vec=FALSE)
tr<-range(vecs);
tf<-(tr[2]-tr[1])*. }
\#how far to go at the lower and upper ends in the x-coordinate
tsq<-seq(-tf*10-tf,tf*10+tf,l=3) \#try also l=10, 20 or 100
lnPQ3D<-Line3D(P,Q,tsq)
lnPQ3D

```
print.NumArcs
```

print(lnPQ3D)

```
typeof(lnPQ3D)
attributes(lnPQ3D)
```

    print.NumArcs Print a NumArcs object
    ```

\section*{Description}

Prints the call of the object of class "NumArcs" and also the desc (i.e. a brief description) of the output.

\section*{Usage}
\#\# S3 method for class 'NumArcs' print(x, ...)

\section*{Arguments}
x
... Additional arguments for the \(S 3\) method 'print '.

\section*{Value}

The call of the object of class "NumArcs" and also the desc (i.e. a brief description) of the output: number of arcs in the proximity catch digraph (PCD) and related quantities in the induced subdigraphs for points in the Delaunay cells.

\section*{See Also}
summary. NumArcs, print. summary.NumArcs, and plot. NumArcs

\section*{Examples}
```

nx<-15; ny<-5; \#try also nx<-40; ny<-10 or nx<-1000; ny<-10;
set.seed(1)
Xp<-cbind(runif(nx),runif(nx))
Yp<-cbind(runif(ny,0,.25),runif(ny,0,.25))+cbind(c(0,0,0.5,1,1),c(0,1,.5,0,1))
\#try also Yp<-cbind(runif(ny,0,1),runif(ny,0,1))
M<-"CC" \#try also M<-c(1,1,1)
Narcs<-num.arcsAS(Xp,Yp,M)
Narcs

```
```

print(Narcs)
typeof(Narcs)
attributes(Narcs)

```
```

print.Patterns Print a Patterns object

```

\section*{Description}

Prints the call of the object of class "Patterns" and also the type (or description) of the pattern).

\section*{Usage}
\#\# S3 method for class 'Patterns'
print(x, ...)

\section*{Arguments}
x
... Additional arguments for the S3 method 'print'.

\section*{Value}

The call of the object of class "Patterns" and also the type (or description) of the pattern).

\section*{See Also}
summary.Patterns, print.summary.Patterns, and plot.Patterns

\section*{Examples}
```

nx<-10; \#try also 20, 100, and 1000
ny<-5; \#try also 1
e<-.15;
Y<-cbind(runif(ny),runif(ny))
\#with default bounding box (i.e., unit square)
Xdt<-rseg.circular(nx,Y,e)
Xdt
print(Xdt)
typeof(Xdt)
attributes(Xdt)

```
```

print.PCDs Print a PCDs object

```

\section*{Description}

Prints the call of the object of class "PCDs" and also the type (i.e. a brief description) of the proximity catch digraph (PCD).

\section*{Usage}
\#\# S3 method for class 'PCDs'
print(x, ...)

\section*{Arguments}
\(x \quad\) A PCDs object.
... Additional arguments for the S3 method 'print'.

\section*{Value}

The call of the object of class "PCDs" and also the type (i.e. a brief description) of the proximity catch digraph (PCD).

\section*{See Also}
summary.PCDs, print.summary.PCDs, and plot.PCDs

\section*{Examples}
```

A<-c(1,1); B<-C(2,0); C<-C(1.5,2);
Tr<-rbind(A,B,C);
n<-10
Xp<-runif.tri(n,Tr)$g
M<-as.numeric(runif.tri(1,Tr)$g)
Arcs<-arcsAStri(Xp,Tr,M)
Arcs
print(Arcs)
typeof(Arcs)
attributes(Arcs)

```
```

print.Planes Print a Planes object

```

\section*{Description}

Prints the call of the object of class "Planes" and also the coefficients of the plane (in the form: \(z=A * x+B * y+C)\).

\section*{Usage}
\#\# S3 method for class 'Planes'
print(x, ...)

\section*{Arguments}
x
A Planes object.
Additional arguments for the S3 method 'print'.

\section*{Value}

The call of the object of class "Planes" and the coefficients of the plane (in the form: \(z=\) \(A * x+B * y+C)\).

\section*{See Also}
summary.Planes, print.summary.Planes, and plot.Planes

\section*{Examples}
```

P<-c(1,10,3); Q<-c(1,1,3); C<-c(3,9,12)
pts<-rbind(P,Q,C)
xr<-range(pts[,1]); yr<-range(pts[,2])
xf<-(xr[2]-xr[1])*.1
\#how far to go at the lower and upper ends in the x-coordinate
yf<-(yr[2]-yr[1])*. }
\#how far to go at the lower and upper ends in the y-coordinate
x<-seq(xr[1]-xf,xr[2]+xf,l=5) \#try also l=10, 20 or 100
y<-seq(yr[1]-yf,yr[2]+yf,l=5) \#try also l=10, 20 or 100
plPQC<-Plane(P,Q,C,x,y)
plPQC
print(plPQC)
typeof(plPQC)
attributes(plPQC)

```
```

print.summary.Extrema Print a summary of a Extrema object

```

\section*{Description}

Prints some information about the object.

\section*{Usage}
```


## S3 method for class 'summary.Extrema'

    print(x, ...)
    ```

\section*{Arguments}
\begin{tabular}{ll}
\(x\) & An object of class "summary.Extrema", generated by summary. Extrema. \\
\(\ldots\) & Additional parameters for print.
\end{tabular}

\section*{Value}

None

See Also
print.Extrema, summary.Extrema, and plot.Extrema
print.summary.Lines Print a summary of \(a\) Lines object

\section*{Description}

Prints some information about the object.

\section*{Usage}
\#\# S3 method for class 'summary.Lines'
print(x, ...)

\section*{Arguments}
x
...

An object of class "summary.Lines", generated by summary.Lines.
Additional parameters for print.

\section*{Value}

None

\section*{See Also}
print.Lines, summary.Lines, and plot.Lines
print.summary.Lines3D Print a summary of \(a\) Lines3D object

\section*{Description}

Prints some information about the object.

\section*{Usage}
\#\# S3 method for class 'summary.Lines3D' print(x, ...)

\section*{Arguments}
\(x \quad\) An object of class "summary.Lines3D", generated by summary.Lines3D.
... Additional parameters for print.

\section*{Value}

None

\section*{See Also}
print.Lines3D, summary.Lines3D, and plot.Lines3D
print. summary.NumArcs Print a summary of a NumArcs object

\section*{Description}

Prints some information about the object.

\section*{Usage}
\#\# S3 method for class 'summary.NumArcs'
print(x, ...)

\section*{Arguments}
x
... Additional parameters for print.

\section*{Value}

None

\section*{See Also}
```

    print.NumArcs, summary.NumArcs, and plot.NumArcs
    ```
print.summary.Patterns
 Print a summary of a Patterns object

\section*{Description}

Prints some information about the object.

\section*{Usage}
\#\# S3 method for class 'summary.Patterns'
print(x, ...)

\section*{Arguments}
\(x \quad\) An object of class "summary.Patterns", generated by summary.Patterns.
... Additional parameters for print.

\section*{Value}

None

\section*{See Also}
```

print.Patterns, summary.Patterns, and plot.Patterns

```
print. summary.PCDs Print a summary of a PCDs object

\section*{Description}

Prints some information about the object.

\section*{Usage}
\#\# S3 method for class 'summary.PCDs'
print(x, ...)

\section*{Arguments}
x
An object of class "summary.PCDs", generated by summary. PCDs.
... Additional parameters for print.

\section*{Value}

None

\section*{See Also}
print.PCDs, summary.PCDs, and plot.PCDs
```

print.summary.Planes Print a summary of a Planes object

```

\section*{Description}

Prints some information about the object.

\section*{Usage}
\#\# S3 method for class 'summary.Planes'
print(x, ...)

\section*{Arguments}
x
An object of class "summary.Planes", generated by summary.Planes.
... Additional parameters for print.

\section*{Value}

None

\section*{See Also}
```

print.Planes, summary.Planes, and plot.Planes

```
```

print.summary.TriLines
Print a summary of a TriLines object

```

\section*{Description}

Prints some information about the object

\section*{Usage}
\#\# S3 method for class 'summary.TriLines'
print(x, ...)

\section*{Arguments}
\(x \quad\) An object of class "summary.TriLines", generated by summary.TriLines.
... Additional parameters for print.

\section*{Value}

None

\section*{See Also}
print.TriLines, summary.TriLines, and plot.TriLines
```

print.summary.Uniform Print a summary of a Uniform object

```

\section*{Description}

Prints some information about the object.

\section*{Usage}
\#\# S3 method for class 'summary.Uniform'
print(x, ...)

\section*{Arguments}
\(\begin{array}{ll}\mathrm{x} & \text { An object of class "summary.Uniform", generated by summary. Uniform. } \\ \ldots & \text { Additional parameters for print. }\end{array}\)

\section*{Value}

None

\section*{See Also}
print.Uniform, summary.Uniform, and plot.Uniform
```

print.TriLines Print a TriLines object

```

\section*{Description}

Prints the call of the object of class "TriLines" and also the coefficients of the line (in the form: \(y=\) slope \(* x+\) intercept), and the vertices of the triangle with respect to which the line is defined.

\section*{Usage}
\#\# S3 method for class 'TriLines'
print(x, ...)

\section*{Arguments}
x
... Additional arguments for the S3 method 'print'.

\section*{Value}

The call of the object of class "TriLines", the coefficients of the line (in the form: \(y=\) slope \(* x+\) intercept), and the vertices of the triangle with respect to which the line is defined.

\section*{See Also}
summary.TriLines, print.summary.TriLines, and plot.TriLines

\section*{Examples}
```

A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C)
xfence<-abs(A[1]-B[1])*. 25
\#how far to go at the lower and upper ends in the x-coordinate
x<-seq(min(A[1],B[1])-xfence,max(A[1],B[1])+xfence,l=3)
lnACM<-lineA2CMinTe(x)
lnACM
print(lnACM)
typeof(lnACM)
attributes(lnACM)

```
```

print.Uniform Print a Uniform object

```

\section*{Description}

Prints the call of the object of class "Uniform" and also the type (i.e. a brief description) of the uniform distribution).

\section*{Usage}
```


## S3 method for class 'Uniform'

print(x, ...)

```

\section*{Arguments}
x
... Additional arguments for the S3 method 'print'.

\section*{Value}

The call of the object of class "Uniform" and also the type (i.e. a brief description) of the uniform distribution).

\section*{See Also}
summary.Uniform, print.summary.Uniform, and plot.Uniform

\section*{Examples}
```

n<-10 \#try also 20, 100, and 1000
A<-C(1,1); B<-c(2,0); C<-C(1.5,2);
Tr<-rbind(A,B,C)
Xdt<-runif.tri(n,Tr)
Xdt
print(Xdt)
typeof(Xdt)
attributes(Xdt)

```

\section*{Description}

Returns the projections from a general center \(M=\left(m_{1}, m_{2}\right)\) in Cartesian coordinates or \(M=\) \((\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of a triangle to the edges on the extension of the lines joining \(M\) to the vertices (see the examples for an illustration).
See also (Ceyhan \((2005,2010)\)).

\section*{Usage}
prj.cent2edges(tri, M)

\section*{Arguments}
tri A \(3 \times 2\) matrix with each row representing a vertex of the triangle.
M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates which serves as a center in the interior of the triangle tri.

\section*{Value}

Three projection points (stacked row-wise) from a general center \(M=\left(m_{1}, m_{2}\right)\) in Cartesian coordinates or \(M=(\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of a triangle to the edges on the extension of the lines joining \(M\) to the vertices; row \(i\) is the projection point into edge \(i\), for \(i=1,2,3\).

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). "An investigation of new graph invariants related to the domination number of random proximity catch digraphs." Methodology and Computing in Applied Probability, 14(2), 299-334.

\section*{See Also}
prj.cent2edges.basic.tri and prj.nondegPEcent2edges

\section*{Examples}
```

A<-c(1,1); B<-c(2,0); C<-C(1.5,2);
Tr<-rbind(A,B,C);
M<-as.numeric(runif.tri(1,Tr)\$g) \#try also M<-c(1.6,1.0)
Ds<-prj.cent2edges(Tr,M) \#try also prj.cent2edges(Tr,M=c(1,1))
Ds
Xlim<-range(Tr[,1])
Ylim<-range(Tr[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
if (dimension(M)==3) {M<-bary2cart(M,Tr)}
\#need to run this when M is given in barycentric coordinates
plot(Tr,pch=".",xlab="",ylab="",
main="Projection of Center M on the edges of a triangle",axes=TRUE,
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)
L<-rbind(M,M,M); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)
xc<-Tr[,1]
yc<-Tr[,2]
txt.str<-c("rv=1","rv=2","rv=3")
text(xc,yc,txt.str)
txt<-rbind(M,Ds)
xc<-txt[,1]+c(-.02,.04,-.04,-.02)
yc<-txt[,2]+c(-.02,.04,.04,-.06)
txt.str<-c("M","D1","D2","D3")
text(xc,yc,txt.str)

```
prj.cent2edges.basic.tri

Projections of a point inside the standard basic triangle form to its edges

\section*{Description}

Returns the projections from a general center \(M=\left(m_{1}, m_{2}\right)\) in Cartesian coordinates or \(M=\) \((\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of the standard basic triangle form \(T_{b}=T\left((0,0),(1,0),\left(c_{1}, c_{2}\right)\right)\) to the edges on the extension of the lines joining M to the vertices (see the examples for an illustration). In the standard basic triangle form \(T_{b}, c_{1}\) is in \([0,1 / 2], c_{2}>0\) and \(\left(1-c_{1}\right)^{2}+c_{2}^{2} \leq 1\).

Any given triangle can be mapped to the standard basic triangle form by a combination of rigid body motions (i.e., translation, rotation and reflection) and scaling, preserving uniformity of the points in the original triangle. Hence, standard basic triangle form is useful for simulation studies under the uniformity hypothesis.
See also (Ceyhan \((2005,2010)\)).

\section*{Usage}
prj.cent2edges.basic.tri(c1, c2, M)

\section*{Arguments}
c1, c2 Positive real numbers which constitute the vertex of the standard basic triangle form adjacent to the shorter edges; \(c_{1}\) must be in \([0,1 / 2], c_{2}>0\) and \(\left(1-c_{1}\right)^{2}+\) \(c_{2}^{2} \leq 1\).
M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates which serves as a center in the interior of the standard basic triangle form.

\section*{Value}

Three projection points (stacked row-wise) from a general center \(M=\left(m_{1}, m_{2}\right)\) in Cartesian coordinates or \(M=(\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of a standard basic triangle form to the edges on the extension of the lines joining \(M\) to the vertices; row \(i\) is the projection point into edge \(i\), for \(i=1,2,3\).

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

\section*{See Also}
prj.cent2edges and prj.nondegPEcent2edges

\section*{Examples}
```

c1<-.4; c2<-. 6
A<-C(0,0); B<-C(1,0); C<-C (c1, c2);
Tb<-rbind(A,B,C);
M<-as.numeric(runif.basic.tri(1, c1,c2)\$g) \#try also M<-c(.6,.2)

```
```

Ds<-prj.cent2edges.basic.tri(c1,c2,M)
Ds
Xlim<-range(Tb[,1])
Ylim<-range(Tb[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
if (dimension(M)==3) {M<-bary2cart(M,Tb)}
\#need to run this when M is given in barycentric coordinates
plot(Tb,pch=".",xlab="",ylab="",axes=TRUE,
xlim=Xlim+xd*c(-.1,.1),ylim=Ylim+yd*c(-.05,.05))
polygon(Tb)
L<-rbind(M,M,M); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)
L<-rbind(M,M,M); R<-Tb
segments(L[,1], L[,2], R[,1], R[,2], lty = 3,col=2)
xc<-Tb[,1]+c(-.04,.05,.04)
yc<-Tb[,2]+c(.02,.02,.03)
txt.str<-c("rv=1","rv=2", "rv=3")
text(xc,yc,txt.str)
txt<-rbind(M,Ds)
xc<-txt[,1]+c(-.02,.03,-.03,0)
yc<-txt[, 2]+c(-.02,.02,.02,-.03)
txt.str<-c("M","D1", "D2", "D3")
text(xc,yc,txt.str)

```
prj.nondegPEcent2edges

Projections of Centers for non-degenerate asymptotic distribution of domination number of Proportional Edge Proximity Catch Digraphs (PE-PCDs) to its edges

\section*{Description}

Returns the projections from center cent to the edges on the extension of the lines joining cent to the vertices in the triangle, tri. Here \(M\) is one of the three centers which gives nondegenerate asymptotic distribution of the domination number of PE-PCD for uniform data in tri for a given expansion parameter \(r\) in \((1,1.5]\). The center label cent values \(1,2,3\) correspond to the vertices \(M_{1}, M_{2}\), and \(M_{3}\) (i.e., row numbers in the output of center. nondegPE(tri, r)); default for cent is 1 . cent becomes center of mass \(C M\) for \(r=1.5\).

See also (Ceyhan (2005); Ceyhan and Priebe (2007); Ceyhan (2011)).

\section*{Usage}
prj.nondegPEcent2edges(tri, r, cent = 1)

\section*{Arguments}
tri A \(3 \times 2\) matrix with each row representing a vertex of the triangle.
\(r \quad\) A positive real number which serves as the expansion parameter in PE proximity region; must be in \((1,1.5]\) for this function.
cent Index of the center (as \(1,2,3\) corresponding to \(M_{1}, M_{2}, M_{3}\)) which gives nondegenerate asymptotic distribution of the domination number of PE-PCD for uniform data in tri for expansion parameter \(r\) in \((1,1.5]\); default cent=1.

\section*{Value}

Three projection points (stacked row-wise) from one of the centers (as \(1,2,3\) corresponding to \(M_{1}, M_{2}, M_{3}\)) which gives nondegenerate asymptotic distribution of the domination number of PE-PCD for uniform data in tri for expansion parameter \(r\) in \((1,1.5]\).

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2011). "Spatial Clustering Tests Based on Domination Number of a New Random Digraph Family." Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

Ceyhan E, Priebe CE (2007). "On the Distribution of the Domination Number of a New Family of Parametrized Random Digraphs." Model Assisted Statistics and Applications, 1(4), 231-255.

\section*{See Also}
prj.cent2edges.basic.tri and prj.cent2edges

\section*{Examples}
```

A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
r<-1.35
prj.nondegPEcent2edges(Tr,r,cent=2)
Ms<-center.nondegPE(Tr,r)
M1=Ms[1,]

```
```

    Ds<-prj.nondegPEcent2edges(Tr,r,cent=1)
    Xlim<-range(Tr[,1])
    Ylim<-range(Tr[,2])
    xd<-Xlim[2]-Xlim[1]
    yd<-Ylim[2]-Ylim[1]
    plot(Tr,pch=".",xlab="",ylab="",
main="Projections from a non-degeneracy center\n to the edges of the triangle",
axes=TRUE,xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)
points(Ms,pch=".",col=1)
polygon(Ms,lty = 2)
xc<-Tr[,1]+c(-.02,.03,.02)
yc<-Tr[,2]+c(-.02,.04,.04)
txt.str<-c("A","B","C")
text(xc,yc,txt.str)
txt<-Ms
xc<-txt[,1]+c(-.02,.04,-.04)
yc<-txt[,2]+c(-.02,.04,.04)
txt.str<-c("M1","M2","M3")
text(xc,yc,txt.str)
points(Ds,pch=4,col=2)
L<-rbind(M1,M1,M1); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty = 2,lwd=2,col=4)
txt<-Ds
xc<-txt[,1]+c(-.02,.04,-.04)
yc<-txt[,2]+c(-.02,.04,.04)
txt.str<-c("D1","D2","D3")
text(xc,yc,txt.str)
prj.nondegPEcent2edges(Tr,r,cent=3)
\#gives an error message if center index, cent, is different from 1, 2 or 3
prj.nondegPEcent2edges(Tr,r=1.49,cent=2)
\#gives an error message if r>1.5

```
radii

The radii of points from one class with respect to points from the other class

\section*{Description}

Returns the radii of the balls centered at \(\times\) points where radius of an \(\times\) point equals to the minimum distance to y points (i.e., distance to the closest y point). That is, for each \(\times\) point radius \(=\) \(\min _{y \in Y}(d(x, y)) . \mathrm{x}\) and y points must be of the same dimension.

\section*{Usage}
```

radii(x, y)

```

\section*{Arguments}
x
A set of \(d\)-dimensional points for which the radii are computed. Radius of an x point equals to the distance to the closest y point.
\(y \quad\) A set of \(d\)-dimensional points representing the reference points for the balls. That is, radius of an \(x\) point is defined as the minimum distance to the \(y\) points.

\section*{Value}

A list with three elements
rad A vector whose entries are the radius values for the \(x\) points. Radius of an \(x\) point equals to the distance to the closest \(y\) point
index.of.clYp A vector of indices of the closest \(y\) points to the \(x\) points. The \(i\)-th entry in this vector is the index of the closest y point to \(i\)-th \(\times\) point.
closest. Yp A vector of the closest y points to the x points. The \(i\)-th entry in this vector or \(i\)-th row in the matrix is the closest y point to \(i\)-th x point.

\section*{Author(s)}

Elvan Ceyhan

\section*{See Also}
radius

\section*{Examples}
```

nx<-10
ny<-5
X<-cbind(runif(nx),runif(nx))
Y<-cbind(runif(ny),runif(ny))
Rad<-radii(X,Y)
Rad
rd<-Rad$rad
Xlim<-range(X[,1]-rd,X[,1]+rd,Y[,1])
Ylim<-range(X[, 2]-rd,X[, 2]+rd,Y[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(rbind(Y),asp=1,pch=16,col=2,xlab="",ylab="",
main="Circles Centered at Class X Points with \n Radius Equal to the Distance to Closest Y Point",
axes=TRUE, xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
points(rbind(X))
interp::circles(X[,1],X[,2],Rad$rad,lty=1,lwd=1,col=4)

```
```

\#For 1D data
nx<-10
ny<-5
Xm<-as.matrix(X)
Ym<-as.matrix(Y)
radii(Xm,Ym) \#this works as Xm and Ym are treated as 1D data sets
\#but will give error if radii(X,Y) is used
\#as X and Y are treated as vectors (i.e., points)
\#For 3D data
nx<-10
ny<-5
X<-cbind(runif(nx),runif(nx),runif(nx))
Y<-cbind(runif(ny),runif(ny),runif(ny))
radii(X,Y)

```
radius

The radius of a point from one class with respect to points from the other class

\section*{Description}

Returns the radius for the ball centered at point p with radius=min distance to Y points. That is, for the point p radius \(=\min _{y \in Y} d(p, y)\) (i.e., distance from p to the closest Y point). The point p and \(Y\) points must be of same dimension.

\section*{Usage}
radius \((p, Y)\)

\section*{Arguments}
\(\mathrm{p} \quad\) A \(d\)-dimensional point for which radius is computed. Radius of p equals to the distance to the closest \(Y\) point to \(p\).
Y A set of \(d\)-dimensional points representing the reference points for the balls. That is, radius of the point \(p\) is defined as the minimum distance to the \(Y\) points.

\section*{Value}

A list with three elements
\(\operatorname{rad} \quad\) Radius value for the point, p defined as \(\min _{y i n Y} d(p, y)\)
index.of.clYpnt
Index of the closest \(Y\) points to the point \(p\)
closest. Ypnt The closest \(Y\) point to the point \(p\)

\section*{Author(s)}

Elvan Ceyhan

\section*{See Also}
radii

\section*{Examples}
```

A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
ny<-10
Y<-cbind(runif(ny),runif(ny))
radius(A,Y)
nx<-10
X<-cbind(runif(nx),runif(nx))
rad<-rep(0,nx)
for (i in 1:nx)
rad[i]<-radius(X[i,],Y)\$rad
Xlim<-range(X[,1]-rad,X[,1]+rad,Y[,1])
Ylim<-range(X[,2]-rad,X[,2]+rad,Y[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(rbind(Y),asp=1,pch=16,col=2,xlab="",ylab="",
main="Circles Centered at Class X Points with \n Radius Equal to the Distance to Closest Y Point",
axes=TRUE, xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
points(rbind(X))
interp::circles(X[,1],X[,2],rad,lty=1,lwd=1,col=4)
\#For 1D data
ny<-5
Y<-runif(ny)
Ym = as.matrix(Y)
radius(1,Ym) \#this works as Y is treated as 1D data sets
\#but will give error if radius(1,Y) is used
\#as Y is treated as a vector (i.e., points)
\#For 3D data
ny<-5
X<-runif(3)
Y<-cbind(runif(ny),runif(ny),runif(ny))
radius(X,Y)

```

\section*{Description}

An object of class "Patterns". Generates n 2D points uniformly in (\(\left.a_{1}-e, a_{1}+e\right) \times\left(a_{1}-e, a_{1}+\right.\) \(e) \cap U_{i} B\left(y_{i}, e\right)\) (\(a_{1}\) and \(b 1\) are denoted as a1 and b1 as arguments) where \(Y_{p}=\left(y_{1}, y_{2}, \ldots, y_{n_{y}}\right)\) with \(n_{y}\) being number of Yp points for various values of e under the association pattern and \(B\left(y_{i}, e\right)\) is the ball centered at \(y_{i}\) with radius e.
e must be positive and very large values of e provide patterns close to CSR. a1 is defaulted to the minimum of the \(x\)-coordinates of the Yp points, a2 is defaulted to the maximum of the \(x\) coordinates of the \(Y p\) points, b 1 is defaulted to the minimum of the \(y\)-coordinates of the \(Y p\) points, b 2 is defaulted to the maximum of the \(y\)-coordinates of the Yp points. This function is also very similar to rassoc. matern, where rassoc. circular needs the study window to be specified, while rassoc.matern does not.

\section*{Usage}
rassoc.circular (
n,
Yp,
e,
\(a 1=\min (Y p[, 1])\),
a2 \(=\max (Y p[, 1])\),
b1 \(=\min (Y p[, 2])\),
\(b 2=\max (Y p[, 2])\)
)

\section*{Arguments}
n
Yp A set of 2D points representing the reference points. The generated points are associated (in a circular or radial fashion) with these points.
e A positive real number representing the radius of the balls centered at \(Y p\) points. Only these balls are allowed for the generated points (i.e., generated points would be in the union of these balls).
a1, a2 Real numbers representing the range of \(x\)-coordinates in the region (default is the range of \(x\)-coordinates of the Yp points).
\(\mathrm{b} 1, \mathrm{~b} 2 \quad\) Real numbers representing the range of \(y\)-coordinates in the region (default is the range of \(y\)-coordinates of the Yp points).

\section*{Value}

A list with the elements
\begin{tabular}{ll}
type & The type of the point pattern \\
mtitle & The "main" title for the plot of the point pattern \\
parameters & Radial attraction parameter of the association pattern \\
ref.points & \begin{tabular}{l}
The input set of attraction points Yp, i.e., points with which generated points are \\
associated.
\end{tabular} \\
gen.points & \begin{tabular}{l}
The output set of generated points associated with Yp points \\
Logical output for triangulation based on Yp points should be implemented or
\end{tabular} \\
not. if TRUE triangulation based on Yp points is to be implemented (default is set \\
to FALSE).
\end{tabular}

\section*{Author(s)}

\author{
Elvan Ceyhan
}

\section*{See Also}
rseg.circular, rassoc.std.tri, rassocII.std.tri, rassoc.matern, and rassoc.multi.tri

\section*{Examples}
```

nx<-100; ny<-4; \#try also nx<-1000; ny<-10;
e<-.15;
\#with default bounding box (i.e., unit square)
Y<-cbind(runif(ny),runif(ny))
Xdt<-rassoc.circular(nx,Y,e)
Xdt
summary(Xdt)
plot(Xdt,asp=1)
Xdt<-Xdt\$gen.points
Xlim<-range(Xdt[,1],Y[,1]);
Ylim<-range(Xdt[, 2],Y[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(Y,asp=1,xlab="x",ylab="y",
main="Circular Association of X points with Y Points",
xlim=Xlim+xd*c(-.01,.01),ylim=Ylim+yd*c(-.01,.01),
pch=16,col=2,lwd=2)
points(Xdt)
\#with default bounding box (i.e., unit square)

```
```

Xlim<-range(Xdt[,1],Y[,1]);
Ylim<-range(Xdt[, 2],Y[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(Y,asp=1,xlab="x",ylab="y",
main="Circular Association of X points with Y Points",
xlim=xlim+xd*c(-.01,.01),ylim=Ylim+yd*c(-.01, .01),pch=16,
col=2,lwd=2)
points(Xdt)
\#with a rectangular bounding box
a1<-0; a2<-10;
b1<-0; b2<-5;
e<-1.1; \#try also e<-5; \#pattern very close to CSR!
Y<-cbind(runif(ny,a1, a2),runif(ny,b1,b2))
\#try also Y<-cbind(runif(ny,a1,a2/2),runif(ny,b1,b2/2))
Xdt<-rassoc.circular(nx,Y,e, a1, a2,b1,b2)\$gen.points
Xlim<-range(Xdt[,1],Y[,1]);
Ylim<-range(Xdt[,2],Y[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(Y,asp=1,xlab="x",ylab="y",
main="Circular Association of X points with Y Points",
xlim=Xlim+xd*c(-.01,.01),ylim=Ylim+yd*c(-.01,.01),
pch=16,col=2, lwd=2)
points(Xdt)

```
rassoc.matern

Generation of points associated (in a Matern-like fashion) to a given set of points

\section*{Description}

An object of class "Patterns". Generates n 2 D points uniformly in \(\cup B\left(y_{i}, e\right)\) where \(Y_{p}=\) \(\left(y_{1}, y_{2}, \ldots, y_{n_{y}}\right)\) with \(n_{y}\) being number of \(Y p\) points for various values of e under the association pattern and \(B\left(y_{i}, e\right)\) is the ball centered at \(y_{i}\) with radius e.
The pattern resembles the Matern cluster pattern (see rMatClust in the spatstat.random package for further information (Baddeley and Turner (2005)). rMatClust(kappa, scale, mu, win) in the simplest case generates a uniform Poisson point process of "parent" points with intensity kappa. Then each parent point is replaced by a random cluster of "offspring" points, the number of points per cluster being Poisson(mu) distributed, and their positions being placed and uniformly inside a disc of radius scale centered on the parent point. The resulting point pattern is a realization of the classical "stationary Matern cluster process" generated inside the window win.

The main difference of rassoc. matern and rMatClust is that the parent points are Yp points which are given beforehand and we do not discard them in the end in rassoc.matern and the offspring points are the points associated with the reference points, Yp; e must be positive and very large values of e provide patterns close to CSR.
This function is also very similar to rassoc.circular, where rassoc.circular needs the study window to be specified, while rassoc. matern does not.

\section*{Usage}
rassoc.matern(n, Yp, e)

\section*{Arguments}
\(\mathrm{n} \quad\) A positive integer representing the number of points to be generated.
Yp A set of 2D points representing the reference points. The generated points are associated (in a Matern-cluster like fashion) with these points.
e A positive real number representing the radius of the balls centered at \(Y p\) points. Only these balls are allowed for the generated points (i.e., generated points would be in the union of these balls).

\section*{Value}

A list with the elements
\begin{tabular}{|c|c|}
\hline type & The type of the point pattern \\
\hline mtitle & The "main" title for the plot of the point pattern \\
\hline parameters & Radial (i.e., circular) attraction parameter of the association pattern. \\
\hline ref.points & The input set of attraction points \(Y p\), i.e., points with which generated points are associated. \\
\hline gen.points & The output set of generated points associated with Yp points. \\
\hline tri.Yp & Logical output for triangulation based on \(Y p\) points should be implemented or not. if TRUE triangulation based on Yp points is to be implemented (default is set to FALSE). \\
\hline desc.pat & Description of the point pattern \\
\hline num. points & The vector of two numbers, which are the number of generated points and the number of attraction (i.e., Yp) points. \\
\hline xlimit, ylimit & The possible ranges of the \(x\) - and \(y\)-coordinates of the generated points. \\
\hline
\end{tabular}

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Baddeley AJ, Turner R (2005). "spatstat: An R Package for Analyzing Spatial Point Patterns." Journal of Statistical Software, 12(6), 1-42.

\section*{See Also}
rassoc.circular, rassoc.std.tri, rassocII.std.tri, rassoc.multi.tri, rseg.circular, and rMatClust in the spatstat.random package

\section*{Examples}
```

nx<-100; ny<-4; \#try also nx<-1000; ny<-10;
e<-.15;
\#try also e<-1.1; \#closer to CSR than association, as e is large
\#Y points uniform in unit square
Y<-cbind(runif(ny),runif(ny))
Xdt<-rassoc.matern(nx,Y,e)
Xdt
summary(Xdt)
plot(Xdt,asp=1)
Xdt<-Xdt$gen.points
Xlim<-range(Xdt[,1],Y[,1]);
Ylim<-range(Xdt[,2],Y[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(Y,asp=1,xlab="x",ylab="y",
main="Matern-like Association of X points with Y Points",
    xlim=Xlim+xd*c(-.01,.01),ylim=Ylim+yd*c(-.01,.01),
    pch=16,col=2,lwd=2)
points(Xdt)
a1<-0; a2<-10;
b1<-0; b2<-5;
e<-1.1;
#Y points uniform in a rectangle
Y<-cbind(runif(ny,a1,a2),runif(ny,b1,b2))
#try also Y<-cbind(runif(ny,a1,a2/2),runif(ny,b1,b2/2))
Xdt<-rassoc.matern(nx,Y,e)$gen.points
Xlim<-range(Xdt[,1],Y[,1]);
Ylim<-range(Xdt[, 2],Y[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(Y,asp=1,xlab="x",ylab="y",
main="Matern-like Association of X points with Y Points",
xlim=Xlim+xd*c(-.01,.01),ylim=Ylim+yd*c(-.01,.01),pch=16,col=2,lwd=2)
points(Xdt)

```
rassoc.multi.tri Generation of points associated (in a Type I fashion) with a given set of points

\section*{Description}

An object of class "Patterns". Generates \(n\) points uniformly in the support for Type I association in the convex hull of set of points, Yp. delta is the parameter of association (that is, only \(\delta 100 \%\) area around each vertex in each Delaunay triangle is allowed for point generation).
delta corresponds to eps in the standard equilateral triangle \(T_{e}\) as delta \(=4 \mathrm{eps}^{2} / 3\) (see rseg. std.tri function).

If \(Y p\) consists only of 3 points, then the function behaves like the function rassoc.tri.
DTmesh must be the Delaunay triangulation of \(Y p\) and \(D T r\) must be the corresponding Delaunay triangles (both DTmesh and DTr are NULL by default). If NULL, DTmesh is computed via tri.mesh and DTr is computed via triangles function in interp package.
tri.mesh function yields the triangulation nodes with their neighbours, and creates a triangulation object, and triangles function yields a triangulation data structure from the triangulation object created by tri.mesh (the first three columns are the vertex indices of the Delaunay triangles).

See (Ceyhan et al. (2006); Ceyhan et al. (2007); Ceyhan (2011)) for more on the association pattern. Also, see (Okabe et al. (2000); Ceyhan (2010); Sinclair (2016)) for more on Delaunay triangulation and the corresponding algorithm.

\section*{Usage}
rassoc.multi.tri(n, Yp, delta, DTmesh = NULL, DTr = NULL)

\section*{Arguments}
\(\mathrm{n} \quad\) A positive integer representing the number of points to be generated.
Yp A set of 2D points from which Delaunay triangulation is constructed.
delta A positive real number in \((0,1)\). delta is the parameter of association (that is, only \(\delta 100 \%\) area around vertices of each Delaunay triangle is allowed for point generation).

DTmesh Delaunay triangulation of Yp, default is NULL, which is computed via tri.mesh function in interp package. tri.mesh function yields the triangulation nodes with their neighbours, and creates a triangulation object.

DTr Delaunay triangles based on Yp, default is NULL, which is computed via tri.mesh function in interp package. triangles function yields a triangulation data structure from the triangulation object created by tri.mesh.

\section*{Value}

A list with the elements
type \(\quad\) The type of the pattern from which points are to be generated
mtitle The "main" title for the plot of the point pattern
parameters Attraction parameter, delta, of the Type I association pattern. delta is in \((0,1)\) and only \(\delta 100 \%\) of the area around vertices of each Delaunay triangle is allowed for point generation.
ref.points The input set of points \(Y p\); reference points, i.e., points with which generated points are associated.
gen.points The output set of generated points associated with \(Y p\) points.
tri.Y Logical output, TRUE if triangulation based on Yp points should be implemented.
desc.pat Description of the point pattern
num. points The vector of two numbers, which are the number of generated points and the number of reference (i.e., Yp) points.
xlimit, ylimit The ranges of the \(x\) - and \(y\)-coordinates of the reference points, which are the \(Y p\) points

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2011). "Spatial Clustering Tests Based on Domination Number of a New Random Digraph Family." Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

Ceyhan E, Priebe CE, Marchette DJ (2007). "A new family of random graphs for testing spatial segregation." Canadian Journal of Statistics, 35(1), 27-50.

Ceyhan E, Priebe CE, Wierman JC (2006). "Relative density of the random \(r\)-factor proximity catch digraphs for testing spatial patterns of segregation and association." Computational Statistics \& Data Analysis, 50(8), 1925-1964.

Okabe A, Boots B, Sugihara K, Chiu SN (2000). Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. Wiley, New York.

Sinclair D (2016). "S-hull: a fast radial sweep-hull routine for Delaunay triangulation." 1604.01428.

\section*{See Also}
rassoc.circular, rassoc.std.tri, rassocII.std.tri, and rseg.multi.tri

\section*{Examples}
```

\#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-100; ny<-4; \#try also nx<-40; ny<-10 or nx<-1000; ny<-10;
set.seed(1)
Yp<-cbind(runif(ny),runif(ny))
del<-.4
Xdt<-rassoc.multi.tri(nx,Yp,del)
Xdt
summary (Xdt)
plot(Xdt)
\#or use
DTY<-interp::tri.mesh(Yp[,1],Yp[,2],duplicate="remove")
\#Delaunay triangulation based on Y points
TRY<-interp::triangles(DTY)[,1:3];
Xp<-rassoc.multi.tri(nx,Yp,del,DTY,TRY)\$g
\#data under CSR in the convex hull of Ypoints
Xlim<-range(Yp[,1])
Ylim<-range(Yp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
\#plot of the data in the convex hull of Y points together with the Delaunay triangulation
DTY<-interp::tri.mesh(Yp[,1],Yp[, 2],duplicate="remove")
\#Delaunay triangulation based on Y points
plot(Xp,main="Points from Type I Association \n in Multipe Triangles",
xlab=" ", ylab=" ",xlim=xlim+xd*c(-.05,.05),
ylim=Ylim+yd*c(-.05,.05),type="n")
interp::plot.triSht(DTY, add=TRUE,
do.points=TRUE,col="blue")
points(Xp,pch=".", cex=3)

```
rassoc.std.tri

Generation of points associated (in a Type I fashion) with the vertices of \(T_{-} e\)

\section*{Description}

An object of class "Patterns". Generates \(n\) points uniformly in the standard equilateral triangle \(T_{e}=T((0,0),(1,0),(1 / 2, \sqrt{3} / 2))\) under the type I association alternative for eps in \((0, \sqrt{3} / 3=\) \(0.5773503]\). The allowed triangular regions around the vertices are determined by the parameter eps.

In the type I association, the triangular support regions around the vertices are determined by the parameter eps where \(\sqrt{3} / 3\)-eps serves as the height of these triangles (see examples for a sample plot.)
See also (Ceyhan et al. (2006); Ceyhan et al. (2007); Ceyhan (2011)).

\section*{Usage}
rassoc.std.tri(n, eps)

\section*{Arguments}
\(\mathrm{n} \quad\) A positive integer representing the number of points to be generated.
eps A positive real number representing the parameter of type I association (where \(\sqrt{3} / 3\)-eps serves as the height of the triangular support regions around the vertices).

\section*{Value}

A list with the elements
type The type of the point pattern
mtitle The "main" title for the plot of the point pattern
parameters The attraction parameter of the association pattern, eps, where \(\sqrt{3} / 3\)-eps serves as the height of the triangular support regions around the vertices
ref.points The input set of points \(Y\); reference points, i.e., points with which generated points are associated (i.e., vertices of \(T_{e}\)).
gen.points The output set of generated points associated with \(Y\) points (i.e., vertices of \(T_{e}\)).
tri.Y Logical output for triangulation based on \(Y\) points should be implemented or not. if TRUE triangulation based on \(Y\) points is to be implemented (default is set to FALSE).
desc.pat Description of the point pattern.
num. points The vector of two numbers, which are the number of generated points and the number of reference (i.e., \(Y\)) points.
xlimit,ylimit The ranges of the \(x\) - and \(y\)-coordinates of the reference points, which are the vertices of \(T_{e}\) here

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2011). "Spatial Clustering Tests Based on Domination Number of a New Random Digraph Family." Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

Ceyhan E, Priebe CE, Marchette DJ (2007). "A new family of random graphs for testing spatial segregation." Canadian Journal of Statistics, 35(1), 27-50.

Ceyhan E, Priebe CE, Wierman JC (2006). "Relative density of the random \(r\)-factor proximity catch digraphs for testing spatial patterns of segregation and association." Computational Statistics \& Data Analysis, 50(8), 1925-1964.

\section*{See Also}
```

rseg.circular, rassoc.circular,rsegII.std.tri, and rseg.multi.tri

```

\section*{Examples}
```

A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C);
n<-100 \#try also n<-20 or n<-100 or 1000
eps<-. }25\mathrm{ \#try also .15, .5, . }7
set.seed(1)
Xdt<-rassoc.std.tri(n,eps)
Xdt
summary(Xdt)
plot(Xdt,asp=1)
Xlim<-range(Te[,1])
Ylim<-range(Te[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
Xp<-Xdt\$gen.points
plot(Te,pch=".",xlab="",ylab="",
main="Type I association in the \n standard equilateral triangle",
xlim=Xlim+xd*c(-.01,.01),ylim=Ylim+yd*c(-.01,.01))
polygon(Te)
points(Xp)
\#The support for the Type I association alternative
sr<-(sqrt(3)/3-eps)/(sqrt(3)/2)
C1<-C+sr*(A-C); C2<-C+sr*(B-C)
A1<-A+sr*(B-A); A2<-A+sr*(C-A)
B1<-B+sr*(A-B); B2<-B+sr*(C-B)
supp<-rbind(A1,B1,B2,C2,C1,A2)
plot(Te,asp=1,pch=".",xlab="",ylab="",
main="Support of the Type I Association",
xlim=Xlim+xd*c(-.01,.01),ylim=Ylim+yd*c(-.01,.01))
if (sr<=.5)
{
polygon(Te,col=5)
polygon(supp,col=0)
} else
{
polygon(Te,col=0,lwd=2.5)

```
```

    polygon(rbind(A,A1,A2),col=5,border=NA)
    polygon(rbind(B,B1,B2),col=5,border=NA)
    polygon(rbind(C,C1,C2),col=5,border=NA)
    }
points(Xp)

```
rassoc.tri Generation of points associated (in a Type I fashion) with the vertices of a triangle

\section*{Description}

An object of class "Patterns". Generates \(n\) points uniformly in the support for Type I association in a given triangle, tri. delta is the parameter of association (that is, only \(\delta 100 \%\) area around each vertex in the triangle is allowed for point generation). del ta corresponds to eps in the standard equilateral triangle \(T_{e}\) as delta \(=4 \mathrm{eps}^{2} / 3\) (see rseg.std.tri function).
See (Ceyhan et al. (2006); Ceyhan et al. (2007); Ceyhan (2011)) for more on the association pattern.

\section*{Usage}
rassoc.tri(n, tri, delta)

\section*{Arguments}
\(\mathrm{n} \quad\) A positive integer representing the number of points to be generated from the association pattern in the triangle, tri.
tri A \(3 \times 2\) matrix with each row representing a vertex of the triangle.
delta A positive real number in \((0,1)\). delta is the parameter of association (that is, only \(\delta 100 \%\) area around vertices of the triangle is allowed for point generation).

\section*{Value}

A list with the elements
\begin{tabular}{ll}
type & The type of the pattern from which points are to be generated \\
mtitle & The "main" title for the plot of the point pattern \\
parameters & \begin{tabular}{l}
Attraction parameter, delta, of the Type I association pattern. delta is in \((0,1)\) \\
and only \(\delta 100 \%\) of the area around vertices of the triangle tri is allowed for \\
point generation.
\end{tabular} \\
ref.points & \begin{tabular}{l}
The input set of points, i.e., vertices of tri; reference points, i.e., points with \\
which generated points are associated.
\end{tabular} \\
gen.points & \begin{tabular}{l}
The output set of generated points associated with the vertices of tri.
\end{tabular} \\
tri.Y & Logical output, TRUE if triangulation based on Yp points should be implemented.
\end{tabular}
desc.pat Description of the point pattern
num. points The vector of two numbers, which are the number of generated points and the number of reference (i.e., Yp) points.
xlimit, ylimit The ranges of the \(x\) - and \(y\)-coordinates of the reference points, which are the Yp points

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2011). "Spatial Clustering Tests Based on Domination Number of a New Random Digraph Family." Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

Ceyhan E, Priebe CE, Marchette DJ (2007). "A new family of random graphs for testing spatial segregation." Canadian Journal of Statistics, 35(1), 27-50.

Ceyhan E, Priebe CE, Wierman JC (2006). "Relative density of the random \(r\)-factor proximity catch digraphs for testing spatial patterns of segregation and association." Computational Statistics \& Data Analysis, 50(8), 1925-1964.

\section*{See Also}
rseg.tri, rassoc.std.tri, rassocII.std.tri, and rassoc.multi.tri

\section*{Examples}
```

n<-100
A<-c(1,1); B<-c(2,0); C<-C(1.5,2);
Tr<-rbind(A,B,C)
del<-.4
Xdt<-rassoc.tri(n,Tr,del)
Xdt
summary(Xdt)
plot(Xdt)
Xp<-Xdt\$g
Xlim<-range(Tr[,1])
Ylim<-range(Tr[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(Tr,pch=".",xlab="",ylab="",
main="Points from Type I Association \n in one Triangle",
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)
points(Xp)
xc<-Tr[,1]+c(-.02,.02,.02)

```
```

yc<-Tr[,2]+c(.02,.02,.03)
txt.str<-c("A","B","C")
text(xc,yc,txt.str)

```
rassocII.std.tri Generation of points associated (in a Type II fashion) with the edges of T_e

\section*{Description}

An object of class "Patterns". Generates n points uniformly in the standard equilateral triangle \(T_{e}=T((0,0),(1,0),(1 / 2, \sqrt{3} / 2))\) under the type II association alternative for eps in \((0, \sqrt{3} / 6=\) \(0.2886751]\).

In the type II association, the annular allowed regions around the edges are determined by the parameter eps where \(\sqrt{3} / 6\)-eps is the distance from the interior triangle (i.e., forbidden region for association) to \(T_{e}\) (see examples for a sample plot.)

\section*{Usage}
rassocII.std.tri(n, eps)

\section*{Arguments}
\(\mathrm{n} \quad\) A positive integer representing the number of points to be generated.
eps A positive real number representing the parameter of type II association (where \(\sqrt{3} / 6\)-eps is the distance from the interior triangle distance from the interior triangle to \(T_{e}\)).

\section*{Value}

A list with the elements
type The type of the point pattern
mtitle The "main" title for the plot of the point pattern
parameters The attraction parameter, eps, of the association pattern, where \(\sqrt{3} / 6\)-eps is the distance from the interior triangle to \(T_{e}\)
ref.points The input set of points \(Y\); reference points, i.e., points with which generated points are associated (i.e., vertices of \(T_{e}\)).
gen.points \(\quad\) The output set of generated points associated with \(Y\) points (i.e., edges of \(T_{e}\)).
tri. \(Y \quad\) Logical output for triangulation based on \(Y\) points should be implemented or not. if TRUE triangulation based on \(Y\) points is to be implemented (default is set to FALSE).
desc.pat Description of the point pattern

\title{
num. points The vector of two numbers, which are the number of generated points and the number of reference (i.e., Y) points, which is 3 here. \\ xlimit,ylimit The ranges of the \(x\) - and \(y\)-coordinates of the reference points, which are the vertices of \(T_{e}\) here.
}

\section*{Author(s)}

Elvan Ceyhan

\section*{See Also}
rseg.circular, rassoc.circular, rsegII.std.tri, and rseg.multi.tri

\section*{Examples}
```

A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C);
n<-100 \#try also n<-20 or n<-100 or 1000
eps<-. 2 \#try also .25, . }
set.seed(1)
Xdt<-rassocII.std.tri(n,eps)
Xdt
summary(Xdt)
plot(Xdt,asp=1)
Xlim<-range(Te[,1])
Ylim<-range(Te[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
Xp<-Xdt\$gen.points
plot(Te,pch=".",xlab="",ylab="",
main="Type II association in the \n standard equilateral triangle",
xlim=Xlim+xd*c(-.01,.01),ylim=Ylim+yd*c(-.01,.01))
polygon(Te)
points(Xp)
\#The support for the Type II association alternative
A1<-c(1/2-eps*sqrt(3),sqrt(3)/6-eps);
B1<-c(1/2+eps*sqrt(3),sqrt(3)/6-eps);
C1<-c(1/2,sqrt(3)/6+2*eps);
supp<-rbind(A1,B1,C1)
plot(Te,asp=1,pch=".",xlab="",ylab="",
main="Support of the Type II Association",
xlim=Xlim+xd*c(-.01,.01),ylim=Ylim+yd*c(-.01,.01))
polygon(Te,col=5)
polygon(supp,col=0)
points(Xp)

``` contains a point

\section*{Description}

Returns the index of the edge whose region contains point, p , in the standard basic triangle form \(T_{b}=T\left(A=(0,0), B=(1,0), C=\left(c_{1}, c_{2}\right)\right)\) and edge regions based on center \(M=\left(m_{1}, m_{2}\right)\) in Cartesian coordinates or \(M=(\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of the standard basic triangle form \(T_{b}\).
Edges are labeled as 3 for edge \(A B, 1\) for edge \(B C\), and 2 for edge \(A C\). If the point, p , is not inside tri, then the function yields NA as output. Edge region 1 is the triangle \(T(B, C, M)\), edge region 2 is \(T(A, C, M)\), and edge region 3 is \(T(A, B, M)\). In the standard basic triangle form \(T_{b} c_{1}\) is in \([0,1 / 2], c_{2}>0\) and \(\left(1-c_{1}\right)^{2}+c_{2}^{2} \leq 1\).
Any given triangle can be mapped to the standard basic triangle form by a combination of rigid body motions (i.e., translation, rotation and reflection) and scaling, preserving uniformity of the points in the original triangle. Hence, standard basic triangle form is useful for simulation studies under the uniformity hypothesis.
See also (Ceyhan (2005, 2010); Ceyhan et al. (2007)).

\section*{Usage}
rel.edge.basic.tri(p, c1, c2, M)

\section*{Arguments}
\(\mathrm{p} \quad\) A 2D point for which M-edge region it resides in is to be determined in the standard basic triangle form \(T_{b}\).
c1, c2 Positive real numbers which constitute the upper vertex of the standard basic triangle form (i.e., the vertex adjacent to the shorter edges of \(T_{b}\)); \(c_{1}\) must be in \([0,1 / 2], c_{2}>0\) and \(\left(1-c_{1}\right)^{2}+c_{2}^{2} \leq 1\).

M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates which serves as a center in the interior of the standard basic triangle form \(T_{b}\).

\section*{Value}

A list with three elements
re Index of the M-edge region that contains point, \(p\) in the standard basic triangle form \(T_{b}\).
tri The vertices of the triangle, where row labels are \(A, B\), and \(C\) with edges are labeled as 3 for edge \(A B, 1\) for edge \(B C\), and 2 for edge \(A C\).
desc Description of the edge labels

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). "An investigation of new graph invariants related to the domination number of random proximity catch digraphs." Methodology and Computing in Applied Probability, 14(2), 299-334.

Ceyhan E, Priebe CE, Marchette DJ (2007). "A new family of random graphs for testing spatial segregation." Canadian Journal of Statistics, 35(1), 27-50.

\section*{See Also}
```

rel.edge.triCM, rel.edge.tri,rel.edge.basic.tri,rel.edge.std.triCM, and edge.reg.triCM

```

\section*{Examples}
```

c1<-.4; c2<-. }
A<-c(0,0); B<-c(1,0); C<-c(c1,c2);
Tb<-rbind(A,B,C);
M<-c(.6,.2)
P<-c(.4,.2)
rel.edge.basic.tri(P, c1, c2,M)
A<-c(0,0);B<-c(1,0);C<-c(c1,c2);
Tb<-rbind(A,B,C)
n<-20 \#try also n<-40
Xp<-runif.basic.tri(n, c1, c2)$g
M<-as.numeric(runif.basic.tri(1, c1,c2)$g) \#try also M<-c(.6,.2)
re<-vector()
for (i in 1:n)
re<-c(re,rel.edge.basic.tri(Xp[i,],c1,c2,M)\$re)
re
Xlim<-range(Tb[,1],Xp[,1])
Ylim<-range(Tb[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

```
```

plot(Tb,xlab="",ylab="",axes=TRUE,pch=".",xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
points(Xp,pch=".")
polygon(Tb)
L<-Tb; R<-rbind(M,M,M)
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)
text(Xp,labels=factor(re))
txt<-rbind(Tb,M)
xc<-txt[,1]+c(-.03,.03,.02,0)
yc<-txt[,2]+c(.02,.02,.02,-.03)
txt.str<-c("A","B","C", "M")
text(xc,yc,txt.str)

```
rel.edge.basic.triCM The index of the CM-edge region in a standard basic triangle form that contains a point

\section*{Description}

Returns the index of the edge whose region contains point, p , in the standard basic triangle form \(T_{b}=T\left(A=(0,0), B=(1,0), C=\left(c_{1}, c_{2}\right)\right.\) where \(c_{1}\) is in \([0,1 / 2], c_{2}>0\) and \(\left(1-c_{1}\right)^{2}+c_{2}^{2} \leq 1\) with edge regions based on center of mass \(C M=(A+B+C) / 3\).
Edges are labeled as 3 for edge \(A B, 1\) for edge \(B C\), and 2 for edge \(A C\). If the point, p , is not inside tri, then the function yields NA as output. Edge region 1 is the triangle \(T(B, C, C M)\), edge region 2 is \(T(A, C, C M)\), and edge region 3 is \(T(A, B, C M)\).

Any given triangle can be mapped to the standard basic triangle form by a combination of rigid body motions (i.e., translation, rotation and reflection) and scaling, preserving uniformity of the points in the original triangle. Hence, standard basic triangle form is useful for simulation studies under the uniformity hypothesis.
See also (Ceyhan (2005, 2010); Ceyhan et al. (2007)).

\section*{Usage}
rel.edge.basic.triCM(p, c1, c2)

\section*{Arguments}
p A 2D point for which \(C M\)-edge region it resides in is to be determined in the standard basic triangle form \(T_{b}\).
c1, c2 Positive real numbers which constitute the upper vertex of the standard basic triangle form (i.e., the vertex adjacent to the shorter edges of \(T_{b}\)); \(c_{1}\) must be in \([0,1 / 2], c_{2}>0\) and \(\left(1-c_{1}\right)^{2}+c_{2}^{2} \leq 1\).

\section*{Value}

A list with three elements
re Index of the \(C M\)-edge region that contains point, p in the standard basic triangle form \(T_{b}\)
tri The vertices of the triangle, where row labels are \(A=(0,0), B=(1,0)\), and \(C=\left(c_{1}, c_{2}\right)\) with edges are labeled as 3 for edge \(A B, 1\) for edge \(B C\), and 2 for edge \(A C\).
desc Description of the edge labels

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). "An investigation of new graph invariants related to the domination number of random proximity catch digraphs." Methodology and Computing in Applied Probability, 14(2), 299-334.

Ceyhan E, Priebe CE, Marchette DJ (2007). "A new family of random graphs for testing spatial segregation." Canadian Journal of Statistics, 35(1), 27-50.

\section*{See Also}
```

rel.edge.triCM, rel.edge.tri,rel.edge.basic.tri,rel.edge.std.triCM, and edge.reg.triCM

```

\section*{Examples}
```

c1<-.4; c2<-. 6
P<-c(.4,.2)
rel.edge.basic.triCM(P,c1,c2)
A<-c(0,0);B<-c(1,0);C<-c(c1, c2);
Tb<-rbind(A,B,C)
CM<-(A+B+C)/3
rel.edge.basic.triCM(A,c1,c2)
rel.edge.basic.triCM(B,C1, c2)
rel.edge.basic.triCM(C,c1,c2)
rel.edge.basic.triCM(CM, c1,c2)

```
```

n<-20 \#try also n<-40
Xp<-runif.basic.tri(n, c1,c2)$g
re<-vector()
for (i in 1:n)
    re<-c(re,rel.edge.basic.triCM(Xp[i,],c1,c2)$re)
re
Xlim<-range(Tb[,1],Xp[,1])
Ylim<-range(Tb[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(Tb,xlab="",ylab="",axes=TRUE,pch=".",xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
points(Xp,pch=".")
polygon(Tb)
L<-Tb; R<-matrix(rep(CM,3),ncol=2,byrow=TRUE)
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)
text(Xp,labels=factor(re))
txt<-rbind(Tb,CM)
xc<-txt[,1]+c(-.03,.03,.02,0)
yc<-txt[,2]+c(.02,.02,.02,-.04)
txt.str<-c("A", "B", "C", "CM")
text(xc,yc,txt.str)

```

\section*{rel.edge.std.triCM The index of the edge region in the standard equilateral triangle that contains a point}

\section*{Description}

Returns the index of the edge whose region contains point, p , in the standard equilateral triangle \(T_{e}=T(A=(0,0), B=(1,0), C=(1 / 2, \sqrt{3} / 2))\) with edge regions based on center of mass \(C M=(A+B+C) / 3\).
Edges are labeled as 3 for edge \(A B, 1\) for edge \(B C\), and 2 for edge \(A C\). If the point, p , is not inside tri, then the function yields NA as output. Edge region 1 is the triangle \(T(B, C, M)\), edge region 2 is \(T(A, C, M)\), and edge region 3 is \(T(A, B, M)\).
See also (Ceyhan (2005, 2010); Ceyhan et al. (2007)).

\section*{Usage}
rel.edge.std.triCM(p)

\section*{Arguments}
p
A 2D point for which \(C M\)-edge region it resides in is to be determined in the the standard equilateral triangle \(T_{e}\).

\section*{Value}

A list with three elements
re Index of the \(C M\)-edge region that contains point, p in the standard equilateral triangle \(T_{e}\)
tri The vertices of the standard equilateral triangle \(T_{e}\), where row labels are \(A, B\), and \(C\) with edges are labeled as 3 for edge \(A B, 1\) for edge \(B C\), and 2 for edge \(A C\).
desc Description of the edge labels

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). "An investigation of new graph invariants related to the domination number of random proximity catch digraphs." Methodology and Computing in Applied Probability, 14(2), 299-334.

Ceyhan E, Priebe CE, Marchette DJ (2007). "A new family of random graphs for testing spatial segregation." Canadian Journal of Statistics, 35(1), 27-50.

\section*{See Also}
```

rel.edge.triCM, rel.edge.tri, rel.edge.basic.triCM,rel.edge.basic.tri, and edge.reg.triCM

```

\section*{Examples}
```

P<-c(.4,.2)
rel.edge.std.triCM(P)
A<-c(0,0); B<-c(1,0); C<-c(0.5,sqrt(3)/2);
Te<-rbind(A,B,C)
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
CM<-(A+B+C)/3
n<-20 \#try also n<-40
Xp<-runif.std.tri(n)\$gen.points
re<-vector()
for (i in 1:n)

```
```

    re<-c(re,rel.edge.std.triCM(Xp[i,])$re)
    re
Xlim<-range(Te[,1],Xp[,1])
Ylim<-range(Te[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(Te,asp=1,xlab="",ylab="",axes=TRUE,pch=".",xlim=Xlim+xd*c(-.01,.01),ylim=Ylim+yd*c(-.01,.01))
points(Xp,pch=".")
polygon(Te)
L<-Te; R<-matrix(rep(CM,3),ncol=2,byrow=TRUE)
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)
text(Xp,labels=factor(re))
txt<-rbind(Te,CM)
xc<-txt[,1]+c(-.03,.03,.03,-.06)
yc<-txt[,2]+c(.02,.02,.02,.03)
txt.str<-c("A","B","C","CM")
text(xc,yc,txt.str)
p1<-(A+B+CM)/3
p2<-(B+C+CM)/3
p3<-(A+C+CM)/3
plot(Te,xlab="",ylab="",axes=TRUE,pch=".",xlim=Xlim+xd*c(-.01,.01),ylim=Ylim+yd*c(-.01,.01))
polygon(Te)
L<-Te; R<-matrix(rep(CM,3),ncol=2,byrow=TRUE)
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)
txt<-rbind(Te,CM, p1,p2,p3)
xc<-txt[,1]+c(-.03,.03,.03,-.06,0,0,0)
yc<-txt[,2]+c(.02,.02,.02,.03,0,0,0)
txt.str<-c("A", "B", "C", "CM", "re=3", "re=1", "re=2")
text(xc,yc,txt.str)

```

\section*{Description}

Returns the index of the edge whose region contains point, p , in the triangle \(\mathrm{tri}=T(A, B, C)\) with edge regions based on center \(M=\left(m_{1}, m_{2}\right)\) in Cartesian coordinates or \(M=(\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of the triangle tri.
Edges are labeled as 3 for edge \(A B\), 1 for edge \(B C\), and 2 for edge \(A C\). If the point, p , is not inside tri, then the function yields NA as output. Edge region 1 is the triangle \(T(B, C, M)\), edge region 2 is \(T(A, C, M)\), and edge region 3 is \(T(A, B, M)\).
See also (Ceyhan (2005, 2010); Ceyhan et al. (2007)).

\section*{Usage}
rel.edge.tri(p, tri, M)

\section*{Arguments}
\(\mathrm{p} \quad\) A 2D point for which M-edge region it resides in is to be determined in the triangle tri.
tri A \(3 \times 2\) matrix with each row representing a vertex of the triangle.
M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates which serves as a center in the interior of the triangle tri.

\section*{Value}

A list with three elements
\begin{tabular}{ll}
re & Index of the M-edge region that contains point, p in the triangle tri. \\
tri & The vertices of the triangle, where row labels are \(A, B\), and \(C\) with edges are \\
labeled as 3 for edge \(A B, 1\) for edge \(B C\), and 2 for edge \(A C\). \\
desc & Description of the edge labels
\end{tabular}

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). "An investigation of new graph invariants related to the domination number of random proximity catch digraphs." Methodology and Computing in Applied Probability, 14(2), 299-334.

Ceyhan E, Priebe CE, Marchette DJ (2007). "A new family of random graphs for testing spatial segregation." Canadian Journal of Statistics, 35(1), 27-50.

\section*{See Also}
rel.edge.triCM, rel.edge.basic.triCM, rel.edge.basic.tri, rel.edge.std.triCM, and edge.reg.triCM

\section*{Examples}
```

A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
P<-c(1.4,1.2)
M<-as.numeric(runif.tri(1,Tr)$g) #try also M<-c(1.6,1.2)
rel.edge.tri(P,Tr,M)
n<-20 #try also n<-40
Xp<-runif.tri(n,Tr)$g
re<-vector()
for (i in 1:n)
re<-c(re,rel.edge.tri(Xp[i,],Tr,M)\$re)
re
Xlim<-range(Tr[,1],Xp[,1])
Ylim<-range(Tr[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
if (dimension(M)==3) {M<-bary2cart(M,Tr)}
plot(Tr,xlab="",ylab="",axes=TRUE,pch=".",xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)
points(Xp,pch=".")
L<-Tr; R<-rbind(M,M,M)
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)
text(Xp,labels=factor(re))
txt<-rbind(Tr,M)
xc<-txt[,1]
yc<-txt[,2]
txt.str<-c("A", "B","C", "M")
text(xc,yc,txt.str)
p1<-(A+B+M)/3
p2<-(B+C+M)/3
p3<-(A+C+M)/3
plot(Tr,xlab="",ylab="", main="Illustration of M-edge regions in a triangle",
axes=TRUE,pch=".",xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)
L<-Tr; R<-rbind(M,M,M)
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)
txt<-rbind(Tr,M,p1,p2,p3)
xc<-txt[,1]+c(-.02,.02,.02,.02,.02,.02,.02)
yc<-txt[, 2]+c(.02,.02,.04,.05,.02,.02,.02)
txt.str<-c("A","B","C","M","re=3","re=1","re=2")

```
```

text(xc,yc,txt.str)

```
```

rel.edge.triCM

```

The index of the CM-edge region in a triangle that contains the point

\section*{Description}

Returns the index of the edge whose region contains point, p , in the triangle \(\mathrm{tri}=T(A, B, C)\) with edge regions based on center of mass \(C M=(A+B+C) / 3\).
Edges are labeled as 3 for edge \(A B, 1\) for edge \(B C\), and 2 for edge \(A C\). If the point, p , is not inside tri, then the function yields NA as output. Edge region 1 is the triangle \(T(B, C, C M)\), edge region 2 is \(T(A, C, C M)\), and edge region 3 is \(T(A, B, C M)\).
See also (Ceyhan (2005, 2010); Ceyhan et al. (2007)).

\section*{Usage}
rel.edge.triCM(p, tri)

\section*{Arguments}
p A 2D point for which \(C M\)-edge region it resides in is to be determined in the triangle tri.
tri A \(3 \times 2\) matrix with each row representing a vertex of the triangle.

\section*{Value}

A list with three elements
re \(\quad\) Index of the \(C M\)-edge region that contains point, p in the triangle tri.
tri The vertices of the triangle, where row labels are \(A, B\), and \(C\) with edges are labeled as 3 for edge \(A B, 1\) for edge \(B C\), and 2 for edge \(A C\).
desc Description of the edge labels

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). "An investigation of new graph invariants related to the domination number of random proximity catch digraphs." Methodology and Computing in Applied Probability, 14(2), 299-334.

Ceyhan E, Priebe CE, Marchette DJ (2007). "A new family of random graphs for testing spatial segregation." Canadian Journal of Statistics, 35(1), 27-50.

\section*{See Also}
rel.edge.tri, rel.edge.basic.triCM, rel.edge.basic.tri, rel.edge.std.triCM, and edge.reg.triCM

\section*{Examples}
```

A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
P<-c(1.4,1.2)
rel.edge.triCM(P,Tr)
P<-c(1.5,1.61)
rel.edge.triCM(P,Tr)
CM<-(A+B+C)/3
n<-20 \#try also n<-40
Xp<-runif.tri(n,Tr)$g
re<-vector()
for (i in 1:n)
    re<-c(re,rel.edge.triCM(Xp[i,],Tr)$re)
re
Xlim<-range(Tr[,1],Xp[,1])
Ylim<-range(Tr[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(Tr,xlab="",ylab="",axes=TRUE,pch=".",xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
points(Xp,pch=".")
polygon(Tr)
L<-Tr; R<-matrix(rep(CM,3),ncol=2,byrow=TRUE)
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)
text(Xp,labels=factor(re))
txt<-rbind(Tr,CM)
xc<-txt[,1]
yc<-txt[,2]
txt.str<-c("A","B", "C","CM")
text(xc,yc,txt.str)
p1<-(A+B+CM)/3

```
```

p2<-(B+C+CM)/3
p3<-(A+C+CM)/3
plot(Tr,xlab="",ylab="",axes=TRUE,pch=".",xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)
L<-Tr; R<-matrix(rep(CM,3),ncol=2,byrow=TRUE)
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)
txt<-rbind(Tr,CM,p1,p2,p3)
xc<-txt[,1]+c(-.02,.02,.02,.02,.02,.02,.02)
yc<-txt[,2]+c(.02,.02,.04,.05,.02,.02,.02)
txt.str<-c("A", "B", "C","CM", "re=3", "re=1", "re=2")
text(xc,yc,txt.str)

```
```

rel.edges.tri

```

The indices of the M-edge regions in a triangle that contains the points in a give data set

\section*{Description}

Returns the indices of the edges whose regions contain the points in data set Xp in a triangle tri= \(T(A, B, C)\) and edge regions are based on the center \(M=\left(m_{1}, m_{2}\right)\) in Cartesian coordinates or \(M=(\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of the triangle tri (see the plots in the example for illustrations).

The vertices of the triangle tri are labeled as \(1=A, 2=B\), and \(3=C\) also according to the row number the vertex is recorded in tri and the corresponding edges are \(1=B C, 2=A C\), and \(3=A B\).

If a point in Xp is not inside tri, then the function yields NA as output for that entry. The corresponding edge region is the polygon with the vertex, \(M\), and vertices other than the non-adjacent vertex, i.e., edge region 1 is the triangle \(T(B, M, C)\), edge region 2 is \(T(A, M, C)\) and edge region 3 is \(T(A, B, M)\).
See also (Ceyhan (2005, 2010); Ceyhan et al. (2007)).

\section*{Usage}
rel.edges.tri(Xp, tri, M)

\section*{Arguments}

Xp A set of 2D points representing the set of data points for which indices of the edge regions containing them are to be determined.
tri
M

A \(3 \times 2\) matrix with each row representing a vertex of the triangle.
A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates which serves as a center in the interior of the triangle tri.

\section*{Value}

A list with the elements
re Indices (i.e., a vector of indices) of the edges whose region contains points in \(X p\) in the triangle tri
tri The vertices of the triangle, where row number corresponds to the vertex index opposite to edge whose index is given in re.
desc Description of the edge labels as "Edge labels are \(A B=3, B C=1\), and \(A C=2\) ".

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). "An investigation of new graph invariants related to the domination number of random proximity catch digraphs." Methodology and Computing in Applied Probability, 14(2), 299-334.

Ceyhan E, Priebe CE, Marchette DJ (2007). "A new family of random graphs for testing spatial segregation." Canadian Journal of Statistics, 35(1), 27-50.

\section*{See Also}
rel.edges.triCM, rel.verts.tri, and rel.verts.tri.nondegPE

\section*{Examples}
```

A<-C(1,1); B<-C(2,0); C<-C (1.5,2);
Tr<-rbind(A,B,C);
M<-c(1.6,1.2)
P<-c(.4,.2)
rel.edges.tri(P,Tr,M)
n<-20 \#try also n<-40
set.seed(1)
Xp<-runif.tri(n,Tr)$g
M<-as.numeric(runif.tri(1,Tr)$g) \#try also M<-c(1.6,1.2)

```
```

(re<-rel.edges.tri(Xp,Tr,M))
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
Ds<-rbind(D1,D2,D3)
Xlim<-range(Tr[,1],Xp[,1])
Ylim<-range(Tr[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
if (dimension(M)==3) {M<-bary2cart(M,Tr)}
\#need to run this when M is given in barycentric coordinates
plot(Tr,pch=".",xlab="",ylab="",
main="Scatterplot of data points \n and the M-edge regions",axes=TRUE,
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)
points(Xp,pch=".",col=1)
L<-Tr; R<-rbind(M,M,M)
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)
xc<-Tr[,1]+c(-.02,.03,.02)
yc<-Tr[,2]+c(.02,.02,.04)
txt.str<-c("A","B","C")
text(xc,yc,txt.str)
txt<-rbind(M,Ds)
xc<-txt[,1]+c(.05,.06,-.05,-.02)
yc<-txt[,2]+c(.03,.03,.05,-.08)
txt.str<-c("M", "re=2", "re=3", "re=1")
text(xc,yc,txt.str)
text(Xp,labels=factor(re\$re))

```
rel.edges.triCM The indices of the CM-edge regions in a triangle that contains the points in a give data set

\section*{Description}

Returns the indices of the edges whose regions contain the points in data set Xp in a triangle \(\mathrm{tri}=\) \((A, B, C)\) and edge regions are based on the center of mass \(C M\) of tri. (see the plots in the example for illustrations).
The vertices of the triangle tri are labeled as \(1=A, 2=B\), and \(3=C\) also according to the row number the vertex is recorded in tri and the corresponding edges are \(1=B C, 2=A C\), and \(3=A B\).
If a point in \(X p\) is not inside tri, then the function yields NA as output for that entry. The corresponding edge region is the polygon with the vertex, \(C M\), and vertices other than the non-adjacent
vertex, i.e., edge region 1 is the triangle \(T(B, C M, C)\), edge region 2 is \(T(A, C M, C)\) and edge region 3 is \(T(A, B, C M)\).
See also (Ceyhan (2005, 2010); Ceyhan et al. (2007)).

\section*{Usage}
rel.edges.triCM(Xp, tri)

\section*{Arguments}

Xp A set of 2D points representing the set of data points for which indices of the edge regions containing them are to be determined.
tri A \(3 \times 2\) matrix with each row representing a vertex of the triangle.

\section*{Value}

A list with the elements
re Indices (i.e., a vector of indices) of the edges whose region contains points in Xp in the triangle tri
tri The vertices of the triangle, where row number corresponds to the vertex index in \(r v\).
desc Description of the edge labels as "Edge labels are \(A B=3, B C=1\), and \(A C=2\) ".

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). "An investigation of new graph invariants related to the domination number of random proximity catch digraphs." Methodology and Computing in Applied Probability, 14(2), 299-334.

Ceyhan E, Priebe CE, Marchette DJ (2007). "A new family of random graphs for testing spatial segregation." Canadian Journal of Statistics, 35(1), 27-50.

\section*{See Also}
```

rel.edges.tri, rel.verts.tri, and rel.verts.tri.nondegPE

```

\section*{Examples}
```

A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
P<-c(.4,.2)
rel.edges.triCM(P,Tr)
n<-20 \#try also n<-40
set.seed(1)
Xp<-runif.tri(n,Tr)$g
re<-rel.edges.triCM(Xp,Tr)
re
CM<-(A+B+C)/3
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
Ds<-rbind(D1,D2,D3)
Xlim<-range(Tr[,1],Xp[,1])
Ylim<-range(Tr[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(Tr,pch=".",xlab="",ylab="",axes=TRUE,xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)
points(Xp,pch=".",col=1)
L<-Tr; R<-matrix(rep(CM,3),ncol=2,byrow=TRUE)
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)
xc<-Tr[,1]+c(-.02,.03,.02)
yc<-Tr[,2]+c(.02,.02,.04)
txt.str<-c("A","B","C")
text(xc,yc,txt.str)
txt<-rbind(CM,Ds)
xc<-txt[,1]+c(.05,.06,-.05,-.02)
yc<-txt[,2]+c(.03,.03,.05,-.08)
txt.str<-c("CM", "re=2", "re=3", "re=1")
text(xc,yc,txt.str)
text(Xp,labels=factor(re$re))

```

\section*{Description}

Returns the index of the related vertex in the standard basic triangle form whose region contains point p . The standard basic triangle form is \(T_{b}=T\left((0,0),(1,0),\left(c_{1}, c_{2}\right)\right)\) where \(c_{1}\) is in \([0,1 / 2]\), \(c_{2}>0\) and \(\left(1-c_{1}\right)^{2}+c_{2}^{2} \leq 1 .\).
Vertex regions are based on the general center \(M=\left(m_{1}, m_{2}\right)\) in Cartesian coordinates or \(M=\) \((\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of the standard basic triangle form \(T_{b}\). Vertices of the standard basic triangle form \(T_{b}\) are labeled according to the row number the vertex is recorded, i.e., as \(1=(0,0), 2=(1,0)\), and \(3=\left(c_{1}, c_{2}\right)\).

If the point, p , is not inside \(T_{b}\), then the function yields NA as output. The corresponding vertex region is the polygon with the vertex, M , and projections from M to the edges on the lines joining vertices and M . That is, \(\mathrm{rv}=1\) has vertices \((0,0), D_{3}, M, D_{2} ; r v=2\) has vertices \((1,0), D_{1}, M, D_{3}\); and \(r v=3\) has vertices \(\left(c_{1}, c_{2}\right), D_{2}, M, D_{1}\) (see the illustration in the examples).
Any given triangle can be mapped to the standard basic triangle form by a combination of rigid body motions (i.e., translation, rotation and reflection) and scaling, preserving uniformity of the points in the original triangle. Hence, standard basic triangle form is useful for simulation studies under the uniformity hypothesis.

See also (Ceyhan \((2005,2010)\)).

\section*{Usage}
rel.vert.basic.tri(p, c1, c2, M)

\section*{Arguments}
p
A 2D point for which \(M\)-vertex region it resides in is to be determined in the standard basic triangle form \(T_{b}\).
c1, c2 Positive real numbers which constitute the vertex of the standard basic triangle form adjacent to the shorter edges; \(c_{1}\) must be in \([0,1 / 2], c_{2}>0\) and \(\left(1-c_{1}\right)^{2}+\) \(c_{2}^{2} \leq 1\).
M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates which serves as a center in the interior of the standard basic triangle form.

\section*{Value}

A list with two elements
rv Index of the vertex whose region contains point, p ; index of the vertex is the same as the row number in the standard basic triangle form, \(T_{b}\)
tri The vertices of the standard basic triangle form, \(T_{b}\), where row number corresponds to the vertex index \(r v\) with \(r v=1\) is row \(1=(0,0), r v=2\) is row \(2=(1,0)\), and \(r v=3\) is row \(3=\left(c_{1}, c_{2}\right)\).

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). "An investigation of new graph invariants related to the domination number of random proximity catch digraphs." Methodology and Computing in Applied Probability, 14(2), 299-334.

\section*{See Also}
rel.vert.basic.triCM, rel.vert.tri, rel.vert.triCC, rel.vert.basic.triCC, rel.vert.triCM, and rel.vert.std.triCM

\section*{Examples}
```

c1<-.4; c2<-.6
A<-c(0,0); B<-c(1,0); C<-c(c1,c2);
Tb<-rbind(A,B,C);
M<-c(.6,.2)
P<-c(.4,.2)
rel.vert.basic.tri(P, c1, c2,M)
n<-20 \#try also n<-40
set.seed(1)
Xp<-runif.basic.tri(n, c1,c2)$g
M<-as.numeric(runif.basic.tri(1,c1,c2)$g) \#try also M<-c(.6,.2)
Rv<-vector()
for (i in 1:n)
{ Rv<-c(Rv,rel.vert.basic.tri(Xp[i,],c1,c2,M)\$rv)}
Rv
Ds<-prj.cent2edges.basic.tri(c1, c2,M)
Xlim<-range(Tb[,1],Xp[,1])
Ylim<-range(Tb[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
if (dimension(M)==3) {M<-bary2cart(M,Tb)}
\#need to run this when M is given in barycentric coordinates
plot(Tb,pch=".",xlab="",ylab="", axes=TRUE,
xlim=Xlim+xd*c(-.1,.1),ylim=Ylim+yd*c(-.05,.05))

```
```

polygon(Tb)
points(Xp,pch=".",col=1)
L<-rbind(M,M,M); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)
xc<-Tb[,1]+c(-.04,.05,.04)
yc<-Tb[,2]+c(.02,.02,.03)
txt.str<-c("rv=1","rv=2","rv=3")
text(xc,yc,txt.str)
txt<-rbind(M,Ds)
xc<-txt[,1]+c(-.02,.04,-.03,0)
yc<-txt[,2]+c(-.02,.02,.02,-.03)
txt.str<-c("M","D1", "D2", "D3")
text(xc,yc,txt.str)
text(Xp,labels=factor(Rv))

```
rel.vert.basic.triCC \begin{tabular}{l}
The index of the CC-vertex region in a standard basic triangle form \\
that contains a point
\end{tabular}

\section*{Description}

Returns the index of the vertex whose region contains point p in the standard basic triangle form \(T_{b}=T\left((0,0),(1,0),\left(c_{1}, c_{2}\right)\right)\) where \(c_{1}\) is in \([0,1 / 2], c_{2}>0\) and \(\left(1-c_{1}\right)^{2}+c_{2}^{2} \leq 1\) and vertex regions are based on the circumcenter \(C C\) of \(T_{b}\). (see the plots in the example for illustrations).
The vertices of the standard basic triangle form \(T_{b}\) are labeled as \(1=(0,0), 2=(1,0)\), and \(3=\) \(\left(c_{1}, c_{2}\right)\) also according to the row number the vertex is recorded in \(T_{b}\). If the point, p , is not inside \(T_{b}\), then the function yields NA as output. The corresponding vertex region is the polygon whose interior points are closest to that vertex.
Any given triangle can be mapped to the standard basic triangle form by a combination of rigid body motions (i.e., translation, rotation and reflection) and scaling, preserving uniformity of the points in the original triangle. Hence, standard basic triangle form is useful for simulation studies under the uniformity hypothesis.
See also (Ceyhan \((2005,2010)\)).

\section*{Usage}
rel.vert.basic.triCC(p, c1, c2)

\section*{Arguments}
p A 2D point for which \(C C\)-vertex region it resides in is to be determined in the standard basic triangle form \(T_{b}\).
c1, c2 Positive real numbers which constitute the upper vertex of the standard basic triangle form (i.e., the vertex adjacent to the shorter edges of \(T_{b}\)); \(c_{1}\) must be in \([0,1 / 2], c_{2}>0\) and \(\left(1-c_{1}\right)^{2}+c_{2}^{2} \leq 1\).

\section*{Value}

A list with two elements
rv Index of the \(C C\)-vertex region that contains point, p in the standard basic triangle form \(T_{b}\)
tri The vertices of the triangle, where row number corresponds to the vertex index in \(r v\) with row \(1=(0,0)\), row \(2=(1,0)\), and row \(3=\left(c_{1}, c_{2}\right)\).

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). "An investigation of new graph invariants related to the domination number of random proximity catch digraphs." Methodology and Computing in Applied Probability, 14(2), 299-334.

\section*{See Also}
rel.vert.triCM, rel.vert.tri, rel.vert.triCC, rel.vert.basic.triCM, rel.vert.basic.tri, and rel.vert.std.triCM

\section*{Examples}
```

c1<-.4; c2<-.6; \#try also c1<-.5; c2<-.5;
P<-c(.3,.2)
rel.vert.basic.triCC(P,c1, c2)
A<-C(0,0);B<-C(1,0);C<-C (c1,c2);
Tb<-rbind(A,B,C)
CC<-circumcenter.basic.tri(c1,c2) \#the circumcenter
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
Ds<-rbind(D1,D2,D3)
Xlim<-range(Tb[,1])
Ylim<-range(Tb[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(Tb,asp=1,xlab="",ylab="",axes=TRUE,pch=".",xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))

```
```

polygon(Tb)
L<-matrix(rep(CC,3),ncol=2,byrow=TRUE); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)
txt<-rbind(Tb,CC,Ds)
xc<-txt[,1]+c(-.03,.03,0.02,-.01,.05,-.05,.01)
yc<-txt[,2]+c(.02,.02,.03,.06,.03,.03,-.03)
txt.str<-c("A", "B", "C", "CC", "D1", "D2", "D3")
text(xc,yc,txt.str)
RV1<-(A+D3+CC+D2)/4
RV2<-(B+D3+CC+D1)/4
RV3<-(C+D2+CC+D1)/4
txt<-rbind(RV1,RV2,RV3)
xc<-txt[,1]
yc<-txt[,2]
txt.str<-c("rv=1","rv=2","rv=3")
text(xc,yc,txt.str)
n<-20 \#try also n<-40
Xp<-runif.basic.tri(n, c1,c2)$g
Rv<-vector()
for (i in 1:n)
    Rv<-c(Rv,rel.vert.basic.triCC(Xp[i,],c1,c2)$rv)
Rv
Xlim<-range(Tb[,1],Xp[,1])
Ylim<-range(Tb[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(Tb,asp=1,xlab="",pch=".",ylab="",axes=TRUE,xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
points(Xp,pch=".")
polygon(Tb)
L<-matrix(rep(CC,3),ncol=2,byrow=TRUE); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)
text(Xp,labels=factor(Rv))
txt<-rbind(Tb,CC,Ds)
xc<-txt[,1]+c(-.03,.03,0.02,-.01,.05,-.05,.01)
yc<-txt[,2]+c(.02,.02,.03,.06,.03,.03,-.04)
txt.str<-c("A", "B", "C", "CC", "D1", "D2", "D3")
text(xc,yc,txt.str)

```
rel.vert.basic.triCM The index of the CM-vertex region in a standard basic triangle form that contains a point

\section*{Description}

Returns the index of the vertex whose region contains point p in the standard basic triangle form \(T_{b}=T\left((0,0),(1,0),\left(c_{1}, c_{2}\right)\right)\) where \(c_{1}\) is in \([0,1 / 2], c_{2}>0\) and \(\left(1-c_{1}\right)^{2}+c_{2}^{2} \leq 1\) and vertex regions are based on the center of mass \(\mathrm{CM}=((1+\mathrm{c} 1) / 3, \mathrm{c} 2 / 3)\) of \(T_{b}\). (see the plots in the example for illustrations).
The vertices of the standard basic triangle form \(T_{b}\) are labeled as \(1=(0,0), 2=(1,0)\), and \(3=\) \(\left(c_{1}, c_{2}\right)\) also according to the row number the vertex is recorded in \(T_{b}\). If the point, p , is not inside \(T_{b}\), then the function yields NA as output. The corresponding vertex region is the polygon with the vertex, \(C M\), and midpoints of the edges adjacent to the vertex.
Any given triangle can be mapped to the standard basic triangle form by a combination of rigid body motions (i.e., translation, rotation and reflection) and scaling, preserving uniformity of the points in the original triangle. Hence, standard basic triangle form is useful for simulation studies under the uniformity hypothesis.
See also (Ceyhan (2005, 2010); Ceyhan et al. (2006))

\section*{Usage}
rel.vert.basic.triCM(p, c1, c2)

\section*{Arguments}
p
A 2D point for which \(C M\)-vertex region it resides in is to be determined in the standard basic triangle form \(T_{b}\).
c1, c2 Positive real numbers which constitute the upper vertex of the standard basic triangle form (i.e., the vertex adjacent to the shorter edges of \(T_{b}\)); \(c_{1}\) must be in \([0,1 / 2], c_{2}>0\) and \(\left(1-c_{1}\right)^{2}+c_{2}^{2} \leq 1\).

\section*{Value}

A list with two elements
rv Index of the \(C M\)-vertex region that contains point, p in the standard basic triangle form \(T_{b}\)
tri The vertices of the triangle, where row number corresponds to the vertex index in \(r v\) with row \(1=(0,0)\), row \(2=(1,0)\), and row \(3=\left(c_{1}, c_{2}\right)\).

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). "An investigation of new graph invariants related to the domination number of random proximity catch digraphs." Methodology and Computing in Applied Probability, 14(2), 299-334.

Ceyhan E, Priebe CE, Wierman JC (2006). "Relative density of the random \(r\)-factor proximity catch digraphs for testing spatial patterns of segregation and association." Computational Statistics \& Data Analysis, 50(8), 1925-1964.
\#' @author Elvan Ceyhan

\section*{See Also}
rel.vert.triCM, rel.vert.tri, rel.vert.triCC, rel.vert.basic.triCC, rel.vert.basic.tri, and rel.vert.std.triCM

\section*{Examples}
```

c1<-.4; c2<-.6
P<-c(.4,.2)
rel.vert.basic.triCM(P, c1, c2)
A<-c(0,0);B<-c(1,0);C<-c(c1,c2);
Tb<-rbind(A,B,C)
CM<-(A+B+C)/3
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
Ds<-rbind(D1,D2,D3)
n<-20 \#try also n<-40
Xp<-runif.basic.tri(n,c1,c2)$g
Rv<-vector()
for (i in 1:n)
    Rv<-c(Rv,rel.vert.basic.triCM(Xp[i,],c1,c2)$rv)
Rv
Xlim<-range(Tb[,1],Xp[,1])
Ylim<-range(Tb[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(Tb,xlab="",ylab="",axes="T",pch=".",xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
points(Xp,pch=".")
polygon(Tb)
L<-Ds; R<-matrix(rep(CM,3),ncol=2,byrow=TRUE)
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)
text(Xp,labels=factor(Rv))
txt<-rbind(Tb,CM,Ds)
xc<-txt[,1]+c(-.03,.03,.02,-.01,.06,-.05,.0)
yc<-txt[,2]+c(.02,.02,.02,.04,.02,.02,-.03)
txt.str<-c("A", "B", "C", "CM", "D1", "D2", "D3")
text(xc,yc,txt.str)
plot(Tb,xlab="",ylab="",axes="T", pch=".",xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tb)

```
```

L<-Ds; R<-matrix(rep(CM,3),ncol=2,byrow=TRUE)
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)
RV1<-(A+D3+CM+D2)/4
RV2<-(B+D3+CM+D1)/4
RV3<-(C+D2+CM+D1)/4
txt<-rbind(RV1,RV2,RV3)
xc<-txt[,1]
yc<-txt[,2]
txt.str<-c("rv=1","rv=2", "rv=3")
text(xc,yc,txt.str)
txt<-rbind(Tb,CM,Ds)
xc<-txt[,1]+c(-.03,.03,.02,-.01,.04,-.03,.0)
yc<-txt[,2]+c(.02,.02,.02,.04,.02,.02,-.03)
txt.str<-c("A", "B","C", "CM", "D1", "D2","D3")
text(xc,yc,txt.str)

```
rel.vert.end.int The index of the vertex region in an end-interval that contains a given point

\section*{Description}

Returns the index of the vertex in the interval, int, whose end interval contains the 1 D point p , that is, it finds the index of the vertex for the point, p , outside the interval int \(=(a, b)=(\) vertex 1 , vertex 2); vertices of interval are labeled as 1 and 2 according to their order in the interval.

If the point, p , is inside int, then the function yields NA as output. The corresponding vertex region is an interval as \((-\infty, a)\) or \((b, \infty)\) for the interval \((a, b)\). Then if \(p<a\), then \(r v=1\) and if \(p>b\), then \(r v=2\). Unlike rel.vert.mid.int, centrality parameter (i.e., center of the interval is not relevant for rel.vert.end.int.)

See also (Ceyhan (2012, 2016)).

\section*{Usage}
rel.vert.end.int(p, int)

\section*{Arguments}
p A 1D point whose end interval region is provided by the function.
int
A vector of two real numbers representing an interval.

\section*{Value}

A list with two elements
\(r v \quad\) Index of the end vertex whose region contains point, p .
int The vertices of the interval as a vector where position of the vertex corresponds to the vertex index as int=(rv=1,rv=2).

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2012). "The Distribution of the Relative Arc Density of a Family of Interval Catch Digraph Based on Uniform Data." Metrika, 75(6), 761-793.

Ceyhan E (2016). "Density of a Random Interval Catch Digraph Family and its Use for Testing Uniformity." REVSTAT, 14(4), 349-394.

\section*{See Also}
rel.vert.mid.int

\section*{Examples}
```

a<-0; b<-10; int<-c(a,b)
rel.vert.end.int(-6,int)
rel.vert.end.int(16,int)
n<-10
xf<-(int[2]-int[1])*.5
XpL<-runif(n,a-xf,a)
XpR<-runif(n,b,b+xf)
Xp<-c(XpL,XpR)
rel.vert.end.int(Xp[1],int)
Rv<-vector()
for (i in 1:length(Xp))
Rv<-c(Rv,rel.vert.end.int(Xp[i],int)\$rv)
Rv
Xlim<-range(a,b,Xp)
xd<-Xlim[2]-Xlim[1]
plot(cbind(a,0),xlab="",pch=".",xlim=Xlim+xd*c(-.05,.05))
abline(h=0)
abline(v=c(a,b),col=1,lty = 2)
points(cbind(Xp,0))
text(cbind(Xp,0.1),labels=factor(Rv))

```
```

text(cbind(c(a,b),-0.1),c("rv=1","rv=2"))
jit<-. }
yjit<-runif(length(Xp),-jit,jit)
Xlim<-range(a,b,Xp)
xd<-Xlim[2]-Xlim[1]
plot(cbind(a,0),
main="vertex region indices for the points\n in the end intervals",
xlab=" ", ylab=" ",pch=".",xlim=Xlim+xd*c(-.05,.05),ylim=3*range(yjit))
points(Xp, yjit,xlim=Xlim+xd*c(-.05,.05),pch=".",cex=3)
abline(h=0)
abline(v=c(a,b),lty = 2)
text(Xp,yjit,labels=factor(Rv))
text(cbind(c(a,b),-.01),c("rv=1","rv=2"))

```
rel.vert.mid.int The index of the vertex region in a middle interval that contains a given point

\section*{Description}

Returns the index of the vertex whose region contains point p in the interval int \(=(a, b)=(\) vertex 1 ,vertex 2) with (parameterized) center \(M_{c}\) associated with the centrality parameter \(c \in(0,1)\); vertices of interval are labeled as 1 and 2 according to their order in the interval int. If the point, p , is not inside int, then the function yields NA as output. The corresponding vertex region is the interval \((a, b)\) as \(\left(a, M_{c}\right)\) and \(\left(M_{c}, b\right)\) where \(M_{c}=a+c(b-a)\).
See also (Ceyhan \((2012,2016)\)).

\section*{Usage}
rel.vert.mid.int(p, int, \(c=0.5)\)

\section*{Arguments}
p
int
C

A 1D point. The vertex region \(p\) resides is to be found.
A vector of two real numbers representing an interval.
A positive real number in \((0,1)\) parameterizing the center inside int \(=(a, b)\) with the default \(\mathrm{c}=.5\). For the interval, int \(=(a, b)\), the parameterized center is \(M_{c}=a+c(b-a)\).

\section*{Value}

A list with two elements
\(r v \quad\) Index of the vertex in the interval int whose region contains point, \(p\).
int The vertices of the interval as a vector where position of the vertex corresponds to the vertex index as int=(rv=1,rv=2).

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2012). "The Distribution of the Relative Arc Density of a Family of Interval Catch Digraph Based on Uniform Data." Metrika, 75(6), 761-793.

Ceyhan E (2016). "Density of a Random Interval Catch Digraph Family and its Use for Testing Uniformity." REVSTAT, 14(4), 349-394.

\section*{See Also}
rel.vert.end.int

\section*{Examples}
```

c<-.4
a<-0; b<-10; int = c(a,b)
Mc<-centerMc(int,c)
rel.vert.mid.int(6,int,c)
n<-20 \#try also n<-40
xr<-range(a,b,Mc)
xf<-(int[2]-int[1])*. }
Xp<-runif(n,a,b)
Rv<-vector()
for (i in 1:n)
Rv<-c(Rv,rel.vert.mid.int(Xp[i],int,c)\$rv)
Rv
jit<-.1
yjit<-runif(n,-jit,jit)
Xlim<-range(a,b,Xp)
xd<-Xlim[2]-Xlim[1]
plot(cbind(Mc,0),main="vertex region indices for the points", xlab=" ",
ylab=" ", xlim=Xlim+xd*c(-.05,.05),ylim=3*range(yjit),pch=".",cex=3)

```
```

abline(h=0)
points(Xp,yjit)
abline(v=c(a,b,Mc),lty = 2, col=c(1,1,2))
text(Xp,yjit,labels=factor(Rv))
text(cbind(c(a,b,Mc),.02),c("rv=1","rv=2","Mc"))

```
```

rel.vert.std.tri The index of the vertex region in the standard equilateral triangle that

```
contains a given point

\section*{Description}

Returns the index of the vertex whose region contains point p in standard equilateral triangle \(T_{e}=\) \(T((0,0),(1,0),(1 / 2, \sqrt{3} / 2))\) with vertex regions are constructed with center \(M=\left(m_{1}, m_{2}\right)\) in Cartesian coordinates or \(M=(\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of \(T_{e}\). (see the plots in the example for illustrations).

The vertices of triangle, \(T_{e}\), are labeled as \(1,2,3\) according to the row number the vertex is recorded in \(T_{e}\). If the point, p , is not inside \(T_{e}\), then the function yields NA as output. The corresponding vertex region is the polygon with the vertex, \(M\), and projections from \(M\) to the edges on the lines joining vertices and \(M\).
See also (Ceyhan \((2005,2010)\)).

\section*{Usage}
rel.vert.std.tri(p, M)

\section*{Arguments}
p
A 2D point for which \(M\)-vertex region it resides in is to be determined in the standard equilateral triangle \(T_{e}\).

M
A 2D point in Cartesian coordinates or a 3 D point in barycentric coordinates which serves as a center in the interior of the standard equilateral triangle \(T_{e}\).

\section*{Value}

A list with two elements
rv Index of the vertex whose region contains point, \(p\).
tri The vertices of the triangle, \(T_{e}\), where row number corresponds to the vertex index in \(r v\) with row \(1=(0,0)\), row \(2=(1,0)\), and row \(3=(1 / 2, \sqrt{3} / 2)\).

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). "An investigation of new graph invariants related to the domination number of random proximity catch digraphs." Methodology and Computing in Applied Probability, 14(2), 299-334.

\section*{See Also}
```

rel.vert.std.triCM,rel.vert.tri,rel.vert.triCC,rel.vert.basic.triCC,rel.vert.triCM,

```
and rel.vert.basic.tri

\section*{Examples}
```

A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C)
n<-20 \#try also n<-40
set.seed(1)
Xp<-runif.std.tri(n)$gen.points
M<-as.numeric(runif.std.tri(1)$g) \#try also M<-c(.6,.2)
rel.vert.std.tri(Xp[1,],M)
Rv<-vector()
for (i in 1:n)
Rv<-c(Rv,rel.vert.std.tri(Xp[i,],M)\$rv)
Rv
Ds<-prj.cent2edges(Te,M)
Xlim<-range(Te[,1],Xp[,1])
Ylim<-range(Te[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
if (dimension(M)==3) {M<-bary2cart(M,Te)}
\#need to run this when M is given in barycentric coordinates
plot(Te, asp=1,pch=".",xlab="",ylab="",axes=TRUE,
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Te)
points(Xp,pch=".",col=1)
L<-rbind(M,M,M); R<-Ds

```
```

segments(L[,1], L[,2], R[,1], R[,2], lty = 2)
txt<-rbind(Te,M)
xc<-txt[,1]+c(-.02,.03,.02,0)
yc<-txt[,2]+c(.02,.02,.03,.05)
txt.str<-c("A", "B","C","M")
text(xc,yc,txt.str)
text(Xp,labels=factor(Rv))

```

\section*{rel.vert.std.triCM The index of the \(C M\)-vertex region in the standard equilateral triangle that contains a given point}

\section*{Description}

Returns the index of the vertex whose region contains point p in standard equilateral triangle \(T_{e}=\) \(T((0,0),(1,0),(1 / 2, \sqrt{3} / 2))\) with vertex regions are constructed with center of mass CM (see the plots in the example for illustrations).

The vertices of triangle, \(T_{e}\), are labeled as \(1,2,3\) according to the row number the vertex is recorded in \(T_{e}\). If the point, p , is not inside \(T_{e}\), then the function yields NA as output. The corresponding vertex region is the polygon with the vertex, \(C M\), and midpoints of the edges adjacent to the vertex.
See also (Ceyhan \((2005,2010)\)).

\section*{Usage}
rel.vert.std.triCM(p)

\section*{Arguments}
p A 2D point for which \(C M\)-vertex region it resides in is to be determined in the standard equilateral triangle \(T_{e}\).

\section*{Value}

A list with two elements
\(r v \quad\) Index of the vertex whose region contains point, \(p\).
tri The vertices of the triangle, \(T_{e}\), where row number corresponds to the vertex index in \(r v\) with row \(1=(0,0)\), row \(2=(1,0)\), and row \(3=(1 / 2, \sqrt{3} / 2)\).

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). "An investigation of new graph invariants related to the domination number of random proximity catch digraphs." Methodology and Computing in Applied Probability, 14(2), 299-334.

\section*{See Also}
rel.vert.basic.triCM, rel.vert.tri, rel.vert.triCC, rel.vert.basic.triCC, rel.vert.triCM, and rel.vert.basic.tri

\section*{Examples}
```

A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C)
n<-20 \#try also n<-40
set.seed(1)
Xp<-runif.std.tri(n)$gen.points
rel.vert.std.triCM(Xp[1,])
Rv<-vector()
for (i in 1:n)
    Rv<-c(Rv,rel.vert.std.triCM(Xp[i,])$rv)
Rv
CM<-(A+B+C)/3
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
Ds<-rbind(D1,D2,D3)
Xlim<-range(Te[,1],Xp[,1])
Ylim<-range(Te[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(Te,asp=1,pch=".",xlab="",ylab="",axes=TRUE,xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Te)
points(Xp,pch=".", col=1)
L<-matrix(rep(CM,3),ncol=2, byrow=TRUE); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)
txt<-rbind(Te,CM)

```
```

xc<-txt[,1]+c(-.02,.03,.02,0)
yc<-txt[,2]+c(.02,.02,.03,.05)
txt.str<-c("A","B", "C","CM")
text(xc,yc,txt.str)
text(Xp,labels=factor(Rv))

```
```

rel.vert.tetraCC The index of the CC-vertex region in a tetrahedron that contains a
point

```

\section*{Description}

Returns the index of the vertex whose region contains point p in a tetrahedron \(t h=T(A, B, C, D)\) and vertex regions are based on the circumcenter \(C C\) of th. (see the plots in the example for illustrations).
The vertices of the tetrahedron th are labeled as \(1=A, 2=B, 3=C\), and \(4=C\) also according to the row number the vertex is recorded in th.

If the point, \(p\), is not inside th, then the function yields NA as output. The corresponding vertex region is the polygon whose interior points are closest to that vertex. If th is regular tetrahedron, then \(C C\) and \(C M\) (center of mass) coincide.
See also (Ceyhan \((2005,2010)\)).

\section*{Usage}
rel.vert.tetraCC(\(p\), th)

\section*{Arguments}
p A 3D point for which \(C C\)-vertex region it resides in is to be determined in the tetrahedron th.
th A \(4 \times 3\) matrix with each row representing a vertex of the tetrahedron.

Value
A list with two elements
rv Index of the \(C C\)-vertex region that contains point, p in the tetrahedron th
tri The vertices of the tetrahedron, where row number corresponds to the vertex index in \(r v\).

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

\section*{See Also}
rel.vert.tetraCM and rel.vert.triCC

\section*{Examples}
```

set.seed(123)
A<-c(0,0,0)+runif(3,-.2,.2);
B<-c(1,0,0)+runif(3,-.2,.2);
C<-c(1/2,sqrt(3)/2,0)+runif(3,-.2,.2);
D<-c(1/2,sqrt(3)/6,sqrt(6)/3)+runif(3,-.2,.2);
tetra<-rbind(A,B,C,D)
n<-20 \#try also n<-40
Xp<-runif.tetra(n,tetra)$g
rel.vert.tetraCC(Xp[1,],tetra)
Rv<-vector()
for (i in 1:n)
    Rv<-c(Rv,rel.vert.tetraCC(Xp[i,],tetra)$rv)
Rv
CC<-circumcenter.tetra(tetra)
CC
Xlim<-range(tetra[,1],Xp[,1],CC[1])
Ylim<-range(tetra[,2],Xp[,2],CC[2])
Zlim<-range(tetra[,3],Xp[,3],CC[3])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
zd<-Zlim[2]-Zlim[1]
plot3D::scatter3D(tetra[,1],tetra[,2],tetra[,3],
phi =0,theta=40, bty = "g",
main="Scatterplot of data points \n and CC-vertex regions",
xlim=Xlim+xd*c(-.05,.05), ylim=Ylim+yd*c(-.05,.05),
zlim=Zlim+zd*c(-.05,.05),
pch = 20, cex = 1, ticktype = "detailed")
L<-rbind(A,A,A,B,B,C); R<-rbind(B,C,D,C,D,D)
plot3D::segments3D(L[,1], L[,2], L[,3], R[,1], R[,2],R[,3],

```
```

add=TRUE,lwd=2)
\#add the data points
plot3D::points3D(Xp[,1],Xp[,2],Xp[,3],pch=".",cex=3, add=TRUE)
plot3D::text3D(tetra[,1],tetra[,2],tetra[,3],
labels=c("A","B","C","D"), add=TRUE)
plot3D::text3D(CC[1],CC[2],CC[3], labels=c("CC"), add=TRUE)
D1<-(A+B)/2; D2<-(A+C)/2; D3<-(A+D)/2; D4<-(B+C)/2;
D5<-(B+D)/2; D6<-(C+D)/2;
L<-rbind(D1,D2,D3,D4,D5,D6); R<-matrix(rep(CC,6),ncol=3,byrow=TRUE)
plot3D::segments3D(L[,1], L[,2], L[,3], R[,1], R[,2],R[,3],
add=TRUE,lty = 2)
F1<-intersect.line.plane(A,CC,B,C,D)
L<-matrix(rep(F1,4),ncol=3,byrow=TRUE); R<-rbind(D4,D5,D6,CC)
plot3D::segments3D(L[,1], L[,2], L[,3], R[,1], R[,2],R[,3],col=2,
add=TRUE,lty = 2)
F2<-intersect.line.plane(B,CC,A,C,D)
L<-matrix(rep(F2,4),ncol=3,byrow=TRUE); R<-rbind(D2,D3,D6,CC)
plot3D::segments3D(L[,1], L[,2], L[,3], R[,1], R[,2],R[,3],col=3,
add=TRUE,lty = 2)
F3<-intersect.line.plane(C,CC,A,B,D)
L<-matrix(rep(F3,4),ncol=3,byrow=TRUE); R<-rbind(D3,D5,D6,CC)
plot3D::segments3D(L[,1], L[,2], L[,3], R[,1], R[,2],R[,3],col=4,
add=TRUE,lty = 2)
F4<-intersect.line.plane(D,CC,A,B,C)
L<-matrix(rep(F4,4),ncol=3,byrow=TRUE); R<-rbind(D1,D2,D4,CC)
plot3D::segments3D(L[,1], L[,2], L[,3], R[,1], R[,2],R[,3],col=5,
add=TRUE,lty = 2)
plot3D::text3D(Xp[,1],Xp[,2],Xp[,3], labels=factor(Rv), add=TRUE)

```
rel.vert.tetraCM The index of the \(C M\)-vertex region in a tetrahedron that contains a point

\section*{Description}

Returns the index of the vertex whose region contains point p in a tetrahedron \(t h=T(A, B, C, D)\) and vertex regions are based on the center of mass \(C M=(A+B+C+D) / 4\) of th. (see the plots in the example for illustrations).
The vertices of the tetrahedron th are labeled as \(1=A, 2=B, 3=C\), and \(4=C\) also according to the row number the vertex is recorded in th.

If the point, \(p\), is not inside th, then the function yields NA as output. The corresponding vertex region is the simplex with the vertex, \(C M\), and midpoints of the edges adjacent to the vertex. See also (Ceyhan \((2005,2010)\)).

\section*{Usage}
rel.vert.tetraCM(p, th)

\section*{Arguments}
p A 3D point for which \(C M\)-vertex region it resides in is to be determined in the tetrahedron th.
th A \(4 \times 3\) matrix with each row representing a vertex of the tetrahedron.

Value
A list with two elements
rv Index of the \(C M\)-vertex region that contains point, p in the tetrahedron th
th The vertices of the tetrahedron, where row number corresponds to the vertex index in \(r v\).

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

\section*{See Also}
rel.vert.tetraCC and rel.vert.triCM

\section*{Examples}
```

A<-c(0,0,0); B<-c(1,0,0); C<-c(1/2,sqrt(3)/2,0);
D<-c(1/2,sqrt(3)/6,sqrt(6)/3)
tetra<-rbind(A,B,C,D)
n<-20 \#try also n<-40
Xp<-runif.std.tetra(n)\$g

```
```

rel.vert.tetraCM(Xp[1,],tetra)
Rv<-vector()
for (i in 1:n)
Rv<-c(Rv, rel.vert.tetraCM(Xp[i,],tetra)\$rv )
Rv
Xlim<-range(tetra[,1],Xp[,1])
Ylim<-range(tetra[,2],Xp[,2])
Zlim<-range(tetra[,3],Xp[,3])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
zd<-Zlim[2]-Zlim[1]
CM<-apply(tetra,2,mean)
plot3D::scatter3D(tetra[,1],tetra[,2],tetra[,3], phi =0,theta=40, bty = "g",
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05), zlim=Zlim+zd*c(-.05,.05),
pch = 20, cex = 1, ticktype = "detailed")
L<-rbind(A,A,A,B,B,C); R<-rbind(B,C,D,C,D,D)
plot3D::segments3D(L[,1], L[,2], L[,3], R[,1], R[,2],R[,3], add=TRUE,lwd=2)
\#add the data points
plot3D::points3D(Xp[,1],Xp[,2],Xp[,3],pch=".",cex=3, add=TRUE)
plot3D::text3D(tetra[,1],tetra[,2],tetra[,3],
labels=c("A","B","C","D"), add=TRUE)
plot3D::text3D(CM[1],CM[2],CM[3], labels=c("CM"), add=TRUE)
D1<-(A+B)/2; D2<-(A+C)/2; D3<-(A+D)/2; D4<-(B+C)/2; D5<-(B+D)/2; D6<-(C+D)/2;
L<-rbind(D1,D2,D3,D4,D5,D6); R<-matrix(rep(CM,6),ncol=3,byrow=TRUE)
plot3D::segments3D(L[,1], L[,2], L[,3], R[,1], R[,2],R[,3], add=TRUE,lty = 2)
F1<-intersect.line.plane(A,CM,B,C,D)
L<-matrix(rep(F1,4),ncol=3,byrow=TRUE); R<-rbind(D4,D5,D6,CM)
plot3D::segments3D(L[,1], L[,2], L[,3], R[,1], R[,2],R[,3],col=2,
add=TRUE,lty = 2)
F2<-intersect.line.plane(B,CM,A,C,D)
L<-matrix(rep(F2,4),ncol=3,byrow=TRUE); R<-rbind(D2,D3,D6,CM)
plot3D::segments3D(L[,1], L[,2], L[,3], R[,1], R[,2],R[,3],col=3,
add=TRUE,lty = 2)
F3<-intersect.line.plane(C,CM,A,B,D)
L<-matrix(rep(F3,4),ncol=3,byrow=TRUE); R<-rbind(D3,D5,D6,CM)
plot3D::segments3D(L[,1], L[,2], L[,3], R[,1], R[,2],R[,3],col=4,
add=TRUE,lty = 2)
F4<-intersect.line.plane(D,CM,A,B,C)
L<-matrix(rep(F4,4),ncol=3,byrow=TRUE); R<-rbind(D1,D2,D4,CM)
plot3D::segments3D(L[,1], L[,2], L[,3], R[,1], R[,2],R[,3],col=5,
add=TRUE,lty = 2)
plot3D::text3D(Xp[,1],Xp[,2],Xp[,3], labels=factor(Rv), add=TRUE)

```

\section*{Description}

Returns the index of the related vertex in the triangle, tri, whose region contains point p .
Vertex regions are based on the general center \(M=\left(m_{1}, m_{2}\right)\) in Cartesian coordinates or \(M=\) \((\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of the triangle tri. Vertices of the triangle tri are labeled according to the row number the vertex is recorded.

If the point, \(p\), is not inside tri, then the function yields NA as output. The corresponding vertex region is the polygon with the vertex, M , and projections from M to the edges on the lines joining vertices and \(M\) (see the illustration in the examples).

See also (Ceyhan (2005, 2010)).

\section*{Usage}
rel.vert.tri(p, tri, M)

\section*{Arguments}
p A 2D point for which M-vertex region it resides in is to be determined in the triangle tri.
tri A \(3 \times 2\) matrix with each row representing a vertex of the triangle.
M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates which serves as a center in the interior of the triangle tri.

\section*{Value}

A list with two elements
\(r v \quad\) Index of the vertex whose region contains point, \(p\); index of the vertex is the same as the row number in the triangle, tri
tri The vertices of the triangle, tri, where row number corresponds to the vertex index \(r v\) with \(r v=1\) is row \(1, r v=2\) is row 2 , and \(r v=3\) is is row 3 .

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). "An investigation of new graph invariants related to the domination number of random proximity catch digraphs." Methodology and Computing in Applied Probability, 14(2), 299-334.

\section*{See Also}
rel.vert.triCM, rel.vert.triCC, rel.vert.basic.triCC, rel.vert.basic.triCM, rel.vert.basic.tri, and rel.vert.std.triCM

\section*{Examples}
```

A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
M<-c(1.6,1.0)
P<-c(1.5,1.6)
rel.vert.tri(P,Tr,M)
\#try also rel.vert.tri(P,Tr,M=c(2,2))
\#center is not in the interior of the triangle
n<-20 \#try also n<-40
set.seed(1)
Xp<-runif.tri(n,Tr)$g
M<-as.numeric(runif.tri(1,Tr)$g) \#try also M<-c(1.6,1.0)
Rv<-vector()
for (i in 1:n)
{Rv<-c(Rv,rel.vert.tri(Xp[i,],Tr,M)\$rv)}
Rv
Ds<-prj.cent2edges(Tr,M)
Xlim<-range(Tr[,1],Xp[,1])
Ylim<-range(Tr[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
if (dimension(M)==3) {M<-bary2cart(M,Tr)}
\#need to run this when M is given in barycentric coordinates
plot(Tr,pch=".",xlab="",ylab="",

```
```

main="Illustration of M-Vertex Regions\n in a Triangle",axes=TRUE,
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)
points(Xp,pch=".",col=1)
L<-rbind(M,M,M); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)
xc<-Tr[,1]
yc<-Tr[,2]
txt.str<-c("rv=1","rv=2","rv=3")
text(xc,yc,txt.str)
txt<-rbind(M,Ds)
xc<-txt[,1]+c(-.02,.04,-.04,0)
yc<-txt[, 2]+c(-.02,.04,.05,-.08)
txt.str<-c("M","D1", "D2","D3")
text(xc,yc,txt.str)
text(Xp,labels=factor(Rv))

```

\section*{Description}

Returns the index of the vertex whose region contains point p in a triangle \(\mathrm{tri}=(A, B, C)\) and vertex regions are based on the circumcenter \(C C\) of tri. (see the plots in the example for illustrations).

The vertices of the triangle tri are labeled as \(1=A, 2=B\), and \(3=C\) also according to the row number the vertex is recorded in tri. If the point, \(p\), is not inside tri, then the function yields NA as output. The corresponding vertex region is the polygon whose interior points are closest to that vertex. If tri is equilateral triangle, then \(C C\) and \(C M\) (center of mass) coincide.

See also (Ceyhan \((2005,2010)\)).

\section*{Usage}
rel.vert.triCC(p, tri)

\section*{Arguments}
p
A 2D point for which \(C C\)-vertex region it resides in is to be determined in the triangle tri.
tri
A \(3 \times 2\) matrix with each row representing a vertex of the triangle.

\section*{Value}

A list with two elements
rv Index of the \(C C\)-vertex region that contains point, p in the triangle tri
tri The vertices of the triangle, where row number corresponds to the vertex index in \(r v\).

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). "An investigation of new graph invariants related to the domination number of random proximity catch digraphs." Methodology and Computing in Applied Probability, 14(2), 299-334.

\section*{See Also}
rel.vert.tri, rel.vert.triCM, rel.vert.basic.triCM, rel.vert.basic.triCC, rel.vert.basic.tri, and rel.vert.std.triCM

\section*{Examples}
```

A<-C(1,1); B<-c(2,0); C<-C(1.5,2);
Tr<-rbind(A,B,C);
P<-c(1.3,1.2)
rel.vert.triCC(P,Tr)
CC<-circumcenter.tri(Tr) \#the circumcenter
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
Ds<-rbind(D1,D2,D3)
Xlim<-range(Tr[,1],CC[1])
Ylim<-range(Tr[,2],CC[2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(Tr,asp=1,xlab="",ylab="",pch=".",axes=TRUE,xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)
L<-matrix(rep(CC,3),ncol=2,byrow=TRUE); R<-Ds

```
```

segments(L[,1], L[,2], R[,1], R[,2], lty = 2)
txt<-rbind(Tr,CC,Ds)
xc<-txt[,1]+c(-.07,.08,.06,.12,-.1,-.1,-.09)
yc<-txt[,2]+c(.02,-.02,.03,.0,.02,.06,-.04)
txt.str<-c("A", "B","C", "CC","D1", "D2","D3")
text(xc,yc,txt.str)
RV1<-(A+.5*(D3-A)+A+.5*(D2-A))/2
RV2<-(B+.5*(D3-B)+B+.5*(D1-B))/2
RV3<-(C+.5*(D2-C)+C+.5*(D1-C))/2
txt<-rbind(RV1,RV2,RV3)
xc<-txt[,1]
yc<-txt[,2]
txt.str<-c("rv=1","rv=2","rv=3")
text(xc,yc,txt.str)
n<-20 \#try also n<-40
Xp<-runif.tri(n,Tr)$g
Rv<-vector()
for (i in 1:n)
    Rv<-c(Rv,rel.vert.triCC(Xp[i,],Tr)$rv)
Rv
Xlim<-range(Tr[,1],Xp[,1])
Ylim<-range(Tr[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(Tr,asp=1,xlab="",ylab="",
main="Illustration of CC-Vertex Regions\n in a Triangle",
pch=".",axes=TRUE,xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)
points(Xp,pch=".")
L<-matrix(rep(CC,3),ncol=2,byrow=TRUE); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)
text(Xp,labels=factor(Rv))
txt<-rbind(Tr,CC,Ds)
xc<-txt[,1]+c(-.07,.08,.06,.12,-.1,-.1,-.09)
yc<-txt[,2]+c(.02,-.02,.03,.0,.02,.06,-.04)
txt.str<-c("A", "B", "C", "CC", "D1", "D2", "D3")
text(xc,yc,txt.str)

```
rel.vert.triCM

The index of the CM-vertex region in a triangle that contains a given point

\section*{Description}

Returns the index of the vertex whose region contains point p in the triangle \(\mathrm{tri}=\left(y_{1}, y_{2}, y_{3}\right)\) with vertex regions are constructed with center of mass \(C M=\left(y_{1}+y_{2}+y_{3}\right) / 3\) (see the plots in the example for illustrations).
The vertices of triangle, tri, are labeled as \(1,2,3\) according to the row number the vertex is recorded in tri. If the point, \(p\), is not inside tri, then the function yields NA as output. The corresponding vertex region is the polygon with the vertex, \(C M\), and midpoints of the edges adjacent to the vertex. See (Ceyhan (2005, 2010))

\section*{Usage}
rel.vert.triCM(p, tri)

\section*{Arguments}
p A 2D point for which \(C M\)-vertex region it resides in is to be determined in the triangle tri.
tri A \(3 \times 2\) matrix with each row representing a vertex of the triangle.

\section*{Value}

A list with two elements
\[
\begin{array}{ll}
\text { rv } & \text { Index of the } C M \text {-vertex region that contains point, } \mathrm{p} \text { in the triangle tri. } \\
\text { tri } & \text { The vertices of the triangle, where row number corresponds to the vertex index } \\
\text { in } r v .
\end{array}
\]

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). "An investigation of new graph invariants related to the domination number of random proximity catch digraphs." Methodology and Computing in Applied Probability, 14(2), 299-334.

\section*{See Also}
rel.vert.tri, rel.vert.triCC, rel.vert.basic.triCM, rel.vert.basic.triCC, rel.vert.basic.tri, and rel.vert.std.triCM

\section*{Examples}
```

A<-C(1,1); B<-C(2,0); C<-C(1.6,2);
Tr<-rbind(A,B,C);
P<-c(1.4,1.2)
rel.vert.triCM(P,Tr)
n<-20 \#try also n<-40
Xp<-runif.tri(n,Tr)$g
Rv<-vector()
for (i in 1:n)
    Rv<-c(Rv,rel.vert.triCM(Xp[i,],Tr)$rv)
Rv
CM<-(A+B+C)/3
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
Ds<-rbind(D1,D2,D3)
Xlim<-range(Tr[,1],Xp[,1])
Ylim<-range(Tr[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(Tr,xlab="",ylab="", axes=TRUE,pch=".",xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)
points(Xp, pch=".")
L<-Ds; R<-matrix(rep(CM, 3),ncol=2,byrow=TRUE)
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)
text(Xp,labels=factor(Rv))
txt<-rbind(Tr,CM,D1,D2,D3)
xc<-txt[,1]+c(-.02,.02,.02,-.02,.02,-.01,--.01)
yc<-txt[, 2]+c(-.02,-..04,.06,-..02,.02,.06,-.06)
txt.str<-c("rv=1", "rv=2", "rv=3", "CM", "D1", "D2", "D3")
text(xc,yc,txt.str)

```
rel.verts.tri

The indices of the vertex regions in a triangle that contains the points in a give data set

\section*{Description}

Returns the indices of the vertices whose regions contain the points in data set Xp in a triangle \(\operatorname{tri}=T(A, B, C)\).
Vertex regions are based on center \(M=\left(m_{1}, m_{2}\right)\) in Cartesian coordinates or \(M=(\alpha, \beta, \gamma)\) in barycentric coordinates in the interior of the triangle to the edges on the extension of the lines
joining M to the vertices or based on the circumcenter of tri. Vertices of triangle tri are labeled as \(1,2,3\) according to the row number the vertex is recorded.
If a point in \(X p\) is not inside tri, then the function yields NA as output for that entry. The corresponding vertex region is the polygon with the vertex, \(M\), and projection points from \(M\) to the edges crossing the vertex (as the output of prj.cent2edges \((\operatorname{Tr}, \mathrm{M})\)) or \(C C\)-vertex region (see the examples for an illustration).

See also (Ceyhan \((2005,2011)\)).

\section*{Usage}
rel.verts.tri(Xp, tri, M)

\section*{Arguments}

Xp A set of 2D points representing the set of data points for which indices of the vertex regions containing them are to be determined.
tri A \(3 \times 2\) matrix with each row representing a vertex of the triangle.
M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates which serves as a center in the interior of the triangle tri or the circumcenter of tri.

\section*{Value}

A list with two elements
\(r v \quad\) Indices of the vertices whose regions contains points in Xp .
tri The vertices of the triangle, where row number corresponds to the vertex index in \(r v\).

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2011). "Spatial Clustering Tests Based on Domination Number of a New Random Digraph Family." Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

Ceyhan E (2012). "An investigation of new graph invariants related to the domination number of random proximity catch digraphs." Methodology and Computing in Applied Probability, 14(2), 299-334.

\section*{See Also}
rel.verts.triCM, rel.verts.triCC, and rel.verts.tri.nondegPE

\section*{Examples}
```

A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
M<-c(1.6,1.0)
P<-c(.4,.2)
rel.verts.tri(P,Tr,M)
n<-20 \#try also n<-40
set.seed(1)
Xp<-runif.tri(n,Tr)$g
M<-as.numeric(runif.tri(1,Tr)$g) \#try also \#M<-c(1.6,1.0)
rel.verts.tri(Xp,Tr,M)
rel.verts.tri(rbind(Xp,c(2,2)),Tr,M)
rv<-rel.verts.tri(Xp,Tr,M)
rv
ifelse(identical(M,circumcenter.tri(Tr)),
Ds<-rbind((B+C)/2,(A+C)/2,(A+B)/2),Ds<-prj.cent2edges(Tr,M))
Xlim<-range(Tr[,1],M[1],Xp[,1])
Ylim<-range(Tr[,2],M[2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
if (dimension(M)==3) {M<-bary2cart(M,Tr)}
\#need to run this when M is given in barycentric coordinates
plot(Tr,pch=".",xlab="",ylab="",
main="Scatterplot of data points \n and M-vertex regions in a triangle",
axes=TRUE,xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)
points(Xp,pch=".",col=1)
L<-rbind(M,M,M); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)
xc<-Tr[,1]
yc<-Tr[,2]
txt.str<-c("rv=1","rv=2","rv=3")
text(xc,yc,txt.str)
txt<-rbind(M,Ds)
xc<-txt[,1]+c(.02,.04,-.03,0)
yc<-txt[,2]+c(.07,.04,.05,-.07)

```
```

txt.str<-c("M","D1", "D2", "D3")
text(xc,yc,txt.str)
text(Xp,labels=factor(rv\$rv))

```
```

rel.verts.tri.nondegPE

```

The indices of the vertex regions in a triangle that contains the points in a give data set

\section*{Description}

Returns the indices of the vertices whose regions contain the points in data set Xp in a triangle tri= \((A, B, C)\) and vertex regions are based on the center cent which yields nondegenerate asymptotic distribution of the domination number of PE-PCD for uniform data in tri for expansion parameter \(r\) in (1, 1.5].
Vertices of triangle tri are labeled as \(1,2,3\) according to the row number the vertex is recorded if a point in Xp is not inside tri, then the function yields NA as output for that entry. The corresponding vertex region is the polygon with the vertex, cent, and projection points on the edges. The center label cent values \(1,2,3\) correspond to the vertices \(M_{1}, M_{2}\), and \(M_{3}\); with default 1 (see the examples for an illustration).
See also (Ceyhan \((2005,2011)\)).

\section*{Usage}
rel.verts.tri.nondegPE(Xp, tri, r, cent = 1)

\section*{Arguments}

Xp A set of 2D points representing the set of data points for which indices of the vertex regions containing them are to be determined.
tri A \(3 \times 2\) matrix with each row representing a vertex of the triangle.
\(r \quad\) A positive real number which serves as the expansion parameter in PE proximity region; must be in \((1,1.5]\) for this function.
cent Index of the center (as \(1,2,3\) corresponding to \(M_{1}, M_{2}, M_{3}\)) which gives nondegenerate asymptotic distribution of the domination number of PE-PCD for uniform data in tri for expansion parameter \(r\) in \((1,1.5]\); default cent=1.

\section*{Value}

A list with two elements
rv Indices (i.e., a vector of indices) of the vertices whose region contains points in Xp in the triangle tri
tri The vertices of the triangle, where row number corresponds to the vertex index in \(r v\).
rel.verts.tri.nondegPE

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2011). "Spatial Clustering Tests Based on Domination Number of a New Random Digraph Family." Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

Ceyhan E (2012). "An investigation of new graph invariants related to the domination number of random proximity catch digraphs." Methodology and Computing in Applied Probability, 14(2), 299-334.

\section*{See Also}
```

rel.verts.triCM, rel.verts.triCC, and rel.verts.tri

```

\section*{Examples}
```

A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
r<-1.35
cent<-2
P<-c(1.4,1.0)
rel.verts.tri.nondegPE(P,Tr,r,cent)
n<-20 \#try also n<-40
set.seed(1)
Xp<-runif.tri(n,Tr)\$g
rel.verts.tri.nondegPE(Xp,Tr,r,cent)
rel.verts.tri.nondegPE(rbind(Xp,c(2,2)),Tr,r,cent)
rv<-rel.verts.tri.nondegPE(Xp,Tr,r,cent)
M<-center.nondegPE(Tr,r)[cent,];
Ds<-prj.nondegPEcent2edges(Tr,r,cent)
Xlim<-range(Tr[,1],Xp[,1])
Ylim<-range(Tr[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

```
```

plot(Tr,pch=".",xlab="",ylab="",axes=TRUE,xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)
points(Xp,pch=".",col=1)
L<-rbind(M,M,M); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)
xc<-Tr[,1]+c(-.03,.05,.05)
yc<-Tr[,2]+c(-.06,.02,.05)
txt.str<-c("rv=1","rv=2", "rv=3")
text(xc,yc,txt.str)
txt<-rbind(M,Ds)
xc<-txt[,1]+c(.02,.04,-.03,0)
yc<-txt[,2]+c(.07,.03,.05,-.07)
txt.str<-c("M","D1","D2","D3")
text(xc,yc,txt.str)
text(Xp,labels=factor(rv\$rv))

```
rel.verts.tricC \begin{tabular}{l}
The indices of the CC-vertex regions in a triangle that contains the \\
points in a give data set.
\end{tabular}

\section*{Description}

Returns the indices of the vertices whose regions contain the points in data set \(X p\) in a triangle \(\operatorname{tri}=(A, B, C)\) and vertex regions are based on the circumcenter \(C C\) of tri. (see the plots in the example for illustrations).
The vertices of the triangle tri are labeled as \(1=A, 2=B\), and \(3=C\) also according to the row number the vertex is recorded in tri. If a point in Xp is not inside tri, then the function yields \(N A\) as output. The corresponding vertex region is the polygon whose interior points are closest to that vertex. If tri is equilateral triangle, then \(C C\) and \(C M\) (center of mass) coincide.

See also (Ceyhan (2005, 2010)).

\section*{Usage}
rel.verts.triCC(Xp, tri)

\section*{Arguments}

\section*{Xp}

A set of 2D points representing the set of data points for which indices of the vertex regions containing them are to be determined.
tri
A \(3 \times 2\) matrix with each row representing a vertex of the triangle.

\section*{Value}

A list with two elements
rv Indices (i.e., a vector of indices) of the vertices whose region contains points in Xp in the triangle tri
tri The vertices of the triangle, where row number corresponds to the vertex index in \(r v\).

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). "An investigation of new graph invariants related to the domination number of random proximity catch digraphs." Methodology and Computing in Applied Probability, 14(2), 299-334.

\section*{See Also}
```

rel.verts.triCM, rel.verts.tri, and rel.verts.tri.nondegPE

```

\section*{Examples}
```

A<-c(1,1); B<-c(2,0); C<-C(1.5,2);
Tr<-rbind(A,B,C);
P<-c(.4,.2)
rel.verts.triCC(P,Tr)
n<-20 \#try also n<-40
set.seed(1)
Xp<-runif.tri(n,Tr)\$g
rel.verts.triCC(Xp,Tr)
rel.verts.triCC(rbind(Xp,c(2,2)),Tr)
(rv<-rel.verts.triCC(Xp,Tr))
CC<-circumcenter.tri(Tr)
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
Ds<-rbind(D1,D2,D3)

```
```

Xlim<-range(Tr[,1],Xp[,1],CC[1])
Ylim<-range(Tr[,2],Xp[,2],CC[2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(Tr,pch=".",asp=1,xlab="",ylab="",
main="Scatterplot of data points \n and the CC-vertex regions",
axes=TRUE,xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)
points(Xp,pch=".",col=1)
L<-matrix(rep(CC,3),ncol=2,byrow=TRUE); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)
xc<-Tr[,1]
yc<-Tr[,2]
txt.str<-c("rv=1","rv=2","rv=3")
text(xc,yc,txt.str)
txt<-rbind(CC,Ds)
xc<-txt[,1]+c(.04,.04,-.03,0)
yc<-txt[,2]+c(-.07,.04,.06,-.08)
txt.str<-c("CC","D1","D2", "D3")
text(xc,yc,txt.str)
text(Xp,labels=factor(rv\$rv))

```
rel.verts.triCM The indices of the CM-vertex regions in a triangle that contains the points in a give data set

\section*{Description}

Returns the indices of the vertices whose regions contain the points in data set Xp in a triangle \(\operatorname{tri}=(A, B, C)\) and vertex regions are based on the center of mass \(C M\) of tri. (see the plots in the example for illustrations).

The vertices of the triangle tri are labeled as \(1=A, 2=B\), and \(3=C\) also according to the row number the vertex is recorded in tri. If a point in \(X p\) is not inside tri, then the function yields NA as output for that entry. The corresponding vertex region is the polygon with the vertex, \(C M\), and midpoints the edges crossing the vertex.
See also (Ceyhan \((2005,2010)\)).

\section*{Usage}
rel.verts.triCM(Xp, tri)

\section*{Arguments}

Xp A set of 2D points representing the set of data points for which indices of the vertex regions containing them are to be determined.
tri A \(3 \times 2\) matrix with each row representing a vertex of the triangle.

\section*{Value}

A list with two elements
rv Indices (i.e., a vector of indices) of the vertices whose region contains points in Xp in the triangle tri
tri The vertices of the triangle, where row number corresponds to the vertex index in \(r v\).

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). "An investigation of new graph invariants related to the domination number of random proximity catch digraphs." Methodology and Computing in Applied Probability, 14(2), 299-334.

\section*{See Also}
rel.verts.tri, rel.verts.triCC, and rel.verts.tri.nondegPE

\section*{Examples}
```

A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
P<-c(.4,.2)
rel.verts.triCM(P,Tr)
n<-20 \#try also n<-40
set.seed(1)
Xp<-runif.tri(n,Tr)\$g
rv<-rel.verts.triCM(Xp,Tr)
rv

```
```

CM<-(A+B+C)/3
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
Ds<-rbind(D1,D2,D3)
Xlim<-range(Tr[,1],Xp[,1])
Ylim<-range(Tr[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(Tr,pch=".",xlab="",ylab="",axes=TRUE,xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)
points(Xp,pch=".",col=1)
L<-matrix(rep(CM,3),ncol=2,byrow=TRUE); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)
xc<-Tr[,1]+c(-.04,.05,.05)
yc<-Tr[,2]+c(-.05,.05,.03)
txt.str<-c("rv=1","rv=2", "rv=3")
text(xc,yc,txt.str)
txt<-rbind(CM,Ds)
xc<-txt[,1]+c(.04,.04,-.03,0)
yc<-txt[, 2]+c(-.07,.04,.06,-.08)
txt.str<-c("CM", "D1","D2", "D3")
text(xc,yc,txt.str)
text(Xp,labels=factor(rv\$rv))

```
rel.verts.trim

The alternative function for the indices of the \(M\)-vertex regions in a triangle that contains the points in a give data set

\section*{Description}

An alternative function to the function rel.verts. tri when the center \(M\) is not the circumcenter falling outside the triangle. This function only works for a center \(M\) in the interior of the triangle, with the projections of \(M\) to the edges along the lines joining \(M\) to the vertices.

\section*{Usage}
rel.verts.triM(Xp, tri, M)

\section*{Arguments}

Xp
A set of 2 D points representing the set of data points for which indices of the vertex regions containing them are to be determined.
tri
A \(3 \times 2\) matrix with each row representing a vertex of the triangle.

M
A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates which serves as a center in the interior of the triangle tri.

\section*{Value}

A list with two elements
rv Indices of the vertices whose regions contains points in Xp.
tri The vertices of the triangle, where row number corresponds to the vertex index in \(r v\).

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

There are no references for Rd macro \insertAllCites on this help page.

\section*{See Also}
```

rel.verts.tri

```

\section*{Examples}
```

A<-C(1,1); B<-c(2,0); C<-C(1.5,2);
Tr<-rbind(A,B,C);
M<-c(1.6,1.0)
P<-c(.4,.2)
rel.verts.triM(P,Tr,M)
n<-20 \#try also n<-40
set.seed(1)
Xp<-runif.tri(n,Tr)\$g
M<-c(1.6,1.0) \#try also M<-c(1.3,1.3)
(rv<-rel.verts.tri(Xp,Tr,M))
rel.verts.triM(rbind(Xp,c(2, 2)),Tr,M)
Ds<-prj.cent2edges(Tr,M)
Xlim<-range(Tr[,1])
Ylim<-range(Tr[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(Tr,pch=".",xlab="",ylab="",axes=TRUE,xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)
points(Xp,pch=".",col=1)

```
```

L<-rbind(M,M,M); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)
xc<-Tr[,1]+c(-.03,.05,.05)
yc<-Tr[,2]+c(-.06,.02,.05)
txt.str<-c("rv=1","rv=2","rv=3")
text(xc,yc,txt.str)
txt<-rbind(M,Ds)
xc<-txt[,1]+c(.02,.04,-.03,0)
yc<-txt[,2]+c(.07,.03,.05,-.07)
txt.str<-c("M","D1", "D2","D3")
text(xc,yc,txt.str)
text(Xp,labels=factor(rv\$rv))

```
rseg.circular Generation of points segregated (in a radial or circular fashion) from a given set of points

\section*{Description}

An object of class "Patterns". Generates n 2D points uniformly in \(\left(a_{1}-e, a_{1}+e\right) \times\left(a_{1}-e, a_{1}+\right.\) \(e) \backslash B\left(y_{i}, e\right)\) (\(a_{1}\) and \(b 1\) are denoted as a1 and b1 as arguments) where \(Y_{p}=\left(y_{1}, y_{2}, \ldots, y_{n_{y}}\right)\) with \(n_{y}\) being number of \(Y p\) points for various values of e under the segregation pattern and \(B\left(y_{i}, e\right)\) is the ball centered at \(y_{i}\) with radius e.
Positive values of e yield realizations from the segregation pattern and nonpositive values of e provide a type of complete spatial randomness (CSR), e should not be too large to make the support of generated points empty, a1 is defaulted to the minimum of the \(x\)-coordinates of the Yp points, a2 is defaulted to the maximum of the \(x\)-coordinates of the Yp points, b 1 is defaulted to the minimum of the \(y\)-coordinates of the Yp points, b 2 is defaulted to the maximum of the \(y\)-coordinates of the Yp points.

\section*{Usage}
```

rseg.circular(
n,
Yp,
e,
a1 = min(Yp[, 1]),
a2 = max(Yp[, 1]),
b1 = min(Yp[, 2]),
b2 = max(Yp[, 2])
)

```

\section*{Arguments}
\(\mathrm{n} \quad\) A positive integer representing the number of points to be generated.
Yp A set of 2D points representing the reference points. The generated points are segregated (in a circular or radial fashion) from these points.
e A positive real number representing the radius of the balls centered at \(Y p\) points. These balls are forbidden for the generated points (i.e., generated points would be in the complement of union of these balls).
a1, a2 Real numbers representing the range of \(x\)-coordinates in the region (default is the range of \(x\)-coordinates of the Yp points).
\(\mathrm{b} 1, \mathrm{~b} 2 \quad\) Real numbers representing the range of \(y\)-coordinates in the region (default is the range of \(y\)-coordinates of the \(Y p\) points).

\section*{Value}

A list with the elements
\begin{tabular}{ll}
\begin{tabular}{l}
type \\
mtitle
\end{tabular} & \begin{tabular}{l}
The type of the point pattern \\
The "main" title for the plot of the point pattern
\end{tabular} \\
parameters & Radial (i.e., circular) exclusion parameter of the segregation pattern \\
ref.points & \begin{tabular}{l}
The input set of reference points Yp, i.e., points from which generated points are \\
segregated.
\end{tabular} \\
gen.points & \begin{tabular}{l}
The output set of generated points segregated from Yp points \\
tri.Yp
\end{tabular} \\
\begin{tabular}{l}
Logical output for triangulation based on Yp points should be implemented or \\
not. if TRUE triangulation based on Yp points is to be implemented (default is set \\
to FALSE).
\end{tabular} \\
desc.pat & \begin{tabular}{l}
Description of the point pattern \\
num. points
\end{tabular} \\
The vector of two numbers, which are the number of generated points and the \\
number of reference (i.e., Yp) points.
\end{tabular}

\section*{Author(s)}

Elvan Ceyhan

\section*{See Also}
rassoc.circular, rseg.std.tri, rsegII.std.tri, and rseg.multi.tri

\section*{Examples}
```

nx<-100; ny<-4; \#try also nx<-1000; ny<-10
e<-.15; \#try also e<- -.1; \#a negative e provides a CSR realization
\#with default bounding box (i.e., unit square)
Y<-cbind(runif(ny),runif(ny))

```
```

Xdt<-rseg.circular(nx,Y,e)
Xdt
summary(Xdt)
plot(Xdt,asp=1)
\#with default bounding box (i.e., unit square)
Y<-cbind(runif(ny),runif(ny))
Xdt<-Xdt$gen.points
Xlim<-range(Xdt[,1],Y[,1]);
Ylim<-range(Xdt[,2],Y[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(Y,asp=1,pch=16,col=2,lwd=2, xlab="x",ylab="y",
    main="Circular Segregation of X points from Y Points",
    xlim=Xlim+xd*c(-.01,.01),ylim=Ylim+yd*c(-.01,.01))
points(Xdt)
#with a rectangular bounding box
a1<-0; a2<-10;
b1<-0; b2<-5;
e<-1.5;
Y<-cbind(runif(ny, a1, a2), runif(ny, b1, b2))
#try also Y<-cbind(runif(ny,a1,a2/2),runif(ny,b1,b2/2))
Xdt<-rseg.circular(nx, Y, e, a1, a2, b1, b2)$gen.points
Xlim<-range(Xdt[,1],Y[,1]); Ylim<-range(Xdt[, 2],Y[, 2])
plot(Y,pch=16,asp=1,col=2,lwd=2, xlab="x",ylab="y",
main="Circular Segregation of X points from Y Points",
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
points(Xdt)

```
rseg.multi.tri Generation of points segregated (in a Type I fashion) from a given set of points

\section*{Description}

An object of class "Patterns". Generates n points uniformly in the support for Type I segregation in the convex hull of set of points, Yp.
delta is the parameter of segregation (that is, \(\delta 100 \%\) of the area around each vertex in each Delaunay triangle is forbidden for point generation). delta corresponds to eps in the standard equilateral triangle \(T_{e}\) as delta \(=4 e \mathrm{es}^{2} / 3\) (see rseg.std.tri function).

If \(Y p\) consists only of 3 points, then the function behaves like the function rseg.tri.

DTmesh must be the Delaunay triangulation of Yp and DTr must be the corresponding Delaunay triangles (both DTmesh and DTr are NULL by default). If NULL, DTmesh is computed via tri.mesh and DTr is computed via triangles function in interp package.
tri.mesh function yields the triangulation nodes with their neighbours, and creates a triangulation object, and triangles function yields a triangulation data structure from the triangulation object created by tri.mesh (the first three columns are the vertex indices of the Delaunay triangles.)

See (Ceyhan et al. (2006); Ceyhan et al. (2007); Ceyhan (2011)) for more on the segregation pattern. Also, see (Okabe et al. (2000); Ceyhan (2010); Sinclair (2016)) for more on Delaunay triangulation and the corresponding algorithm.

\section*{Usage}
rseg.multi.tri(n, Yp, delta, DTmesh = NULL, DTr = NULL)

\section*{Arguments}
n
Yp A set of 2D points from which Delaunay triangulation is constructed.
delta A positive real number in \((0,1)\). delta is the parameter of segregation (that is, \(\delta 100\) each Delaunay triangle is forbidden for point generation).

DTmesh Delaunay triangulation of Yp, default is NULL, which is computed via tri.mesh function in interp package. tri.mesh function yields the triangulation nodes with their neighbours, and creates a triangulation object.
DTr Delaunay triangles based on Yp, default is NULL, which is computed via tri.mesh function in interp package. triangles function yields a triangulation data structure from the triangulation object created by tri.mesh.

\section*{Value}

A list with the elements
type \(\quad\) The type of the pattern from which points are to be generated
mtitle The "main" title for the plot of the point pattern
parameters Exclusion parameter, delta, of the Type I segregation pattern. delta is in \((0,1)\) and \(\delta 100 \%\) area around vertices of each Delaunay triangle is forbidden for point generation.
ref.points The input set of points Yp; reference points, i.e., points from which generated points are segregated.
gen.points The output set of generated points segregated from Yp points.
tri.Y Logical output, TRUE, if triangulation based on Yp points should be implemented.
desc.pat Description of the point pattern
num. points The vector of two numbers, which are the number of generated points and the number of reference (i.e., Yp) points.
xlimit,ylimit The ranges of the \(x\) - and \(y\)-coordinates of the reference points, which are the Yp points

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2011). "Spatial Clustering Tests Based on Domination Number of a New Random Digraph Family." Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

Ceyhan E, Priebe CE, Marchette DJ (2007). "A new family of random graphs for testing spatial segregation." Canadian Journal of Statistics, 35(1), 27-50.

Ceyhan E, Priebe CE, Wierman JC (2006). "Relative density of the random \(r\)-factor proximity catch digraphs for testing spatial patterns of segregation and association." Computational Statistics \& Data Analysis, 50(8), 1925-1964.

Okabe A, Boots B, Sugihara K, Chiu SN (2000). Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. Wiley, New York.

Sinclair D (2016). "S-hull: a fast radial sweep-hull routine for Delaunay triangulation." 1604.01428.

\section*{See Also}
```

rseg.circular,rseg.std.tri,rsegII.std.tri, and rassoc.multi.tri

```

\section*{Examples}
```

\#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-100; ny<-4; \#try also nx<-1000; ny<-10;
set.seed(1)
Yp<-cbind(runif(ny),runif(ny))
del<-.4
Xdt<-rseg.multi.tri(nx,Yp,del)
Xdt
summary(Xdt)
plot(Xdt)
\#or use
DTY<-interp::tri.mesh(Yp[,1],Yp[,2],duplicate="remove")
\#Delaunay triangulation based on Y points
TRY<-interp::triangles(DTY)[,1:3];
Xp<-rseg.multi.tri(nx,Yp,del,DTY,TRY)\$gen.points
\#data under CSR in the convex hull of Ypoints
Xlim<-range(Yp[,1])

```
```

Ylim<-range(Yp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
\#plot of the data in the convex hull of Y points together with the Delaunay triangulation
DTY<-interp::tri.mesh(Yp[,1],Yp[,2],duplicate="remove")
\#Delaunay triangulation based on Y points
oldpar <- par(pty="s")
plot(Xp,main="Points from Type I Segregation \n in Multipe Triangles",
xlab=" ", ylab=" ",xlim=Xlim+xd*c(-.05,.05),
ylim=Ylim+yd*c(-.05,.05),type="n")
interp::plot.triSht(DTY, add=TRUE,
do.points=TRUE,col="blue")
points(Xp,pch=".",cex=3)
par(oldpar)

```
rseg.std.tri

Generation of points segregated (in a Type I fashion) from the vertices of \(T_{-} e\)

\section*{Description}

An object of class "Patterns". Generates n points uniformly in the standard equilateral triangle \(T_{e}=T((0,0),(1,0),(1 / 2, \sqrt{3} / 2))\) under the type I segregation alternative for eps in \((0, \sqrt{3} / 3=\) \(0.5773503]\).
In the type I segregation, the triangular forbidden regions around the vertices are determined by the parameter eps which serves as the height of these triangles (see examples for a sample plot.)
See also (Ceyhan et al. (2006); Ceyhan et al. (2007); Ceyhan (2011)).

\section*{Usage}
rseg.std.tri(n, eps)

\section*{Arguments}
\(\mathrm{n} \quad\) A positive integer representing the number of points to be generated.
eps A positive real number representing the parameter of type I segregation (which is the height of the triangular forbidden regions around the vertices).

\section*{Value}

A list with the elements
type The type of the point pattern
mtitle The "main" title for the plot of the point pattern
parameters The exclusion parameter, eps, of the segregation pattern, which is the height of the triangular forbidden regions around the vertices
ref.points The input set of points \(Y\); reference points, i.e., points from which generated points are segregated (i.e., vertices of \(T_{e}\)).
gen.points The output set of generated points segregated from Y points (i.e., vertices of \(T_{e}\)).
tri.Y Logical output for triangulation based on \(Y\) points should be implemented or not. if TRUE triangulation based on \(Y\) points is to be implemented (default is set to FALSE).
desc.pat Description of the point pattern
num. points The vector of two numbers, which are the number of generated points and the number of reference (i.e., Y) points, which is 3 here.
xlimit, ylimit The ranges of the \(x\) - and \(y\)-coordinates of the reference points, which are the vertices of \(T_{e}\) here.

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2011). "Spatial Clustering Tests Based on Domination Number of a New Random Digraph Family." Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

Ceyhan E, Priebe CE, Marchette DJ (2007). "A new family of random graphs for testing spatial segregation." Canadian Journal of Statistics, 35(1), 27-50.

Ceyhan E, Priebe CE, Wierman JC (2006). "Relative density of the random \(r\)-factor proximity catch digraphs for testing spatial patterns of segregation and association." Computational Statistics \& Data Analysis, 50(8), 1925-1964.

\section*{See Also}
rseg.circular, rassoc.circular, rsegII.std.tri, and rseg.multi.tri

\section*{Examples}
```

A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C);
n<-100
eps<-. }3\mathrm{ \#try also .15, .5, . }7
set.seed(1)
Xdt<-rseg.std.tri(n,eps)
Xdt
summary(Xdt)
plot(Xdt,asp=1)
Xlim<-range(Te[,1])

```
```

Ylim<-range(Te[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
Xp<-Xdt\$gen.points
plot(Te,asp=1,pch=".",xlab="",ylab="",
main="Type I segregation in the \n standard equilateral triangle",
xlim=Xlim+xd*c(-.01,.01),ylim=Ylim+yd*c(-.01,.01))
polygon(Te)
points(Xp)
\#The support for the Type I segregation alternative
sr<-eps/(sqrt(3)/2)
C1<-C+sr*(A-C); C2<-C+sr*(B-C)
A1<-A+Sr*(B-A); A2<-A+Sr*(C-A)
B1<-B+sr*(A-B); B2<-B+sr*(C-B)
supp<-rbind(A1,B1,B2,C2,C1,A2)
plot(Te,asp=1,pch=".",xlab="",ylab="",
main="Support of the Type I Segregation",
xlim=Xlim+xd*c(-.01,.01),ylim=Ylim+yd*c(-.01,.01))
if (sr<=.5)
{
polygon(Te)
polygon(supp,col=5)
} else
{
polygon(Te,col=5,lwd=2.5)
polygon(rbind(A,A1,A2),col=0,border=NA)
polygon(rbind(B,B1,B2),col=0,border=NA)
polygon(rbind(C,C1,C2),col=0,border=NA)
}
points(Xp)

```

Generation of points segregated (in a Type I fashion) from the vertices of a triangle

\section*{Description}

An object of class "Patterns". Generates \(n\) points uniformly in the support for Type I segregation in a given triangle, tri.
delta is the parameter of segregation (that is, \(\delta 100 \%\) of the area around each vertex in the triangle is forbidden for point generation). delta corresponds to eps in the standard equilateral triangle \(T_{e}\) as delta \(=4 e \mathrm{es}^{2} / 3\) (see rseg. std.tri function).
See (Ceyhan et al. (2006); Ceyhan et al. (2007); Ceyhan (2011)) for more on the segregation pattern.

\section*{Usage}
rseg.tri(n, tri, delta)

\section*{Arguments}
\(\mathrm{n} \quad\) A positive integer representing the number of points to be generated from the segregation pattern in the triangle, tri.
tri A \(3 \times 2\) matrix with each row representing a vertex of the triangle.
delta A positive real number in \((0,1)\). delta is the parameter of segregation (that is, \(\delta 100 \%\) area around vertices of each Delaunay triangle is forbidden for point generation).

Value
A list with the elements
type The type of the pattern from which points are to be generated
mtitle The "main" title for the plot of the point pattern
parameters Exclusion parameter, delta, of the Type I segregation pattern. delta is in \((0,1)\) and \(\delta 100 \%\) area around vertices of the triangle tri is forbidden for point generation.
ref.points The input set of points, i.e., vertices of tri; reference points, i.e., points from which generated points are segregated.
gen.points The output set of generated points segregated from the vertices of tri.
tri.Y Logical output, if TRUE the triangle tri is also plotted when the corresponding plot function from the Patterns object is called.
desc.pat Description of the point pattern
num. points The vector of two numbers, which are the number of generated points and the number of reference (i.e., vertex of tri, which is 3 here).
xlimit,ylimit The ranges of the \(x\) - and \(y\)-coordinates of the reference points, which are the vertices of the triangle tri

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2011). "Spatial Clustering Tests Based on Domination Number of a New Random Digraph Family." Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

Ceyhan E, Priebe CE, Marchette DJ (2007). "A new family of random graphs for testing spatial segregation." Canadian Journal of Statistics, 35(1), 27-50.

Ceyhan E, Priebe CE, Wierman JC (2006). "Relative density of the random \(r\)-factor proximity catch digraphs for testing spatial patterns of segregation and association." Computational Statistics \& Data Analysis, 50(8), 1925-1964.

\section*{See Also}
```

rassoc.tri,rseg.std.tri,rsegII.std.tri, and rseg.multi.tri

```

\section*{Examples}
```

n<-100
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C)
del<-.4
Xdt<-rseg.tri(n,Tr,del)
Xdt
summary(Xdt)
plot(Xdt)
Xp<-Xdt\$g
Xlim<-range(Tr[,1])
Ylim<-range(Tr[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(Tr,pch=".",xlab="",ylab="",
main="Points from Type I Segregation \n in one Triangle",
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)
points(Xp)
xc<-Tr[,1]+c(-.02,.02,.02)
yc<-Tr[,2]+c(.02,.02,.03)
txt.str<-c("A","B","C")
text(xc,yc,txt.str)

```
rsegII.std.tri Generation of points segregated (in a Type II fashion) from the vertices of \(T_{-} e\)

\section*{Description}

An object of class "Patterns". Generates \(n\) points uniformly in the standard equilateral triangle \(T_{e}=T((0,0),(1,0),(1 / 2, \sqrt{3} / 2))\) under the type II segregation alternative for eps in \((0, \sqrt{3} / 6=\) \(0.2886751]\).
In the type II segregation, the annular forbidden regions around the edges are determined by the parameter eps which is the distance from the interior triangle (i.e., support for the segregation) to \(T_{e}\) (see examples for a sample plot.)

\section*{Usage}
```

rsegII.std.tri(n, eps)

```

\section*{Arguments}
\[
\begin{array}{ll}
\mathrm{n} & \text { A positive integer representing the number of points to be generated. } \\
\text { eps } & \text { A positive real number representing the parameter of type II segregation (which } \\
\text { is the distance from the interior triangle points to the boundary of } T_{e} \text {). }
\end{array}
\]

\section*{Value}

A list with the elements
type The type of the point pattern
mtitle The "main" title for the plot of the point pattern
parameters The exclusion parameter, eps, of the segregation pattern, which is the distance from the interior triangle to \(T_{e}\)
ref.points The input set of points \(Y\); reference points, i.e., points from which generated points are segregated (i.e., vertices of \(T_{e}\)).
gen. points \(\quad\) The output set of generated points segregated from \(Y\) points (i.e., vertices of \(T_{e}\)).
tri. \(Y \quad\) Logical output for triangulation based on \(Y\) points should be implemented or not. if TRUE triangulation based on \(Y\) points is to be implemented (default is set to FALSE).
desc.pat Description of the point pattern
num. points The vector of two numbers, which are the number of generated points and the number of reference (i.e., Y) points, which is 3 here.
xlimit,ylimit The ranges of the \(x\) - and \(y\)-coordinates of the reference points, which are the vertices of \(T_{e}\) here

\section*{Author(s)}

Elvan Ceyhan

\section*{See Also}
```

rseg.circular, rassoc.circular,rseg.std.tri, and rseg.multi.tri

```

\section*{Examples}
```

A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C);
n<-10 \#try also n<-20 or n<-100 or 1000
eps<-.15 \#try also .2
set.seed(1)
Xdt<-rsegII.std.tri(n,eps)
Xdt
summary (Xdt)
plot(Xdt,asp=1)
Xlim<-range(Te[,1])

```
```

Ylim<-range(Te[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
Xp<-Xdt\$gen.points
plot(Te,pch=".",xlab="",ylab="",
main="Type II segregation in the \n standard equilateral triangle",
xlim=Xlim+xd*c(-.01,.01),ylim=Ylim+yd*c(-.01,.01))
polygon(Te)
points(Xp)
\#The support for the Type II segregation alternative
C1<-c(1/2,sqrt(3)/2-2*eps);
A1<-c(eps*sqrt(3),eps); B1<-c(1-eps*sqrt(3),eps);
supp<-rbind(A1,B1,C1)
plot(Te,asp=1,pch=".",xlab="",ylab="",
main="Support of the Type II Segregation",
xlim=Xlim+xd*c(-.01,.01),ylim=Ylim+yd*c(-.01,.01))
polygon(Te)
polygon(supp,col=5)
points(Xp)

```

\section*{Description}

An object of class "Uniform". Generates n points uniformly in the standard basic triangle \(T_{b}=\) \(T\left((0,0),(1,0),\left(c_{1}, c_{2}\right)\right)\) where \(c_{1}\) is in \([0,1 / 2], c_{2}>0\) and \(\left(1-c_{1}\right)^{2}+c_{2}^{2} \leq 1\).

Any given triangle can be mapped to the basic triangle by a combination of rigid body motions (i.e., translation, rotation and reflection) and scaling, preserving uniformity of the points in the original triangle (Ceyhan (2005); Ceyhan et al. (2007); Ceyhan et al. (2006)). Hence, standard basic triangle is useful for simulation studies under the uniformity hypothesis.

\section*{Usage}
runif.basic.tri(n, c1, c2)

\section*{Arguments}
n
A positive integer representing the number of uniform points to be generated in the standard basic triangle.
c1, c2 Positive real numbers representing the top vertex in standard basic triangle \(T_{b}=\) \(T\left((0,0),(1,0),\left(c_{1}, c_{2}\right)\right), c_{1}\) must be in \([0,1 / 2], c_{2}>0\) and \(\left(1-c_{1}\right)^{2}+c_{2}^{2} \leq 1\).

Value
A list with the elements
type \(\quad\) The type of the pattern from which points are to be generated
mtitle The "main" title for the plot of the point pattern
tess.points The vertices of the support of the uniformly generated points, it is the standard basic triangle \(T_{b}\) for this function
gen.points The output set of generated points uniformly in the standard basic triangle
out.region The outer region which contains the support region, NULL for this function.
desc.pat Description of the point pattern from which points are to be generated
num. points The vector of two numbers, which are the number of generated points and the number of vertices of the support points (here it is 3).
txt4pnts Description of the two numbers in num. points.
xlimit, ylimit \(\quad\) The ranges of the \(x\) - and \(y\)-coordinates of the support, Tb

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties, and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E, Priebe CE, Marchette DJ (2007). "A new family of random graphs for testing spatial segregation." Canadian Journal of Statistics, 35(1), 27-50.

Ceyhan E, Priebe CE, Wierman JC (2006). "Relative density of the random \(r\)-factor proximity catch digraphs for testing spatial patterns of segregation and association." Computational Statistics \& Data Analysis, 50(8), 1925-1964.

\section*{See Also}
runif.std.tri, runif.tri, and runif.multi.tri

\section*{Examples}
```

c1<-.4; c2<-. }
A<-c(0,0); B<-c(1,0); C<-c(c1,c2);
Tb<-rbind(A,B,C);
n<-100
set.seed(1)
runif.basic.tri(1,c1,c2)
Xdt<-runif.basic.tri(n,c1,c2)

```
```

Xdt
summary(Xdt)
plot(Xdt)
Xp<-runif.basic.tri(n, c1,c2)\$g
Xlim<-range(Tb[,1])
Ylim<-range(Tb[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(Tb,xlab="",ylab="",xlim=xlim+xd*c(-.01,.01),
ylim=Ylim+yd*c(-.01,.01),type="n")
polygon(Tb)
points(Xp)

```
runif.multi.tri Generation of Uniform Points in the Convex Hull of Points

\section*{Description}

An object of class "Uniform". Generates n points uniformly in the Convex Hull of set of points, Yp. That is, generates uniformly in each of the triangles in the Delaunay triangulation of Yp, i.e., in the multiple triangles partitioning the convex hull of Yp.

If \(Y p\) consists only of 3 points, then the function behaves like the function runif.tri.
DTmesh is the Delaunay triangulation of \(Y p\), default is DTmesh=NULL. DTmesh yields triangulation nodes with neighbours (result of tri.mesh function from interp package).
See (Okabe et al. (2000); Ceyhan (2010); Sinclair (2016)) for more on Delaunay triangulation and the corresponding algorithm.

\section*{Usage}
runif.multi.tri(n, Yp, DTmesh = NULL)

\section*{Arguments}
n

Yp A set of 2D points whose convex hull is the support of the uniform points to be generated.
DTmesh Triangulation nodes with neighbours (result of tri.mesh function from interp package).

\section*{Value}

A list with the elements
type \(\quad\) The type of the pattern from which points are to be generated
mtitle The "main" title for the plot of the point pattern
tess.points The points which constitute the vertices of the triangulation and whose convex hull determines the support of the generated points.
gen.points The output set of generated points uniformly in the convex hull of Yp
out.region The outer region which contains the support region, NULL for this function.
desc.pat Description of the point pattern from which points are to be generated
num. points The vector of two numbers, which are the number of generated points and the number of vertices in the triangulation (i.e., size of \(Y p\)) points.
txt4pnts Description of the two numbers in num. points
xlimit, ylimit \(\quad\) The ranges of the \(x\) - and \(y\)-coordinates of the points in Yp

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

Okabe A, Boots B, Sugihara K, Chiu SN (2000). Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. Wiley, New York.

Sinclair D (2016). "S-hull: a fast radial sweep-hull routine for Delaunay triangulation." 1604.01428.

\section*{See Also}
```

runif.tri,runif.std.tri, and runif.basic.tri,

```

\section*{Examples}
```

\#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-100; ny<-4; \#try also nx<-1000; ny<-10;
set.seed(1)
Yp<-cbind(runif(ny,0,10),runif(ny,0,10))
Xdt<-runif.multi.tri(nx,Yp)
\#data under CSR in the convex hull of Ypoints
Xdt
summary(Xdt)
plot(Xdt)
Xp<-Xdt\$g

```
```

\#or use
DTY<-interp::tri.mesh(Yp[,1],Yp[,2],duplicate="remove")
\#Delaunay triangulation based on Y points
Xp<-runif.multi.tri(nx, Yp,DTY)\$g
\#data under CSR in the convex hull of Ypoints
Xlim<-range(Yp[,1])
Ylim<-range(Yp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
\#plot of the data in the convex hull of Y points together with the Delaunay triangulation
plot(Xp, xlab=" ", ylab=" ",
main="Uniform Points in Convex Hull of Y Points",
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05),type="n")
interp::plot.triSht(DTY, add=TRUE,
do.points = TRUE,pch=16,col="blue")
points(Xp,pch=".", cex=3)
Yp<-rbind(c(.3,.2),c(.4,.5),c(.14,.15))
runif.multi.tri(nx,Yp)

```
```

runif.std.tetra

```

Generation of Uniform Points in the Standard Regular Tetrahedron T_h

\section*{Description}

An object of class "Uniform". Generates n points uniformly in the standard regular tetrahedron \(T_{h}=T((0,0,0),(1,0,0),(1 / 2, \sqrt{3} / 2,0),(1 / 2, \sqrt{3} / 6, \sqrt{6} / 3))\).

\section*{Usage}
runif.std.tetra(n)

\section*{Arguments}
\(\mathrm{n} \quad\) A positive integer representing the number of uniform points to be generated in the standard regular tetrahedron \(T_{h}\).

\section*{Value}

A list with the elements
\[
\begin{array}{ll}
\text { type } & \text { The type of the pattern from which points are to be generated } \\
\text { mtitle } & \text { The "main" title for the plot of the point pattern }
\end{array}
\]
\begin{tabular}{ll}
tess.points & \begin{tabular}{l}
The vertices of the support region of the uniformly generated points, it is the \\
standard regular tetrahedron \(T_{h}\) for this function
\end{tabular} \\
gen.points & \begin{tabular}{l}
The output set of generated points uniformly in the standard regular tetrahedron \\
\(T_{h}\).
\end{tabular} \\
out.region & The outer region which contains the support region, NULL for this function. \\
desc.pat & Description of the point pattern from which points are to be generated \\
num.points & \begin{tabular}{l}
The vector of two numbers, which are the number of generated points and the \\
number of vertices of the support points (here it is 4).
\end{tabular} \\
\begin{tabular}{ll}
txt4pnts & Description of the two numbers in num. points \\
xlimit,ylimit,zlimit
\end{tabular}
\end{tabular}

The ranges of the \(x\)-, \(y\)-, and \(z\)-coordinates of the support, \(T_{h}\)

\section*{Author(s)}

Elvan Ceyhan

\section*{See Also}
runif.tetra, runif.tri, and runif.multi.tri

\section*{Examples}
```

A<-c(0,0,0); B<-c(1,0,0); C<-c(1/2,sqrt(3)/2,0); D<-c(1/2,sqrt(3)/6,sqrt(6)/3)
tetra<-rbind(A,B,C,D)
n<-100
set.seed(1)
Xdt<-runif.std.tetra(n)
Xdt
summary(Xdt)
plot(Xdt)
Xp<-runif.std.tetra(n)\$g
Xlim<-range(tetra[,1])
Ylim<-range(tetra[,2])
Zlim<-range(tetra[,3])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
zd<-Zlim[2]-Zlim[1]
plot3D::scatter3D(Xp[,1],Xp[,2],Xp[,3],
phi =20,theta=15, bty = "g", pch = 20, cex = 1,
ticktype = "detailed",
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05),
zlim=Zlim+zd*c(-.05,.05))
\#add the vertices of the tetrahedron
plot3D::points3D(tetra[,1],tetra[,2],tetra[,3], add=TRUE)
L<-rbind(A,A,A,B,B,C); R<-rbind(B,C,D,C,D,D)

```
```

plot3D::segments3D(L[,1], L[,2], L[,3], R[,1], R[,2],R[,3],
add=TRUE,lwd=2)
plot3D::text3D(tetra[,1]+c(.05,0,0,0),tetra[,2],tetra[,3],
labels=c("A","B","C","D"), add=TRUE)
s3d<-scatterplot3d::scatterplot3d(Xp, highlight.3d=TRUE,xlab="x",
ylab="y",zlab="z", col.axis="blue", col.grid="lightblue",
main="3D Scatterplot of the data", pch=20)
s3d\$points3d(tetra,pch=20,col="blue")

```
```

runif.std.tri Generation of Uniform Points in the Standard Equilateral Triangle

```

\section*{Description}

An object of class "Uniform". Generates n points uniformly in the standard equilateral triangle \(T_{e}=T(A, B, C)\) with vertices \(A=(0,0), B=(1,0)\), and \(C=(1 / 2, \sqrt{3} / 2)\).

\section*{Usage}
runif.std.tri(n)

\section*{Arguments}
\(\mathrm{n} \quad\) A positive integer representing the number of uniform points to be generated in the standard equilateral triangle \(T_{e}\).

\section*{Value}

A list with the elements
type \(\quad\) The type of the pattern from which points are to be generated
mtitle The "main" title for the plot of the point pattern
tess.points The vertices of the support region of the uniformly generated points, it is the standard equilateral triangle \(T_{e}\) for this function
gen.points The output set of generated points uniformly in the standard equilateral triangle \(T_{e}\).
out.region The outer region which contains the support region, NULL for this function.
desc.pat Description of the point pattern from which points are to be generated
num. points The vector of two numbers, which are the number of generated points and the number of vertices of the support points (here it is 3).
txt4pnts Description of the two numbers in num. points
xlimit, ylimit \(\quad\) The ranges of the \(x\) - and \(y\)-coordinates of the support, \(T_{e}\)

\section*{Author(s)}

Elvan Ceyhan

\section*{See Also}
```

runif.basic.tri,runif.tri, and runif.multi.tri

```

\section*{Examples}
```

A<-c(0,0); B<-c(1,0); C<-C(1/2,sqrt(3)/2);
Te<-rbind(A,B,C);
n<-100
set.seed(1)
Xdt<-runif.std.tri(n)
Xdt
summary (Xdt)
plot(Xdt,asp=1)
Xlim<-range(Te[,1])
Ylim<-range(Te[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
Xp<-runif.std.tri(n)\$gen.points
plot(Te, asp=1,pch=".",xlab="",ylab="",xlim=Xlim+xd*c(-.01,.01),
ylim=Ylim+yd*c(-.01,.01))
polygon(Te)
points(Xp)

```
 runif.std.tri.onesixth

Generation of Uniform Points in the first one-sixth of standard equilateral triangle

\section*{Description}

An object of class "Uniform". Generates \(n\) points uniformly in the first \(1 / 6\) th of the standard equilateral triangle \(T_{e}=(A, B, C)\) with vertices with \(A=(0,0) ; B=(1,0), C=(1 / 2, \sqrt{3} / 2)\) (see the examples below). The first \(1 / 6\) th of the standard equilateral triangle is the triangle with vertices \(A=(0,0),(1 / 2,0), C=(1 / 2, \sqrt{3} / 6)\).

\section*{Usage}
runif.std.tri.onesixth(n)

\section*{Arguments}
\(\mathrm{n} \quad\) a positive integer representing number of uniform points to be generated in the first one-sixth of \(T_{e}\).

\section*{Value}

A list with the elements
\begin{tabular}{ll}
type & The type of the point pattern \\
mtitle & The "main" title for the plot of the point pattern \\
support & The vertices of the support of the uniformly generated points \\
gen.points & \begin{tabular}{l}
The output set of uniformly generated points in the first \(1 / 6\) th of the standard \\
equilateral triangle.
\end{tabular} \\
out.region & \begin{tabular}{l}
The outer region for the one-sixth of \(T_{e}\), which is just \(T_{e}\) here. \\
desc.pat
\end{tabular} \\
\begin{tabular}{l}
Description of the point pattern
\end{tabular} \\
num. points & \begin{tabular}{l}
The vector of two numbers, which are the number of generated points and the \\
number of vertices of the support (i.e., Y) points.
\end{tabular} \\
txt4pnts & \begin{tabular}{l}
Description of the two numbers in num. points. \\
xlimit, ylimit
\end{tabular} \\
\begin{tabular}{ll}
The ranges of the \(x-\) and \(y\)-coordinates of the generated, support and outer region \\
points
\end{tabular}
\end{tabular}

\section*{Author(s)}

Elvan Ceyhan

\section*{See Also}
runif.std.tri, runif.basic.tri, runif.tri, and runif.multi.tri

\section*{Examples}
```

A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C);
CM<-(A+B+C)/3;
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
Ds<-rbind(D1,D2,D3)
nx<-100 \#try also nx<-1000
\#data generation step
set.seed(1)
Xdt<-runif.std.tri.onesixth(nx)
Xdt
summary(Xdt)
plot(Xdt,asp=1)
Xd<-Xdt\$gen.points

```
```

\#plot of the data with the regions in the equilateral triangle
Xlim<-range(Te[,1])
Ylim<-range(Te[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(Te,asp=1,pch=".",xlim=Xlim+xd*c(-.01,.01),
ylim=Ylim+yd*c(-.01,.01),xlab=" ",ylab=" ",
main="first 1/6th of the \n standard equilateral triangle")
polygon(Te)
L<-Te; R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty=2)
polygon(rbind(A,D3,CM),col=5)
points(Xd)
\#letter annotation of the plot
txt<-rbind(A,B,C,CM,D1,D2,D3)
xc<-txt[,1]+c(-.02,.02,.02,.04,.05,-.03,0)
yc<-txt[,2]+c(.02,.02,.02,.03,0,.03,-.03)
txt.str<-c("A", "B", "C", "CM", "D1", "D2", "D3")
text(xc,yc,txt.str)

```

\section*{Description}

An object of class "Uniform". Generates \(n\) points uniformly in the general tetrahedron th whose vertices are stacked row-wise.

\section*{Usage}
runif.tetra(n, th)

\section*{Arguments}
\(n \quad\) A positive integer representing the number of uniform points to be generated in the tetrahedron.
th A \(4 \times 3\) matrix with each row representing a vertex of the tetrahedron.

\section*{Value}

A list with the elements
type The type of the pattern from which points are to be generated
mtitle The "main" title for the plot of the point pattern
runif.tetra
\begin{tabular}{|c|c|}
\hline tess.points & The vertices of the support of the uniformly generated points, it is the tetrahedron' th for this function \\
\hline gen.points & The output set of generated points uniformly in the tetrahedron, th. \\
\hline out.region & The outer region which contains the support region, NULL for this function. \\
\hline desc.pat & Description of the point pattern from which points are to be generated \\
\hline num. points & The vector of two numbers, which are the number of generated points and the number of vertices of the support points (here it is 4). \\
\hline txt4pnts & Description of the two numbers in num. points \\
\hline \multicolumn{2}{|l|}{xlimit, ylimit, zlimit} \\
\hline & The ranges of the \(x\)-, \(y\)-, and z-coordinates of the support, th \\
\hline
\end{tabular}

\section*{Author(s)}

Elvan Ceyhan

\section*{See Also}

> runif.std.tetra and runif.tri

\section*{Examples}
```

A<-sample(1:12,3); B<-sample(1:12,3);
C<-sample(1:12,3); D<-sample(1:12,3)
tetra<-rbind(A,B,C,D)
n<-100
set.seed(1)
Xdt<-runif.tetra(n,tetra)
Xdt
summary(Xdt)
plot(Xdt)
Xp<-Xdt\$g
Xlim<-range(tetra[,1],Xp[,1])
Ylim<-range(tetra[,2],Xp[,2])
Zlim<-range(tetra[,3],Xp[,3])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
zd<-Zlim[2]-Zlim[1]
plot3D::scatter3D(Xp[,1],Xp[,2],Xp[,3],
theta =225, phi = 30, bty = "g",
main="Uniform Points in a Tetrahedron",
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05),
zlim=Zlim+zd*c(-.05,.05),
pch = 20, cex = 1, ticktype = "detailed")
\#add the vertices of the tetrahedron

```
```

plot3D::points3D(tetra[,1],tetra[,2],tetra[,3], add=TRUE)
L<-rbind(A,A,A,B,B,C) ; R<-rbind(B,C,D,C,D,D)
plot3D::segments3D(L[,1], L[,2], L[,3], R[,1], R[,2],R[,3],
add=TRUE, lwd=2)
plot3D::text3D(tetra[,1],tetra[,2],tetra[,3],
labels=c("A", "B", "C", "D"), add=TRUE)
s3d<-scatterplot3d::scatterplot3d(Xp, highlight.3d=TRUE,
xlab="x",ylab="y",zlab="z", col.axis="blue", col.grid="lightblue",
main="3D Scatterplot of the data", pch=20)
s3d\$points3d(tetra,pch=20,col="blue")

```
```

runif.tri Generation of Uniform Points in a Triangle

```

\section*{Description}

An object of class "Uniform". Generates n points uniformly in a given triangle, tri

\section*{Usage}
runif.tri(n, tri)

\section*{Arguments}
\(n \quad\) A positive integer representing the number of uniform points to be generated in the triangle.
tri A \(3 \times 2\) matrix with each row representing a vertex of the triangle.

\section*{Value}

A list with the elements
type The type of the pattern from which points are to be generated
mtitle The "main" title for the plot of the point pattern
tess.points The vertices of the support of the uniformly generated points, it is the triangle tri for this function
gen.points The output set of generated points uniformly in the triangle, tri.
out.region The outer region which contains the support region, NULL for this function.
desc.pat Description of the point pattern from which points are to be generated
num. points The vector of two numbers, which are the number of generated points and the number of vertices of the support points (here it is 3).
txt4pnts Description of the two numbers in num. points
xlimit, ylimit The ranges of the \(x\) - and \(y\)-coordinates of the support, tri

\section*{Author(s)}

Elvan Ceyhan

\section*{See Also}
```

runif.std.tri,runif.basic.tri, and runif.multi.tri

```

\section*{Examples}
```

n<-100
A<-C(1,1); B<-c(2,0); C<-C(1.5,2);
Tr<-rbind(A,B,C)
Xdt<-runif.tri(n,Tr)
Xdt
summary (Xdt)
plot(Xdt)
Xp<-Xdt\$g
Xlim<-range(Tr[,1])
Ylim<-range(Tr[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(Tr,pch=".",xlab="",ylab="",main="Uniform Points in One Triangle",
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)
points(Xp)
xc<-Tr[,1]+c(-.02,.02,.02)
yc<-Tr[,2]+c(.02,.02,.04)
txt.str<-c("A","B","C")
text(xc,yc,txt.str)

```

\section*{Description}

Returns the triangle whose intersection with a general triangle gives the support for type I segregation given the delta (i.e., \(\delta 100 \%\) area of a triangle around the vertices is chopped off). See the plot in the examples.
Caveat: the vertices of this triangle may be outside the triangle, tri, depending on the value of delta (i.e., for small values of delta).

\section*{Usage}
seg.tri.support(delta, tri)

\section*{Arguments}
delta A positive real number between 0 and 1 that determines the percentage of area of the triangle around the vertices forbidden for point generation.
tri A \(3 \times 2\) matrix with each row representing a vertex of the triangle.

\section*{Value}
the vertices of the triangle (stacked row-wise) whose intersection with a general triangle gives the support for type I segregation for the given delta

\section*{Author(s)}

Elvan Ceyhan

\section*{See Also}
rseg.std.tri and rseg.multi.tri

\section*{Examples}
```

\#for a general triangle
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
delta<-. 3 \#try also .5,.75,.85
Tseg<-seg.tri.support(delta,Tr)
Xlim<-range(Tr[,1],Tseg[,1])
Ylim<-range(Tr[,2],Tseg[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
oldpar <- par(pty="s")
plot(Tr,pch=".",xlab="",ylab="",
main="segregation support is the intersection\n of these two triangles",
axes=TRUE,xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)
polygon(Tseg,lty=2)
txt<-rbind(Tr,Tseg)
xc<-txt[,1]+c(-.03,.03,.03,.06,.04,-.04)
yc<-txt[,2]+c(.02,.02,.04,-.03,0,0)
txt.str<-c("A", "B","C","T1","T2","T3")
text(xc,yc,txt.str)
par(oldpar)

```
```

six.extremaTe

```

The closest points among a data set in the standard equilateral triangle to the median lines in the six half edge regions

\section*{Description}

An object of class "Extrema". Returns the six closest points among the data set, Xp , in the standard equilateral triangle \(T_{e}=T(A=(0,0), B=(1,0), C=(1 / 2, \sqrt{3} / 2))\) in half edge regions. In particular, in regions \(r_{1}\) and \(r_{6}\), it finds the closest point in each region to the line segment \([A, C M]\) in regions \(r_{2}\) and \(r_{3}\), it finds the closest point in each region to the line segment \([B, C M]\) and in regions \(r_{4}\) and \(r_{5}\), it finds the closest point in each region to the line segment \([C, C M]\) where \(C M=(A+B+C) / 3\) is the center of mass.
See the example for this function or example for index. six. Te function. If there is no data point in region \(r_{i}\), then it returns "NA NA" for \(i\)-th row in the extrema. ch. all. intri is for checking whether all data points are in \(T_{e}\) (default is FALSE).

\section*{Usage}
six.extremaTe(Xp, ch.all.intri = FALSE)

\section*{Arguments}

Xp A set of 2D points among which the closest points in the standard equilateral triangle to the median lines in 6 half edge regions.
ch.all.intri A logical argument for checking whether all data points are in \(T_{e}\) (default is FALSE).

\section*{Value}

A list with the elements
\begin{tabular}{ll}
txt1 & Region labels as r1-r6 (correspond to row number in Extremum Points). \\
txt2 & \begin{tabular}{l}
A short description of the distances as "Distances to Line Segments \((A, C M)\), \\
\((B, C M)\), and \((C, C M)\) in the six regions \(r 1-r 6 "\).
\end{tabular} \\
type & Type of the extrema points \\
mtitle & The "main" title for the plot of the extrema \\
ext & \begin{tabular}{l}
The extrema points, here, closest points in each of regions r1-r6 to the line \\
segments joining vertices to the center of mass, \(C M\).
\end{tabular} \\
\(x\) & The input data, Xp, can be a matrix or data frame \\
num. points & \begin{tabular}{l}
The number of data points, i.e., size of Xp
\end{tabular} \\
supp & \begin{tabular}{l}
Support of the data points, here, it is \(T_{e}\). \\
cent
\end{tabular} \\
The center point used for construction of edge regions. \\
ncent & Name of the center, cent, it is center of mass "CM" for this function.
\end{tabular}
\[
\begin{array}{ll}
\text { regions } & \text { The six regions, } r 1-r 6 \text { and edge regions inside the triangle, } T_{e} \text {, provided as a } \\
\text { list. }
\end{array} \text { region.names } \quad \begin{aligned}
& \text { Names of the regions as "r1"-"r6" and names of the edge regions as "er=1", } \\
& \text { "er=2", and "er=3". }
\end{aligned} \text { region.centers Centers of mass of the regions } r 1-r 6 \text { and of edge regions inside } T_{e} . ~ \begin{aligned}
& \text { Distances from closest points in each of regions } r 1-r 6 \text { to the line segments } \\
& \text { jist2ref }
\end{aligned} \begin{aligned}
& \text { joining vertices to the center of mass, } C M .
\end{aligned}
\]

\section*{Author(s)}

Elvan Ceyhan

\section*{See Also}
index.six.Te and cl2edges.std.tri

\section*{Examples}
```

n<-20 \#try also n<-100
Xp<-runif.std.tri(n)\$gen.points
Ext<-six.extremaTe(Xp)
Ext
summary(Ext)
plot(Ext)
sixt<-Ext
A<-c(0,0); B<-c(1,0); C<-c(0.5,sqrt(3)/2);
Te<-rbind(A,B,C)
CM<-(A+B+C)/3
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
Ds<-rbind(D1,D2,D3)
h1<-c(1/2,sqrt(3)/18); h2<-c(2/3, sqrt(3)/9); h3<-c(2/3, 2*sqrt(3)/9);
h4<-c(1/2, 5*sqrt(3)/18); h5<-c(1/3, 2*sqrt(3)/9); h6<-c(1/3, sqrt(3)/9);
r1<-(h1+h6+CM)/3;r2<-(h1+h2+CM)/3;r3<-(h2+h3+CM)/3;
r4<-(h3+h4+CM)/3;r5<-(h4+h5+CM)/3;r6<-(h5+h6+CM)/3;
Xlim<-range(Te[,1],Xp[,1])
Ylim<-range(Te[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(A,pch=".",xlab="",ylab="",axes=TRUE,xlim=Xlim+xd*c(-.05,.05),
ylim=Ylim+yd*c(-.05,.05))
polygon(Te)
L<-Te; R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty=2)

```
```

    polygon(rbind(h1,h2,h3,h4,h5,h6))
    points(Xp)
    points(sixt$ext,pty=2,pch=4,col="red")
    txt<-rbind(Te,r1,r2,r3,r4,r5,r6)
    xc<-txt[,1]+c(-.02,.02,.02,0,0,0,0,0,0)
    yc<-txt[,2]+c(.02,.02,.03,0,0,0,0,0,0)
    txt.str<-c("A", "B", "C", "1","2","3","4", "5", "6")
    text(xc,yc,txt.str)
    ```
 slope The slope of a line

\section*{Description}

Returns the slope of the line joining two distinct 2 D points a and b .

\section*{Usage}
slope(a, b)

\section*{Arguments}
\(a, b \quad 2 \mathrm{D}\) points that determine the straight line (i.e., through which the straight line passes).

\section*{Value}

Slope of the line joining 2D points \(a\) and \(b\)

\section*{Author(s)}

Elvan Ceyhan

\section*{See Also}

Line, paraline, and perpline

\section*{Examples}
```

A<-c(-1.22,-2.33); B<-c(2.55,3.75)
slope(A,B)
slope(c(1,2),c(2,3))

```

\section*{Description}

Returns the below information about the object:
call of the function defining the object, the type of the extrema (i.e. the description of the extrema), extrema points, distances from extrema to the reference object (e.g. boundary of a triangle), some of the data points (from which extrema is found).

\section*{Usage}
\#\# S3 method for class 'Extrema'
summary (object, ...)

\section*{Arguments}
object An object of class Extrema.
... Additional parameters for summary.

\section*{Value}

The call of the object of class "Extrema", the type of the extrema (i.e. the description of the extrema), extrema points, distances from extrema to the reference object (e.g. boundary of a triangle), some of the data points (from which extrema is found).

\section*{See Also}
print.Extrema, print.summary.Extrema, and plot.Extrema

\section*{Examples}
```

n<-10
Xp<-runif.std.tri(n)\$gen.points
Ext<-cl2edges.std.tri(Xp)
Ext
summary(Ext)

```
```

summary.Lines
Return a summary of a Lines object

```

\section*{Description}

Returns the below information about the object:
call of the function defining the object, the defining points, selected \(x\) and \(y\) points on the line, equation of the line, and coefficients of the line.

\section*{Usage}
\#\# S3 method for class 'Lines'
summary (object, ...)

\section*{Arguments}
object An object of class Lines.
... Additional parameters for summary.

\section*{Value}

The call of the object of class "Lines", the defining points, selected \(x\) and \(y\) points on the line, equation of the line, and coefficients of the line (in form: \(y=\) slope \(* x+\) intercept).

\section*{See Also}
```

    print.Lines, print.summary.Lines, and plot.Lines
    ```

\section*{Examples}
```

A<-c(-1.22,-2.33); B<-c(2.55,3.75)
xr<-range(A,B);
xf<-(xr[2]-xr[1])*.1
\#how far to go at the lower and upper ends in the x-coordinate
x<-seq(xr[1]-xf,xr[2]+xf,l=3) \#try also l=10, 20 or 100
lnAB<-Line(A,B,x)
lnAB
summary(lnAB)

```
summary.Lines3D Return a summary of a Lines3D object

\section*{Description}

Returns the below information about the object:
call of the function defining the object, the defining vectors (i.e., initial and direction vectors), selected \(x, y\), and \(z\) points on the line, equation of the line (in parametric form), and coefficients of the line.

\section*{Usage}
\#\# S3 method for class 'Lines3D'
summary (object, ...)

\section*{Arguments}
object An object of class Lines3D.
... Additional parameters for summary.

\section*{Value}
call of the function defining the object, the defining vectors (i.e., initial and direction vectors), selected \(x, y\), and \(z\) points on the line, equation of the line (in parametric form), and coefficients of the line (for the form: \(x=x 0+A * t, y=y 0+B * t\), and \(z=z 0+C * t\)).

\section*{See Also}
print.Lines3D, print.summary.Lines3D, and plot.Lines3D

\section*{Examples}
```

P<-c(1,10,3); Q<-c(1,1,3);
vecs<-rbind(P,Q)
Line3D(P,Q,.1)
Line3D(P,Q,.1,dir.vec=FALSE)
tr<-range(vecs);
tf<-(tr[2]-tr[1])*.1
\#how far to go at the lower and upper ends in the x-coordinate
tsq<-seq(-tf*10-tf,tf*10+tf,l=3) \#try also l=10, 20 or 100
lnPQ3D<-Line3D(P,Q,tsq)
lnPQ3D
summary(lnPQ3D)

```

\section*{Description}

Returns the below information about the object:
call of the function defining the object, the description of the output, desc: number of arcs in the proximity catch digraph (PCD) and related quantities in the induced subdigraphs for points in the Delaunay cells. In the one Delaunay cell case, the function provides the total number of arcs in the digraph, vertices of Delaunay cell, and indices of target points in the Delaunay cell.
In the multiple Delaunay cell case, the function provides total number of arcs in the digraph, number of arcs for the induced digraphs for points in the Delaunay cells, vertices of Delaunay cells or indices of points that form the the Delaunay cells, indices of target points in the convex hull of nontarget points, indices of Delaunay cells in which points reside, and area or length of the the Delaunay cells.

\section*{Usage}
\#\# S3 method for class 'NumArcs'
summary (object, ...)

\section*{Arguments}
object An object of class NumArcs.
... Additional parameters for summary.

\section*{Value}

The call of the object of class "NumArcs", the desc of the output: total number of arcs in the digraph. Moreover, in the one Delaunay cell case, the function also provides vertices of Delaunay cell, and indices of target points in the Delaunay cell; and in the multiple Delaunay cell case, it also provides number of arcs for the induced subdigraphs for points in the Delaunay cells, vertices of Delaunay cells or indices of points that form the the Delaunay cells, indices of target points in the convex hull of nontarget points, indices of Delaunay cells in which points reside, and area or length of the the Delaunay cells.

\section*{See Also}
print.NumArcs, print.summary.NumArcs, and plot.NumArcs

\section*{Examples}
```

A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
n<-10
Xp<-runif.tri(n,Tr)\$g

```
```

M<-as.numeric(runif.tri(1,Tr)\$g)
Arcs<-arcsAStri(Xp,Tr,M)
Arcs
summary(Arcs)

```
summary.Patterns Return a summary of a Patterns object

\section*{Description}

Returns the below information about the object:
call of the function defining the object, the type of the pattern, parameters of the pattern, study window, some sample points from the generated pattern, reference points (if any for the bivariate pattern), and number of points for each class

\section*{Usage}
\#\# S3 method for class 'Patterns'
summary (object, ...)

\section*{Arguments}
object An object of class Patterns.
... Additional parameters for summary.

\section*{Value}

The call of the object of class "Patterns", the type of the pattern, parameters of the pattern, study window, some sample points from the generated pattern, reference points (if any for the bivariate pattern), and number of points for each class

\section*{See Also}
print.Patterns, print. summary.Patterns, and plot.Patterns

\section*{Examples}
```

nx<-10; \#try also 10, 100, and 1000
ny<-5; \#try also 1
e<-.15;
Y<-cbind(runif(ny),runif(ny))
\#with default bounding box (i.e., unit square)
Xdt<-rseg.circular(nx,Y,e)
Xdt

```
summary (Xdt)
summary.PCDs Return a summary of a PCDs object

\section*{Description}

Returns the below information about the object:
call of the function defining the object, the type of the proximity catch digraph (PCD), (i.e. the description of the PCD), some of the partition (i.e. intervalization in the 1D case and triangulation in the 2 D case) points (i.e., vertices of the intervals or the triangles), parameter(s) of the PCD, and various quantities (number of vertices, number of arcs and arc density of the PCDs, number of vertices for the partition and number of partition cells (i.e., intervals or triangles)).

\section*{Usage}
\#\# S3 method for class 'PCDs'
summary (object, ...)

\section*{Arguments}
\[
\begin{array}{ll}
\text { object } & \text { An object of class PCDs. } \\
\ldots & \text { Additional parameters for summary }
\end{array}
\]

\section*{Value}

The call of the object of class "PCDs", the type of the proximity catch digraph (PCD), (i.e. the description of the PCD), some of the partition (i.e. intervalization in the 1D case and triangulation in the 2 D case) points (i.e., vertices of the intervals or the triangles), parameter(s) of the PCD, and various quantities (number of vertices, number of arcs and arc density of the PCDs, number of vertices for the partition and number of partition cells (i.e., intervals or triangles)).

\section*{See Also}
print.PCDs, print.summary.PCDs, and plot.PCDs

\section*{Examples}
```

A<-C(1,1); B<-C(2,0); C<-C(1.5,2);
Tr<-rbind(A,B,C);
n<-10
Xp<-runif.tri(n,Tr)$g
M<-as.numeric(runif.tri(1,Tr)$g)
Arcs<-arcsAStri(Xp,Tr,M)
Arcs

```

\section*{Description}

Returns the below information about the object:
call of the function defining the object, the defining 3D points, selected \(x, y\), and \(z\) points on the plane, equation of the plane, and coefficients of the plane.

\section*{Usage}
\#\# S3 method for class 'Planes'
summary (object, ...)

\section*{Arguments}
object An object of class Planes.
... Additional parameters for summary.

\section*{Value}

The call of the object of class "Planes", the defining 3D points, selected \(x, y\), and \(z\) points on the plane, equation of the plane, and coefficients of the plane (in the form: \(z=A * x+B * y+C\)).

\section*{See Also}
print.Planes, print.summary.Planes, and plot.Planes

\section*{Examples}
```

P<-c(1,10,3); Q<-c(1,1,3); C<-c(3,9,12)
pts<-rbind(P,Q,C)
xr<-range(pts[,1]); yr<-range(pts[,2])
xf<-(xr[2]-xr[1])*. }
\#how far to go at the lower and upper ends in the x-coordinate
yf<-(yr[2]-yr[1])*. }
\#how far to go at the lower and upper ends in the y-coordinate
x<-seq(xr[1]-xf,xr[2]+xf,l=5) \#try also l=10, 20 or 100
y<-seq(yr[1]-yf,yr[2]+yf,l=5) \#try also l=10, 20 or 100
plPQC<-Plane(P,Q,C,x,y)
plPQC
summary(plPQC)

```

\section*{Description}

Returns the below information about the object:
call of the function defining the object, the defining points, selected \(x\) and \(y\) points on the line, equation of the line, together with the vertices of the triangle, and coefficients of the line.

\section*{Usage}
\#\# S3 method for class 'TriLines'
summary (object, ...)

\section*{Arguments}
object An object of class TriLines.
... Additional parameters for summary.

\section*{Value}

The call of the object of class "TriLines", the defining points, selected \(x\) and \(y\) points on the line, equation of the line, together with the vertices of the triangle, and coefficients of the line (in the form: \(y=\) slope \(* x+\) intercept).

\section*{See Also}
print.TriLines, print.summary.TriLines, and plot.TriLines

\section*{Examples}
```

A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C)
xfence<-abs(A[1]-B[1])*. 25
\#how far to go at the lower and upper ends in the x-coordinate
x<-seq(min(A[1],B[1])-xfence, max(A[1],B[1])+xfence,l=3)
lnACM<-lineA2CMinTe(x)
lnACM
summary(lnACM)

```

\section*{Description}

Returns the below information about the object:
call of the function defining the object, the type of the pattern (i.e. the description of the uniform distribution), study window, vertices of the support of the Uniform distribution, some sample points generated from the uniform distribution, and the number of points (i.e., number of generated points and the number of vertices of the support of the uniform distribution.)

\section*{Usage}
\#\# S3 method for class 'Uniform'
summary(object, ...)

\section*{Arguments}
object An object of class Uni form.
... Additional parameters for summary.

\section*{Value}

The call of the object of class "Uniform", the type of the pattern (i.e. the description of the uniform distribution), study window, vertices of the support of the Uniform distribution, some sample points generated from the uniform distribution, and the number of points (i.e., number of generated points and the number of vertices of the support of the uniform distribution.)

\section*{See Also}
print.Uniform, print.summary.Uniform, and plot.Uniform

\section*{Examples}
```

n<-10 \#try also 20, 100, and 1000
A<-c(1,1); B<-c(2,0); R<-c(1.5,2);
Tr<-rbind(A,B,R)
Xdt<-runif.tri(n,Tr)
Xdt
summary (Xdt)

```

\section*{Description}

Locations and species classification of trees in a plot in the Savannah River, SC, USA. Locations are given in meters, rounded to the nearest 0.1 decimal. The data come from a one-hectare (200-by-50m) plot in the Savannah River Site. The 734 mapped stems included 156 Carolina ashes (Fraxinus caroliniana), 215 water tupelos (Nyssa aquatica), 205 swamp tupelos (Nyssa sylvatica), 98 bald cypresses (Taxodium distichum) and 60 stems from 8 additional three species (labeled as Others (OT)). The plots were set up by Bill Good and their spatial patterns described in (Good and Whipple (1982)), the plots have been maintained and resampled by Rebecca Sharitz and her colleagues of the Savannah River Ecology Laboratory. The data and some of its description are borrowed from the swamp data entry in the dixon package in the CRAN repository.
See also (Good and Whipple (1982); Jones et al. (1994); Dixon (2002)).

\section*{Usage}
data(swamptrees)

\section*{Format}

A data frame with 734 rows and 4 variables

\section*{Details}

Text describing the variable (i.e., column) names in the data set.
- \(x, y: x\) and \(y\) (i.e., Cartesian) coordinates of the trees
- live: a categorical variable that indicates the tree is alive (labeled as 1) or dead (labeled as 0)
- sp: species label of the trees:

FX: Carolina ash (Fraxinus caroliniana)
NS: Swamp tupelo (Nyssa sylvatica)
NX: Water tupelo (Nyssa aquatica)
TD: Bald cypress (Taxodium distichum)
OT: Other species

\section*{Source}

Prof. Philip Dixon's website

\section*{References}

Dixon PM (2002). "Nearest-neighbor contingency table analysis of spatial segregation for several species." Ecoscience, 9(2), 142-151.

Good BJ, Whipple SA (1982). "Tree spatial patterns: South Carolina bottomland and swamp forests." Bulletin of the Torrey Botanical Club, 109(4), 529-536.

Jones RH, Sharitz RR, James SM, Dixon PM (1994). "Tree population dynamics in seven South Carolina mixed-species forests." Bulletin of the Torrey Botanical Club, 121(4), 360-368.

\section*{Examples}
```

data(swamptrees)
plot(swamptrees$x, swamptrees$y, col=as.numeric(swamptrees\$sp),pch=19,
xlab='',ylab='',main='Swamp Trees')

```
```

tri2std.basic.tri Converting a triangle to the standard basic triangle form form

```

\section*{Description}

This function transforms any triangle, tri, to the standard basic triangle form.
The standard basic triangle form is \(T_{b}=T\left((0,0),(1,0),\left(c_{1}, c_{2}\right)\right)\) where \(c_{1}\) is in \([0,1 / 2], c_{2}>0\) and \(\left(1-c_{1}\right)^{2}+c_{2}^{2} \leq 1\).
Any given triangle can be mapped to the standard basic triangle form by a combination of rigid body motions (i.e., translation, rotation and reflection) and scaling, preserving uniformity of the points in the original triangle. Hence, standard basic triangle form is useful for simulation studies under the uniformity hypothesis.

\section*{Usage}
tri2std.basic.tri(tri)

\section*{Arguments}
\[
\text { tri } \quad \text { A } 3 \times 2 \text { matrix with each row representing a vertex of the triangle. }
\]

\section*{Value}

A list with two elements
Cvec The nontrivial vertex \(C=\left(c_{1}, c_{2}\right)\) in the standard basic triangle form \(T_{b}\).
orig. order Row order of the input triangle, tri, when converted to the standard basic triangle form \(T_{b}\)

\section*{Author(s)}

Elvan Ceyhan

\section*{Examples}
```

c1<-.4; c2<-. }
A<-c(0,0); B<-c(1,0); C<-c(c1,c2);
tri2std.basic.tri(rbind(A,B,C))
tri2std.basic.tri(rbind(B,C,A))
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
tri2std.basic.tri(rbind(A,B,C))
tri2std.basic.tri(rbind(A,C,B))
tri2std.basic.tri(rbind(B,A,C))

```
Xin.convex.hully

Points from one class inside the convex hull of the points from the other class

\section*{Description}

Given two 2D data sets, \(X p\) and \(Y p\), it returns the \(X p\) points inside the convex hull of \(Y p\) points.
See (Okabe et al. (2000); Ceyhan (2010); Sinclair (2016)) for more on Delaunay triangulation and the corresponding algorithm.

\section*{Usage}

Xin.convex.hully (Xp, Yp)

\section*{Arguments}

Xp A set of 2D points which constitute the data set.
Yp A set of 2D points which constitute the vertices of the Delaunay triangles.

\section*{Value}

Xp points inside the convex hull of \(Y p\) points

\section*{Author(s)}

Elvan Ceyhan

\section*{References}

Ceyhan E (2010). "Extension of One-Dimensional Proximity Regions to Higher Dimensions." Computational Geometry: Theory and Applications, 43(9), 721-748.

Okabe A, Boots B, Sugihara K, Chiu SN (2000). Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. Wiley, New York.

Sinclair D (2016). "S-hull: a fast radial sweep-hull routine for Delaunay triangulation." 1604.01428.

\section*{See Also}
plotDelaunay.tri

\section*{Examples}
```

\#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-20; ny<-5; \#try also nx<-40; ny<-10 or nx<-1000; ny<-10;
set.seed(1)
Xp<-cbind(runif(nx,0,1),runif(nx,0,1))
Yp<-cbind(runif(ny,0,.25),runif(ny,0,.25))+cbind(c(0,0,0.5,1,1),c(0,1,.5,0,1))
\#try also Yp<-cbind(runif(ny,0,1),runif(ny,0,1))
DT<-interp::tri.mesh(Yp[,1],Yp[, 2],duplicate="remove")
Xlim<-range(Xp[,1],Yp[,1])
Ylim<-range(Xp[,2],Yp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
Xch<-Xin.convex.hullY(Xp,Yp)
plot(Xp,main=" ", xlab=" ", ylab=" ",
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05),pch=".", cex=3)
interp::convex.hull(DT,plot.it = TRUE, add = TRUE) \# or try polygon(Yp[ch\$i,])
points(Xch,pch=4,col="red")

```

\section*{Index}

\section*{* datasets}
swamptrees, 575
.onAttach, 10
. onLoad, 10
angle.str2end, 11, 13
angle3pnts, 12,13
arcsAS, 14, 18, 21, 34
arcsAStri, 16, 17, 31, 44
\(\operatorname{arcsCS}, 16,18,19,31,34\)
arcsCS1D, 21, 22, 23, 25, 27, 29, 36, 37, 39, 41
arcsCSend.int, 23, 24, 27, 29, 37, 41
arcsCSint, 26
arcsCSmid.int, 23, 25, 27, 28, 29, 37, 41
arcsCStri, 16, 18, 21, 30, 44
\(\operatorname{arcsPE}, 16,18,21,32,44\)
\(\operatorname{arcsPE} 1 \mathrm{D}, 23,25,27,29,34,37,39,41\)
arcsPEend.int, 25, 29, 36, 36, 39, 41
arcsPEint, 36, 38
arcsPEmid.int, 25, 36, 37, 39, 40
arcsPEtri, 16, 18, 31, 34, 42
area.polygon, 45
as.basic.tri, 46
ASarc.dens.tri, 47, 48, 88, 361
asy.varCS1D, 129
asy.varCS1D (funsMuVarCS1D), 123
asy.varCS2D, 131
asy.varCS2D (funsMuVarCS2D), 125
asy.varCSend.int, 132
asy.varCSend.int (funsMuVarCSend.int), 126
asy.varPE1D, 123
asy.varPE1D (funsMuVarPE1D), 128
asy.varPE2D, 125
asy.varPE2D (funsMuVarPE2D), 130
asy.varPEend.int, 127
asy.varPEend.int (funsMuVarPEend.int), 132
bary2cart (funsCartBary), 111
cart2bary (funsCartBary), 111
center. nondegPE, 49
centerMc, 51, 53
centersMc, 51, 52
circumcenter.basic.tri, 53, 57
circumcenter.tetra, 55
circumcenter.tri, 54, 56, 57
cl2CCvert.reg, 58, 62, 79
cl2CCvert.reg.basic.tri, 59, 60, 79
cl2edges.std.tri, 63, 67, 69, 71, 74, 100, 564
cl2edges.vert.reg.basic.tri, 59, 62, 64, 65, 69, 71, 74
cl2edgesCCvert.reg, 68, 71
cl2edgesCMvert.reg, 59, 62, 64, 67, 69, 70, 74
cl2edgesMvert.reg, 59, 62, 64, 67, 69, 71, 72
cl2faces.vert.reg.tetra, 75
cl2Mc.int, 78
CSarc.dens.test, 80, 86, 353
CSarc.dens.test.int, 82, 86, 355
CSarc.dens.test1D, 82, 84
CSarc.dens.tri, 48, 87, 361
dim, 89
dimension, 89, 282
Dist, 90, 92, 93
dist, 90
dist.point2line, 91, 93, 95, 278
dist. point2plane, 92, 93, 95
dist. point2set, 92, 93, 94
dom. num. exact, 95, 184, 232, 234, 236, 363, 373
dom. num.greedy, 96, 96, 184, 363, 373
draw.arc, 11
edge.reg.triCM, 97, 98, 486, 488, 490, 492, 495
fr2edgesCMedge.reg.std.tri, 59, 62, 64, 76, 99, 103, 105, 285, 287
fr2vertsCCvert.reg, 76, 100, 101, 105, 285, 287
fr2vertsCCvert.reg.basic.tri, 76, 100, 103, 104, 285, 287
funsAB2CMTe, 106
funsAB2MTe, 108
funsCartBary, 111
funsCSEdgeRegs, 112
funsCSGamTe, 115
funsCSt1EdgeRegs, 118
funsIndDelTri, 120
funsMuVarCS1D, 122
funsMuVarCS2D, 124
funsMuVarCSend.int, 126
funsMuVarPE1D, 128
funsMuVarPE2D, 130
funsMuVarPEend.int, 132
funsPDomNum2PE1D, 133
funsRankOrderTe, 137
funsTbMid2CC, 139
fvar1 (funsMuVarPE1D), 128
fvar2 (funsMuVarPE1D), 128
IarcASbasic.tri, 142, 147, 294
IarcASset2pnt.tri, 144, 145, 160, 176, 238
IarcAStri, 143, 145, 146, 165, 167, 183, 297
IarcCS.Te.onesixth, 148
IarcCSbasic.tri, 149, 162
IarcCSedge.reg.std.tri, 151
IarcCSend.int, 153, 156, 157, 170, 173
IarcCSint, 155, 171
IarcCSmid.int, 154, 156, 156, 170, 173
IarcCSset2pnt.std.tri, 158, 160, 174
IarcCSset2pnt.tri, 145, 159, 159, 176
IarcCSstd.tri, 149, 151, 159, 160, 161, 163, 165, 167, 179
IarcCSstd.triRAB, 119
IarcCSstd.triRAB (funsCSEdgeRegs), 112
IarcCSstd.triRAC, 119
IarcCSstd.triRAC (funsCSEdgeRegs), 112
IarcCSstd.triRBC, 119
IarcCSstd.triRBC (funsCSEdgeRegs), 112
IarcCSt1.std.tri, 163
IarcCSt1.std.triRAB, 113
IarcCSt1.std.triRAB (funsCSt1EdgeRegs), 118
IarcCSt1.std.triRAC, 113
IarcCSt1.std.triRAC (funsCSt1EdgeRegs), 118

IarcCSt1.std.triRBC, 113
IarcCSt1.std.triRBC (funsCSt1EdgeRegs), 118
IarcCStri, 147, 151, 152, 159, 160, 162, 164, 165, 167, 183, 302
IarcCStri.alt, 165
IarcPEbasic.tri, 167, 179, 183, 304
IarcPEend.int, 154, 157, 169, 171, 173
IarcPEint, 156, 170, 177, 181
IarcPEmid.int, 154, 157, 170, 171, 172
IarcPEset2pnt.std.tri, 159, 173, 176
IarcPEset2pnt.tri, 160, 174, 175, 245
IarcPEstd.tetra, 176, 181
IarcPEstd.tri, 152, 162, 168, 174, 176, 178, 183
IarcPEtetra, 177, 180
IarcPEtri, 147, 165, 167, 168, 174, 176, 177, 179, 181, 182, 310
Idom. num. up.bnd, 184, 232, 234, 236
Idom. num1ASbasic.tri, 185, 189, 200
Idom. num1AStri, 186, 188, 200, 209
Idom. num1CS.Te.onesixth, 191
Idom. num1CSint, 192
Idom. num1CSstd.tri, 116, 192, 194, 197
Idom.num1CSt1std.tri, 192, 195, 196
Idom. num1PEbasic.tri, 186, 198, 204, 207, 209
Idom. num1PEint, 193, 201
Idom. num1PEstd.tetra, 203, 207
Idom. num1PEtetra, 204, 205
Idom.num1PEtri, 202, 204, 207, 208
Idom.num2ASbasic.tri, 211, 215, 218
Idom.num2AStri, 212, 213, 218, 226
Idom. num2CS. Te. onesixth, 216
Idom. num2CSstd.tri, 217
Idom.num2CSstd.tri (funsCSGamTe), 115
Idom.num2PEbasic.tri, 217, 221, 223, 226
Idom. num2PEstd.tetra, 219, 223
Idom. num2PEtetra, 116, 221, 222, 226
Idom.num2PEtri, 116, 218, 221, 223, 224
Idom. num3CSstd.tri (funsCSGamTe), 115
Idom.num3PEstd.tetra, 226, 230
Idom.num3PEtetra, 228, 229
Idom. num4CSstd.tri (funsCSGamTe), 115
Idom. num5CSstd.tri (funsCSGamTe), 115
Idom. num6CSstd.tri (funsCSGamTe), 115
Idom. numASup.bnd.tri, 231, 234, 236
Idom.numCSup.bnd.std.tri, 232, 233, 236

Idom. numCSup.bnd.tri, 96, 232, 234, 235
Idom. setAStri, 236, 241, 245
Idom.setCSstd.tri, 238, 241, 243
Idom. setCStri, 238, 239, 240, 245
Idom.setPEstd.tri, 239, 242, 245
Idom. setPEtri, 238, 241, 243, 243
in. circle, 245
in. tetrahedron, 246, 246
in.tri.all, 248, 251
in.triangle, 246, 247, 249, 250
inci.matAS, 251, 254, 256, 264
inci.matAStri, 252, 253, 262, 272
inci.matCS, 252, 255, 261, 262, 264
inci.matCS1D, 256, 257, 259, 266
inci.matCSint, 258, 267
inci.matCSstd.tri, 256, 260, 269
inci.matCStri, 254, 256, 261, 261, 272
inci.matPE, 252, 256, 257, 259, 263, 266,
267, 269, 270, 272
inci.matPE1D, 259, 265, 267, 270
inci.matPEint, 266
inci.matPEstd.tri, 261, 264, 268
inci.matPEtetra, 269
inci.matPEtri, 254, 257, 259, 262, 264, 266, 267, 269, 270, 271
index.delaunay.tri (funsIndDelTri), 120
index.six.Te, 272, 564
indices.delaunay.tri (funsIndDelTri), 120
intersect.line.circle, 274, 276, 278
intersect.line.plane, 276
intersect2lines, 275, 276, 278
interval.indices.set, 279
is.in.data, 280
is. point, 89,282
is.std.eq.tri, 283
kfr2vertsCCvert.reg, 76, 100, 103, 105, 284, 287
kfr2vertsCCVert.reg.basic.tri, 103, 286
Line, 288, 343, 384, 565
line, 289, 292, 343
Line3D, 289, 290, 345, 386
lineA2CMinTe, 109, 140
lineA2CMinTe (funsAB2CMTe), 106
lineA2MinTe, 107, 140
lineA2MinTe (funsAB2MTe), 108
lineB2CMinTe, 109, 140
lineB2CMinTe (funsAB2CMTe), 106
lineB2MinTe, 107, 140
lineB2MinTe (funsAB2MTe), 108
lineC2MinTe, 107, 140
lineC2MinTe (funsAB2MTe), 108
lineD1CCinTb (funsTbMid2CC), 139
lineD2CCinTb (funsTbMid2CC), 139
mu1PE1D (funsMuVarPE1D), 128
muCS1D, 129
muCS1D (funsMuVarCS1D), 123
muCS2D, 131
muCS2D (funsMuVarCS2D), 125
muCSend.int, 132
muCSend. int (funsMuVarCSend.int), 126
muPE1D, 123
muPE1D (funsMuVarPE1D), 128
muPE2D, 125
muPE2D (funsMuVarPE2D), 130
muPEend.int, 127
muPEend.int (funsMuVarPEend.int), 132

NASbasic.tri, 293, 297
NAStri, 143, 294, 296, 302, 304, 310
NCSint, 299, 305
NCStri, 297, 300, 301, 304, 310
NPEbasic.tri, 302, 310
NPEint, 300, 304, 306, 308
NPEstd. tetra, 305, 308
NPEtetra, 305, 306, 307
NPEtri, 297, 302, 304-306, 308, 309
num. arcsAS, 311, 314, 316, 329
num. arcsAStri, 48, 312, 313, 327, 339, 341
num. arcsCS, 312, 315, 325, 327, 329
num. arcsCS1D, 317, 331
num. arcsCSend.int, 318, 319, 321, 323, 332, 336
num. arcsCSint, 318, 320, 334
num. arcsCSmid.int, 318, 320, 321, 322, 332, 336
num. arcsCSstd.tri, 316, 324, 327, 337
num. arcsCStri, 88, 314, 316, 325, 325, 339, 341
num. arcsPE, 312, 316, 327, 337, 341
num. arcsPE1D, 318, 330, 332, 336
num. arcsPEend.int, 320, 323, 331, 332, 334, 336
num. arcsPEint, 321, 331, 333
num. arcsPEmid.int, 320, 323, 331, 332, 334, 335
num. arcsPEstd.tri, 325, 329, 336, 341
num. arcsPEtetra, 338, 359
num. arcsPEtri, 314, 327, 329, 337, 339, 340, 361
num.delaunay.tri, 341
on. convex.hull, 246, 249, 251
order.dist2edges.std.tri
(funsRankOrderTe), 137
paraline, 289, 342, 345, 384, 565
paraline3D, 292, 343, 344, 386
paraplane, 346, 388
pcds (pcds-package), 8
pcds-package, 8
Pdom. num2A (funsPDomNum2PE1D), 133
Pdom.num2AI (funsPDomNum2PE1D), 133
Pdom. num2AII (funsPDomNum2PE1D), 133
Pdom.num2AIII (funsPDomNum2PE1D), 133
Pdom. num2AIV (funsPDomNum2PE1D), 133
Pdom.num2Asym (funsPDomNum2PE1D), 133
Pdom. num2B (funsPDomNum2PE1D), 133
Pdom.num2BIII (funsPDomNum2PE1D), 133
Pdom. num2Bsym (funsPDomNum2PE1D), 133
Pdom.num2C (funsPDomNum2PE1D), 133
Pdom.num2CIV (funsPDomNum2PE1D), 133
Pdom.num2Csym (funsPDomNum2PE1D), 133
Pdom.num2PE1D, 349, 350
Pdom.num2PE1D (funsPDomNum2PE1D), 133
Pdom. num2PE1Dasy, 136, 349
Pdom.num2PEtri, 136, 349, 350
PEarc.dens.test, 82, 351, 358
PEarc.dens.test.int, 83, 354, 358
PEarc.dens.test1D, 353, 356
PEarc.dens.tetra, 358
PEarc.dens.tri, 88, 359, 360
PEdom. num, 362, 379
PEdom.num.binom.test, 364, 369, 371, 376
PEdom.num.binom.test1D, 358, 366
PEdom. num.binom. test1Dint, 369
PEdom. num. nondeg, 96, 372, 379, 381, 382
PEdom. num. norm. test, 366, 374
PEdom. num. tetra, 363, 373, 376
PEdom.num.tri, 96, 363, 373, 377, 378
PEdom.num1D, 96, 369, 371, 379, 380
PEdom. num1Dnondeg, 371, 381
perpline, 289, 343, 383, 386, 565
perpline2plane, 345, 385
persp, 395
persp3D, 391
Plane, 292, 347, 387
plot.Extrema, 389, 448, 455, 566
plot.Lines, 390, 449, 456, 567
plot.Lines3D, 391, 450, 456, 568
plot. NumArcs, 392, 451, 457, 569
plot.Patterns, 393, 452, 457, 570
plot.PCDs, 394, 453, 458, 571
plot.Planes, 395, 454, 458, 572
plot.TriLines, 396, 459, 460, 573
plot.triSht, 425
plot.Uniform, 397, 460, 461, 574
plotASarcs, 398, 402, 409, 429
plotASarcs.tri, 400, 400, 413, 433
plotASregs, 403, 406, 418, 438, 441
plotASregs.tri, 404, 405, 421, 441, 445
plotCSarcs, 400, 402, 407, 413, 429
plotCSarcs.int, 409, 431
plotCSarcs.tri, 400, 402, 409, 411, 433
plotCSarcs1D, 411, 414, 435
plotCSregs, 404, 406, 416, 419, 421, 438, 441
plotCSregs.int, 418, 424, 439, 448
plotCSregs.tri, 404, 406, 418, 420, 441, 445
plotCSregs1D, 419, 422, 448
plotDelaunay.tri, 342, 424, 426, 578
plotIntervals, 426
plotPEarcs, 400, 402, 409, 427, 433
plotPEarcs.int, 411, 429, 435
plotPEarcs.tri, 400, 402, 413, 429, 431
plotPEarcs1D, 415, 431, 434
plotPEregs, 404, 406, 418, 436, 441, 445
plotPEregs.int, 419, 438, 443
plotPEregs.std.tetra, 440, 443
plotPEregs.tetra, 442
plotPEregs.tri, 404, 406, 421, 438, 443, 444
plotPEregs1D, 424, 426, 439, 446, 448
print.Extrema, 389, 448, 455, 566
print.Lines, 390, 449, 456, 567
print.Lines3D, 391, 450, 456, 568
print. NumArcs, 392, 451, 457, 569
print.Patterns, 393, 452, 457, 570
print.PCDs, 394, 453, 458, 571
print.Planes, 395, 454, 458, 572
print. summary.Extrema, \(389,448,455,566\)
print.summary.Lines, \(390,449,455,567\)
print. summary.Lines3D, 391, 450, 456, 568
print.summary.NumArcs, 392, 451, 456, 569
print.summary.Patterns, 393, 452, 457, 570
print.summary.PCDs, 394, 453, 457, 571
print.summary.Planes, 395, 454, 458, 572
print.summary.TriLines, 396, 459, 460, 573
print. summary.Uniform, 397, 459, 461, 574
print.TriLines, 396, 459, 460, 573
print.Uniform, 397, 460, 461, 574
prj.cent2edges, 462, 464, 466
prj.cent2edges.basic.tri, 462, 463, 466
prj. nondegPEcent2edges, 462, 464, 465
radii, 467, 470
radius, 468, 469
rank.dist2edges.std.tri
(funsRankOrderTe), 137
rassoc.circular, 471, 474, 475, 477, 480, 484, 539, 544, 548
rassoc.matern, 471, 472, 473
rassoc.multi.tri, 472, 475, 476, 482, 542
rassoc.std.tri, 472, 475, 477, 478, 482
rassoc.tri, 476, 481, 547
rassocII.std.tri, 472, 475, 477, 482, 483
rel.edge.basic.tri, 98, 485, 486, 488, 490, 492, 495
rel.edge.basic.triCM, 98, 487, 490, 492, 495
rel.edge.std.triCM, 98, 486, 488, 489, 492, 495
rel.edge.tri, 98, 486, 488, 490, 491, 495
rel.edge.triCM, 97, 98, 486, 488, 490, 492, 494
rel.edges.tri, 496, 499
rel.edges.triCM, 497, 498
rel.vert.basic.tri, 500, 504, 507, 513, 515, 522, 524, 526
rel.vert.basic.triCC, 502, 503, 507, 513, 515, 522, 524, 526
rel.vert.basic.triCM, 502, 504, 505, 515, 522, 524, 526
rel.vert.end.int, 508, 511
rel.vert.mid.int, 508, 509, 510
rel.vert.std.tri, 512
rel.vert.std.triCM, 502, 504, 507, 513, 514, 522, 524, 526
rel.vert.tetraCC, 516, 519
rel.vert.tetraCM, 517, 518
rel.vert.tri, 502, 504, 507, 513, 515, 521, 524, 526
rel.vert.triCC, 502, 504, 507, 513, 515, 517, 522, 523, 526
rel.vert.triCM, 502, 504, 507, 513, 515, 519, 522, 524, 525
rel.verts.tri, 497, 499, 527, 531, 533, 535-537
rel.verts.tri.nondegPE, 497, 499, 529, 530, 533, 535
rel.verts.triCC, 529, 531, 532, 535
rel.verts.triCM, 529, 531, 533, 534
rel.verts.triM, 536
rMatClust, 473-475
rseg.circular, 472, 475, 480, 484, 538, 542, 544, 548
rseg.multi.tri, 477, 480, 484, 539, 540, 544, 547, 548, 562
rseg.std.tri, 539, 542, 543, 547, 548, 562
rseg.tri, 482, 540, 545
rsegII.std.tri, 480, 484, 539, 542, 544, 547, 547
runif.basic.tri, 549, 552, 556, 557, 561
runif.multi.tri, 550, 551, 554, 556, 557, 561
runif.std.tetra, 553, 559
runif.std.tri, 550, 552, 555, 557, 561
runif.std.tri.onesixth, 273, 556
runif.tetra, 554, 558
runif.tri, 550-552, 554, 556, 557, 559, 560
seg.tri.support, 561
six.extremaTe, 563
slope, 289, 343, 384, 565
summary.Extrema, 389, 448, 455, 566
summary.Lines, 390, 449, 456, 567
summary.Lines3D, 391, 450, 456, 568
summary. NumArcs, 392, 451, 457, 569
summary.Patterns, 393, 452, 457, 570
summary.PCDs, 394, 453, 458, 571
summary.Planes, 395, 454, 458, 572
summary.TriLines, 396, 459, 460, 573
summary.Uniform, 397, 460, 461, 574
swamptrees, 575
tri.mesh, 121, 476, 541, 551
tri2std.basic.tri, 576
triangles, 121, 476, 541
Xin.convex.hullY, 577```

[^0]: small.arc.angles
 Angles of $[b a]$ and $[b c]$ with the x-axis so that difference between them is the smaller angle between $[b a]$ and $[b c]$
 ccw.arc.angles Angles of $[b a]$ and $[b c]$ with the x-axis so that difference between them is the counter-clockwise angle between $[b a]$ and $[b c]$

