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pcds-package pcds: A package for Proximity Catch Digraphs and Their Applications

Description

pcds is a package for construction and visualization of proximity catch digraphs (PCDs) and com-
putation of two graph invariants of the PCDs and testing spatial patterns using these invariants.

Details

The PCD families considered are Arc-Slice (AS) PCDs, Proportional-Edge (PE) PCDs and Central
Similarity (CS) PCDs.

The graph invariants used in testing spatial point data are the domination number (Ceyhan (2011))
and arc density (Ceyhan et al. (2006); Ceyhan et al. (2007)) of for two-dimensional data.

The pcds package also contains the functions for generating patterns of segregation, association,
CSR (complete spatial randomness) and Uniform data in one, two and three dimensional cases, for
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testing these patterns based on two invariants of various families of the proximity catch digraphs
(PCDs), (see (Ceyhan (2005)).

Moreover, the package has visualization tools for these digraphs for 1D-3D vertices. The AS-PCD
and CS-PCD tools are provided for 1D and 2D data and PE-PCD related tools are provided for
1D-3D data.

The pcds functions

The pcds functions can be grouped as Auxiliary Functions, AS-PCD Functions, PE-PCD Functions,
and CS-PCD Functions.

Aucxiliary Functions

Contains the auxiliary (or utility) functions for constructing and visualizing Delaunay tessellations
in 1D and 2D settings, computing the domination number, constructing the geometrical tools, such
as equation of lines for two points, distances between lines and points, checking points inside the
triangle etc., finding the (local) extrema (restricted to Delaunay cells or vertex or edge regions in
them).

Arc-Slice PCD Functions

Contains the functions used in AS-PCD construction, estimation of domination number, arc density,
etc in the 2D setting.

Proportional-Edge PCD Functions

Contains the functions used in PE-PCD construction, estimation of domination number, arc density,
etc in the 1D-3D settings.

Central-Similarity PCD Functions

Contains the functions used in CS-PCD construction, estimation of domination number, arc density,
etc in the 1D and 2D setting.

Point Generation Functions

Contains functions for generation of points from uniform (or CSR), segregation and association
patterns.

In all these functions points are vectors, and data sets are either matrices or data frames.

Author(s)

Maintainer: Elvan Ceyhan <elvanceyhan@gmail.com>
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.onAttach .onAttach start message

Description

.onAttach start message

Usage

.onAttach(libname, pkgname)

Arguments

libname defunct

pkgname defunct

Value

invisible()

.onLoad .onLoad getOption package settings

Description

.onLoad getOption package settings

Usage

.onLoad(libname, pkgname)
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Arguments

libname defunct

pkgname defunct

Value

invisible()

Examples

getOption("pcds.name")

angle.str2end The angles to draw arcs between two line segments

Description

Gives the two pairs of angles in radians or degrees to draw arcs between two vectors or line segments
for the draw. arc function in the plotrix package. The angles are provided with respect to the z-
axis in the coordinate system. The line segments are [ba] and [bc] when the argument is given as
a, b, c in the function.

radian is a logical argument (default=TRUE) which yields the angle in radians if TRUE, and in
degrees if FALSE. The first pair of angles is for drawing arcs in the smaller angle between [ba] and

[bc] and the second pair of angles is for drawing arcs in the counter-clockwise order from [ba] to
[bc].

Usage

angle.str2end(a, b, c, radian = TRUE)

Arguments
a,b,c Three 2D points which represent the intersecting line segments [ba] and [bc].
radian A logical argument (default=TRUE). If TRUE, the smaller angle or counter-clockwise
angle between the line segments [ba] and [bc] is provided in radians, else it is
provided in degrees.
Value

A list with two elements

small.arc.angles
Angles of [ba] and [bc] with the x-axis so that difference between them is the
smaller angle between [ba] and [bc]

ccw.arc.angles Angles of [ba] and [bc] with the x-axis so that difference between them is the
counter-clockwise angle between [ba] and [bc]
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Author(s)

Elvan Ceyhan

See Also

angle3pnts

Examples

A<-c(.3,.2); B<-c(.6,.3); C<-c(1,1)
pts<-rbind(A,B,C)
Xp<-c(B[1]+max(abs(C[1]1-B[1]),abs(A[1]-B[11)),0)

angle.str2end(A,B,C)
angle.str2end(A,B,A)

angle.str2end(A,B,C,radian=FALSE)

#plot of the line segments
ang.rad<-angle.str2end(A,B,C,radian=TRUE); ang.rad
ang.deg<-angle.str2end(A,B,C,radian=FALSE); ang.deg
ang.degl<-ang.deg$s; ang.degl

ang.deg2<-ang.deg$c; ang.deg?

rad<-min(Dist(A,B),Dist(B,C))

Xlim<-range(pts[,1],Xp[1],B+Xp,B[1]+c(+rad,-rad))
Ylim<-range(pts[,2],B[2]+c(+rad,-rad))
xd<-X1im[2]-X1im[1]

yd<-Ylim[2]-Y1im[1]

#plot for the smaller arc
plot(pts,pch=1,asp=1,xlab="x",ylab="y",xlim=X1lim+xd*c(-.05,.05),ylim=Y1lim+yd*c(-.05,.05))
L<-rbind(B,B,B); R<-rbind(A,C,B+Xp)

segments(L[,1], L[,2], R[,1], RL,2], 1lty=2)
plotrix::draw.arc(B[1],B[2],radius=.3*rad,anglel=ang.rad$s[1],angle2=ang.rad$s[2])
plotrix::draw.arc(B[1],B[2],radius=.6*rad,angle1=0, angle2=ang.rad$s[1],1ty=2,co0l=2)
plotrix::draw.arc(B[1],B[2],radius=.9*rad,angle1=0,angle2=ang.rad$s[2],col=3)
txt<-rbind(A,B,C)
text(txt+cbind(rep(xd*.02,nrow(txt)),rep(-xdx.02,nrow(txt))),c("A","B","C"))

text(rbind(B)+.5*rad*xc(cos(mean(ang.rad$s)),sin(mean(ang.rad$s))),
paste(abs(round(ang.degl[2]-ang.deg1[1],2))," degrees"”,sep=""))

text(rbind(B)+.6*radxc(cos(ang.rad$s[1]1/2),sin(ang.rad$s[1]1/2)),paste(round(ang.degi[1],2)),col=2)

text(rbind(B)+.9*radxc(cos(ang.rad$s[2]/2),sin(ang.rad$s[2]/2)),paste(round(ang.degi[2],2)),col=3)

#plot for the counter-clockwise arc
plot(pts,pch=1,asp=1,xlab="x",ylab="y",xlim=X1lim+xd*c(-.05,.05),ylim=Y1lim+yd*c(-.05,.05))
L<-rbind(B,B,B); R<-rbind(A,C,B+Xp)
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segments(L[,1], L[,2], R[,1], R[,2]1, lty=2)
plotrix::draw.arc(B[1],B[2],radius=.3*rad,anglel=ang.rad$c[1],angle2=ang.rad$c[2])
plotrix::draw.arc(B[1],B[2],radius=.6*rad,angle1=0, angle2=ang.rad$s[1],1ty=2,col=2)
plotrix::draw.arc(B[1],B[2],radius=.9*rad,angle1=0,angle2=ang.rad$s[2],col=3)
txt<-pts
text(txt+cbind(rep(xd*.02,nrow(txt)),rep(-xd*.02,nrow(txt))),c("A","B","C"))

text(rbind(B)+.5*rad*c(cos(mean(ang.rad$c)),sin(mean(ang.rad$c))),
paste(abs(round(ang.deg2[2]-ang.deg2[1],2))," degrees"”,sep=""))

text(rbind(B)+.6*radxc(cos(ang.rad$s[1]1/2),sin(ang.rad$s[1]1/2)),paste(round(ang.degi[1],2)),col=2)

text(rbind(B)+.9*rad*c(cos(ang.rad$s[2]1/2),sin(ang.rad$s[2]/2)),paste(round(ang.degi[2],2)),col=3)

angle3pnts The angle between two line segments

Description

Returns the angle in radians or degrees between two vectors or line segments at the point of in-
tersection. The line segments are [ba] and [bc] when the arguments of the function are given as
a,b,c. radian is a logical argument (default=TRUE) which yields the angle in radians if TRUE, and
in degrees if FALSE. The smaller of the angle between the line segments is provided by the function.

Usage

angle3pnts(a, b, ¢, radian = TRUE)

Arguments
a, b, c Three 2D points which represent the intersecting line segments [ba] and [bc].
The smaller angle between these line segments is to be computed.
radian A logical argument (default=TRUE). If TRUE, the (smaller) angle between the line
segments [ba] and [bc] is provided in radians, else it is provided in degrees.
Value

angle in radians or degrees between the line segments [ba| and [bc]

Author(s)

Elvan Ceyhan

See Also

angle.str2end
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Examples

A<-c(.3,.2); B<-c(.6,.3); C<-c(1,1)
pts<-rbind(A,B,C)

angle3pnts(A,B,C)

angle3pnts(A,B,A)
round(angle3pnts(A,B,A),7)

angle3pnts(A,B,C,radian=FALSE)

#plot of the line segments
Xlim<-range(pts[,1])
Ylim<-range(pts[,2])
xd<-X1im[2]-X1im[1]
yd<-Ylim[2]-Y1lim[1]

angl<-angle3pnts(A,B,C,radian=FALSE)
ang2<-angle3pnts(B+c(1,0),B,C,radian=FALSE)

sa<-angle.str2end(A,B,C,radian=FALSE)$s #small arc angles
angl<-sal[1]
ang2<-sal[2]

plot(pts,asp=1,pch=1,xlab="x",ylab="y",
x1lim=X1lim+xd*c(-.05,.05),ylim=Y1lim+ydxc(-.05,.05))

L<-rbind(B,B); R<-rbind(A,C)

segments(L[,1], L[,2]1, RL,11, RC,2], 1ty=2)
plotrix::draw.arc(B[1],B[2],radius=xd*.1,degl=ang1,deg2=ang2)
txt<-rbind(A,B,C)
text(txt+cbind(rep(xd*.05,nrow(txt)),rep(-xdx.02,nrow(txt))),c("A","B","C"))

text(rbind(B)+.15*%xd*c(cos(pi*(ang2+ang1)/360),sin(pix(ang2+angl)/360)),
paste(round(abs(angl-ang2),2)," degrees"))

arcsAS The arcs of Arc Slice Proximity Catch Digraph (AS-PCD) for a 2D
data set - multiple triangle case

Description

An object of class "PCDs". Returns arcs of AS-PCD as tails (or sources) and heads (or arrow ends)
and related parameters and the quantities of the digraph. The vertices of the AS-PCD are the data
points in Xp in the multiple triangle case.

AS proximity regions are defined with respect to the Delaunay triangles based on Yp points, i.e., AS
proximity regions are defined only for Xp points inside the convex hull of Yp points. That is, arcs
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may exist for points only inside the convex hull of Yp points. It also provides various descriptions
and quantities about the arcs of the AS-PCD such as number of arcs, arc density, etc.

Vertex regions are based on the center M="CC" for circumcenter of each Delaunay triangle or M =
(v, B,7) in barycentric coordinates in the interior of each Delaunay triangle; default is M="CC"
i.e., circumcenter of each triangle. M must be entered in barycentric coordinates unless it is the
circumcenter.

Convex hull of Yp is partitioned by the Delaunay triangles based on Yp points (i.e., multiple triangles
are the set of these Delaunay triangles whose union constitutes the convex hull of Yp points). For
the number of arcs, loops are not allowed so arcs are only possible for points inside the convex hull
of Yp points.

See (Ceyhan (2005, 2010)) for more on AS PCDs. Also see (Okabe et al. (2000); Ceyhan (2010);
Sinclair (2016)) for more on Delaunay triangulation and the corresponding algorithm.

Usage
arcsAS(Xp, Yp, M = "CC")

Arguments

Xp A set of 2D points which constitute the vertices of the AS-PCD.

Yp A set of 2D points which constitute the vertices of the Delaunay triangulation.
The Delaunay triangles partition the convex hull of Yp points.

M The center of the triangle. "CC" represents the circumcenter of each Delaunay
triangle or 3D point in barycentric coordinates which serves as a center in the
interior of each Delaunay triangle; default is M="CC" i.e., the circumcenter of
each triangle. M must be entered in barycentric coordinates unless it is the cir-
cumcenter.

Value

A list with the elements

type A description of the type of the digraph

parameters Parameters of the digraph, here, it is the center used to construct the vertex
regions, default is circumcenter, denoted as "CC", otherwise given in barycentric
coordinates.

tess.points Tessellation points, i.e., points on which the tessellation of the study region is
performed, here, tessellation is the Delaunay triangulation based on Yp points.

tess.name Name of the tessellation points tess.points

vertices Vertices of the digraph, Xp.

vert.name Name of the data set which constitute the vertices of the digraph

S Tails (or sources) of the arcs of AS-PCD for 2D data set Xp in the multiple

triangle case as the vertices of the digraph

E Heads (or arrow ends) of the arcs of AS-PCD for 2D data set Xp in the multiple
triangle case as the vertices of the digraph

mtitle Text for "main” title in the plot of the digraph
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quant Various quantities for the digraph: number of vertices, number of partition
points, number of intervals, number of arcs, and arc density.
Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number
of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

Okabe A, Boots B, Sugihara K, Chiu SN (2000). Spatial Tessellations: Concepts and Applica-
tions of Voronoi Diagrams. Wiley, New York.

Sinclair D (2016). “S-hull: a fast radial sweep-hull routine for Delaunay triangulation.” 1604.01428.

See Also

arcsAStri, arcsPEtri, arcsCStri, arcsPE, and arcsCS

Examples

#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-15; ny<-5; #try also nx=20; nx<-40; ny<-10 or nx<-1000; ny<-10;

set.seed(1)

Xp<-cbind(runif(nx,0,1),runif(nx,0,1))

Yp<-cbind(runif(ny, @, .25),runif(ny,®,.25))+cbind(c(0,0,0.5,1,1),c(0,1,.5,0,1))
#try also Yp<-cbind(runif(ny,@,1),runif(ny,0,1))

M<-c(1,1,1) #try also M<-c(1,2,3)

Arcs<-arcsAS(Xp,Yp,M) #try also the default M with Arcs<-arcsAS(Xp,Yp)
Arcs

summary (Arcs)

plot(Arcs)

arcsAS(Xp,Yp[1:3,1,M)
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arcsAStri The arcs of Arc Slice Proximity Catch Digraph (AS-PCD) for 2D data
- one triangle case

Description

An object of class "PCDs". Returns arcs of AS-PCD as tails (or sources) and heads (or arrow ends)
and related parameters and the quantities of the digraph. The vertices of the AS-PCD are the data
points in Xp in the one triangle case.

AS proximity regions are constructed with respect to the triangle tri, i.e., arcs may exist for points
only inside tri. It also provides various descriptions and quantities about the arcs of the AS-PCD
such as number of arcs, arc density, etc.

Vertex regions are based on the center, M = (my, ms) in Cartesian coordinates or M = («, 3,~) in
barycentric coordinates in the interior of the triangle tri or based on circumcenter of tri; default is
M="CC", i.e., circumcenter of tri. The different consideration of circumcenter vs any other interior
center of the triangle is because the projections from circumcenter are orthogonal to the edges,
while projections of M on the edges are on the extensions of the lines connecting M and the vertices.

See also (Ceyhan (2005, 2010)).

Usage

arcsAStri(Xp, tri, M = "CC")

Arguments
Xp A set of 2D points which constitute the vertices of the AS-PCD.
tri Three 2D points, stacked row-wise, each row representing a vertex of the trian-
gle.
M The center of the triangle. "CC" stands for circumcenter of the triangle tri or
a 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the triangle 73; default is M="CC" i.e.,
the circumcenter of tri.
Value

A list with the elements

type A description of the type of the digraph

parameters Parameters of the digraph, here, it is the center used to construct the vertex
regions.

tess.points Tessellation points, i.e., points on which the tessellation of the study region is

performed, here, tessellation points are the vertices of the support triangle tri.
tess.name Name of the tessellation points tess.points

vertices Vertices of the digraph, Xp.
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vert.name
S

mtitle

quant

Author(s)

Elvan Ceyhan

References

arcsAStri

Name of the data set which constitute the vertices of the digraph

Tails (or sources) of the arcs of AS-PCD for 2D data set Xp as vertices of the
digraph

Heads (or arrow ends) of the arcs of AS-PCD for 2D data set Xp as vertices of
the digraph

Text for "main” title in the plot of the digraph

Various quantities for the digraph: number of vertices, number of partition
points, number of intervals, number of arcs, and arc density.

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number
of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),

299-334.

See Also

arcsAS, arcsPEtri, arcsCStri, arcsPE, and arcsCS

Examples

A<-c(1,1); B<-c(2,0); C<-c(1.5,2);

Tr<-rbind(A,B,C);

n<-10

set.seed(1)

Xp<-runif.tri(n,Tr)$g

M<-as.numeric(runif.tri(1,Tr)$g) #try also M<-c(1.6,1.2) or M<-circumcenter.tri(Tr)

Arcs<-arcsAStri(Xp,Tr,M) #try also Arcs<-arcsAStri(Xp,Tr)
#uses the default center, namely circumcenter for M

Arcs

summary (Arcs)

plot(Arcs) #use plot(Arcs,asp=1) if M=CC

#can add vertex regions
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#but we first need to determine center is the circumcenter or not,
#see the description for more detail.
CC<-circumcenter.tri(Tr)

M = as.numeric(Arcs$parameters[[1]])

if (isTRUE(all.equal(M,CC)) || identical(M,"CC"))
{cent<-CC

D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
Ds<-rbind(D1,D2,D3)

cent.name<-"CC"

} else

{cent<-M

cent.name<-"M"

Ds<-prj.cent2edges(Tr,M)

3

L<-rbind(cent,cent,cent); R<-Ds

segments(L[,1], L[,2], R[,1], R[,2]1, lty=2)

#now we add the vertex names and annotation
txt<-rbind(Tr,cent,Ds)
xc<-txt[,1]+c(-.02,.03,.02,.03,.04,-.03,-.01)
yc<-txt[,2]+c(.02,.02,.03,.06,.04,.05,-.07)
txt.str<-c("A","B","C",cent.name,”D1","D2","D3")
text(xc,yc, txt.str)

arcsCS The arcs of Central Similarity Proximity Catch Digraph (CS-PCD) for
2D data - multiple triangle case

Description

An object of class "PCDs". Returns arcs of CS-PCD as tails (or sources) and heads (or arrow ends)
and related parameters and the quantities of the digraph. The vertices of the CS-PCD are the data
points in Xp in the multiple triangle case.

CS proximity regions are defined with respect to the Delaunay triangles based on Yp points with
expansion parameter ¢ > 0 and edge regions in each triangle are based on the center M = («, 3,7)
in barycentric coordinates in the interior of each Delaunay triangle (default for M = (1,1, 1) which
is the center of mass of the triangle). Each Delaunay triangle is first converted to an (nonscaled)
basic triangle so that M will be the same type of center for each Delaunay triangle (this conversion
is not necessary when Mis C'M).

Convex hull of Yp is partitioned by the Delaunay triangles based on Yp points (i.e., multiple triangles
are the set of these Delaunay triangles whose union constitutes the convex hull of Yp points). For
the number of arcs, loops are not allowed so arcs are only possible for points inside the convex hull
of Yp points.

See (Ceyhan (2005); Ceyhan et al. (2007); Ceyhan (2014)) for more on CS-PCDs. Also see (Ok-
abe et al. (2000); Ceyhan (2010); Sinclair (2016)) for more on Delaunay triangulation and the
corresponding algorithm.
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Usage

arcsCS

arcsCS(Xp, Yp, t, M =c(1, 1, 1))

Arguments
Xp

Yp
t

Value

A set of 2D points which constitute the vertices of the CS-PCD.
A set of 2D points which constitute the vertices of the Delaunay triangles.

A positive real number which serves as the expansion parameter in CS proximity
region.

A 3D point in barycentric coordinates which serves as a center in the interior of
each Delaunay triangle, default for M = (1, 1, 1) which is the center of mass of
each triangle.

A list with the elements

type
parameters

tess.points

tess.name
vertices
vert.name

S

mtitle

quant

Author(s)

Elvan Ceyhan

References

A description of the type of the digraph

Parameters of the digraph, here, it is the center used to construct the edge re-
gions.

Tessellation points, i.e., points on which the tessellation of the study region is
performed, here, tessellation is Delaunay triangulation based on Yp points.

Name of the tessellation points tess.points
Vertices of the digraph, Xp points
Name of the data set which constitute the vertices of the digraph

Tails (or sources) of the arcs of CS-PCD for 2D data set Xp as vertices of the
digraph

Heads (or arrow ends) of the arcs of CS-PCD for 2D data set Xp as vertices of
the digraph

Text for "main” title in the plot of the digraph

Various quantities for the digraph: number of vertices, number of partition
points, number of triangles, number of arcs, and arc density.

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.
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Ceyhan E (2014). “Comparison of Relative Density of Two Random Geometric Digraph Fami-
lies in Testing Spatial Clustering.” TEST, 23(1), 100-134.

Ceyhan E, Priebe CE, Marchette DJ (2007). “A new family of random graphs for testing spatial
segregation.” Canadian Journal of Statistics, 35(1), 27-50.

Okabe A, Boots B, Sugihara K, Chiu SN (2000). Spatial Tessellations: Concepts and Applica-
tions of Voronoi Diagrams. Wiley, New York.

Sinclair D (2016). “S-hull: a fast radial sweep-hull routine for Delaunay triangulation.” 1604.01428.

See Also

arcsCStri, arcsAS and arcsPE

Examples

#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-15; ny<-5; #try also nx<-40; ny<-10 or nx<-1000; ny<-10;

set.seed(1)

Xp<-cbind(runif(nx,@,1),runif(nx,0,1))
Yp<-cbind(runif(ny,@,.25),runif(ny,0,.25))+cbind(c(0,0,0.5,1,1),c(0,1,.5,0,1))
#try also Yp<-cbind(runif(ny,@,1),runif(ny,0,1))

M<-c(1,1,1) #try also M<-c(1,2,3)

tau<-1.5 #try also tau<-2

Arcs<-arcsCS(Xp, Yp, tau,M)
#or use the default center Arcs<-arcsCS(Xp,Yp,tau)

Arcs
summary (Arcs)
plot(Arcs)
arcsCS1D The arcs of Central Similarity Proximity Catch Digraph (CS-PCD) for
ID data - multiple interval case
Description

An object of class "PCDs". Returns arcs of CS-PCD as tails (or sources) and heads (or arrow ends)
and related parameters and the quantities of the digraph. The vertices of the CS-PCD are the 1D
data points in Xp in the multiple interval case. Yp determines the end points of the intervals.
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If there are duplicates of Yp points, only one point is retained for each duplicate value, and a warning

message is printed.

For this function, CS proximity regions are constructed data points inside or outside the intervals
based on Yp points with expansion parameter ¢ > 0 and centrality parameter ¢ € (0,1). That is,
for this function, arcs may exist for points in the middle or end-intervals. It also provides various
descriptions and quantities about the arcs of the CS-PCD such as number of arcs, arc density, etc.

Equivalent to function arcsCS1D.
See also (Ceyhan (2016)).

Usage

arcsCS1D(Xp, Yp, t, ¢ = 0.5)

Arguments

Xp
Yp
t

Value

A set or vector of 1D points which constitute the vertices of the CS-PCD.
A set or vector of 1D points which constitute the end points of the intervals.

A positive real number which serves as the expansion parameter in CS proximity
region.
A positive real number in (0, 1) parameterizing the center inside middle intervals

with the default c=. 5. For the interval, int= (a, b), the parameterized center is
M.=a+c(b—a).

A list with the elements

type
parameters

tess.points

tess.name
vertices
vert.name
S

E

mtitle

quant

Author(s)

Elvan Ceyhan

A description of the type of the digraph
Parameters of the digraph, here, they are expansion and centrality parameters.

Tessellation points, i.e., points on which the tessellation of the study region is
performed, here, tessellation is the intervalization of the real line based on Yp
points.

Name of the tessellation points tess.points

Vertices of the digraph, Xp points

Name of the data set which constitute the vertices of the digraph
Tails (or sources) of the arcs of CS-PCD for 1D data

Heads (or arrow ends) of the arcs of CS-PCD for 1D data

Text for "main” title in the plot of the digraph

Various quantities for the digraph: number of vertices, number of partition
points, number of intervals, number of arcs, and arc density.
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References

Ceyhan E (2016). “Density of a Random Interval Catch Digraph Family and its Use for Testing
Uniformity.” REVSTAT, 14(4), 349-394.

See Also

arcsCSend.int, arcsCSmid. int, arcsCS1D, and arcsPE1D

Examples

t<-2
c<-.4
a<-0; b<-10;

#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-20; ny<-4; #try also nx<-40; ny<-10 or nx<-1000; ny<-10;

set.seed(1)
xr<-range(a,b)
xf<=(xr[2]-xr[1]1)*.1

Xp<-runif(nx,a-xf,b+xf)
Yp<-runif(ny,a,b)

Arcs<-arcsCS1D(Xp, Yp, t,c)
Arcs

summary (Arcs)

plot(Arcs)

S<-Arcs$S
E<-Arcs$E

arcsCS1D(Xp, Yp, t,c)
arcsCS1D(Xp, Yp+10,t,c)

jit<-.1
yjit<-runif(nx,-jit,jit)
Xlim<-range(a,b, Xp, Yp)
xd<-X1im[2]-X1im[1]

plot(cbind(a, ),
main="arcs of CS-PCD for points (jittered along y-axis)\n in middle intervals ",

xlab=" ", ylab=" ", xlim=Xlim+xd*c(-.@5,.05),ylim=3xc(-jit,jit),pch=".")
abline(h=0,1ty=1)
points(Xp, yjit,pch=".", cex=3)

abline(v=Yp,lty=2)
arrows(S, yjit, E, yjit, length = .05, col= 4)
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a<-0; b<-10;

nx<-20; ny<-4; #try also nx<-40; ny<-10 or nx<-1000; ny<-10;
Xp<-runif(nx,a,b)

Yp<-runif(ny,a,b)

arcsCS1D(Xp, Yp,t,c)

arcsCSend. int The arcs of Central Similarity Proximity Catch Digraph (CS-PCD) for
1D data - end-interval case

Description

An object of class "PCDs". Returns arcs of CS-PCD as tails (or sources) and heads (or arrow ends)
and related parameters and the quantities of the digraph. The vertices of the CS-PCD are the 1D
data points in Xp in the end-interval case. Yp determines the end points of the end-intervals.

For this function, CS proximity regions are constructed data points outside the intervals based on
Yp points with expansion parameter ¢ > 0. That is, for this function, arcs may exist for points
only inside end-intervals. It also provides various descriptions and quantities about the arcs of the
CS-PCD such as number of arcs, arc density, etc.

See also (Ceyhan (2016)).

Usage

arcsCSend.int(Xp, Yp, t)

Arguments
Xp A set or vector of 1D points which constitute the vertices of the CS-PCD.
Yp A set or vector of 1D points which constitute the end points of the intervals.
t A positive real number which serves as the expansion parameter in CS proximity
region.
Value

A list with the elements

type A description of the type of the digraph

parameters Parameters of the digraph, here, it is the expansion parameter.

tess.points Tessellation points, i.e., points on which the tessellation of the study region is
performed, here, tessellation is the intervalization based on Yp.

tess.name Name of the tessellation points tess.points

vertices Vertices of the digraph, Xp points

vert.name Name of the data set which constitutes the vertices of the digraph
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S Tails (or sources) of the arcs of CS-PCD for 1D data in the end-intervals

E Heads (or arrow ends) of the arcs of CS-PCD for 1D data in the end-intervals
mtitle Text for "main” title in the plot of the digraph

quant Various quantities for the digraph: number of vertices, number of partition

points, number of intervals (which is 2 for end-intervals), number of arcs, and
arc density.
Author(s)

Elvan Ceyhan

References

Ceyhan E (2016). “Density of a Random Interval Catch Digraph Family and its Use for Testing
Uniformity.” REVSTAT, 14(4), 349-394.

See Also

arcsCSmid.int, arcsCS1D, arcsPEmid. int, arcsPEend. int and arcsPE1D

Examples

t<-1.5
a<-0; b<-10; int<-c(a,b)

#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-20; ny<-4; #try also nx<-40; ny<-10 or nx<-1000; ny<-10;

set.seed(1)
xr<-range(a,b)
xf<=(xr[2]-xr[11)*.5

Xp<-runif(nx,a-xf,b+xf)
Yp<-runif(ny,a,b)

arcsCSend. int(Xp,Yp,t)

Arcs<-arcsCSend.int(Xp, Yp,t)
Arcs

summary (Arcs)

plot(Arcs)

S<-Arcs$S
E<-Arcs$E

jit<-.1
yjit<-runif(nx,-jit,jit)

Xlim<-range(a,b,Xp,Yp)
xd<-X1im[2]-X1im[1]
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plot(cbind(a,®),pch=".",
main="arcs of CS-PCD with vertices (jittered along y-axis)\n in end-intervals ",
xlab=" ", ylab=" ",x1lim=Xlim+xd*c(-.05,.05),ylim=3xc(-jit,jit))
abline(h=0,1ty=1)
points(Xp, yjit,pch=".", cex=3)
abline(v=Yp,1lty=2)
arrows(S, yjit, E, yjit, length = .05, col= 4)
arcsCSend. int(Xp,Yp,t)
arcsCSint The arcs of Central Similarity Proximity Catch Digraph (CS-PCD) for

1D data - one interval case

Description

An object of class "PCDs". Returns arcs of CS-PCD as tails (or sources) and heads (or arrow ends)
and related parameters and the quantities of the digraph. The vertices of the CS-PCD are the 1D
data points in Xp in the one interval case. int determines the end points of the interval.

For this function, CS proximity regions are constructed data points inside or outside the interval
based on int points with expansion parameter ¢ > 0 and centrality parameter ¢ € (0,1). That is,
for this function, arcs may exist for points in the middle or end-intervals. It also provides various
descriptions and quantities about the arcs of the CS-PCD such as number of arcs, arc density, etc.

Usage

arcsCSint(Xp, int, t, ¢ = 0.5)

Arguments
Xp A set or vector of 1D points which constitute the vertices of the CS-PCD.
int A vector of two 1D points which constitutes the end points of the interval.
t A positive real number which serves as the expansion parameter in CS proximity
region.
c A positive real number in (0, 1) parameterizing the center inside middle intervals
with the default c=. 5. For the interval, int= (a, b), the parameterized center is
M.=a+c(b—a).
Value

A list with the elements

type A description of the type of the digraph

parameters Parameters of the digraph, here, they are expansion and centrality parameters.
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tess.points Tessellation points, i.e., points on which the tessellation of the study region is
performed, here, tessellation is the intervalization of the real line based on int
points.

tess.name Name of the tessellation points tess.points

vertices Vertices of the digraph, Xp points

vert.name Name of the data set which constitute the vertices of the digraph

S Tails (or sources) of the arcs of CS-PCD for 1D data

E Heads (or arrow ends) of the arcs of CS-PCD for 1D data

mtitle Text for "main” title in the plot of the digraph

quant Various quantities for the digraph: number of vertices, number of partition

points, number of intervals, number of arcs, and arc density.

Author(s)

Elvan Ceyhan

References

There are no references for Rd macro \insertAllCites on this help page.

See Also

arcsCS1D, arcsCSmid. int, arcsCSend. int, and arcsPE1D

Examples

tau<-2
c<-.4
a<-0; b<-10; int<-c(a,b);

#n is number of X points
n<-10; #try also n<-20

xf<-(int[2]-int[1]1)*.1

set.seed(1)
Xp<-runif(n,a-xf,b+xf)

Arcs<-arcsCSint(Xp, int, tau,c)
Arcs

summary (Arcs)

plot(Arcs)

Xp<-runif(n,a+10,b+10)
Arcs=arcsCSint(Xp,int, tau,c)
Arcs

summary (Arcs)

plot(Arcs)
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arcsCSmid.int

arcsCSmid.int

The arcs of Central Similarity Proximity Catch Digraph (CS-PCD) for
1D data - middle intervals case

Description

An object of class "PCDs"”. Returns arcs of CS-PCD as tails (or sources) and heads (or arrow ends)
and related parameters and the quantities of the digraph. The vertices of the CS-PCD are the 1D
data points in Xp in the middle interval case.

For this function, CS proximity regions are constructed with respect to the intervals based on Yp
points with expansion parameter ¢ > 0 and centrality parameter ¢ € (0,1). That is, for this func-
tion, arcs may exist for points only inside the intervals. It also provides various descriptions and
quantities about the arcs of the CS-PCD such as number of arcs, arc density, etc.

Vertex regions are based on center M, of each middle interval.
See also (Ceyhan (2016)).

Usage

arcsCSmid.int(Xp, Yp, t, ¢ = 0.5)

Arguments

Xp
Yp
t

Value

A set or vector of 1D points which constitute the vertices of the CS-PCD.

A set or vector of 1D points which constitute the end points of the intervals.

A positive real number which serves as the expansion parameter in CS proximity
region.

A positive real number in (0, 1) parameterizing the center inside middle intervals

with the default c=. 5. For the interval, int= (a, b), the parameterized center is
M.=a+c(b—a).

A list with the elements

type
parameters
tess.points

tess.name
vertices
vert.name
S

E

mtitle
quant

A description of the type of the digraph
Parameters of the digraph, here, they are expansion and centrality parameters.

Points on which the tessellation of the study region is performed, here, tessella-
tion is the intervalization based on Yp points.

Name of the tessellation points tess.points

Vertices of the digraph, i.e., Xp points

Name of the data set which constitute the vertices of the digraph

Tails (or sources) of the arcs of CS-PCD for 1D data in the middle intervals
Heads (or arrow ends) of the arcs of CS-PCD for 1D data in the middle intervals
Text for "main” title in the plot of the digraph

Various quantities for the digraph: number of vertices, number of partition
points, number of intervals, number of arcs, and arc density.
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Author(s)

Elvan Ceyhan

References

Ceyhan E (2016). “Density of a Random Interval Catch Digraph Family and its Use for Testing
Uniformity.” REVSTAT, 14(4), 349-394.

See Also

arcsPEend.int, arcsPE1D, arcsCSmid. int, arcsCSend. int and arcsCS1D

Examples

t<-1.5
c<-.4
a<-0; b<-10

#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-20; ny<-4; #try also nx<-40; ny<-10 or nx<-1000; ny<-10;

set.seed(1)
Xp<-runif(nx,a,b)
Yp<-runif(ny,a,b)

arcsCSmid. int(Xp,Yp,t,c)
arcsCSmid. int(Xp,Yp+10,t,c)

Arcs<-arcsCSmid.int(Xp,Yp,t,c)
Arcs

summary (Arcs)

plot(Arcs)

S<-Arcs$S
E<-Arcs$E

jit<-.1
yjit<-runif(nx,-jit,jit)
Xlim<-range(Xp, Yp)
xd<-X1im[2]-X1im[1]

plot(cbind(a, ),
main="arcs of CS-PCD whose vertices (jittered along y-axis)\n in middle intervals ",

xlab=" ", ylab=" ", xlim=Xlim+xd*c(-.@5,.05),ylim=3xc(-jit,jit),pch=".")
abline(h=0,1ty=1)
points(Xp, yjit,pch=".", cex=3)

abline(v=Yp,lty=2)
arrows(S, yjit, E, yjit, length = .05, col= 4)



30 arcsCStri

a<-0; b<-10;

nx<-20; ny<-4; #try also nx<-40; ny<-10 or nx<-1000; ny<-10;
Xp<-runif(nx,a,b)

Yp<-runif(ny,a,b)

arcsCSmid.int(Xp,Yp,t,c)

arcsCStri The arcs of Central Similarity Proximity Catch Digraphs (CS-PCD)
for 2D data - one triangle case

Description

An object of class "PCDs"”. Returns arcs of CS-PCD as tails (or sources) and heads (or arrow ends)
and related parameters and the quantities of the digraph. The vertices of the CS-PCD are the data
points in Xp in the one triangle case.

CS proximity regions are constructed with respect to the triangle tri with expansion parameter
t > 0, i.e., arcs may exist for points only inside tri. It also provides various descriptions and
quantities about the arcs of the CS-PCD such as number of arcs, arc density, etc.

Edge regions are based on center M = (mj, ms) in Cartesian coordinates or M = («, 3,7) in
barycentric coordinates in the interior of the triangle tri; defaultis M = (1,1, 1) i.e., the center of
mass of tri.

See also (Ceyhan (2005); Ceyhan et al. (2007); Ceyhan (2014)).

Usage

arcsCStri(Xp, tri, t, M =c(1, 1, 1))

Arguments

Xp A set of 2D points which constitute the vertices of the CS-PCD.

tri A 3 x 2 matrix with each row representing a vertex of the triangle.

t A positive real number which serves as the expansion parameter in CS proximity
region.

M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the triangle tri or the circumcenter of
tri; defaultis M = (1,1, 1) i.e., the center of mass of tri.

Value

A list with the elements

type A description of the type of the digraph

parameters Parameters of the digraph, the center M used to construct the edge regions and
the expansion parameter t.
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tess.points

tess.name
vertices
vert.name

S

mtitle

quant

Author(s)

Elvan Ceyhan

References
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Tessellation points, i.e., points on which the tessellation of the study region is
performed, here, tessellation points are the vertices of the support triangle tri.

Name of the tessellation points tess.points
Vertices of the digraph, Xp points
Name of the data set which constitute the vertices of the digraph

Tails (or sources) of the arcs of CS-PCD for 2D data set Xp as vertices of the
digraph

Heads (or arrow ends) of the arcs of CS-PCD for 2D data set Xp as vertices of
the digraph

Text for "main” title in the plot of the digraph

Various quantities for the digraph: number of vertices, number of partition
points, number of triangles, number of arcs, and arc density.

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2014). “Comparison of Relative Density of Two Random Geometric Digraph Fami-
lies in Testing Spatial Clustering.” TEST, 23(1), 100-134.

Ceyhan E, Priebe CE, Marchette DJ (2007). “A new family of random graphs for testing spatial
segregation.” Canadian Journal of Statistics, 35(1), 27-50.

See Also

arcsCS, arcsAStri and arcsPEtri

Examples

A<-c(1,1); B<-c(2,0); C<-c(1.5,2);

Tr<-rbind(A,B,C);

n<-10

set.seed(1)

Xp<-runif.tri(n,Tr)$g

M<-as.numeric(runif.tri(1,Tr)$g) #try also M<-c(1.6,1.0)

t<-1.5 #try also t<-2

Arcs<-arcsCStri(Xp,Tr,t,M)
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#or try with the default center Arcs<-arcsCStri(Xp,Tr,t); M= (Arcs$param)s$c
Arcs

summary (Arcs)

plot(Arcs)

#can add edge regions
L<-rbind(M,M,M); R<-Tr
segments(L[,1], L[,2], RC,11, RL,2], lty=2)

#now we can add the vertex names and annotation
txt<-rbind(Tr,M)
xc<-txt[,1]+c(-.02,.03,.02,.03)
yc<-txt[,2]+c(.02,.02,.03,.06)
txt.str<-c("A","B","C","M")

text(xc,yc, txt.str)

arcsPE The arcs of Proportional Edge Proximity Catch Digraph (PE-PCD)
for 2D data - multiple triangle case

Description

An object of class "PCDs". Returns arcs of PE-PCD as tails (or sources) and heads (or arrow ends)
and related parameters and the quantities of the digraph. The vertices of the PE-PCD are the data
points in Xp in the multiple triangle case.

PE proximity regions are defined with respect to the Delaunay triangles based on Yp points with ex-
pansion parameter r > 1 and vertex regions in each triangle are based on the center M = («, 5, 7)
in barycentric coordinates in the interior of each Delaunay triangle or based on circumcenter of
each Delaunay triangle (default for M = (1,1, 1) which is the center of mass of the triangle). Each
Delaunay triangle is first converted to an (nonscaled) basic triangle so that M will be the same type
of center for each Delaunay triangle (this conversion is not necessary when M is C'M).

Convex hull of Yp is partitioned by the Delaunay triangles based on Yp points (i.e., multiple triangles
are the set of these Delaunay triangles whose union constitutes the convex hull of Yp points). For
the number of arcs, loops are not allowed so arcs are only possible for points inside the convex hull
of Yp points.

See (Ceyhan (2005); Ceyhan et al. (2006); Ceyhan (2011)) for more on the PE-PCDs. Also, see
(Okabe et al. (2000); Ceyhan (2010); Sinclair (2016)) for more on Delaunay triangulation and the
corresponding algorithm.

Usage

arcsPE(Xp, Yp, r, M= c(1, 1, 1))
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Arguments

Xp
Yp
r

Value
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A set of 2D points which constitute the vertices of the PE-PCD.

A set of 2D points which constitute the vertices of the Delaunay triangles.

A positive real number which serves as the expansion parameter in PE proximity
region; must be > 1.

A 3D point in barycentric coordinates which serves as a center in the interior
of each Delaunay triangle or circumcenter of each Delaunay triangle (for this,
argument should be set as M="CC"), default for M = (1,1, 1) which is the center
of mass of each triangle.

A list with the elements

type

parameters

tess.points

tess.name
vertices
vert.name

S

mtitle

quant

Author(s)

Elvan Ceyhan

References

A description of the type of the digraph

Parameters of the digraph, the center used to construct the vertex regions and
the expansion parameter.

Tessellation points, i.e., points on which the tessellation of the study region is
performed, here, tessellation is the Delaunay triangulation based on Yp points.

Name of the tessellation points tess.points
Vertices of the digraph, Xp points
Name of the data set which constitute the vertices of the digraph

Tails (or sources) of the arcs of PE-PCD for 2D data set Xp as vertices of the
digraph

Heads (or arrow ends) of the arcs of PE-PCD for 2D data set Xp as vertices of
the digraph

Text for "main” title in the plot of the digraph

Various quantities for the digraph: number of vertices, number of partition
points, number of triangles, number of arcs, and arc density.

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2011). “Spatial Clustering Tests Based on Domination Number of a New Random
Digraph Family.” Communications in Statistics - Theory and Methods, 40(8), 1363-1395.



34 arcsPE1D

Ceyhan E, Priebe CE, Wierman JC (2006). “Relative density of the random r-factor proximity
catch digraphs for testing spatial patterns of segregation and association.” Computational Statistics
& Data Analysis, 50(8), 1925-1964.

Okabe A, Boots B, Sugihara K, Chiu SN (2000). Spatial Tessellations: Concepts and Applica-
tions of Voronoi Diagrams. Wiley, New York.

Sinclair D (2016). “S-hull: a fast radial sweep-hull routine for Delaunay triangulation.” 1604.01428.

See Also

arcsPEtri, arcsAS, and arcsCS

Examples

#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-20; ny<-5; #try also nx<-40; ny<-10 or nx<-1000; ny<-10;

set.seed(1)

Xp<-cbind(runif(nx,@,1),runif(nx,0,1))
Yp<-cbind(runif(ny,@,.25),runif(ny,0,.25))+cbind(c(0,0,0.5,1,1),c(0,1,.5,0,1))
#try also Yp<-cbind(runif(ny,@,1),runif(ny,0,1))

M<-c(1,1,1) #try also M<-c(1,2,3)

r<-1.5 #try also r<-2

Arcs<-arcsPE(Xp, Yp,r,M)
#or try with the default center Arcs<-arcsPE(Xp,Yp,r)

Arcs
summary (Arcs)
plot(Arcs)
arcsPE1D The arcs of Proportional Edge Proximity Catch Digraph (PE-PCD)
for ID data - multiple interval case
Description

An object of class "PCDs". Returns arcs of PE-PCD as tails (or sources) and heads (or arrow ends)
and related parameters and the quantities of the digraph. The vertices of the PE-PCD are the 1D
data points in Xp in the multiple interval case. Yp determines the end points of the intervals.

If there are duplicates of Yp points, only one point is retained for each duplicate value, and a warning
message is printed.
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For this function, PE proximity regions are constructed data points inside or outside the intervals
based on Yp points with expansion parameter » > 1 and centrality parameter ¢ € (0, 1). That is,
for this function, arcs may exist for points in the middle or end-intervals. It also provides various
descriptions and quantities about the arcs of the PE-PCD such as number of arcs, arc density, etc.

See also (Ceyhan (2012)).

Usage

arcsPE1ID(Xp, Yp, r, ¢ = 0.5)

Arguments

Xp
Yp

r

Value

A set or vector of 1D points which constitute the vertices of the PE-PCD.
A set or vector of 1D points which constitute the end points of the intervals.

A positive real number which serves as the expansion parameter in PE proximity
region; must be > 1.

A positive real number in (0, 1) parameterizing the center inside middle intervals
with the default c=.5. For the interval, (a, b), the parameterized center is M, =
a+c(b—a).

A list with the elements

type
parameters

tess.points

tess.name
vertices
vert.name
S

E

mtitle

quant

Author(s)

Elvan Ceyhan

References

A description of the type of the digraph
Parameters of the digraph, here, they are expansion and centrality parameters.

Tessellation points, i.e., points on which the tessellation of the study region is
performed, here, tessellation is the intervalization of the real line based on Yp
points.

Name of the tessellation points tess.points

Vertices of the digraph, Xp points

Name of the data set which constitute the vertices of the digraph
Tails (or sources) of the arcs of PE-PCD for 1D data

Heads (or arrow ends) of the arcs of PE-PCD for 1D data

Text for "main” title in the plot of the digraph

Various quantities for the digraph: number of vertices, number of partition
points, number of intervals, number of arcs, and arc density.

Ceyhan E (2012). “The Distribution of the Relative Arc Density of a Family of Interval Catch
Digraph Based on Uniform Data.” Metrika, 75(6), 761-793.
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See Also

arcsPEint, arcsPEmid. int, arcsPEend. int, and arcsCS1D

Examples

r<-2
c<-.4
a<-0; b<-10; int<-c(a,b);

#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-15; ny<-4; #try also nx<-40; ny<-10 or nx<-1000; ny<-10;

set.seed(1)
xf<=(int[2]-int[1])*.1

Xp<-runif(nx,a-xf,b+xf)
Yp<-runif(ny,a,b)

Arcs<-arcsPE1D(Xp,Yp,r,c)

Arcs
summary (Arcs)
plot(Arcs)
arcsPEend.int The arcs of Proportional Edge Proximity Catch Digraph (PE-PCD)
for 1D data - end-interval case
Description

An object of class "PCDs". Returns arcs of PE-PCD as tails (or sources) and heads (or arrow ends)
and related parameters and the quantities of the digraph. The vertices of the PE-PCD are the 1D
data points in Xp in the end-interval case. Yp determines the end points of the end-intervals.

For this function, PE proximity regions are constructed data points outside the intervals based on
Yp points with expansion parameter » > 1. That is, for this function, arcs may exist for points
only inside end-intervals. It also provides various descriptions and quantities about the arcs of the
PE-PCD such as number of arcs, arc density, etc.

See also (Ceyhan (2012)).

Usage

arcsPEend.int(Xp, Yp, r)
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Arguments
Xp

Yp
r

Value
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A set or vector of 1D points which constitute the vertices of the PE-PCD.
A set or vector of 1D points which constitute the end points of the intervals.

A positive real number which serves as the expansion parameter in PE proximity
region; must be > 1.

A list with the elements

type
parameters

tess.points

tess.name
vertices
vert.name
S

E

mtitle

quant

Author(s)

Elvan Ceyhan

References

A description of the type of the digraph
Parameters of the digraph, here, it is the expansion parameter.

Tessellation points, i.e., points on which the tessellation of the study region is
performed, here, tessellation is the intervalization based on Yp.

Name of the tessellation points tess.points

Vertices of the digraph, Xp points

Name of the data set which constitutes the vertices of the digraph

Tails (or sources) of the arcs of PE-PCD for 1D data in the end-intervals
Heads (or arrow ends) of the arcs of PE-PCD for 1D data in the end-intervals
Text for "main” title in the plot of the digraph

Various quantities for the digraph: number of vertices, number of partition
points, number of intervals (which is 2 for end-intervals), number of arcs, and
arc density.

Ceyhan E (2012). “The Distribution of the Relative Arc Density of a Family of Interval Catch
Digraph Based on Uniform Data.” Metrika, 75(6), 761-793.

See Also

arcsPEmid.int, arcsPE1D, arcsCSmid. int, arcsCSend. int and arcsCS1D

Examples

r<-2

a<-0; b<-10; int<-c(a,b);

#nx is number of X points (target) and ny is number of Y points (nontarget)

nx<-15; ny<-4;

set.seed(1)

#try also nx<-40; ny<-10 or nx<-1000; ny<-10;
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xf<-(int[2]-int[1])*.5
Xp<-runif(nx,a-xf,b+xf)
Yp<-runif(ny,a,b) #try also Yp<-runif(ny,a,b)+c(-10,10)
Arcs<-arcsPEend.int(Xp,Yp,r)
Arcs
summary (Arcs)
plot(Arcs)
S<-Arcs$S
E<-Arcs$E
jit<-.1
yjit<-runif(nx,-jit,jit)
Xlim<-range(a,b, Xp, Yp)
xd<-X1im[2]-X1im[1]
plot(cbind(a,®),pch=".",
main="arcs of PE-PCDs for points (jittered along y-axis)\n in end-intervals "
xlab=" ", ylab=" ", xlim=Xlim+xd*c(-.05,.05),ylim=3xc(-jit,jit))
abline(h=0,1ty=1)
points(Xp, yjit,pch=".",6cex=3)
abline(v=Yp,1lty=2)
arrows(S, yjit, E, yjit, length = .05, col= 4)
arcsPEint The arcs of Proportional Edge Proximity Catch Digraph (PE-PCD)

for 1D data - one interval case

Description

An object of class "PCDs". Returns arcs of PE-PCD as tails (or sources) and heads (or arrow ends)
and related parameters and the quantities of the digraph. The vertices of the PE-PCD are the 1D

data points in Xp in the one interval case. int determines the end points of the interval.

For this function, PE proximity regions are constructed data points inside or outside the interval
based on int points with expansion parameter 7 > 1 and centrality parameter ¢ € (0, 1). That is,
for this function, arcs may exist for points in the middle or end-intervals. It also provides various
descriptions and quantities about the arcs of the PE-PCD such as number of arcs, arc density, etc.

See also (Ceyhan (2012)).

Usage

arcsPEint(Xp, int, r, c = 0.5)
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Arguments

Xp

int

Value
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A set or vector of 1D points which constitute the vertices of the PE-PCD.
A vector of two 1D points which constitutes the end points of the interval.

A positive real number which serves as the expansion parameter in PE proximity
region; must be > 1.

A positive real number in (0, 1) parameterizing the center inside middle intervals
with the default c=.5. For the interval, int= (a, b), the parameterized center is
M.=a+c(b—a).

A list with the elements

type
parameters

tess.points

tess.name
vertices
vert.name
S

E

mtitle

quant

Author(s)

Elvan Ceyhan

References

A description of the type of the digraph
Parameters of the digraph, here, they are expansion and centrality parameters.

Tessellation points, i.e., points on which the tessellation of the study region is
performed, here, tessellation points are the end points of the support interval
int.

Name of the tessellation points tess.points

Vertices of the digraph, Xp points

Name of the data set which constitute the vertices of the digraph
Tails (or sources) of the arcs of PE-PCD for 1D data

Heads (or arrow ends) of the arcs of PE-PCD for 1D data

Text for "main” title in the plot of the digraph

Various quantities for the digraph: number of vertices, number of partition
points, number of intervals, number of arcs, and arc density.

Ceyhan E (2012). “The Distribution of the Relative Arc Density of a Family of Interval Catch
Digraph Based on Uniform Data.” Metrika, 75(6), 761-793.

See Also

arcsPE1D, arcsPEmid. int, arcsPEend. int, and arcsCS1D
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Examples

r<-2
c<-.4
a<-0; b<-10; int<-c(a,b);

#n is number of X points
n<-10; #try also n<-20

xf<-(int[2]-int[1]1)*.1

set.seed(1)
Xp<-runif(n,a-xf,b+xf)

Arcs<-arcsPEint(Xp,int,r,c)

Arcs
summary (Arcs)
plot(Arcs)
arcsPEmid.int The arcs of Proportional Edge Proximity Catch Digraph (PE-PCD)
for 1D data - middle intervals case
Description

An object of class "PCDs". Returns arcs of PE-PCD as tails (or sources) and heads (or arrow ends)
and related parameters and the quantities of the digraph. The vertices of the PE-PCD are the 1D
data points in Xp in the middle interval case.

For this function, PE proximity regions are constructed with respect to the intervals based on Yp
points with expansion parameter » > 1 and centrality parameter ¢ € (0,1). That is, for this
function, arcs may exist for points only inside the intervals. It also provides various descriptions
and quantities about the arcs of the PE-PCD such as number of arcs, arc density, etc.

Vertex regions are based on center M, of each middle interval. If there are duplicates of Yp points,
only one point is retained for each duplicate value, and a warning message is printed.

See also (Ceyhan (2012)).

Usage

arcsPEmid.int(Xp, Yp, r, ¢ = 0.5)

Arguments

Xp A set or vector of 1D points which constitute the vertices of the PE-PCD.

Yp A set or vector of 1D points which constitute the end points of the intervals.
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r A positive real number which serves as the expansion parameter in PE proximity
region; must be > 1.

c A positive real number in (0, 1) parameterizing the center inside middle intervals
with the default c=. 5. For the interval, (a, b), the parameterized center is M, =
a+c(b—a).

Value

A list with the elements

type A description of the type of the digraph

parameters Parameters of the digraph, here, they are expansion and centrality parameters.

tess.points Tessellation points, i.e., points on which the tessellation of the study region is
performed, here, tessellation is the intervalization based on Yp points.

tess.name Name of the tessellation points tess.points

vertices Vertices of the digraph, i.e., Xp points

vert.name Name of the data set which constitute the vertices of the digraph

S Tails (or sources) of the arcs of PE-PCD for 1D data in the middle intervals

E Heads (or arrow ends) of the arcs of PE-PCD for 1D data in the middle intervals

mtitle Text for "main” title in the plot of the digraph

quant Various quantities for the digraph: number of vertices, number of partition

points, number of intervals, number of arcs, and arc density.

Author(s)

Elvan Ceyhan

References
Ceyhan E (2012). “The Distribution of the Relative Arc Density of a Family of Interval Catch
Digraph Based on Uniform Data.” Metrika, 75(6), 761-793.

See Also

arcsPEend.int, arcsPE1D, arcsCSmid. int, arcsCSend.int and arcsCS1D

Examples

r<-2
c<-.4
a<-0; b<-10;

#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-15; ny<-4; #try also nx<-40; ny<-10 or nx<-1000; ny<-10;

set.seed(1)
Xp<-runif(nx,a,b)



42 arcsPEtri

Yp<-runif(ny,a,b)

Arcs<-arcsPEmid.int(Xp,Yp,r,c)
Arcs

summary (Arcs)

plot(Arcs)

S<-Arcs$S
E<-Arcs$E

arcsPEmid. int(Xp,Yp,r,c)
arcsPEmid. int(Xp,Yp+10,r,c)

jit<-.1
yjit<-runif(nx,-jit,jit)
Xlim<-range(Xp, Yp)
xd<-X1im[2]-X1im[1]

plot(cbind(a, ),
main="arcs of PE-PCD for points (jittered along y-axis)\n in middle intervals ",

xlab=" ", ylab=" ", xlim=Xlim+xd*c(-.05,.05),ylim=3*xc(-jit,jit),pch=".")
abline(h=0,1ty=1)
points(Xp, yjit,pch=".",6cex=3)

abline(v=Yp,lty=2)
arrows(S, yjit, E, yjit, length = .05, col= 4)

arcsPEtri The arcs of Proportional Edge Proximity Catch Digraph (PE-PCD)
for 2D data - one triangle case

Description

An object of class "PCDs". Returns arcs of PE-PCD as tails (or sources) and heads (or arrow ends)
and related parameters and the quantities of the digraph. The vertices of the PE-PCD are the data
points in Xp in the one triangle case.

PE proximity regions are constructed with respect to the triangle tri with expansion parameter
r > 1, i.e., arcs may exist only for points inside tri. It also provides various descriptions and
quantities about the arcs of the PE-PCD such as number of arcs, arc density, etc.

Vertex regions are based on center M = (mq,m2) in Cartesian coordinates or M = (a, 3, 7)
in barycentric coordinates in the interior of the triangle tri or based on the circumcenter of tri;
default is M = (1,1, 1), i.e., the center of mass of tri. When the center is the circumcenter, CC,
the vertex regions are constructed based on the orthogonal projections to the edges, while with any
interior center M, the vertex regions are constructed using the extensions of the lines combining
vertices with M. M-vertex regions are recommended spatial inference, due to geometry invariance
property of the arc density and domination number the PE-PCDs based on uniform data.

See also (Ceyhan (2005); Ceyhan et al. (2006)).
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arcsPEtri(Xp, tri, r, M =c(1, 1, 1))

Arguments

Xp
tri

Value

A set of 2D points which constitute the vertices of the PE-PCD.

A 3 x 2 matrix with each row representing a vertex of the triangle.

A positive real number which serves as the expansion parameter in PE proximity
region; must be > 1.

A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the triangle tri or the circumcenter
of tri which may be entered as "CC" as well; defaultis M = (1, 1,1), i.e., the
center of mass of tri.

A list with the elements

type
parameters

tess.points

tess.name
vertices
vert.name
S

mtitle
quant

Author(s)

Elvan Ceyhan

References

A description of the type of the digraph

Parameters of the digraph, the center M used to construct the vertex regions and
the expansion parameter r.

Tessellation points, i.e., points on which the tessellation of the study region is
performed, here, tessellation points are the vertices of the support triangle tri.

Name of the tessellation points tess.points

Vertices of the digraph, Xp points

Name of the data set which constitutes the vertices of the digraph

Tails (or sources) of the arcs of PE-PCD for 2D data set Xp as vertices of the
digraph

Heads (or arrow ends) of the arcs of PE-PCD for 2D data set Xp as vertices of
the digraph

Text for "main” title in the plot of the digraph

Various quantities for the digraph: number of vertices, number of partition
points, number of triangles, number of arcs, and arc density.

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E, Priebe CE, Wierman JC (2006). “Relative density of the random r-factor proximity
catch digraphs for testing spatial patterns of segregation and association.” Computational Statistics
& Data Analysis, 50(8), 1925-1964.
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See Also

arcsPE, arcsAStri, and arcsCStri

Examples

A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
n<-10

set.seed(1)
Xp<-runif.tri(n,Tr)$g

M<-as.numeric(runif.tri(1,Tr)$g) #try also M<-c(1.6,1.0)
r<-1.5 #try also r<-2

Arcs<-arcsPEtri(Xp,Tr,r,M)

#or try with the default center Arcs<-arcsPEtri(Xp,Tr,r); M= (Arcs$param)$cent
Arcs

summary (Arcs)

plot(Arcs)

#can add vertex regions

#but we first need to determine center is the circumcenter or not,
#see the description for more detail.
CC<-circumcenter.tri(Tr)

if (isTRUE(all.equal(M,CC)))

{cent<-CC

D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
Ds<-rbind(D1,D2,D3)

cent.name<-"CC"

} else

{cent<-M

cent.name<-"M"

Ds<-prj.cent2edges(Tr,M)

3

L<-rbind(cent,cent,cent); R<-Ds
segments(L[,1], L[,2]1, R[,11, R[,2], 1ty=2)

#now we can add the vertex names and annotation
txt<-rbind(Tr,cent,Ds)
xc<-txt[,1]+c(-.02,.02,.02,.02,.03,-.03,-.01)
yc<-txt[,2]+c(.02,.02,.03,.06,.04,.05,-.07)
txt.str<-c(”A","B","C","M","D1","D2","D3")
text(xc,yc, txt.str)
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area.polygon The area of a polygon in R"2

Description

Returns the area of the polygon, h, in the real plane R?; the vertices of the polygon h must be
provided in clockwise or counter-clockwise order, otherwise the function does not yield the area of
the polygon. Also, the polygon could be convex or non-convex. See (Weisstein (2019)).

Usage

area.polygon(h)

Arguments
h A vector of n 2D points, stacked row-wise, each row representing a vertex of
the polygon, where n is the number of vertices of the polygon.
Value

area of the polygon h

Author(s)

Elvan Ceyhan

References

Weisstein EW (2019). “Polygon Area.” From MathWorld — A Wolfram Web Resource, http:
//mathworld.wolfram.com/PolygonArea.html.

Examples

A<-c(0,0); B<-c(1,0); C<-c(0.5,.8);
Tr<-rbind(A,B,C);
area.polygon(Tr)

A<-c(0,0); B<-c(1,0); C<-c(.7,.6); D<-c(0.3,.8);

h1<-rbind(A,B,C,D);

#try also h1<-rbind(A,B,D,C) or hi1<-rbind(A,C,B,D) or hi<-rbind(A,D,C,B);
area.polygon(h1)

Xlim<-range(h1[,1])
Ylim<-range(h1[,2])
xd<-X1im[2]-X1im[1]
yd<-Y1lim[2]-Y1lim[1]

plot(h1l,xlab="",ylab="",main="A Convex Polygon with Four Vertices"”,


http://mathworld.wolfram.com/PolygonArea.html
http://mathworld.wolfram.com/PolygonArea.html
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x1lim=X1lim+xd*c(-.05,.05),ylim=Ylim+ydxc(-.05,.05))
polygon(h1)
xc<-rbind(A,B,C,D)[,1]+c(-.03,.03,.02,-.01)
yc<-rbind(A,B,C,D)[,2]+c(.02,.02,.02,.03)
txt.str<-c("A","B","C","D")

text(xc,yc, txt.str)

#when the triangle is degenerate, it gives zero area
B<-A+2x(C-A);

T2<-rbind(A,B,C)

area.polygon(T2)

as.basic.tri The labels of the vertices of a triangle in the basic triangle form

Description

Labels the vertices of triangle, tri, as ABC so that AB is the longest edge, BC is the second
longest and AC is the shortest edge (the order is as in the basic triangle).

The standard basic triangle form is T, = T°((0, 0), (1,0), (¢1, c2)) where ¢ isin [0, 1/2], c2 > 0 and
(1—c1)?+c2 < 1. Any given triangle can be mapped to the standard basic triangle by a combination
of rigid body motions (i.e., translation, rotation and reflection) and scaling, preserving uniformity
of the points in the original triangle. Hence, standard basic triangle is useful for simulation studies
under the uniformity hypothesis.

The option scaled a logical argument for scaling the resulting triangle or not. If scaled=TRUE, then
the resulting triangle is scaled to be a regular basic triangle, i.e., longest edge having unit length,
else (i.e., if scaled=FALSE which is the default), the new triangle T'(A, B, C) is nonscaled, i.e., the
longest edge AB may not be of unit length. The vertices of the resulting triangle (whether scaled or
not) is presented in the order of vertices of the corresponding basic triangle, however when scaled
the triangle is equivalent to the basic triangle T}, up to translation and rotation. That is, this function
converts any triangle to a basic triangle (up to translation and rotation), so that the output triangle
is $T(A’,B’,C")$ so that edges in decreasing length are $A’B’$, $B’C’$, and $A’C’$. Most of the
times, the resulting triangle will still need to be translated and/or rotated to be in the standard basic
triangle form.

Usage

as.basic.tri(tri, scaled = FALSE)

Arguments
tri A 3 x 2 matrix with each row representing a vertex of the triangle.
scaled A logical argument for scaling the resulting basic triangle. If scaled=TRUE, then

the resulting triangle is scaled to be a regular basic triangle, i.e., longest edge
having unit length, else the new triangle T'(A, B, C) is nonscaled. The default
is scaled=FALSE.
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Value

A list with three elements

tri The vertices of the basic triangle stacked row-wise and labeled row-wise as A,
B, C.
desc Description of the edges based on the vertices, i.e., "Edges (in decreasing

length are) AB, BC, and AC".

orig.order Row order of the input triangle, tri, when converted to the scaled version of the
basic triangle
Author(s)

Elvan Ceyhan

Examples

c1<-.4; c2<-.6
A<-c(0,0); B<-c(1,0); C<-c(c1,c2);

as.basic.tri(rbind(A,B,C))
as.basic.tri(rbind(B,C,A))

A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
as.basic.tri(rbind(A,B,C))
as.basic.tri(rbind(A,C,B))
as.basic.tri(rbind(B,A,C))

ASarc.dens.tri Arc density of Arc Slice Proximity Catch Digraphs (AS-PCDs) - one
triangle case

Description

Returns the arc density of AS-PCD whose vertex set is the given 2D numerical data set, Xp, (some
of its members are) in the triangle tri.

AS proximity regions are defined with respect to tri and vertex regions are defined with the center
M="CC" for circumcenter of tri; or M = (mj, m2) in Cartesian coordinates or M = (¢, 3,7) in
barycentric coordinates in the interior of the triangle tri; default is M="CC" i.e., circumcenter of
tri. For the number of arcs, loops are not allowed so arcs are only possible for points inside tri
for this function.

in.tri.only is a logical argument (default is FALSE) for considering only the points inside the tri-
angle or all the points as the vertices of the digraph. if in. tri.only=TRUE, arc density is computed
only for the points inside the triangle (i.e., arc density of the subdigraph induced by the vertices
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in the triangle is computed), otherwise arc density of the entire digraph (i.e., digraph with all the
vertices) is computed.

See also (Ceyhan (2005, 2010)).

Usage

ASarc.dens.tri(Xp, tri, M = "CC", in.tri.only = FALSE)

Arguments

Xp A set of 2D points which constitute the vertices of the AS-PCD.

tri Three 2D points, stacked row-wise, each row representing a vertex of the trian-
gle.

M The center of the triangle. "CC" stands for circumcenter of the triangle tri or a
2D point in Cartesian coordinates or a 3D point in barycentric coordinates which
serves as a center in the interior of tri; default is M="CC" i.e., the circumcenter
of tri.

in.tri.only A logical argument (default is in. tri.only=FALSE) for computing the arc den-
sity for only the points inside the triangle, tri. That is, if in.tri.only=TRUE
arc density of the induced subdigraph with the vertices inside tri is computed,
otherwise otherwise arc density of the entire digraph (i.e., digraph with all the
vertices) is computed.

Value

Arc density of AS-PCD whose vertices are the 2D numerical data set, Xp; AS proximity regions are
defined with respect to the triangle tri and C'C-vertex regions.
Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number
of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

See Also

ASarc.dens.tri, CSarc.dens.tri, and num.arcsAStri
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Examples

A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);

set.seed(1)
n<-10 #try also n<-20

Xp<-runif.tri(n,Tr)$g

M<-as.numeric(runif.tri(1,Tr)$g) #try also M<-c(1.6,1.2)
narcs = num.arcsAStri(Xp,Tr,M)$num.arcs; narcs/(n*(n-1))
ASarc.dens.tri(Xp,Tr,M)

ASarc.dens.tri(Xp,Tr,M,in.tri.only = FALSE)

ASarc.dens.tri(Xp,Tr,M)

center.nondegPE Centers for non-degenerate asymptotic distribution of domination
number of Proportional Edge Proximity Catch Digraphs (PE-PCDs)

Description

Returns the centers which yield nondegenerate asymptotic distribution for the domination number
of PE-PCD for uniform data in a triangle, tri= T'(v1, va, v3).

PE proximity region is defined with respect to the triangle tri with expansion parameter r in
(1,1.5].

Vertex regions are defined with the centers that are output of this function. Centers are stacked
row-wise with row number is corresponding to the vertex row number in tri (see the examples for
an illustration). The center labels 1,2,3 correspond to the vertices M;, Ms, and M3 (which are the
three centers for r in (1, 1.5) which becomes center of mass for r = 1.5.).

See also (Ceyhan (2005); Ceyhan and Priebe (2007); Ceyhan (2011, 2012)).

Usage

center.nondegPE(tri, r)

Arguments
tri A 3 x 2 matrix with each row representing a vertex of the triangle.
r A positive real number which serves as the expansion parameter in PE proximity

region; must be in (1, 1.5] for this function.
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Value

The centers (stacked row-wise) which give nondegenerate asymptotic distribution for the domina-
tion number of PE-PCD for uniform data in a triangle, tri.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2011). “Spatial Clustering Tests Based on Domination Number of a New Random
Digraph Family.” Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number
of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

Ceyhan E, Priebe CE (2007). “On the Distribution of the Domination Number of a New Family
of Parametrized Random Digraphs.” Model Assisted Statistics and Applications, 1(4), 231-255.

Examples

A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
r<-1.35

Ms<-center.nondegPE(Tr,r)
Ms

Xlim<-range(Tr[,11)
Ylim<-range(Tr[,21)
xd<-X1im[2]-X1im[1]
yd<-Ylim[2]-Y1im[1]

plot(Tr,pch=".",xlab="" ylab="",

main="Centers of nondegeneracy\n for the PE-PCD in a triangle”,
axes=TRUE, x1im=X1lim+xd*c(-.05,.05),ylim=Y1lim+yd*c(-.05,.05))
polygon(Tr)

points(Ms,pch="." 6 col=1)

polygon(Ms,1lty = 2)

xc<-Tr[,1]1+c(-.02,.02,.02)
yc<-Tr[,2]+c(.02, .02, .03)
txt.str<-c("A”,"B","C")
text(xc,yc, txt.str)
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xc<-Ms[,1]+c(-.04,.04,.03)
yc<-Ms[,2]+c(.02,.02,.05)
txt.str<-c("M1","M2","M3")
text(xc,yc, txt.str)

centerMc Parameterized center of an interval

Description

Returns the (parameterized) center, M., of the interval, int= (a, b), parameterized by ¢ € (0,1)
so that 100¢ % of the length of interval is to the left of M, and 100(1 — ¢) % of the length of the
interval is to the right of M,. That is, for the interval, int= (a,b), the parameterized center is
M.=a+c(b—a).

See also (Ceyhan (2012, 2016)).

Usage

centerMc(int, ¢ = 0.5)

Arguments
int A vector with two entries representing an interval.
c A positive real number in (0, 1) parameterizing the center inside int= (a, b)
with the default c=. 5. For the interval, int= (a, b), the parameterized center is
M.=a+c(b—a).
Value

(parameterized) center inside int

Author(s)

Elvan Ceyhan

References

Ceyhan E (2012). “The Distribution of the Relative Arc Density of a Family of Interval Catch Di-
graph Based on Uniform Data.” Metrika, 75(6), 761-793.

Ceyhan E (2016). “Density of a Random Interval Catch Digraph Family and its Use for Testing
Uniformity.” REVSTAT, 14(4), 349-394.

See Also

centersMc
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Examples
c<-.4
a<-0; b<-10
int = c(a,b)

centerMc(int,c)

c<-.3
a<-2; b<-4; int<-c(a,b)
centerMc(int,c)

centersMc Parameterized centers of intervals

Description

Returns the centers of the intervals based on 1D points in Yp parameterized by ¢ € (0,1) so that
100c % of the length of interval is to the left of M, and 100(1 — ¢) % of the length of the interval
is to the right of M,. That is, for an interval (a, b), the parameterized center is M. = a + ¢(b — a)
Yp is a vector of 1D points, not necessarily sorted.

See also (Ceyhan (2012, 2016)).

Usage

centersMc(Yp, ¢ = 0.5)

Arguments
Yp A vector real numbers that constitute the end points of intervals.
c A positive real number in (0, 1) parameterizing the centers inside the intervals
with the default c=. 5. For the interval, int= (a, b), the parameterized center is
M. =a+c(b—a).
Value

(parameterized) centers of the intervals based on Yp points as a vector

Author(s)

Elvan Ceyhan

References
Ceyhan E (2012). “The Distribution of the Relative Arc Density of a Family of Interval Catch Di-
graph Based on Uniform Data.” Metrika, 75(6), 761-793.

Ceyhan E (2016). “Density of a Random Interval Catch Digraph Family and its Use for Testing
Uniformity.” REVSTAT, 14(4), 349-394.
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See Also

centerMc

Examples

n<-10

c<-.4 #try also c<-runif(1)
Yp<-runif(n)

centersMc(Yp,c)

c<-.3 #try also c<-runif(1)
Yp<-runif(n,0,10)
centersMc(Yp,c)

circumcenter.basic.tri
Circumcenter of a standard basic triangle form

Description
Returns the circumcenter of a standard basic triangle form T;, = T'((0, 0), (1,0), (¢1, c2)) given ¢y,
co where ¢q isin [0,1/2], ¢ > 0and (1 —¢1)? + 3 < 1.

Any given triangle can be mapped to the standard basic triangle form by a combination of rigid
body motions (i.e., translation, rotation and reflection) and scaling, preserving uniformity of the
points in the original triangle. Hence, standard basic triangle form is useful for simulation studies
under the uniformity hypothesis.

See (Weisstein (2019); Ceyhan (2010)) for triangle centers and (Ceyhan et al. (2006); Ceyhan et al.
(2007); Ceyhan (2011)) for the standard basic triangle form.

Usage

circumcenter.basic.tri(cl, c2)

Arguments
cl, c2 Positive real numbers representing the top vertex in standard basic triangle form
T, = T((0,0),(1,0), (c1,c2)), c1 must be in [0,1/2], co > 0 and (1 — ¢1)? +
c% < 1.
Value

circumcenter of the standard basic triangle form T, = T'((0, 0), (1,0), (¢1, c2)) given ¢y, ¢o as the
arguments of the function.
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Author(s)

Elvan Ceyhan

References

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2011). “Spatial Clustering Tests Based on Domination Number of a New Random
Digraph Family.” Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

Ceyhan E, Priebe CE, Marchette DJ (2007). “A new family of random graphs for testing spatial
segregation.” Canadian Journal of Statistics, 35(1), 27-50.

Ceyhan E, Priebe CE, Wierman JC (2006). “Relative density of the random r-factor proximity
catch digraphs for testing spatial patterns of segregation and association.” Computational Statistics
& Data Analysis, 50(8), 1925-1964.

Weisstein EW (2019). “Triangle Centers.” From MathWorld — A Wolfram Web Resource, http:
//mathworld.wolfram.com/TriangleCenter.html.

See Also

circumcenter.tri

Examples

c1<-.4; c2<-.6;

A<-c(0,0); B<-c(1,0); C<-c(cl,c2);

#the vertices of the standard basic triangle form Tb
Tb<-rbind(A,B,C)

CC<-circumcenter.basic.tri(c1,c2) #the circumcenter
cc

D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2; #midpoints of the edges
Ds<-rbind(D1,D2,D3)

Xlim<-range(Tb[,11)
Ylim<-range(Tb[,2])
xd<-X1im[2]-X1im[1]
yd<-Ylim[2]-Y1lim[1]

oldpar <- par(pty = "s")

plot(A,pch=".",asp=1,xlab="",6ylab="",6axes=TRUE,xlim=X1lim+xd*c(-.05, .05),ylim=Y1lim+yd*c(-.05,.05))
polygon(Tb)
points(rbind(CC))

L<-matrix(rep(CC,3),ncol=2,byrow=TRUE); R<-Ds
segments(L[,1], L[,21, RC,11, R(,21, 1ty = 2)

txt<-rbind(Tb,CC,D1,D2,D3)


http://mathworld.wolfram.com/TriangleCenter.html
http://mathworld.wolfram.com/TriangleCenter.html
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xc<-txt[,1]+c(-.03,.04,.03,.06,.06,-.03,0)
ye<-txt[,2]+c(.02,.02,.03,-.03,.02,.04,-.03)
txt.str<-c("A","B","C","CC","D1","D2","D3")
text(xc,yc, txt.str)

#for an obtuse triangle

c1<-.4; c2<-.3;

A<-c(0,0); B<-c(1,0); C<-c(cl1,c2);

#the vertices of the standard basic triangle form Tb
Th<-rbind(A,B,C)

CC<-circumcenter.basic.tri(c1,c2) #the circumcenter
cc

D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2; #midpoints of the edges
Ds<-rbind(D1,D2,D3)

Xlim<-range(Tb[,11,CC[1])
Ylim<-range(Tb[,2],CC[2])
xd<-X1im[2]-X1im[1]
yd<-Ylim[2]-Y1lim[1]

plot(A,pch=".",asp=1,xlab="",ylab="",axes=TRUE,xlim=X1lim+xdxc(-.05,.05),ylim=Y1lim+yd*c(-.05,.05))
polygon(Th)
points(rbind(CC))

L<-matrix(rep(CC,3),ncol=2,byrow=TRUE); R<-Ds
segments(L[,1], L[,21, R[,1], R[,21, 1ty = 2)

txt<-rbind(Th,CC,D1,D2,D3)
xc<-txt[,1]+c(-.03,.03,.03,.07,.07,-.05,0)
ye<-txt[,2]+c(.02,.02,.04,-.03,.03,.04,.06)
txt.str<-c("A"”,"B","C","CC","D1","D2","D3")
text(xc,yc,txt.str)

par(oldpar)

circumcenter.tetra Circumcenter of a general tetrahedron

Description

Returns the circumcenter a given tetrahedron th with vertices stacked row-wise.

Usage

circumcenter.tetra(th)

Arguments

th A 4 x 3 matrix with each row representing a vertex of the tetrahedron.
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Value

circumcenter of the tetrahedron th

Author(s)

Elvan Ceyhan

See Also

circumcenter.tri

Examples

set.seed(123)

A<-c(0,0,0)+runif(3,-.2,.2);
B<-c(1,0,0)+runif(3,-.2,.2);
C<-c(1/2,sqrt(3)/2,0)+runif(3,-.2,.2);
D<-c(1/2,sqrt(3)/6,sqrt(6)/3)+runif(3,-.2,.2);
tetra<-rbind(A,B,C,D)

CC<-circumcenter.tetra(tetra)
cc

Xlim<-range(tetral,1],CC[1])
Ylim<-range(tetra[l,2],CC[2])
Zlim<-range(tetral,3],CC[3])
xd<-X1im[2]-X1im[1]
yd<-Y1lim[2]-Y1lim[1]
zd<-Z1im[2]-Z1im[1]

plot3D::scatter3D(tetral,1],tetral,2],tetra[,3], phi =0,theta=40, bty = "g",

main="I1llustration of the Circumcenter\n in a Tetrahedron”,

x1lim=X1lim+xd*c(-.05,.05),ylim=Y1lim+yd*c(-.05,.05), zlim=Zlim+zd*c(-.05,.05),
pch = 20, cex = 1, ticktype = "detailed")

#add the vertices of the tetrahedron

plot3D::points3D(CCL1],CCL2],CC[3], add=TRUE)

L<-rbind(A,A,A,B,B,C); R<-rbind(B,C,D,C,D,D)

plot3D::segments3D(L[,1]1, L[,2], L[,3], R[,1]1, RL,21,R[,3]1, add=TRUE,1lwd=2)

plot3D::text3D(tetral,1],tetral,2],tetral, 3],
labels=c("A","B","C","D"), add=TRUE)

D1<-(A+B)/2; D2<-(A+C)/2; D3<-(A+D)/2; D4<-(B+C)/2; D5<-(B+D)/2; D6<-(C+D)/2;
L<-rbind(D1,D2,D3,D4,D5,D6); R<-matrix(rep(CC,6),byrow = TRUE,ncol=3)
plot3D::segments3D(L[,1], L[,2]1, L[,3]1, RC,11, RC,2]1,R[,3]1, add=TRUE,1lty = 2)

plot3D: : text3D(CCL1],CCL2],CCL3], labels="CC", add=TRUE)
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circumcenter.tri Circumcenter of a general triangle

Description

Returns the circumcenter a given triangle, tri, with vertices stacked row-wise. See (Weisstein
(2019); Ceyhan (2010)) for triangle centers.

Usage

circumcenter.tri(tri)

Arguments

tri A 3 x 2 matrix with each row representing a vertex of the triangle.

Value

circumcenter of the triangle tri

Author(s)
Elvan Ceyhan

References

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Weisstein EW (2019). “Triangle Centers.” From MathWorld — A Wolfram Web Resource, http:
//mathworld.wolfram.com/TriangleCenter.html.

See Also

circumcenter.basic.tri

Examples

A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C); #the vertices of the triangle Tr

CC<-circumcenter.tri(Tr) #the circumcenter
cc

D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2; #midpoints of the edges
Ds<-rbind(D1,D2,D3)

Xlim<-range(Tr[,11,CC[1])
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Ylim<-range(Tr[,2],CC[2])
xd<-X1im[2]-X1im[1]
yd<-Ylim[2]-Y1lim[1]

plot(A,asp=1,pch="." ,xlab="" ylab="" main="Circumcenter of a triangle”,
axes=TRUE, x1lim=X1lim+xdxc(-.05,.05),ylim=Ylim+yd*c(-.05, .05))
polygon(Tr)

points(rbind(CC))

L<-matrix(rep(CC,3),ncol=2,byrow=TRUE); R<-Ds
segments(L[,1], L[,21, RC,11, R(,21, 1ty = 2)

txt<-rbind(Tr,CC,Ds)
xc<-txt[,1]+c(-.08,.08,.08,.12,-.09,-.1,-.09)
ye<-txt[,2]+c(.02,-.02,.03,-.06, .02, .06,-.04)
txt.str<-c("A","B","C","CC","D1","D2","D3")
text(xc,yc, txt.str)

A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C); #the vertices of the equilateral triangle Te
circumcenter.tri(Te) #the circumcenter

A<-c(0,0); B<-c(0,1); C<-c(2,0);
Tr<-rbind(A,B,C); #the vertices of the triangle T
circumcenter.tri(Tr) #the circumcenter

cl2CCvert.reg The closest points to circumcenter in each CC-vertex region in a tri-
angle

Description

An object of class "Extrema”. Returns the closest data points among the data set, Xp, to circum-
center, C'C, in each C'C-vertex region in the triangle tri = T'(A, B, C) =(vertex 1,vertex 2,vertex
3).

ch.all.intri is for checking whether all data points are inside tri (default is FALSE). If some
of the data points are not inside tri and ch.all.intri=TRUE, then the function yields an error
message. If some of the data points are not inside tri and ch.all.intri=FALSE, then the function
yields the closest points to CC' among the data points in each C'C-vertex region of tri (yields NA
if there are no data points inside tri).

See also (Ceyhan (2005, 2012)).

Usage

cl2CCvert.reg(Xp, tri, ch.all.intri = FALSE)
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Arguments
Xp A set of 2D points representing the set of data points.
tri A 3 x 2 matrix with each row representing a vertex of the triangle.

ch.all.intri A logical argument (default=FALSE) to check whether all data points are inside
the triangle tri. So, if it is TRUE, the function checks if all data points are inside
the closure of the triangle (i.e., interior and boundary combined) else it does not.

Value

A list with the elements

txt1 Vertex labels are A = 1, B = 2, and C' = 3 (correspond to row number in
Extremum Points).

txt2 A short description of the distances as "Distances from closest points to
cc...”

type Type of the extrema points

mtitle The "main” title for the plot of the extrema

ext The extrema points, here, closest points to C'C' in each C'C-vertex region

X The input data, Xp, can be a matrix or data frame

num.points The number of data points, i.e., size of Xp

supp Support of the data points, here, it is tri

cent The center point used for construction of vertex regions

ncent Name of the center, cent, it is "CC" for this function

regions Vertex regions inside the triangle, tri, provided as a 1ist

region.names Names of the vertex regions as "vr=1", "vr=2", and "vr=3"
region.centers Centers of mass of the vertex regions inside tri

dist2ref Distances from closest points in each C'C-vertex region to CC.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number
of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

See Also

cl2CCvert.reg.basic.tri, cl2edges.vert.reg.basic.tri, cl2edgesMvert.reg, cl2edgesCMvert.reg,
and fr2edgesCMedge.reg.std. tri
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Examples

A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
n<-10 #try also n<-20

set.seed(1)
Xp<-runif.tri(n,Tr)$g

Ext<-cl2CCvert.reg(Xp,Tr)
Ext

summary (Ext)

plot(Ext)

c2CC<-Ext

CC<-circumcenter.tri(Tr) #the circumcenter
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
Ds<-rbind(D1,D2,D3)

Xlim<-range(Tr[,11,Xp[,1]1)
Ylim<-range(Tr[,2]1,Xp[,2]1)
xd<-X1im[2]-X1im[1]
yd<-Ylim[2]-Y1lim[1]

plot(A,pch=".",asp=1,xlab="",6ylab="",

main="Closest Points in CC-Vertex Regions \n to the Circumcenter”,
x1im=X1im+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))

polygon(Tr)

points(Xp)

L<-matrix(rep(CC,3),ncol=2,byrow=TRUE); R<-Ds

segments(L[,1], L[,2]1, RL,11, R[,2], 1ty=2)
points(c2CC$ext,pch=4,col=2)

txt<-rbind(Tr,CC,Ds)
xc<-txt[,1]+c(-.07,.08,.06,.12,-.1,-.1,-.09)
ye<-txt[,2]+c(.02,-.02,.03,.0,.02,.06,-.04)
txt.str<-c("A","B","C","CC","D1","D2","D3")
text(xc,yc,txt.str)

Xp2<-rbind(Xp,c(.2,.4))
cl2CCvert.reg(Xp2,Tr,ch.all.intri = FALSE)
#gives an error message if ch.all.intri = TRUE since not all points are in the triangle

cl2CCvert.reg.basic.tri

The closest points to circumcenter in each C C-vertex region in a stan-
dard basic triangle
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Description

An object of class "Extrema”. Returns the closest data points among the data set, Xp, to circum-
center, CC, in each C'C-vertex region in the standard basic triangle 7, = T(A = (0,0),B =
(1,0),C = (c1, c2)) =(vertex 1,vertex 2,vertex 3). ch.all.intri is for checking whether all data
points are inside 7} (default is FALSE).

See also (Ceyhan (2005, 2012)).

Usage

cl2CCvert.reg.basic.tri(Xp, c1, c2, ch.all.intri = FALSE)

Arguments
Xp A set of 2D points representing the set of data points.
cl, c2 Positive real numbers which constitute the vertex of the standard basic triangle.
adjacent to the shorter edges; ¢; must be in [0,1/2], co > 0 and (1 —c;)?+c3 <
1

ch.all.intri A logical argument for checking whether all data points are inside 73 (default is
FALSE).

Value

A list with the elements

txt1 Vertex labels are A = 1, B = 2, and C' = 3 (correspond to row number in
Extremum Points).

txt2 A short description of the distances as "Distances from closest points to

type Type of the extrema points

mtitle The "main” title for the plot of the extrema

ext The extrema points, here, closest points to C'C'in each vertex region.

X The input data, Xp, can be a matrix or data frame

num.points The number of data points, i.e., size of Xp

supp Support of the data points, here, it is 7.

cent The center point used for construction of vertex regions

ncent Name of the center, cent, it is "CC" for this function.

regions Vertex regions inside the triangle, Ty, provided as a 1ist.

region.names Names of the vertex regions as "vr=1", "vr=2", and "vr=3"
region.centers Centers of mass of the vertex regions inside 7.

dist2ref Distances from closest points in each vertex region to CC.

Author(s)

Elvan Ceyhan
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References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number
of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

See Also

cl2CCvert.reg, cl2edges.vert.reg.basic.tri, cl2edgesMvert.reg, cl2edgesCMvert.reg,
and fr2edgesCMedge.reg.std. tri

Examples

cl<-.4; c2<-.6;

A<-c(0,0); B<-c(1,0); C<-c(cl1,c2);
Th<-rbind(A,B,C)

n<-15

set.seed(1)
Xp<-runif.basic.tri(n,cl1,c2)%g

Ext<-cl2CCvert.reg.basic.tri(Xp,c1,c2)
Ext

summary (Ext)

plot(Ext)

c2CC<-Ext

CC<-circumcenter.basic.tri(c1,c2) #the circumcenter
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
Ds<-rbind(D1,D2,D3)

Xlim<-range(Tb[,1],Xp[,1]1)
Ylim<-range(Tb[,2]1,Xp[,2])
xd<-X1im[2]-X1im[1]
yd<-Y1lim[2]-Y1lim[1]

plot(A,pch=".",asp=1,xlab="",6ylab="",

main="Closest Points in CC-Vertex Regions \n to the Circumcenter”,
x1lim=X1lim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))

polygon(Th)

L<-matrix(rep(CC,3),ncol=2,byrow=TRUE); R<-Ds

segments(L[,1], L[,2]1, RL,11, R[,2], 1ty=2)

points(Xp)

points(c2CC$ext,pch=4,col=2)

txt<-rbind(Tb,CC,Ds)
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xc<-txt[,1]+c(-.03,.03,.02,.07,.06,-.05,.01)
ye<-txt[,2]+c(.02,.02,.03,-.01,.03,.03,-.04)
txt.str<-c("A","B","C","CC","D1","D2","D3")
text(xc,yc, txt.str)

Xp2<-rbind(Xp,c(.2,.4))
cl2CCvert.reg.basic.tri(Xp2,c1,c2,ch.all.intri = FALSE)
#gives an error message if ch.all.intri = TRUE

#since not all points are in the standard basic triangle

cl2edges.std.tri The closest points in a data set to edges in the standard equilateral
triangle

Description

An object of class "Extrema”. Returns the closest points from the 2D data set, Xp, to the edges in
the standard equilateral triangle 7, = T(A = (0,0), B = (1,0),C = (1/2,v/3/2)).

ch.all.intri is for checking whether all data points are inside 7, (default is FALSE).

If some of the data points are not inside 7T, and ch.all.intri=TRUE, then the function yields an
error message. If some of the data points are not inside 7, and ch.all.intri=FALSE, then the
function yields the closest points to edges among the data points inside 7, (yields NA if there are no
data points inside 7T¢).

See also (Ceyhan (2005); Ceyhan et al. (2006); Ceyhan and Priebe (2007)).

Usage
cl2edges.std.tri(Xp, ch.all.intri = FALSE)

Arguments

Xp A set of 2D points representing the set of data points.

ch.all.intri A logical argument (default=FALSE) to check whether all data points are inside
the standard equilateral triangle T.. So, if it is TRUE, the function checks if
all data points are inside the closure of the triangle (i.e., interior and boundary
combined) else it does not.

Value
A list with the elements

txt1 Edge labels as AB = 3, BC = 1, and AC = 2 for T, (correspond to row
number in Extremum Points).

txt2 A short description of the distances as "Distances to Edges ...".

type Type of the extrema points
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desc A short description of the extrema points

mtitle The "main” title for the plot of the extrema

ext The extrema points, i.e., closest points to edges

X The input data, Xp, which can be amatrix or data frame

num.points The number of data points, i.e., size of Xp

supp Support of the data points, i.e., the standard equilateral triangle T,

cent The center point used for construction of edge regions, not required for this
extrema, hence it is NULL for this function

ncent Name of the center, cent, not required for this extrema, hence it is NULL for this
function

regions Edge regions inside the triangle, 7., not required for this extrema, hence it is

NULL for this function

region.names  Names of the edge regions, not required for this extrema, hence it is NULL for
this function

region.centers Centers of mass of the edge regions inside 7., not required for this extrema,
hence it is NULL for this function

dist2ref Distances from closest points in each edge region to the corresponding edge

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E, Priebe CE (2007). “On the Distribution of the Domination Number of a New Family
of Parametrized Random Digraphs.” Model Assisted Statistics and Applications, 1(4), 231-255.

Ceyhan E, Priebe CE, Wierman JC (2006). “Relative density of the random r-factor proximity

catch digraphs for testing spatial patterns of segregation and association.” Computational Statistics
& Data Analysis, 50(8), 1925-1964.

See Also

cl2edges.vert.reg.basic.tri, cl2edgesMvert.reg, cl2edgesCMvert.regand fr2edgesCMedge.reg.std. tri

Examples

n<-20 #try also n<-100
Xp<-runif.std.tri(n)$gen.points

Ext<-cl2edges.std.tri(Xp)
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Ext
summary (Ext)
plot(Ext,asp=1)

ed.clo<-Ext

A<-c(0,0); B<-c(1,0); C<-c(0.5,sqrt(3)/2);
Te<-rbind(A,B,C)

CM<-(A+B+C)/3

p1<-(A+B)/2

p2<-(B+C)/2

p3<-(A+C)/2

Xlim<-range(Te[,11,Xp[,1]1)
Ylim<-range(Te[,21,Xp[,2])
xd<-X1im[2]-X1im[1]
yd<-Ylim[2]-Y1lim[1]

plot(A,pch=".",xlab="",ylab="" axes=TRUE, xlim=X1lim+xd*c(-.05,.05),
ylim=Ylim+ydxc(-.05,.05))
polygon(Te)

points(Xp,xlab="" ylab="")
points(ed.clo$ext,pty=2,pch=4,col="red")

txt<-rbind(Te,p1,p2,p3)
xc<-txt[,1]+c(-.03,.03,.03,0,0,0)
yc<-txt[,2]+c(.02,.02,.02,0,0,0)
txt.str<-c("A","B","C","re=1","re=2","re=3")
text(xc,yc, txt.str)

cl2edges.vert.reg.basic.tri
The closest points among a data set in the vertex regions to the corre-
sponding edges in a standard basic triangle

Description

An object of class "Extrema”. Returns the closest data points among the data set, Xp, to edge ¢ in
M-vertex region 4 for ¢ = 1,2, 3 in the standard basic triangle T, = T(A = (0,0), B = (1,0),C =
(c1,¢2)) where ¢ isin [0,1/2], ca > 0 and (1 — ¢1)? + ¢3 < 1. Vertex labels are A = 1, B = 2,
and C' = 3, and corresponding edge labels are BC' = 1, AC' = 2, and AB = 3.

Vertex regions are based on center M = (mq,ms) in Cartesian coordinates or M = («, 3,7) in

barycentric coordinates in the interior of the standard basic triangle T}, or based on the circumcenter
ij%.

Any given triangle can be mapped to the standard basic triangle by a combination of rigid body
motions (i.e., translation, rotation and reflection) and scaling, preserving uniformity of the points
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in the original triangle. Hence, standard basic triangle is useful for simulation studies under the
uniformity hypothesis.

See also (Ceyhan (2005, 2010)).

Usage

cl2edges.vert.reg.basic.tri(Xp, c1, c2, M)

Arguments

Xp

cl, c2

Value

A set of 2D points representing the set of data points.

Positive real numbers which constitute the vertex of the standard basic triangle
adjacent to the shorter edges; ¢; must be in [0,1/2], co > 0and (1—c;)?+c3 <
1.

A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the standard basic triangle 73 or the
circumcenter of T3,

A list with the elements

txtl

txt2

type
desc
mtitle

ext

X

num.points
supp

cent

ncent

regions
region.names
region.centers

dist2ref

Author(s)

Elvan Ceyhan

Vertex labels are A = 1, B = 2, and C' = 3 (correspond to row number in
Extremum Points).

A short description of the distances as "Distances to Edges in the Respective
\egn{M}-Vertex Regions".

Type of the extrema points
A short description of the extrema points
The "main” title for the plot of the extrema

The extrema points, here, closest points to edges in the corresponding vertex
region.

The input data, Xp, can be a matrix or data frame

The number of data points, i.e., size of Xp

Support of the data points, here, it is Tp.

The center point used for construction of vertex regions
Name of the center, cent, it is "M"” or "CC" for this function
Vertex regions inside the triangle, T}

Names of the vertex regions as "vr=1", "vr=2", and "vr=3"
Centers of mass of the vertex regions inside 7.

Distances of closest points in the vertex regions to corresponding edges.
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References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2011). “Spatial Clustering Tests Based on Domination Number of a New Random
Digraph Family.” Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

See Also

cl2edgesCMvert.reg, cl2edgesMvert.reg, and cl2edges.std. tri

Examples

cl<-.4; c2<-.6
A<-c(0,0); B<-c(1,0); C<-c(cl1,c2);
Th<-rbind(A,B,C);

set.seed(1)
n<-20
Xp<-runif.basic.tri(n,c1,c2)3%g

M<-as.numeric(runif.basic.tri(1,cl1,c2)$g) #try also M<-c(.6,.3)

Ext<-cl2edges.vert.reg.basic.tri(Xp,c1,c2,M)
Ext

summary (Ext)

plot(Ext)

cl2e<-Ext
Ds<-prj.cent2edges.basic.tri(c1,c2,M)

Xlim<-range(Tb[,1],Xp[,1]1)
Ylim<-range(Tb[,21,Xp[,2]1)
xd<-X1im[2]-X1im[1]
yd<-Ylim[2]-Y1im[1]

plot(Tb,pch=".",6x1lab="", ylab="",

main="Closest Points in M-Vertex Regions \n to the Opposite Edges”,
axes=TRUE, x1lim=X1lim+xdxc(-.05,.05),ylim=Ylim+yd*c(-.05, .05))
polygon(Tb)

points(Xp,pch=1,col=1)

L<-rbind(M,M,M); R<-Ds

segments(L[,1], L[,2], R[,1], R[,2]1, lty=2)
points(cl2e$ext,pch=3,col=2)
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xc<-Tb[,1]+c(-.02,.02,0.02)
ye<-Th[,2]+c(.02,.02,.02)
txt.str<-c("A","B","C")
text(xc,yc, txt.str)

txt<-rbind(M,Ds)

xc<-txt[,1]+c(-.02,.04,-.03,0)
yc<-txt[,2]+c(-.02,.02,.02,-.03)
txt.str<-c("M","D1","D2","D3")
text(xc,yc, txt.str)

cl2edgesCCvert.reg The closest points in a data set to edges in each C'C-vertex region in

a triangle

Description

An object of class "Extrema”. Returns the closest data points among the data set, Xp, to edge j
in CC-vertex region j for j = 1,2,3 in the triangle, tri= T'(A, B,C), where CC stands for
circumcenter. Vertex labels are A = 1, B = 2, and C' = 3, and corresponding edge labels are
BC =1, AC = 2, and AB = 3. Function yields NA if there are no data points in a C'C-vertex

region.

See also (Ceyhan (2005, 2010)).

Usage

cl2edgesCCvert.reg(Xp, tri)

Arguments

Xp

tri

Value

A set of 2D points representing the set of data points.

A 3 x 2 matrix with each row representing a vertex of the triangle.

A list with the elements

txtl

txt2

type

desc

mtitle

Vertex labels are A = 1, B = 2, and C' = 3 (correspond to row number in
Extremum Points).

A short description of the distances as "Distances to Edges in the Respective
CC-Vertex Regions”.

Type of the extrema points
A short description of the extrema points

The "main” title for the plot of the extrema
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ext The extrema points, here, closest points to edges in the respective vertex region.
ind.ext Indices of the extrema points,ext.

X The input data, Xp, can be amatrix or data frame

num.points The number of data points, i.e., size of Xp

supp Support of the data points, here, it is tri

cent The center point used for construction of vertex regions

ncent Name of the center, cent, it is "CC" for this function

regions Vertex regions inside the triangle, tri, provided asa list

region.names Names of the vertex regions as "vr=1", "vr=2", and "vr=3"
region.centers Centers of mass of the vertex regions inside tri

dist2ref Distances of closest points in the vertex regions to corresponding edges

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

See Also

cl2edges.vert.reg.basic.tri,cl2edgesCMvert.reg, cl2edgesMvert.reg, and cl2edges.std. tri

Examples

A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);

n<-20 #try also n<-100
set.seed(1)
Xp<-runif.tri(n,Tr)$g

Ext<-cl2edgesCCvert.reg(Xp,Tr)
Ext

summary (Ext)

plot(Ext)

cl2e<-Ext

CC<-circumcenter.tri(Tr);
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
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Ds<-rbind(D1,D2,D3)

Xlim<-range(Tr[,1]1,Xp[,1]1,CC[1]1)
Ylim<-range(Tr[,2],Xp[,2]1,CC[2])
xd<-X1im[2]-X1im[1]
yd<-Ylim[2]-Y1lim[1]

plot(Tr,asp=1,pch=".",xlab="" ylab="",

main="Closest Points in CC-Vertex Regions \n to the Opposite Edges”,
axes=TRUE, x1im=X1lim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)

xc<-Tr[,1]+c(-.02,.02,.02)
ye<-Tr[,2]+c(.02, .02, .04)
txt.str<-c("A","B","C")
text(xc,yc, txt.str)

points(Xp,pch=1,col=1)
L<-matrix(rep(CC,3),ncol=2,byrow=TRUE); R<-Ds
segments(L[,1], L[,2]1, RL,11, RC,2], 1ty=2)
points(cl2e$ext,pch=3,co0l=2)

txt<-rbind(CC,Ds)
xc<-txt[,1]+c(-.04,.04,-.03,0)
yc<-txt[,2]+c(-.05,.04,.06,-.08)
txt.str<-c("cC”,"D1","D2","D3")
text(xc,yc, txt.str)

cl2edgesCMvert.reg The closest points in a data set to edges in each C M -vertex region in
a triangle

Description

An object of class "Extrema”. Returns the closest data points among the data set, Xp, to edge j in
C M -vertex region j for j = 1,2, 3 in the triangle, tri= T'(A, B, C), where C'M stands for center
of mass. Vertex labels are A = 1, B = 2, and C' = 3, and corresponding edge labels are BC = 1,
AC = 2, and AB = 3. Function yields NA if there are no data points in a C'M -vertex region.

See also (Ceyhan (2005); Ceyhan and Priebe (2007); Ceyhan (2010, 2011)).

Usage

cl2edgesCMvert.reg(Xp, tri)

Arguments

Xp A set of 2D points representing the set of data points.

tri A 3 x 2 matrix with each row representing a vertex of the triangle.
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Value

A list with the elements

txt1 Vertex labels are A = 1, B = 2, and C' = 3 (correspond to row number in
Extremum Points).

txt2 A short description of the distances as "Distances to Edges in the Respective
CM-Vertex Regions”.

type Type of the extrema points

desc A short description of the extrema points

mtitle The "main” title for the plot of the extrema

ext The extrema points, here, closest points to edges in the respective vertex region.

X The input data, Xp, can be a matrix or data frame

num.points The number of data points, i.e., size of Xp

supp Support of the data points, here, it is tri

cent The center point used for construction of vertex regions

ncent Name of the center, cent, it is "CM" for this function

regions Vertex regions inside the triangle, tri, provided as a list

region.names Names of the vertex regions as "vr=1", "vr=2", and "vr=3"
region.centers Centers of mass of the vertex regions inside tri

dist2ref Distances of closest points in the vertex regions to corresponding edges

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2011). “Spatial Clustering Tests Based on Domination Number of a New Random
Digraph Family.” Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

Ceyhan E, Priebe CE (2007). “On the Distribution of the Domination Number of a New Family
of Parametrized Random Digraphs.” Model Assisted Statistics and Applications, 1(4), 231-255.

See Also

cl2edges.vert.reg.basic.tri, cl2edgesCCvert.reg, cl2edgesMvert.reg, and cl2edges.std. tri
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Examples

A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);

n<-20 #try also n<-100
set.seed(1)
Xp<-runif.tri(n,Tr)$g

Ext<-cl2edgesCMvert.reg(Xp,Tr)
Ext

summary (Ext)

plot(Ext)

cl2e<-Ext

CM<-(A+B+C)/3;
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
Ds<-rbind(D1,D2,D3)

Xlim<-range(Tr[,11,Xp[,1]1)
Ylim<-range(Tr[,2]1,Xp[,2]1)
xd<-X1im[2]-X1im[1]
yd<-Ylim[2]-Y1lim[1]

plot(Tr,pch=".",6xlab="",ylab="",

main="Closest Points in CM-Vertex Regions \n to the Opposite Edges”,
axes=TRUE, x1im=X1lim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)

xc<-Tr[,1]+c(-.02,.02,.02)
yc<-Tr[,2]+c(.02,.02,.04)
txt.str<-c("A","B","C")
text(xc,yc, txt.str)

points(Xp,pch=1,col=1)
L<-matrix(rep(CM,3),ncol=2,byrow=TRUE); R<-Ds
segments(L[,1], L[,21, R[,1], RL,2], 1lty=2)
points(cl2e$ext,pch=3,co0l=2)

txt<-rbind(CM,Ds)
xc<-txt[,1]+c(-.04,.04,-.03,0)
yc<-txt[,2]+c(-.05,.04,.06,-.08)
txt.str<-c("CM","D1","D2","D3")
text(xc,yc, txt.str)

cl2edgesMvert.reg The closest points among a data set in the vertex regions to the respec-
tive edges in a triangle
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Description

An object of class "Extrema”. Returns the closest data points among the data set, Xp, to edge ¢ in
M-vertex region 4 for ¢ = 1,2, 3 in the triangle tri= T'(A, B, C'). Vertex labels are A = 1, B = 2,
and C' = 3, and corresponding edge labels are BC = 1, AC = 2, and AB = 3.

Vertex regions are based on center M = (mq,ms) in Cartesian coordinates or M = («, 5,7) in
barycentric coordinates in the interior of the triangle tri or based on the circumcenter of tri.

Two methods of finding these extrema are provided in the function, which can be chosen in the
logical argument alt, whose default is alt=FALSE. When alt=FALSE, the function sequentially
finds the vertex region of the data point and then updates the minimum distance to the opposite
edge and the relevant extrema objects, and when alt=TRUE, it first partitions the data set according
which vertex regions they reside, and then finds the minimum distance to the opposite edge and the
relevant extrema on each partition. Both options yield equivalent results for the extrema points and
indices, with the default being slightly ~ 20

See also (Ceyhan (2005, 2010)).

Usage

cl2edgesMvert.reg(Xp, tri, M, alt = FALSE)

Arguments

Xp A set of 2D points representing the set of data points.

tri A 3 x 2 matrix with each row representing a vertex of the triangle.

M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the triangle tri or the circumcenter of
tri; which may be entered as "CC" as well;

alt A logical argument for alternative method of finding the closest points to the
edges, default alt=FALSE. When alt=FALSE, the function sequentially finds the
vertex region of the data point and then the minimum distance to the opposite
edge and the relevant extrema objects, and when alt=TRUE, it first partitions the
data set according which vertex regions they reside, and then finds the minimum
distance to the opposite edge and the relevant extrema on each partition.

Value

A list with the elements

txtl Vertex labels are A = 1, B = 2, and C' = 3 (correspond to row number in
Extremum Points).

txt2 A short description of the distances as "Distances to Edges in the Respective
\egn{M}-Vertex Regions".

type Type of the extrema points

desc A short description of the extrema points

mtitle The "main” title for the plot of the extrema

ext The extrema points, here, closest points to edges in the respective vertex region.
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ind.ext The data indices of extrema points, ext.

X The input data, Xp, can be amatrix or data frame
num.points The number of data points, i.e., size of Xp

supp Support of the data points, here, it is tri

cent The center point used for construction of vertex regions
ncent Name of the center, cent, it is "M" or "CC" for this function
regions Vertex regions inside the triangle, tri, provided as a 1ist

region.names Names of the vertex regions as "vr=1", "vr=2", and "vr=3"
region.centers Centers of mass of the vertex regions inside tri

dist2ref Distances of closest points in the M-vertex regions to corresponding edges.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2011). “Spatial Clustering Tests Based on Domination Number of a New Random
Digraph Family.” Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

See Also

cl2edges.vert.reg.basic.tri, cl2edgesCMvert.reg, and cl2edges.std. tri

Examples

A<-c(1,1); B<-c(2,0); C<-c(1.5,2);

Tr<-rbind(A,B,C);
n<-20 #try also n<-100

set.seed(1)
Xp<-runif.tri(n,Tr)$g

M<-as.numeric(runif.tri(1,Tr)$g) #try also M<-c(1.6,1.0)

Ext<-cl2edgesMvert.reg(Xp,Tr,M)
Ext

summary (Ext)

plot(Ext)
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cl2e<-Ext
Ds<-prj.cent2edges(Tr,M)

Xlim<-range(Tr[,11,Xp[,1]1)
Ylim<-range(Tr[,2]1,Xp[,2]1)
xd<-X1im[2]-X1im[1]
yd<-Ylim[2]-Y1lim[1]

if (dimension(M)==3) {M<-bary2cart(M,Tr)}
#need to run this when M is given in barycentric coordinates

plot(Tr,pch=".",6xlab="",ylab="",

main="Closest Points in M-Vertex Regions \n to the Opposite Edges”,
axes=TRUE, x1im=X1lim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)

points(Xp,pch=1,col=1)

L<-rbind(M,M,M); R<-Ds

segments(L[,1], L[,2]1, RC,11, R[,2], 1ty=2)
points(cl2e$ext,pch=3,co0l=2)

xc<-Tr[,1]+c(-.02,.03,.02)
yc<-Tr[,2]+c(.02,.02,.04)
txt.str<-c("A”,"B","C")
text(xc,yc, txt.str)

txt<-rbind(M,Ds)
xc<-txt[,1]+c(-.02,.05,-.02,-.01)
yc<-txt[,2]+c(-.03,.02,.08,-.07)
txt.str<-c("M","D1","D2","D3")
text(xc,yc, txt.str)

cl2faces.vert.reg. tetra

The closest points among a data set in the vertex regions to the respec-
tive faces in a tetrahedron

Description

An object of class "Extrema”. Returns the closest data points among the data set, Xp, to face 7 in
M-vertex region i for ¢ = 1,2, 3,4 in the tetrahedron th = T'(A, B, C, D). Vertex labels are A = 1,
B =2,C = 3,and D = 4 and corresponding face labels are BCD = 1, ACD = 2, ABD = 3,
and ABC = 4.

Vertex regions are based on center M which can be the center of mass ("CM") or circumcenter ("CC")
of th.
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Usage

cl2faces.vert.reg.tetra

cl2faces.vert.reg.tetra(Xp, th, M = "CM")

Arguments

Xp
th
M

Value

A set of 3D points representing the set of data points.
A 4 x 3 matrix with each row representing a vertex of the tetrahedron.

The center to be used in the construction of the vertex regions in the tetrahedron,
th. Currently it only takes "CC" for circumcenter and "CM" for center of mass;
default="CM".

A list with the elements

txtl

txt2

type

desc
mtitle

ext
ind.ext

X
num.points

supp
cent

ncent

regions
region.names
region.centers

dist2ref

Author(s)

Elvan Ceyhan

See Also

fr2vertsCCvert.reg, fr2edgesCMedge.reg.std. tri, fr2vertsCCvert.reg.basic.triand kfr2vertsCCvert.

Vertex labels are A = 1, B = 2, C' = 3, and D = 4 (correspond to row number
in Extremum Points).

A short description of the distances as "Distances from Closest Points to
Faces ...".

Type of the extrema points

A short description of the extrema points

The "main” title for the plot of the extrema

The extrema points, here, closest points to faces in the respective vertex region.
The data indices of extrema points, ext.

The input data, Xp, can be a matrix or data frame

The number of data points, i.e., size of Xp

Support of the data points, here, it is th

The center point used for construction of vertex regions, it is circumcenter of
center of mass for this function

Name of the center, it is circumcenter "CC" or center of mass "CM" for this
function.

Vertex regions inside the tetrahedron th provided as a list.
Names of the vertex regions as "vr=1","vr=2" "vr=3" "vr=4"
Centers of mass of the vertex regions inside th.

Distances from closest points in each vertex region to the corresponding face.

reg
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Examples

A<-c(0,0,0); B<-c(1,0,0); C<-c(1/2,sqrt(3)/2,0);
D<-c(1/2,sqrt(3)/6,sqrt(6)/3)

set.seed(1)
tetra<-rbind(A,B,C,D)+matrix(runif(12,-.25,.25),ncol=3)
n<-10 #try also n<-20

Cent<-"CC" #try also "CM"

n<-20 #try also n<-100
Xp<-runif.tetra(n,tetra)$g #try also Xp<-cbind(runif(n),runif(n),runif(n))

Ext<-cl2faces.vert.reg.tetra(Xp, tetra,Cent)
Ext

summary (Ext)

plot(Ext)

clf<-Ext$ext

if (Cent=="CC") {M<-circumcenter.tetra(tetra)?}
if (Cent=="CM") {M<-apply(tetra,2,mean)}

Xlim<-range(tetral,1],Xp[,11,M[1]1)
Ylim<-range(tetral,2]1,Xp[,2]1,M[2])
Zlim<-range(tetral, 31, Xp[,3]1,M[3])
xd<-X1im[2]-X1im[1]
yd<-Ylim[2]-Y1lim[1]
zd<-Z1im[2]1-Z1im[1]

plot3D::scatter3D(Xpl[,1]1,Xp[,2]1,XpL[,3], phi =0, theta=40, bty = "g",

main="Closest Pointsin CC-Vertex Regions \n to the Opposite Faces”,

x1lim=X1lim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05), zlim=Zlim+zd*c(-.05,.05),
pch = 20, cex = 1, ticktype = "detailed")

#add the vertices of the tetrahedron

plot3D::points3D(tetral, 1], tetral, 2], tetral,3], add=TRUE)

L<-rbind(A,A,A,B,B,C); R<-rbind(B,C,D,C,D,D)

plot3D::segments3D(L[,1], L[,2], L[,3], R(,1]1, R[,21,R[,3], add=TRUE, lwd=2)

plot3D::points3D(clf[,1],clf[,2],clf[,3], pch=4,col="red"”, add=TRUE)

plot3D::text3D(tetral,1],tetral,2],tetral, 3],
labels=c("A"”,"B","C",”"D"), add=TRUE)

#for center of mass use #Cent<-apply(tetra,2,mean)

D1<-(A+B)/2; D2<-(A+C)/2; D3<-(A+D)/2;

D4<-(B+C)/2; D5<-(B+D)/2; D6<-(C+D)/2;

L<-rbind(D1,D2,D3,D4,D5,D6); R<-rbind(M,M,M,M,M,M)
plot3D::segments3D(L[,1], L[,2], L[,3], R[,1]1, RL,21,R[,3], add=TRUE,1ty=2)
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cl2Mc.int

cl2Mc.int

The closest points to center in each vertex region in an interval

Description

An object of class "Extrema”. Returns the closest data points among the data set, Xp, in each M-
vertex region i.e., finds the closest points from right and left to M. among points of the 1D data set
Xp which reside in in the interval int= (a, b).

M. is based on the centrality parameter ¢ € (0, 1), so that 100c % of the length of interval is to
the left of M, and 100(1 — ¢) % of the length of the interval is to the right of M,. That is, for the

interval (a, b),

M, = a+ ¢(b — a). If there are no points from Xp to the left of M. in the interval,

then it yields NA, and likewise for the right of M. in the interval.
See also (Ceyhan (2012)).

Usage

cl2Mc.int(Xp, int, c)

Arguments

Xp

int

Value

A set or vector of 1D points from which closest points to M, are found in the
interval int.

A vector of two real numbers representing an interval.

A positive real number in (0, 1) parameterizing the center inside int= (a,b).
For the interval, int= (a, b), the parameterized center is M. = a + ¢(b — a).

A list with the elements

txt1
txt2
type
desc
mtitle
ext
ind.ext
X
num.points
Supp
cent

ncent

Vertex Labels are ¢ = 1 and b = 2 for the interval (a, b).

A short description of the distances as "Distances from ..."
Type of the extrema points

A short description of the extrema points

The "main” title for the plot of the extrema

The extrema points, here, closest points to M. in each vertex region
The data indices of extrema points, ext.

The input data vector, Xp.

The number of data points, i.e., size of Xp

Support of the data points, here, it is int.

The (parameterized) center point used for construction of vertex regions.

Name of the (parameterized) center, cent, it is "Mc" for this function.
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regions Vertex regions inside the interval, int, provided as a list.
region.names  Names of the vertex regions as "vr=1", "vr=2"
region.centers Centers of mass of the vertex regions inside int.
dist2ref Distances from closest points in each vertex region to M,.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2012). “The Distribution of the Relative Arc Density of a Family of Interval Catch
Digraph Based on Uniform Data.” Metrika, 75(6), 761-793.

See Also

cl2CCvert.reg.basic.tri and cl12CCvert.reg

Examples

c<-.4
a<-0; b<-10; int<-c(a,b)

Mc<-centerMc(int,c)

nx<-10
xr<-range(a,b,Mc)
xf<=(xr[2]-xr[11)*.5

Xp<-runif(nx,a,b)

Ext<-cl2Mc.int(Xp,int,c)
Ext

summary (Ext)

plot(Ext)

CcMc<-Ext

Xlim<-range(a,b, Xp)
xd<-X1im[2]-X1im[1]

plot(cbind(a,®),xlab="",pch=".",

main=paste(”Closest Points in Mc-Vertex Regions \n to the Center Mc = ", Mc,sep=""),
xlim=X1lim+xd*c(-.05,.05))
abline(h=0)

abline(v=c(a,b,Mc),col=c(1,1,2),1ty=2)

points(cbind(Xp,@))

points(cbind(c(cMc$ext),@),pch=4,col=2)

text(cbind(c(a,b,Mc)-.02%xd,-0.05),c("a","b",expression(M[c])))
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CSarc.dens.test A test of segregation/association based on arc density of Central Sim-
ilarity Proximity Catch Digraph (CS-PCD) for 2D data

Description

An object of class "htest"” (i.e., hypothesis test) function which performs a hypothesis test of
complete spatial randomness (CSR) or uniformity of Xp points in the convex hull of Yp points
against the alternatives of segregation (where Xp points cluster away from Yp points) and association
(where Xp points cluster around Yp points) based on the normal approximation of the arc density of
the CS-PCD for uniform 2D data in the convex hull of Yp points.

The function yields the test statistic, p-value for the corresponding alternative, the confidence
interval, estimate and null value for the parameter of interest (which is the arc density), and method
and name of the data set used.

Under the null hypothesis of uniformity of Xp points in the convex hull of Yp points, arc density
of CS-PCD whose vertices are Xp points equals to its expected value under the uniform distribu-
tion and alternative could be two-sided, or left-sided (i.e., data is accumulated around the Yp
points, or association) or right-sided (i.e., data is accumulated around the centers of the triangles, or
segregation).

CS proximity region is constructed with the expansion parameter ¢t > 0 and C'M -edge regions (i.e.,
the test is not available for a general center M at this version of the function).

**Caveat:** This test is currently a conditional test, where Xp points are assumed to be random,
while Yp points are assumed to be fixed (i.e., the test is conditional on Yp points). Furthermore, the
test is a large sample test when Xp points are substantially larger than Yp points, say at least 5 times
more. This test is more appropriate when supports of Xp and Yp has a substantial overlap. Currently,
the Xp points outside the convex hull of Yp points are handled with a convex hull correction factor,
ch.cor, which is derived under the assumption of uniformity of Xp and Yp points in the study
window, (see the description below and the function code.) However, in the special case of no
Xp points in the convex hull of Yp points, arc density is taken to be 1, as this is clearly a case of
segregation. Removing the conditioning and extending it to the case of non-concurring supports is
an ongoing line of research of the author of the package.

ch. cor is for convex hull correction (default is "no convex hull correction”,i.e., ch.cor=FALSE)
which is recommended when both Xp and Yp have the same rectangular support.

See also (Ceyhan (2005); Ceyhan et al. (2007); Ceyhan (2014)).

Usage
CSarc.dens.test(
Xp7
Yp)
t)
ch.cor = FALSE,
alternative = c("two.sided”, "less"”, "greater"”),

conf.level = 0.95
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Arguments

Xp
Yp
t

ch.cor

alternative

conf.level

Value
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A set of 2D points which constitute the vertices of the CS-PCD.
A set of 2D points which constitute the vertices of the Delaunay triangles.

A positive real number which serves as the expansion parameter in CS proximity
region.

A logical argument for convex hull correction, default ch.cor=FALSE, recom-
mended when both Xp and Yp have the same rectangular support.

Type of the alternative hypothesis in the test, one of "two.sided"”, "less”,
"greater”.

Level of the confidence interval, default is @. 95, for the arc density of CS-PCD
based on the 2D data set Xp.

A list with the elements

statistic
p.value

conf.int

estimate

null.value

alternative

method

data.name

Author(s)

Elvan Ceyhan

References

Test statistic
The p-value for the hypothesis test for the corresponding alternative

Confidence interval for the arc density at the given confidence level conf.level
and depends on the type of alternative.

Estimate of the parameter, i.e., arc density

Hypothesized value for the parameter, i.e., the null arc density, which is usually
the mean arc density under uniform distribution.

Type of the alternative hypothesis in the test, one of "two.sided"”, "less”,
"greater”

Description of the hypothesis test

Name of the data set

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2014). “Comparison of Relative Density of Two Random Geometric Digraph Fami-
lies in Testing Spatial Clustering.” TEST, 23(1), 100-134.

Ceyhan E, Priebe CE, Marchette DJ (2007). “A new family of random graphs for testing spatial
segregation.” Canadian Journal of Statistics, 35(1), 27-50.



82 CSarc.dens.test.int

See Also

PEarc.dens.test and CSarc.dens.test1D

Examples

#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-100; ny<-5; #try also nx<-40; ny<-10 or nx<-1000; ny<-10;

set.seed(1)

Xp<-cbind(runif(nx),runif(nx))
Yp<-cbind(runif(ny,@,.25),runif(ny,0,.25))+cbind(c(0,0,0.5,1,1),c(0,1,.5,0,1))
#try also Yp<-cbind(runif(ny,@,1),runif(ny,0,1))

plotDelaunay.tri(Xp,Yp,xlab="",ylab = "")
CSarc.dens.test(Xp,Yp, t=.5)

CSarc.dens.test(Xp,Yp,t=.5,ch=TRUE)
#try also t=1.0 and 1.5 above

CSarc.dens.test.int A test of uniformity of 1D data in a given interval based on Central
Similarity Proximity Catch Digraph (CS-PCD)

Description

An object of class "htest” (i.e., hypothesis test) function which performs a hypothesis test of
uniformity of 1D data in one interval based on the normal approximation of the arc density of the
CS-PCD with expansion parameter ¢ > 0 and centrality parameter ¢ € (0,1).

The function yields the test statistic, p-value for the corresponding alternative, the confidence
interval, estimate and null value for the parameter of interest (which is the arc density), and method
and name of the data set used.

The null hypothesis is that data is uniform in a finite interval (i.e., arc density of CS-PCD equals to
its expected value under uniform distribution) and alternative could be two-sided, or left-sided
(i.e., data is accumulated around the end points) or right-sided (i.e., data is accumulated around the
mid point or center M).

See also (Ceyhan (2016)).

Usage

CSarc.dens.test.int(

Xp,
int,
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alternative = c("two.sided”, "less"”, "greater”),
conf.level = 0.95

Arguments

Xp
int

alternative

conf.level

Value

A set or vector of 1D points which constitute the vertices of CS-PCD.

A vector of two real numbers representing an interval.

A positive real number which serves as the expansion parameter in CS proximity
region.

A positive real number in (0, 1) parameterizing the center inside int= (a,b)
with the default c=. 5. For the interval, int= (a, b), the parameterized center is
M.=a+c(b—a).

Type of the alternative hypothesis in the test, one of "two.sided"”, "less”,
"greater”.

Level of the confidence interval, default is @. 95, for the arc density of CS-PCD
based on the 1D data set Xp.

A list with the elements

statistic
p.value

conf.int

estimate

null.value

alternative

method

data.name

Author(s)

Elvan Ceyhan

References

Test statistic
The p-value for the hypothesis test for the corresponding alternative

Confidence interval for the arc density at the given level conf.level and de-
pends on the type of alternative.

Estimate of the parameter, i.e., arc density

Hypothesized value for the parameter, i.e., the null arc density, which is usually
the mean arc density under uniform distribution.

Type of the alternative hypothesis in the test, one of "two.sided"”, "less”,
"greater”

Description of the hypothesis test

Name of the data set

Ceyhan E (2016). “Density of a Random Interval Catch Digraph Family and its Use for Testing
Uniformity.” REVSTAT, 14(4), 349-394.

See Also

PEarc.dens.test.int
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Examples

c<-.4
t<-2
a<-0; b<-10; int<-c(a,b)

n<-10
Xp<-runif(n,a,b)

num.arcsCSmid.int(Xp,int,t,c)
CSarc.dens.test.int(Xp,int,t,c)

num.arcsCSmid.int(Xp,int,t,c=.3)
CSarc.dens.test.int(Xp,int,t,c=.3)

num.arcsCSmid.int(Xp,int,t=1.5,¢c)
CSarc.dens.test.int(Xp,int,t=1.5,c)

Xp<-runif(n,a-1,b+1)
num.arcsCSmid.int(Xp,int,t,c)
CSarc.dens.test.int(Xp,int,t,c)

c<-.4

t<-.5

a<-0; b<-10; int<-c(a,b)
n<-10 #try also n<-20
Xp<-runif(n,a,b)

CSarc.dens.test.int(Xp,int,t,c)

CSarc.dens.test1D A test of segregation/association based on arc density of Central Sim-
ilarity Proximity Catch Digraph (CS-PCD) for 1D data

Description

An object of class "htest” (i.e., hypothesis test) function which performs a hypothesis test of
complete spatial randomness (CSR) or uniformity of Xp points in the range (i.e., range) of Yp points
against the alternatives of segregation (where Xp points cluster away from Yp points) and association
(where Xp points cluster around Yp points) based on the normal approximation of the arc density of
the CS-PCD for uniform 1D data.

The function yields the test statistic, p-value for the corresponding alternative, the confidence
interval, estimate and null value for the parameter of interest (which is the arc density), and method
and name of the data set used.

Under the null hypothesis of uniformity of Xp points in the range of Yp points, arc density of CS-
PCD whose vertices are Xp points equals to its expected value under the uniform distribution and
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alternative could be two-sided, or left-sided (i.e., data is accumulated around the Yp points, or
association) or right-sided (i.e., data is accumulated around the centers of the intervals, or segrega-
tion).

CS proximity region is constructed with the expansion parameter ¢ > 0 and centrality parameter
¢ which yields M-vertex regions. More precisely, for a middle interval (y(i), y(iﬂ)), the center is
M = y) + c(y@i+1) — Y@)) for the centrality parameter ¢ € (0,1). If there are duplicates of Yp
points, only one point is retained for each duplicate value, and a warning message is printed.

**Caveat:** This test is currently a conditional test, where Xp points are assumed to be random,
while Yp points are assumed to be fixed (i.e., the test is conditional on Yp points). Furthermore,
the test is a large sample test when Xp points are substantially larger than Yp points, say at least 5
times more. This test is more appropriate when supports of Xp and Yp have a substantial overlap.
Currently, the Xp points outside the range of Yp points are handled with a range correction (or end-
interval correction) factor (see the description below and the function code.) However, in the special
case of no Xp points in the range of Yp points, arc density is taken to be 1, as this is clearly a case of
segregation. Removing the conditioning and extending it to the case of non-concurring supports is
an ongoing line of research of the author of the package.

end.int.cor is for end-interval correction, recommended when both Xp and Yp have the same
interval support (default is "no end-interval correction", i.e., end.int.cor=FALSE).

Usage
CSarc.dens.test1D(
Xp7
Yp7
t7
c =20.5,

support.int = NULL,
end.int.cor = FALSE,

alternative = c("two.sided”, "less"”, "greater"),
conf.level = 0.95
)
Arguments
Xp A set of 1D points which constitute the vertices of the CS-PCD.
Yp A set of 1D points which constitute the end points of the partition intervals.
t A positive real number which serves as the expansion parameter in CS proximity
region.
c A positive real number which serves as the centrality parameter in CS proximity
region; must be in (0, 1) (default c=.5).
support.int Support interval (a,b) with a < b. Uniformity of Xp points in this interval is
tested. Default is NULL.
end.int.cor A logical argument for end-interval correction, default is FALSE, recommended
when both Xp and Yp have the same interval support.
alternative Type of the alternative hypothesis in the test, one of "two.sided", "less”,

"greater”.
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conf.level

Value

CSarc.dens.test1D

Level of the confidence interval, default is .95, for the arc density CS-PCD
whose vertices are the 1D data set Xp.

A list with the elements

statistic
p.value

conf.int

estimate

null.value

alternative

method

data.name

Author(s)

Elvan Ceyhan

References

Test statistic
The p-value for the hypothesis test for the corresponding alternative.

Confidence interval for the arc density at the given confidence level conf. level
and depends on the type of alternative.

Estimate of the parameter, i.e., arc density

Hypothesized value for the parameter, i.e., the null arc density, which is usually
the mean arc density under uniform distribution.

Type of the alternative hypothesis in the test, one of "two.sided"”, "less”,
"greater”

Description of the hypothesis test

Name of the data set

There are no references for Rd macro \insertAllCites on this help page.

See Also

CSarc.dens.test and CSarc.dens.test.int

Examples

tau<-2
c<-.4

a<-0; b<-10; int=c(a,b)

#nx is number of X points (target) and ny is number of Y points (nontarget)

nx<-20; ny<-4;

set.seed(1)

#try also nx<-40; ny<-1@ or nx<-1000; ny<-10;

xf<-(int[2]-int[1])*.1

Xp<-runif(nx,a-xf,b+xf)

Yp<-runif(ny,a,b)

CSarc.dens.test1D(Xp, Yp, tau,c,int)
CSarc.dens.test1D(Xp, Yp, tau,c,int,alt="1")
CSarc.dens.test1D(Xp,Yp, tau,c,int,alt="g")
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CSarc.dens.test1D(Xp,Yp, tau,c,int,end.int.cor = TRUE)

Yp2<-runif(ny,a,b)+11
CSarc.dens.test1D(Xp, Yp2,tau,c,int)

n<-10 #try also n<-20
Xp<-runif(n,a,b)
CSarc.dens.test1D(Xp, Yp, tau,c,int)

CSarc.dens.tri Arc density of Central Similarity Proximity Catch Digraphs (CS-
PCDs) - one triangle case

Description

Returns the arc density of CS-PCD whose vertex set is the given 2D numerical data set, Xp, (some
of its members are) in the triangle tri.

CS proximity regions is defined with respect to tri with expansion parameter ¢ > 0 and edge re-
gions are based on center M = (m;y, ms) in Cartesian coordinates or M = («, 8, ) in barycentric
coordinates in the interior of the triangle tri; default is M = (1,1,1) i.e., the center of mass of
tri. The function also provides arc density standardized by the mean and asymptotic variance of
the arc density of CS-PCD for uniform data in the triangle tri only when M is the center of mass.
For the number of arcs, loops are not allowed.

is a logical argument (default is FALSE) for considering only the points inside the triangle or all

the points as the vertices of the digraph. if in.tri.only=TRUE, arc density is computed only for
the points inside the triangle (i.e., arc density of the subdigraph induced by the vertices in the
triangle is computed), otherwise arc density of the entire digraph (i.e., digraph with all the vertices)
is computed.

See (Ceyhan (2005); Ceyhan et al. (2007); Ceyhan (2014)) for more on CS-PCDs.

Usage

CSarc.dens.tri(Xp, tri, t, M =c(1, 1, 1), in.tri.only = FALSE)

Arguments
Xp A set of 2D points which constitute the vertices of the CS-PCD.
tri A 3 x 2 matrix with each row representing a vertex of the triangle.
t A positive real number which serves as the expansion parameter in CS proximity
region.
M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates

which serves as a center in the interior of the triangle tri; default is M =
(1,1,1) i.e., the center of mass of tri.
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in.tri.only A logical argument (default is =FALSE) for computing the arc density for only
the points inside the triangle, tri. That is, if =TRUE arc density of the induced
subdigraph with the vertices inside tri is computed, otherwise otherwise arc
density of the entire digraph (i.e., digraph with all the vertices) is computed.
Value

A list with the elements

arc.dens Arc density of CS-PCD whose vertices are the 2D numerical data set, Xp; CS
proximity regions are defined with respect to the triangle tri and M-edge regions

std.arc.dens Arc density standardized by the mean and asymptotic variance of the arc density
of CS-PCD for uniform data in the triangle tri.This will only be returned if M
is the center of mass.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2014). “Comparison of Relative Density of Two Random Geometric Digraph Fami-
lies in Testing Spatial Clustering.” TEST, 23(1), 100-134.

Ceyhan E, Priebe CE, Marchette DJ (2007). “A new family of random graphs for testing spatial
segregation.” Canadian Journal of Statistics, 35(1), 27-50.

See Also

ASarc.dens.tri, PEarc.dens.tri, and num.arcsCStri

Examples

A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
n<-10 #try also n<-20

set.seed(1)
Xp<-runif.tri(n,Tr)$g

M<-as.numeric(runif.tri(1,Tr)$g) #try also M<-c(1.6,1.0)
CSarc.dens.tri(Xp,Tr,t=.5,M)

CSarc.dens.tri(Xp,Tr,t=.5,M, in.tri.only= FALSE)
#try also t=1 and t=1.5 above
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dimension The dimension of a vector or matrix or a data frame

Description

Returns the dimension (i.e., number of columns) of x, which is a matrix or a vector or a data frame.
This is different than the dim function in base R, in the sense that, dimension gives only the number
of columns of the argument x, while dim gives the number of rows and columns of x. dimension
also works for a scalar or a vector, while dim yields NULL for such arguments.

Usage

dimension(x)

Arguments

X A vector or a matrix or a data frame whose dimension is to be determined.

Value

Dimension (i.e., number of columns) of x

Author(s)

Elvan Ceyhan

See Also

is.point and dim from the base distribution of R

Examples

dimension(3)
dim(3)

A<-c(1,2)
dimension(A)
dim(A)

B<-c(2,3)
dimension(rbind(A,B,A))
dimension(cbind(A,B,A))

M<-matrix(runif(20),ncol=5)
dimension(M)
dim(M)
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dimension(c("a","b"))

Dist The distance between two vectors, matrices, or data frames

Description

Returns the Euclidean distance between x and y which can be vectors or matrices or data frames of
any dimension (x and y should be of same dimension).

This function is different from the dist function in the stats package of the standard R distribution.
dist requires its argument to be a data matrix and dist computes and returns the distance matrix
computed by using the specified distance measure to compute the distances between the rows of a
data matrix (Becker et al. (1988)), while Dist needs two arguments to find the distances between.
For two data matrices A and B, dist(rbind(as.vector(A), as.vector(B))) and Dist(A,B)
yield the same result.

Usage

Dist(x, y)

Arguments

X,y Vectors, matrices or data frames (both should be of the same type).

Value

Euclidean distance between x and y

Author(s)

Elvan Ceyhan

References

Becker RA, Chambers JM, Wilks AR (1988). The New S Language. Wadsworth & Brooks/Cole.

See Also

dist from the base package stats
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Examples

B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Dist(B,C);
dist(rbind(B,C))

x<-runif(10)
y<-runif(10)
Dist(x,y)

xm<-matrix(x,ncol=2)
ym<-matrix(y,ncol=2)

Dist(xm,ym)
dist(rbind(as.vector(xm),as.vector(ym)))

Dist(xm,xm)

dist.point2line The distance from a point to a line defined by two points

Description

Returns the distance from a point p to the line joining points a and b in 2D space.

Usage

dist.point2line(p, a, b)

Arguments
p A 2D point, distance from p to the line passing through points a and b are to be
computed.
a, b 2D points that determine the straight line (i.e., through which the straight line
passes).
Value

A list with two elements

dis Distance from point p to the line passing through a and b
cl2p The closest point on the line passing through a and b to the point p
Author(s)

Elvan Ceyhan
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See Also

dist.point2plane, dist.point2set, and Dist

Examples

A<-c(1,2); B<-c(2,3); P<-c(3,1.5)

dpl<-dist.point2line(P,A,B);
dpl

C<-dpl$cl2p
pts<-rbind(A,B,C,P)

xr<-range(pts[,1])

xf<=(xr[2]-xr[1])*.25

#how far to go at the lower and upper ends in the x-coordinate
x<-seq(xr[1]-xf,xr[2]+xf,1=5) #try also 1=10, 20, or 100
1nAB<-Line(A,B,x)

y<-1nAB$y

int<-1nAB$intercept #intercept

s1<-1nAB$slope #slope

xsg<-seq(min(A[1]1,B[1]1,P[1])-xf,max(A[1]1,B[1]1,P[1])+xf,1=5)
#try also 1=10, 20, or 100

pline<-(-1/sl)*(xsq-P[1]1)+P[2]

#line passing thru P and perpendicular to AB

Xlim<-range(pts[,1],x)
Ylim<-range(pts[,21,y)
xd<-X1im[2]-X1im[1]
yd<-Ylim[2]-Y1lim[1]

plot(rbind(P),asp=1,pch=1,xlab="x",6ylab="y",

main="Illustration of the distance from P \n to the Line Crossing Points A and B",
x1lim=X1lim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))

points(rbind(A,B),pch=1)

lines(x,y,1ty=1,x1im=X1im,ylim=Y1lim)

int<-round(int,2); sl<-round(sl,2)
text(rbind((A+B)/2+xd*c(-.01,-.01)),ifelse(sl==0,paste("y=",int),
ifelse(sl==1,paste("y=x+",int),
ifelse(int==0,paste("y=",sl,"x"),paste("y=",sl,"x+",int)))))
text(rbind(A+xdxc(@,-.01),B+xdxc(.0,-.01),P+xd*c(.01,-.01)),c("A","B","P"))
lines(xsq,pline,lty=2)

segments(P[1],P[2], C[1], C[2], 1lty=1,col=2,1lwd=2)
text(rbind(C+xdxc(-.01,-.01)),"C")
text(rbind((P+C)/2),col=2,paste("d=",round(dpl$dis,2)))
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dist.point2plane The distance from a point to a plane spanned by three 3D points

Description

Returns the distance from a point p to the plane passing through points a, b, and ¢ in 3D space.

Usage

dist.point2plane(p, a, b, ¢)

Arguments
p A 3D point, distance from p to the plane passing through points a, b, and ¢ are
to be computed.
a, b, c 3D points that determine the plane (i.e., through which the plane is passing).
Value

A list with two elements

dis Distance from point p to the plane spanned by 3D points a, b, and ¢

cl2pl The closest point on the plane spanned by 3D points a, b, and c to the point p
Author(s)

Elvan Ceyhan
See Also

dist.point2line, dist.point2set, and Dist

Examples

P<-c(5,2,40)
P1<-c(1,2,3); P2<-c(3,9,12); P3<-c(1,1,3);

dis<-dist.point2plane(P,P1,P2,P3);
dis

Pr<-dis$prj #projection on the plane

xseq<-seq(0,10,1=5) #try also 1=10, 20, or 100
yseq<-seq(0,10,1=5) #try also 1=10, 20, or 100

pl.grid<-Plane(P1,P2,P3,xseq,yseq)$z

plot3D::persp3D(z = pl.grid, x = xseq, y = yseq, theta =225, phi = 30,
ticktype = "detailed”,
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expand = 0.7, facets = FALSE, scale = TRUE,

main="Point P and its Orthogonal Projection \n on the Plane Defined by P1, P2, P3")
#plane spanned by points P1, P2, P3

#add the vertices of the tetrahedron

plot3D::points3D(P[1],P[2],P[3], add=TRUE)

plot3D::points3D(Pr[1]1,Pr[2],Pr[3], add=TRUE)

plot3D::segments3D(P[1], P[2]1, P[3]1, Pr[1], Pr[2],Pr[3], add=TRUE,lwd=2)

plot3D::text3D(P[1]1-.5,P[2],P[3]+1, c("P"),add=TRUE)
plot3D::text3D(Pr[11-.5,Pr[2],Pr[31+2, c("Pr"),add=TRUE)

persp(xseq,yseq,pl.grid, xlab="x",ylab="y",6 zlab="z",theta = -30,
phi = 30, expand = 0.5, col = "lightblue"”,
ltheta = 120, shade = 0.05, ticktype = "detailed")

dist.point2set Distance from a point to a set of finite cardinality

Description

Returns the Euclidean distance between a point p and set of points Yp and the closest point in set Yp
to p. Distance between a point and a set is by definition the distance from the point to the closest
point in the set. p should be of finite dimension and Yp should be of finite cardinality and p and
elements of Yp must have the same dimension.

Usage

dist.point2set(p, Yp)

Arguments
p A vector (i.e., a point in R%).
Yp A set of d-dimensional points.
Value

A list with the elements

distance Distance from point p to set Yp
ind.cl.point Index of the closest point in set Yp to the point p

closest.point The closest point in set Yp to the point p

Author(s)

Elvan Ceyhan



dom.num.exact 95

See Also

dist.point2line and dist.point2plane

Examples

A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C);
dist.point2set(c(1,2),Te)

X2<-cbind(runif(10),runif(10))
dist.point2set(c(1,2),X2)

x<-runif (1)

y<-as.matrix(runif(10))

dist.point2set(x,y)

#this works, because x is a 1D point, and y is treated as a set of 10 1D points
#but will give an error message if y<-runif(10) is used above

dom.num.exact Exact domination number (i.e., domination number by the exact algo-
rithm)

Description

Returns the (exact) domination number based on the incidence matrix Inc.Mat of a graph or a
digraph and the indices (i.e., row numbers of Inc.Mat) for the corresponding (exact) minimum
dominating set. Here the row number in the incidence matrix corresponds to the index of the vertex
(i.e., index of the data point). The function works whether loops are allowed or not (i.e., whether
the first diagonal is all 1 or all 0). It takes a rather long time for large number of vertices (i.e., large
number of row numbers).

Usage

dom.num.exact(Inc.Mat)

Arguments
Inc.Mat A square matrix consisting of 0’s and 1’s which represents the incidence matrix
of a graph or digraph.
Value

A list with two elements



96 dom.num.greedy

dom. num The cardinality of the (exact) minimum dominating set, i.e., (exact) domination
number of the graph or digraph whose incidence matrix Inc.Mat is given as
input.

ind.mds The vector of indices of the rows in the incidence matrix Inc.Mat for the (exact)

minimum dominating set. The row numbers in the incidence matrix correspond
to the indices of the vertices (i.e., indices of the data points).

Author(s)

Elvan Ceyhan

See Also

dom.num. greedy, PEdom. num1D, PEdom.num. tri, PEdom.num.nondeg, and Idom.numCSup.bnd. tri

Examples

n<-10
M<-matrix(sample(c(@,1),n"2,replace=TRUE),nrow=n)
diag(M)<-1

dom.num.greedy (M)
Idom.num.up.bnd(M,2)
dom.num.exact (M)

dom.num. greedy Approximate domination number and approximate dominating set by
the greedy algorithm

Description

Returns the (approximate) domination number and the indices (i.e., row numbers) for the corre-
sponding (approximate) minimum dominating set based on the incidence matrix Inc.Mat of a graph
or a digraph by using the greedy algorithm (Chvatal (1979)). Here the row number in the incidence
matrix corresponds to the index of the vertex (i.e., index of the data point). The function works
whether loops are allowed or not (i.e., whether the first diagonal is all 1 or all 0). This function may
yield the actual domination number or overestimates it.

Usage

dom.num.greedy(Inc.Mat)

Arguments

Inc.Mat A square matrix consisting of 0’s and 1’s which represents the incidence matrix
of a graph or digraph.
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Value

A list with two elements

dom. num The cardinality of the (approximate) minimum dominating set found by the
greedy algorithm. i.e., (approximate) domination number of the graph or di-
graph whose incidence matrix Inc.Mat is given as input.

ind.dom.set Indices of the rows in the incidence matrix Inc.Mat for the ((approximate) min-
imum dominating set). The row numbers in the incidence matrix correspond to
the indices of the vertices (i.e., indices of the data points).

Author(s)

Elvan Ceyhan

References

Chvatal V (1979). “A greedy heuristic for the set-covering problem.” Mathematics of Operations
Research, 4(3), 233 — 235.

Examples

n<-5
M<-matrix(sample(c(@,1),n*2,replace=TRUE),nrow=n)
diag(M)<-1

dom. num.greedy (M)

edge.reg.triCM The vertices of the C M-edge region in a triangle that contains the
point

Description

Returns the edge whose region contains point, p, in the triangle tri= T(A, B, C) with edge regions
based on center of mass CM = (A+ B + C)/3.

This function is related to rel. edge. triCM, but unlike rel.edge. triCMthe related edges are given
as vertices ABC for re = 3, as BCA for re = 1 and as CAB for re = 2 where edges are labeled as 3
for edge AB, 1 for edge BC, and 2 for edge AC. The vertices are given one vertex in each row in
the output, e.g., ABC is printed as rbind(A,B,C), where row 1 has the entries of vertex A, row 2
has the entries of vertex B, and row 3 has the entries of vertex C.

If the point, p, is not inside tri, then the function yields NA as output.

Edge region for BCA is the triangle T'(B, C,C M), edge region CAB is T'(A,C,CM), and edge
region ABCis T'(A, B,CM).

See also (Ceyhan (2005, 2010)).



98 edge.reg.triCM

Usage

edge.reg.triCM(p, tri)

Arguments
p A 2D point for which C' M -edge region it resides in is to be determined in the
triangle tri.
tri A 3 x 2 matrix with each row representing a vertex of the triangle.
Value

The C'M-edge region that contains point, p in the triangle tri. The related edges are given as
vertices ABC for re = 3, as BCA for re = 1 and as CAB for re = 2 where edges are labeled as 3 for
edge AB, 1 for edge BC, and 2 for edge AC.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number
of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

See Also

rel.edge.tri,rel.edge.triCM, rel.edge.basic.triCM, rel.edge.basic.tri,rel.edge.std.triCM,
and edge.reg.triCMm

Examples

A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);

P<-c(.4,.2) #try also P<-as.numeric(runif.tri(1,Tr)$g)
edge.reg.triCM(P,Tr)

P<-c(1.8,.5)
edge.reg.triCM(P,Tr)

CM<- (A+B+C) /3
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p1<-(A+B+CM)/3
p2<-(B+C+CM)/3
p3<-(A+C+CM)/3

Xlim<-range(Tr[,1]1)
Ylim<-range(Tr[,21)
xd<-X1im[2]-X1im[1]
yd<-Y1lim[2]-Y1im[1]

plot(Tr,pch="." xlab=""ylab="", axes=TRUE,x1lim=X1lim+xdxc(-.05,.05),ylim=Y1lim+ydxc(-.05,.05))
polygon(Tr)

L<-Tr; R<-matrix(rep(CM,3),ncol=2,byrow=TRUE)

segments(L[,1], L[,2], RC,1], R[,2]1, 1ty = 2)

txt<-rbind(Tr,CM,p1,p2,p3)

xc<-txt[,1]+c(-.02,.02,.02,-.05,0,0,0)
ye<-txt[,2]+c(.02,.02,.02,.02,0,0,0)
txt.str<-c("A"”,"B","C","CM","re=T(A,B,CM)","re=T(B,C,CM)","re=T(A,C,CM)")
text(xc,yc, txt.str)

fr2edgesCMedge.reg.std. tri

The furthest points in a data set from edges in each C M-edge region
in the standard equilateral triangle

Description

An object of class "Extrema”. Returns the furthest data points among the data set, Xp, in each C'M -
edge region from the edge in the standard equilateral triangle T, = T'(A = (0,0), B = (1,0),C =
(1/2./3/2)).

ch.all.intri is for checking whether all data points are inside 7, (default is FALSE).
See also (Ceyhan (2005)).

Usage

fr2edgesCMedge.reg.std.tri(Xp, ch.all.intri = FALSE)

Arguments

Xp A set of 2D points, some could be inside and some could be outside standard
equilateral triangle 7.

ch.all.intri A logical argument used for checking whether all data points are inside 7, (de-
fault is FALSE).
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Value

A list with the elements

txt1 Edge labels as AB = 3, BC = 1, and AC = 2 for T, (correspond to row
number in Extremum Points).

txt2 A short description of the distances as "Distances to Edges".

type Type of the extrema points

desc A short description of the extrema points

mtitle The "main” title for the plot of the extrema

ext The extrema points, here, furthest points from edges in each edge region.

X The input data, Xp, can be a matrix or data frame

num.points The number of data points, i.e., size of Xp

supp Support of the data points, here, it is 7.

cent The center point used for construction of edge regions.

ncent Name of the center, cent, it is center of mass "CM" for this function.

regions Edge regions inside the triangle, T, provided as a list.

region.names Names of the edge regions as "er=1", "er=2", and "er=3".
region.centers Centers of mass of the edge regions inside 7.

dist2ref Distances from furthest points in each edge region to the corresponding edge.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

See Also
fr2vertsCCvert.reg.basic.tri, fr2vertsCCvert.reg, fr2vertsCCvert.reg.basic.tri, kfr2vertsCCvert

and cl2edges.std.tri

Examples

n<-20
Xp<-runif.std.tri(n)$gen.points

Ext<-fr2edgesCMedge.reg.std. tri(Xp)
Ext

summary (Ext)

plot(Ext,asp=1)

.reg,
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ed.far<-Ext

Xp2<-rbind(Xp,c(.8,.8))
fr2edgesCMedge.reg.std. tri(Xp2)
fr2edgesCMedge.reg.std.tri(Xp2,ch.all.intri = FALSE)
#gives error if ch.all.intri = TRUE

A<-c(0,0); B<-c(1,0); C<-c(0.5,sqrt(3)/2);
Te<-rbind(A,B,C)

CM<-(A+B+C)/3

p1<-(A+B)/2

p2<-(B+C)/2

p3<-(A+C)/2

Xlim<-range(Te[,11,Xp[,1]1)
Ylim<-range(Te[,2]1,Xp[,2])
xd<-X1im[2]-X1im[1]
yd<-Ylim[2]-Y1lim[1]

plot(A,pch=".", xlab="" ylab="",

main="Furthest Points in CM-Edge Regions \n of Std Equilateral Triangle from its Edges”,
axes=TRUE, x1im=X1im+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))

polygon(Te)

L<-Te; R<-matrix(rep(CM,3),ncol=2,byrow=TRUE)

segments(L[,1], L[,2], RC,1], R[,2], lty=2)

points(Xp,xlab="" ylab="")

points(ed.far$ext,pty=2,pch=4,col="red")

txt<-rbind(Te,CM,p1,p2,p3)
xc<-txt[,1]+c(-.03,.03,.03,-.06,0,0,0)
ye<-txt[,2]+c(.02,.02,.02,.02,0,0,0)
txt.str<-c("A","B","C","CM","re=2","re=3","re=1")
text(xc,yc, txt.str)

fr2vertsCCvert.reg The furthest points in a data set from vertices in each CC-vertex region
in a triangle

Description

An object of class "Extrema”. Returns the furthest data points among the data set, Xp, in each
CC-vertex region from the vertex in the triangle, tri= T'(A, B, C'). Vertex region labels/numbers
correspond to the row number of the vertex in tri. ch.all.intri is for checking whether all data
points are inside tri (default is FALSE).

If some of the data points are not inside tri and ch.all.intri=TRUE, then the function yields an
error message. If some of the data points are not inside tri and ch.all.intri=FALSE, then the
function yields the closest points to edges among the data points inside tri (yields NA if there are
no data points inside tri).
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fr2vertsCCvert.reg

See also (Ceyhan (2005, 2012)).

Usage

fr2vertsCCvert.reg(Xp, tri, ch.all.intri = FALSE)

Arguments

Xp
tri

ch.all.intri

Value

A set of 2D points representing the set of data points.
A 3 x 2 matrix with each row representing a vertex of the triangle.

A logical argument (default=FALSE) to check whether all data points are inside
the triangle tri. So, if it is TRUE, the function checks if all data points are inside
the closure of the triangle (i.e., interior and boundary combined) else it does not.

A list with the elements

txtil

txt2

type
desc
mtitle

ext

X

num.points
supp

cent

ncent

regions
region.names
region.centers

dist2ref

Author(s)

Elvan Ceyhan

Vertex labels are A = 1, B = 2, and C' = 3 (correspond to row number in
Extremum Points).

A short description of the distances as "Distances from furthest points to

n

Type of the extrema points
A short description of the extrema points
The "main” title for the plot of the extrema

The extrema points, here, furthest points from vertices in each C'C-vertex region
in the triangle tri.

The input data, Xp, can be a matrix or data frame

The number of data points, i.e., size of Xp

Support of the data points, here, it is the triangle tri for this function.
The center point used for construction of edge regions.

Name of the center, cent, it is circumcenter "CC"” for this function
CC-Vertex regions inside the triangle, tri, provided as a 1ist
Names of the vertex regions as "vr=1", "vr=2", and "vr=3"

Centers of mass of the vertex regions inside tri

Distances from furthest points in each vertex region to the corresponding vertex
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References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number
of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

See Also

fr2vertsCCvert.reg.basic.tri, fr2edgesCMedge.reg.std. tri, kfr2vertsCCvert.reg.basic.tri
and kfr2vertsCCvert.reg

Examples

A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
n<-10 #try also n<-20

set.seed(1)
Xp<-runif.tri(n,Tr)$g

Ext<-fr2vertsCCvert.reg(Xp,Tr)
Ext

summary (Ext)

plot(Ext)

f2v<-Ext

CC<-circumcenter.tri(Tr) #the circumcenter
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
Ds<-rbind(D1,D2,D3)

Xlim<-range(Tr[,11,Xp[,1]1)
Ylim<-range(Tr[,2]1,Xp[,2]1)
xd<-X1im[2]-X1im[1]
yd<-Ylim[2]-Y1lim[1]

plot(Tr,xlab="" asp=1,ylab="",pch=".",

main="Furthest Points in CC-Vertex Regions \n from the Vertices”,
axes=TRUE, x1im=X1lim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)

L<-matrix(rep(CC,3),ncol=2,byrow=TRUE); R<-Ds

segments(L[,1], L[,2]1, R[,1], R[,2]1, lty=2)

points(Xp)

points(rbind(f2v$ext),pch=4,col=2)

txt<-rbind(Tr,CC,Ds)
xc<-txt[,1]1+c(-.06,.08,.05,.12,-.1,-.1,-.09)
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ye<-txt[,2]+c(.02,-.02,.05,.0,.02,.06,-.04)
txt.str<-c("A",”B","C" "CC","D1","D2","D3")
text(xc,yc,txt.str)

Xp2<-rbind(Xp,c(.2,.4))
fr2vertsCCvert.reg(Xp2,Tr,ch.all.intri = FALSE)

#gives an error message if ch.all.intri = TRUE

#since not all points in the data set are in the triangle

fr2vertsCCvert.reg.basic.tri

The furthest points from vertices in each CC-vertex region in a stan-
dard basic triangle

Description

An object of class "Extrema”. Returns the furthest data points among the data set, Xp, in each C'C-
vertex region from the corresponding vertex in the standard basic triangle T, = T (A = (0,0), B =
(L 0)7 C= (Clv 02))'

Any given triangle can be mapped to the standard basic triangle by a combination of rigid body
motions (i.e., translation, rotation and reflection) and scaling, preserving uniformity of the points

in the original triangle. Hence, standard basic triangle is useful for simulation studies under the
uniformity hypothesis.

ch.all.intri is for checking whether all data points are inside T} (default is FALSE).
See also (Ceyhan (2005, 2012)).

Usage

fr2vertsCCvert.reg.basic.tri(Xp, c1, c2, ch.all.intri = FALSE)

Arguments
Xp A set of 2D points.
cl, c2 Positive real numbers which constitute the vertex of the standard basic triangle.
adjacent to the shorter edges; ¢; must be in [0,1/2], co > 0and (1—¢;)?+c3 <
1

ch.all.intri A logical argument for checking whether all data points are inside 7}, (default is
FALSE).

Value

A list with the elements

txtl Vertex labels are A = 1, B = 2, and C' = 3 (correspond to row number in
Extremum Points).
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txt2 A short description of the distances as "Distances from furthest points to
type Type of the extrema points

desc A short description of the extrema points

mtitle The "main” title for the plot of the extrema

ext The extrema points, here, furthest points from vertices in each vertex region.
X The input data, Xp, can be a matrix or data frame

num.points The number of data points, i.e., size of Xp

supp Support of the data points, here, it is 7.

cent The center point used for construction of edge regions.

ncent Name of the center, cent, it is circumcenter "CC"” for this function.

regions Vertex regions inside the triangle, T3, provided as a 1ist.

region.names Names of the vertex regions as "vr=1", "vr=2", and "vr=3"
region.centers Centers of mass of the vertex regions inside 7.

dist2ref Distances from furthest points in each vertex region to the corresponding vertex.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number
of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

See Also

fr2vertsCCvert.reg, fr2edgesCMedge.reg.std. tri, and kfr2vertsCCvert.reg

Examples

c1<-.4; c2<-.6;

A<-c(0,0); B<-c(1,0); C<-c(cl1,c2);
Th<-rbind(A,B,C)

n<-20

set.seed(1)
Xp<-runif.basic.tri(n,c1,c2)$g

Ext<-fr2vertsCCvert.reg.basic.tri(Xp,c1,c2)



106 funsAB2CMTe

Ext
summary (Ext)
plot(Ext)

f2v<-Ext

CC<-circumcenter.basic.tri(cl1,c2) #the circumcenter
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
Ds<-rbind(D1,D2,D3)

Xlim<-range(Tb[,11,Xp[,1]1)
Ylim<-range(Tb[,21,Xp[,2]1)
xd<-X1im[2]-X1im[1]
yd<-Ylim[2]-Y1lim[1]

plot(A,pch=".",asp=1,xlab="" ylab="",

main="Furthest Points in CC-Vertex Regions \n from the Vertices”,
x1lim=X1lim+xd*c(-.05,.05),ylim=Y1lim+yd*xc(-.05,.05))

polygon(Tb)

L<-matrix(rep(CC,3),ncol=2,byrow=TRUE); R<-Ds

segments(L[,1], L[,21, RC,1]1, R[,2]1, 1ty=2)

points(Xp)

points(rbind(f2v$ext),pch=4,col=2)

txt<-rbind(Th,CC,D1,D2,D3)
xc<-txt[,1]+c(-.03,.03,0.02,.07,.06,-.05,.01)
ye<-txt[,2]+c(.02,.02,.03,.01,.02,.02,-.04)
txt.str<-c("A","B","C","CC","D1","D2","D3")
text(xc,yc, txt.str)

funsAB2CMTe The lines joining two vertices to the center of mass in standard equi-
lateral triangle

Description

Two functions, 1ineA2CMinTe and 1ineB2CMinTe of class "TriLines"”. Returns the equation,
slope, intercept, and y-coordinates of the lines joining A and C'M and also B and C M.

lineA2CMinTe is the line joining A to the center of mass, C M, and 1ineB2CMinTe is the line
joining B to the center of mass, C M, in the standard equilateral triangle T, = (A4, B, C) with
A =(0,0), B = (1,0), C = (1/2,1/3/2); z-coordinates are provided in vector x.

Usage

lineA2CMinTe(x)

lineB2CMinTe(x)
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Arguments
X A single scalar or a vector of scalars which is the argument of the functions
lineA2CMinTe and 1ineB2CMinTe.
Value

A list with the elements

txt1 Longer description of the line.

txt2 Shorter description of the line (to be inserted over the line in the plot).

mtitle The "main” title for the plot of the line.

cent The center chosen inside the standard equilateral triangle.

cent.name The name of the center inside the standard equilateral triangle. It is "CM" for
these two functions.

tri The triangle (it is the standard equilateral triangle for this function).

X The input vector, can be a scalar or a vector of scalars, which constitute the
z-coordinates of the point(s) of interest on the line.

y The output vector, will be a scalar if x is a scalar or a vector of scalars if x is a
vector of scalar, constitutes the y-coordinates of the point(s) of interest on the
line.

slope Slope of the line.

intercept Intercept of the line.

equation Equation of the line.

Author(s)
Elvan Ceyhan
See Also

lineA2MinTe, 1ineB2MinTe, and 1ineC2MinTe

Examples

#Examples for lineA2CMinTe

A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);

Te<-rbind(A,B,C)

xfence<-abs(A[1]-B[1])*.25

#how far to go at the lower and upper ends in the x-coordinate
x<-seq(min(A[1],B[1])-xfence,max(A[1],B[1]1)+xfence,by = .1) #try also by = .01

1nACM<-1ineA2CMinTe(x)
1nACM

summary (1nACM)

plot (1nACM)
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CM<-(A+B+C)/3;
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
Ds<-rbind(D1,D2,D3)

Xlim<-range(Te[,11)
Ylim<-range(Te[,21)
xd<-X1im[2]-X1im[1]
yd<-Y1lim[2]-Y1im[1]

plot(Te,pch=".",xlab=""ylab="",6x1lim=X1lim+xdxc(-.05,.05),ylim=Y1lim+ydxc(-.05,.05))
polygon(Te)

L<-Te; R<-Ds

segments(L[,1], L[,2], RC,1], R[,2]1, 1ty = 2)

txt<-rbind(Te,CM,D1,D2,D3,c(.25,1ineA2CMinTe(.25)$y),c(.75,1ineB2CMinTe(.75)3$y))
xc<-txt[,1]+c(-.02,.02,.02,.05,.05,-.03,.0,0,0)
ye<-txt[,2]+c(.02,.02,.02,.02,0,.02,-.04,0,0)
txt.str<-c("A","B","C","CM","D1","D2","D3","1ineA2CMinTe(x)", "1ineB2CMinTe(x)")
text(xc,yc, txt.str)

lineA2CMinTe(.25)$y

#Examples for lineB2CMinTe

A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);

Te<-rbind(A,B,C)

xfence<-abs(A[1]-B[11)*.25

#how far to go at the lower and upper ends in the x-coordinate
x<-seq(min(A[1],B[1])-xfence,max(A[1],B[1])+xfence,by = .1) #try also by = .01

1nBCM<-1ineB2CMinTe(x)

1nBCM

summary (1LnBCM)

plot(1nBCM, x1lab=" x",ylab="y")

1ineB2CMinTe(.25) %y

funsAB2MTe The lines joining the three vertices of the standard equilateral triangle
to a center, M, of it

Description

Three functions, 1ineA2MinTe, 1ineB2MinTe and 1ineC2MinTe of class "TriLines"”. Returns the
equation, slope, intercept, and y-coordinates of the lines joining A and M, B and M, and also
C and M.
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lineA2MinTe is the line joining A to the center, M, 1ineB2MinTe is the line joining B to M, and
lineC2MinTe is the line joining C to M, in the standard equilateral triangle T, = (A, B, C) with
A =(0,0), B = (1,0),C = (1/2,1/3/2); x-coordinates are provided in vector x

Usage

lineA2MinTe(x,
lineB2MinTe(x,

lineC2MinTe(x,

Arguments

Value

M
M

M

A single scalar or a vector of scalars.

A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the standard equilateral triangle.

A list with the elements

txt1

txt2
mtitle
cent
cent.name
tri

X

slope
intercept

equation

See Also

Longer description of the line.

Shorter description of the line (to be inserted over the line in the plot).
The "main” title for the plot of the line.

The center chosen inside the standard equilateral triangle.

The name of the center inside the standard equilateral triangle.

The triangle (it is the standard equilateral triangle for this function).

The input vector, can be a scalar or a vector of scalars, which constitute the
z-coordinates of the point(s) of interest on the line.

The output vector, will be a scalar if x is a scalar or a vector of scalars if x is a
vector of scalar, constitutes the y-coordinates of the point(s) of interest on the
line.

Slope of the line.
Intercept of the line.

Equation of the line.

lineA2CMinTe and 1ineB2CMinTe
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Examples

#Examples for lineA2MinTe
A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C)

M<-c(.65,.2) #try also M<-c(1,1,1)

xfence<-abs(A[1]-B[1]1)*.25
#how far to go at the lower and upper ends in the x-coordinate
x<-seq(min(A[1],B[1])-xfence,max(A[1],B[1])+xfence,by = .1) #try also by = .01

1nAM<-1ineA2MinTe(x,M)
1nAM

summary (1nAM)
plot(1nAM)

Ds<-prj.cent2edges(Te,M)
#finds the projections from a point M=(m1,m2) to the edges on the
#extension of the lines joining M to the vertices in the triangle Te

Xlim<-range(Te[,11)
Ylim<-range(Te[,2])
xd<-X1im[2]-X1im[1]
yd<-Ylim[2]-Y1lim[1]

plot(Te,pch=".",6xlab="",ylab="",
xlim=X1lim+xd*c(-.05,.05),ylim=Y1lim+ydxc(-.05,.05))
polygon(Te)

L<-Te; R<-rbind(M,M,M)

segments(L[,1], L[,21, RL,1]1, RL,21, 1ty = 2)
L<-Ds; R<-rbind(M,M,M)
segments(L[,1], L[,2], RC,1], R[,2], 1ty = 3,col=2)

txt<-rbind(Te,M,Ds,c(.25,1lineA2MinTe(.25,M)$y),c(.4,1lineB2MinTe(.4,M)$y),
c(.60,1lineC2MinTe(.60,M)$y))

xc<-txtl[,11+c(-.02,.02,.02,.02,.04,-.03,.0,0,0,0)
yc<-txt[,2]+c(.02,.02,.02,.05,.02,.03,-.03,0,0,0)
txt.str<-c("A”,"B","C","M","D1","D2","D3","lineA2MinTe(x)", "1ineB2MinTe(x)", "lineC2MinTe(x)")
text(xc,yc,txt.str)

lineA2MinTe(.25,M)

#Examples for lineB2MinTe

A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C)

M<-c(.65,.2) #try also M<-c(1,1,1)

xfence<-abs(A[1]-B[1])*.25
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#how far to go at the lower and upper ends in the x-coordinate
x<-seq(min(A[1],B[1])-xfence,max(A[1],B[1])+xfence,by = .5) #try also by = .1

1nBM<-1ineB2MinTe(x,M)
1nBM

summary (1nBM)
plot(1nBM)

#Examples for lineC2MinTe
A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C)

M<-c(.65,.2) #try also M<-c(1,1,1)

xfence<-abs(A[1]-B[1]1)*.25

#how far to go at the lower and upper ends in the x-coordinate
x<-seq(min(A[1],B[1])-xfence,max(A[1],B[1])+xfence,by = .5)
#try also by = .1

1nCM<-1ineC2MinTe(x,M)

1nCM
summary (1nCM)
plot(1nCM)
funsCartBary Converts of a point in Cartesian coordinates to Barycentric coordi-
nates and vice versa
Description

Two functions: cart2bary and bary2cart.

cart2bary converts Cartesian coordinates of a given point P= (x,y) to barycentric coordinates
(in the normalized form) with respect to the triangle tri= (v1, ve, v3) with vertex labeling done
row-wise in tri (i.e., row ¢ corresponds to vertex v; for ¢ = 1,2, 3).

bary2cart converts barycentric coordinates of the point P= (¢1, t2, t3) (not necessarily normalized)
to Cartesian coordinates according to the coordinates of the triangle, tri. For information on
barycentric coordinates, see (Weisstein (2019)).

Usage

cart2bary(P, tri)

bary2cart(P, tri)
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Arguments
P A 2D point for cart2bary, and a vector of three numeric entries for bary2cart.
tri A 3 x 2 matrix with each row representing a vertex of the triangle.

Value

cart2bary returns the barycentric coordinates of a given point P= (x,y) and bary2cart returns
the Cartesian coordinates of the point P= (¢1, t2, t3) (not necessarily normalized).

Author(s)

Elvan Ceyhan

References

Weisstein EW (2019). “Barycentric Coordinates.” From MathWorld — A Wolfram Web Resource,
http://mathworld.wolfram.com/BarycentricCoordinates.html.

Examples

#Examples for cart2bary

cl1<-.4; c2<-.6

A<-c(0,0); B<-c(1,0); C<-c(cl1,c2);
Tr<-rbind(A,B,C)

cart2bary(A,Tr)
cart2bary(c(.3,.2),Tr)

#Examples for bary2cart

cl1<-.4; c2<-.6

A<-c(0,0); B<-c(1,0); C<-c(cl,c2);
Tr<-rbind(A,B,C)

bary2cart(c(.3,.2,.5),Tr)
bary2cart(c(6,2,4),Tr)

funsCSEdgeRegs Each function is for the presence of an arc from a point in one of
the edge regions to another for Central Similarity Proximity Catch
Digraphs (CS-PCDs) - standard equilateral triangle case
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Description

Three indicator functions: IarcCSstd.triRAB, IarcCSstd. triRBC and IarcCSstd. triRAC.
The function IarcCSstd. triRAB returns I(p2 is in Nog(pl, t) for p1in RAB (edge region for edge

AB, i.e., edge 3) in the standard equilateral triangle T, = T'(A, B,C) = T'((0,0), (1,0), (1/2,v/3/2));

IarcCSstd. triRBC returns I(p2 is in Nog(pl,t) for p1 in RBC (edge region for edge BC, i.e.,
edge 1) in T,; and

IarcCSstd. triRAC returns I(p2 is in Nog(pl,t) for p1 in RAC (edge region for edge AC, i.e.,
edge 2) in T,. That is, each function returns 1 if p2 is in N¢g(pl,t), returns O otherwise.

CS proximity region is defined with respect to T, whose vertices are also labeled as T, = T'(v =
1,v = 2,v = 3) with expansion parameter ¢ > 0 and edge regions are based on the center M =
(my, mg) in Cartesian coordinates or M = («a, 3, ) in barycentric coordinates in the interior of T,

If p1 and p2 are distinct and p1 is outside the corresponding edge region and p2 is outside T, it
returns O, but if they are identical, then it returns 1 regardless of their location (i.e., it allows loops).

See also (Ceyhan (2005, 2010)).
Usage

IarcCSstd.triRAB(p1, p2, t, M)

IarcCSstd.triRBC(p1, p2, t, M)

IarcCSstd.triRAC(p1, p2, t, M)

Arguments
pl A 2D point whose CS proximity region is constructed.
p2 A 2D point. The function determines whether p2 is inside the CS proximity
region of p1 or not.
t A positive real number which serves as the expansion parameter in CS proximity
region.
M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the standard equilateral triangle 7.
Value

Each function returns 7(p2 is in Nog(pl,t)) for p1, that is, returns 1 if p2 is in Nog(pl, t), returns
0 otherwise

Author(s)

Elvan Ceyhan

See Also

TarcCSt1.std.triRAB, IarcCSt1.std.triRBC and IarcCSt1.std.triRAC
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Examples

#Examples for IarcCSstd.triRAB

A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
CM<-(A+B+C)/3

T3<-rbind(A,B,CM);

set.seed(1)
Xp<-runif.std.tri(3)$gen.points

M<-as.numeric(runif.std.tri(1)$g) #try also M<-c(.6,.2)
t<-1

IarcCSstd.triRAB(Xp[1,],Xp[2,1,t,M)
IarcCSstd.triRAB(c(.2,.5),Xp[2,]1,t,M)

#Examples for IarcCSstd.triRBC

A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
CM<-(A+B+C)/3

T1<-rbind(B,C,CM);

set.seed(1)
Xp<-runif.std.tri(3)$gen.points

M<-as.numeric(runif.std.tri(1)$g) #try also M<-c(.6,.2)
t<-1

IarcCSstd.triRBC(Xp[1,1,Xp[2,],t,M)
IarcCSstd.triRBC(c(.2,.5),Xp[2,]1,t,M)

#Examples for IarcCSstd.triRAC

A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
CM<-(A+B+C) /3

T2<-rbind(A,C,CM);

set.seed(1)
Xp<-runif.std.tri(3)$gen.points

M<-as.numeric(runif.std.tri(1)$g) #try also M<-c(.6,.2)
t<-1

IarcCSstd.triRAC(Xp[1,]1,Xpl2,],t,M)
IarcCSstd.triRAC(c(.2,.5),Xp[2,]1,t,M)
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funsCSGamTe The function gammakCSstd. tri is for k (k = 2,3,4,5) points con-
stituting a dominating set for Central Similarity Proximity Catch Di-
graphs (CS-PCDs) - standard equilateral triangle case

Description

Four indicator functions: Idom.num2CSstd.tri, Idom.num3CSstd.tri, Idom.num4CSstd. tri,
Idom.num5CSstd. tri and Idom.num6CSstd. tri.

The function gammakCSstd. tri returns I({p1.....pk} is a dominating set of the CS-PCD) where
vertices of CS-PCD are the 2D data set Xp, that is, returns 1 if {pT,...,pk} is a dominating set of
CS-PCD, returns 0 otherwise for k = 2, 3,4, 5, 6.

CS proximity region is constructed with respect to T, = T'(A, B, C') = T((0,0), (1,0), (1/2,/3/2))
with expansion parameter ¢ > 0 and edge regions are based on center of mass CM = (1/2,/3/6).

ch.data.pnts is for checking whether points p1,...,pk are data points in Xp or not (default is FALSE),
so by default this function checks whether the points p1,...,pk would be a dominating set if they
actually were in the data set.

See also (Ceyhan (2005, 2010)).

Usage

Idom.num2CSstd.tri(p1, p2, Xp, t, ch.data.pnts = FALSE)
Idom.num3CSstd.tri(pl1, p2, p3, Xp, t, ch.data.pnts = FALSE)
Idom.num4CSstd.tri(pl, p2, p3, p4, Xp, t, ch.data.pnts = FALSE)
Idom.num5CSstd.tri(p1, p2, p3, p4, p5, Xp, t, ch.data.pnts = FALSE)

Idom.num6CSstd.tri(pl, p2, p3, p4, p5, p6, Xp, t, ch.data.pnts = FALSE)

Arguments

P1, P2, p3, p4, p5, pb6
The points {pl,...,pk} are k 2D points (for k = 2,3,4,5,6) to be tested for
constituting a dominating set of the CS-PCD.

Xp A set of 2D points which constitutes the vertices of the CS-PCD.
t A positive real number which serves as the expansion parameter in CS proximity
region.

ch.data.pnts A logical argument for checking whether points {pl,...,pk} are data points in
Xp or not (default is FALSE).
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Value

The function gammakCSstd. tri returns {pT,....pk} is a dominating set of the CS-PCD) where ver-
tices of the CS-PCD are the 2D data set Xp), that is, returns 1 if {p1,...,0k} is a dominating set of
CS-PCD, returns O otherwise.

Author(s)

Elvan Ceyhan

See Also

Idom.num1CSstd. tri, Idom.num2PEtri and Idom.num2PEtetra

Examples

set.seed(123)

#Examples for Idom.num2CSstd.tri

t<-1.5

n<-10 #try also 10, 20 (it may take longer for larger n)

set.seed(1)
Xp<-runif.std.tri(n)$gen.points

Idom.num2CSstd. tri(Xp[1,1,Xp[2,],Xp,t)
Idom.num2CSstd.tri(c(.2,.2),Xp[2,]1,Xp,t)

ind.gam2<-vector()

for (i in 1:(n-1))

for (j in (i+1):n)

{if (Idom.num2CSstd.tri(Xp[i,]1,Xp[],]1,Xp,t)==1)
ind.gam2<-rbind(ind.gam2,c(i,j))}

ind.gam2

#Examples for Idom.num3CSstd.tri
t<-1.5
n<-10@ #try also 10, 20 (it may take longer for larger n)

set.seed(1)
Xp<-runif.std.tri(n)$gen.points

Idom.num3CSstd.tri(Xpl[1,],Xp[2,]1,Xp[3,]1,Xp,t)

ind.gam3<-vector()
for (i in 1:(n-2))
for (j in (i+1):(n-1))
for (k in (j+1):n)
{if (Idom.num3CSstd.tri(Xp[i,1,Xp[j,],Xplk,],Xp,t)==1)
ind.gam3<-rbind(ind.gam3,c(i, j,k))}
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ind.gam3

#Examples for Idom.num4CSstd.tri
t<-1.5
n<-10 #try also 10, 20 (it may take longer for larger n)

set.seed(1)
Xp<-runif.std.tri(n)$gen.points

Idom.num4CSstd.tri(Xp[1,]1,Xpl2,]1,Xp[3,1,Xpl[4,]1,Xp,t)

ind.gam4<-vector()
for (i in 1:(n-3))
for (j in (i+1):(n-2))
for (k in (G+1):(n-1))
for (1 in (k+1):n)
{if (Idom.num4CSstd.tri(Xp[i,1,Xp[],1,Xplk,]1,Xp[1,],Xp,t)==1)
ind.gam4<-rbind(ind.gam4,c(i,j,k,1))}

ind.gam4

Idom.num4CSstd.tri(c(.2,.2),Xpl2,]1,Xp[3,]1,Xpl[4,],Xp,t,ch.data.pnts = FALSE)
#gives an error message if ch.data.pnts = TRUE since not all points are data points in Xp

#Examples for Idom.num5CSstd.tri
t<-1.5
n<-10 #try also 10, 20 (it may take longer for larger n)

set.seed(1)
Xp<-runif.std.tri(n)$gen.points

Idom.num5CSstd. tri(Xp[1,]1,Xp[2,]1,Xp[3,]1,Xp[4,]1,Xp[5,]1,Xp,t)

ind.gam5<-vector()
for (i1 in 1:(n-4))
for (i2 in (i1+1):(n-3))
for (i3 in (i2+1):(n-2))
for (i4 in (i3+1):(n-1))
for (i5 in (i4+1):n)
{if (Idom.num5CSstd.tri(Xp[i1,],Xpli2,],Xp[i3,],Xp[i4,],Xpl[i5,],Xp,t)==1)
ind.gam5<-rbind(ind.gam5,c(i1,i2,i3,i4,1i5))}

ind.gam5

Idom.num5CSstd.tri(c(.2,.2),Xpl[2,]1,Xp[3,]1,Xp[4,]1,Xp[5,]1,Xp,t,ch.data.pnts = FALSE)
#gives an error message if ch.data.pnts = TRUE since not all points are data points in Xp
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#Examples for Idom.num6CSstd.tri
t<-1.5
n<-10 #try also 10, 20 (it may take longer for larger n)

set.seed(1)
Xp<-runif.std.tri(n)$gen.points

Idom.num6CSstd. tri(Xp[1,]1,Xpl2,],Xpl[3,],Xpl4,]1,Xpl5,],Xpl6,],Xp,t)

ind.gamé<-vector()
for (i1 in 1:(n-5))
for (i2 in (i1+1):(n-4))
for (i3 in (i2+1):(n-3))
for (i4 in (i3+1):(n-2))
for (i5 in (i4+1):(n-1))
for (i6 in (i5+1):n)
{if (Idom.num6CSstd.tri(Xp[il1,]1,Xp[i2,]1,Xpl[i3,],Xpl[i4,],Xp[i5,]1,Xp[i6,],Xp,t)==1)
ind.gamé<-rbind(ind.gamé6,c(i1,i2,i3,i4,i5,i6))}

ind.gamé

Idom.num6CSstd.tri(c(.2,.2),Xpl[2,]1,Xp[3,]1,Xp[4,]1,Xp[5,]1,Xpl6,]1,Xp,t,ch.data.pnts = FALSE)
#gives an error message if ch.data.pnts = TRUE since not all points are data points in Xp

funsCSt1EdgeRegs Each function is for the presence of an arc from a point in one of
the edge regions to another for Central Similarity Proximity Catch
Digraphs (CS-PCDs) - standard equilateral triangle case witht = 1

Description

Three indicator functions: IarcCSt1.std.triRAB, IarcCSt1.std.triRBC and IarcCSt1.std.triRAC.

The function IarcCSt1.std. triRAB returns I (p2isin Nog(pl, ¢ = 1) for p1in RAB (edge region
foredge AB, i.e., edge 3) in the standard equilateral triangle T, = T'(A, B, C') = T((0,0), (1,0), (1/2,v/3/2));

IarcCSt1.std.triRBC returns I(p2 is in Nogs(pl,t = 1) for p1 in RBC' (edge region for edge
BC,i.e., edge 1)in T,; and

IarcCSt1.std.triRAC returns I(p2 is in Nog(pl,t = 1) for p1 in RAC (edge region for edge
AC, i.e.,edge 2) in Tg.

That is, each function returns 1 if p2 is in Nog(pl,t = 1), returns O otherwise, where Nog(z,t) is
the CS proximity region for point x with expansion parameter ¢t = 1.

Usage
IarcCSt1.std.triRAB(p1, p2)
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IarcCSt1.std.triRBC(p1, p2)

IarcCSt1.std.triRAC(p1, p2)

Arguments
p1 A 2D point whose CS proximity region is constructed.
p2 A 2D point. The function determines whether p2 is inside the CS proximity
region of p1 or not.
Value

Each function returns I (p2 is in Nog(pl,t = 1)) for p1, that is, returns 1 if p2 isin Nog(pl,t = 1),
returns 0 otherwise

Author(s)

Elvan Ceyhan

See Also

TIarcCSstd. triRAB, IarcCSstd. triRBC and IarcCSstd. triRAC
Examples

#Examples for IarcCSt1.std.triRAB
A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
CM<-(A+B+C)/3

T3<-rbind(A,B,CM);

set.seed(1)
Xp<-runif.std.tri(10)$gen.points

IarcCSt1.std.triRAB(XpL[1,1,Xpl2,]1)

TarcCSt1.std.triRAB(c(.2,.5),Xpl2,1)

#Examples for IarcCSt1.std.triRBC
A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
CM<-(A+B+C)/3

T1<-rbind(B,C,CM);

set.seed(1)
Xp<-runif.std.tri(3)$gen.points

TarcCSt1.std.triRBC(Xp[1,]1,Xpl2,]1)

IarcCSt1.std.triRBC(c(.2,.5),Xp[2,]1)
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#Examples for IarcCSt1.std.triRAC
A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
CM<-(A+B+C) /3

T2<-rbind(A,C,CM);

set.seed(1)
Xp<-runif.std.tri(3)$gen.points

IarcCSt1.std.triRAC(Xp[1,1]1,Xp[2,1)
TarcCSt1.std.triRAC(c(1,2),Xpl2,])

funsIndDelTri Functions provide the indices of the Delaunay triangles where the
points reside

Description

Two functions: index.delaunay.tri and indices.delaunay.tri.
index.delaunay. tri finds the index of the Delaunay triangle in which the given point, p, resides.
indices.delaunay. tri finds the indices of triangles for all the points in data set, Xp, as a vector.

Delaunay triangulation is based on Yp and DTmesh are the Delaunay triangles with default NULL.
The function returns NA for a point not inside the convex hull of Yp. Number of Yp points (i.e.,
size of Yp) should be at least three and the points should be in general position so that Delaunay
triangulation is (uniquely) defined.

If the number of Yp points is 3, then there is only one Delaunay triangle and the indices of all the
points inside this triangle are all 1.

See (Okabe et al. (2000); Ceyhan (2010); Sinclair (2016)) for more on Delaunay triangulation and
the corresponding algorithm.
Usage

index.delaunay.tri(p, Yp, DTmesh = NULL)

indices.delaunay.tri(Xp, Yp, DTmesh = NULL)

Arguments

p A 2D point; the index of the Delaunay triangle in which p resides is to be deter-
mined. It is an argument for index.delaunay. tri.

Yp A set of 2D points from which Delaunay triangulation is constructed.
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DTmesh Delaunay triangles based on Yp, default is NULL, which is computed via tri.mesh
function in interp package. triangles function yields a triangulation data
structure from the triangulation object created by tri.mesh.

Xp A set of 2D points representing the set of data points for which the indices of
the Delaunay triangles they reside is to be determined. It is an argument for
indices.delaunay. tri.

Value

index.delaunay.tri returns the index of the Delaunay triangle in which the given point, p, re-
sides and indices.delaunay. tri returns the vector of indices of the Delaunay triangles in which
points in the data set, Xp, reside.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Okabe A, Boots B, Sugihara K, Chiu SN (2000). Spatial Tessellations: Concepts and Applica-
tions of Voronoi Diagrams. Wiley, New York.

Sinclair D (2016). “S-hull: a fast radial sweep-hull routine for Delaunay triangulation.” 1604.01428.

Examples

#Examples for index.delaunay.tri
nx<-20 #number of X points (target)
ny<-5 #number of Y points (nontarget)
set.seed(1)
Yp<-cbind(runif(ny),runif(ny))

Xp<-runif.multi.tri(nx,Yp)$g #data under CSR in the convex hull of Ypoints
#try also Xp<-cbind(runif(nx),runif(nx))

index.delaunay.tri(Xp[10,1,Yp)

#or use
DTY<-interp::tri.mesh(Yp[,1],Yp[,2],duplicate="remove")
#Delaunay triangulation
TRY<-interp::triangles(DTY)[,1:3];
index.delaunay.tri(Xp[10,1]1,Yp,DTY)

ind.DT<-vector()

for (i in 1:nx)
ind.DT<-c(ind.DT,index.delaunay.tri(Xp[i,],Yp))
ind.DT
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Xlim<-range(Yp[,11,Xp[,1]1)
Ylim<-range(Yp[,21,Xp[,2]1)
xd<-X1im[2]-X1im[1]
yd<-Ylim[2]-Y1im[1]

DTY<-interp::tri.mesh(Yp[,1],Yp[,2],duplicate="remove")
#Delaunay triangulation based on Y points

#plot of the data in the convex hull of Y points together with the Delaunay triangulation

plot(Xp,main=" ", xlab=" ", ylab=" ",6xlim=Xlim+xdxc(-.05,.05),ylim=Y1lim+yd*c(-.05,.05),type="n")
interp::plot.triSht(DTY, add=TRUE, do.points = TRUE,pch=16,col="blue")
points(Xp,pch=".",6cex=3)

text(Xp, labels = factor(ind.DT))

#Examples for indices.delaunay.tri
#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-20; ny<-4; #try also nx<-40; ny<-10 or nx<-1000; ny<-10;

set.seed(1)

Yp<-cbind(runif(ny),runif(ny))

Xp<-runif.multi.tri(nx,Yp)$g #data under CSR in the convex hull of Ypoints
#try also Xp<-cbind(runif(nx),runif(nx))

tr.ind<-indices.delaunay.tri(Xp,Yp) #indices of the Delaunay triangles
tr.ind

#or use

DTY<-interp::tri.mesh(Yp[,1],Yp[,2],duplicate="remove")

#Delaunay triangulation based on Y points
tr.ind<-indices.delaunay.tri(Xp,Yp,DTY) #indices of the Delaunay triangles
tr.ind

Xlim<-range(Yp[,1]1,Xp[,1]1)
Ylim<-range(Yp[,2]1,Xp[,2])
xd<-X1im[2]-X1im[1]
yd<-Ylim[2]-Y1lim[1]

#plot of the data in the convex hull of Y points together with the Delaunay triangulation

oldpar <- par(pty = "s")

plot(Xp,main=" ", xlab=" ", ylab=" ", 6xlim=Xlim+xd*c(-.05,.05),ylim=Y1lim+yd*c(-.05,.05),pch=".")
interp::plot.triSht(DTY, add=TRUE, do.points = TRUE,pch=16,col="blue")

text(Xp,labels = factor(tr.ind))

par(oldpar)
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funsMuVarCS1D Returning the mean and (asymptotic) variance of arc density of Cen-
tral Similarity Proximity Catch Digraph (CS-PCD) for 1D data - mid-
dle interval case

Description

Two functions: muCS1D and asy.varCS1D.

muCS1D returns the mean of the (arc) density of CS-PCD and asy . varCS1D returns the (asymptotic)
variance of the arc density of CS-PCD for a given centrality parameter ¢ € (0, 1) and an expansion
parameter ¢ > 0 and 1D uniform data in a finite interval (a, b), i.e., data from U (a, b) distribution.

See also (Ceyhan (2016)).

Usage

muCS1D(t, c)

asy.varCS1D(t, ¢)

Arguments
t A positive real number which serves as the expansion parameter in CS proximity
region.
c A positive real number in (0, 1) parameterizing the center inside int= (a, b).
For the interval, int= (a, b), the parameterized center is M, = a + ¢(b — a).
Value

muCS1D returns the mean and asy.varCS1D returns the asymptotic variance of the arc density of
CS-PCD for uniform data in an interval

Author(s)

Elvan Ceyhan

References
Ceyhan E (2016). “Density of a Random Interval Catch Digraph Family and its Use for Testing
Uniformity.” REVSTAT, 14(4), 349-394.

See Also

muPE1D and asy.varPE1D
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Examples

#Examples for muCS1D
muCS1D(1.2,.4)
muCS1D(1.2, .6)

tseq<-seq(@.01,5,by=.05)
cseq<-seq(0.01,.99,by=.05)

1tseg<-length(tseq)
lcseqg<-length(cseq)

mu.grid<-matrix(@,nrow=ltseq,ncol=1cseq)
for (i in 1:1tseq)
for (j in 1:1lcseq)
{
mu.grid[i, jl<-muCS1D(tseql[il,cseqlj])
}

persp(tseq,cseq,mu.grid, xlab="t", ylab="c", zlab="mu(t,c)"”,theta = -30,
phi = 30, expand = 0.5, col = "lightblue”, 1ltheta = 120,
shade = 0.05, ticktype = "detailed”)

#Examples for asy.varCS1D
asy.varCSiD(1.2,.8)

tseg<-seq(0.01,5,by=.05)
cseq<-seq(@.01,.99,by=.05)

ltseq<-length(tseq)
lcseg<-length(cseq)

var.grid<-matrix(@,nrow=1tseq,ncol=1cseq)
for (i in 1:1tseq)
for (j in 1:1lcseq)
{
var.grid[i, jl<-asy.varCS1D(tseq[i],cseql[j])
}

persp(tseq,cseq,var.grid, xlab="t", ylab="c", zlab="var(t,c)”, theta = -30,
phi = 30, expand = 0.5, col = "lightblue”, ltheta = 120,
shade = 0.05, ticktype = "detailed")

funsMuVarCSs2D Returns the mean and (asymptotic) variance of arc density of Central
Similarity Proximity Catch Digraph (CS-PCD) for 2D uniform data in
one triangle
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Description

Two functions: muCS2D and asy.varCS2D.

muCS2D returns the mean of the (arc) density of CS-PCD and asy.varCS2D returns the asymptotic
variance of the arc density of CS-PCD with expansion parameter ¢ > 0 for 2D uniform data in a
triangle.

CS proximity regions are defined with respect to the triangle and vertex regions are based on center
of mass, C M of the triangle.

See also (Ceyhan (2005); Ceyhan et al. (2007)).

Usage
muCS2D(t)

asy.varCs2D(t)

Arguments
t A positive real number which serves as the expansion parameter in CS proximity
region.
Value

muCS2D returns the mean and asy.varCS2D returns the (asymptotic) variance of the arc density of
CS-PCD for uniform data in any triangle

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E, Priebe CE, Marchette DJ (2007). “A new family of random graphs for testing spatial
segregation.” Canadian Journal of Statistics, 35(1), 27-50.

See Also

muPE2D and asy.varPE2D

Examples

#Examples for muCS2D
muCS2D(.5)

tseg<-seq(@.01,5,by=.1)
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1tseg<-length(tseq)

mu<-vector()

for (i in 1:1ltseq)

{
mu<-c(mu,muCS2D(tseql[il))

}

plot(tseq, mu,type="1",xlab="t",6 ylab=expression(mu(t)),lty=1,xlim=range(tseq))

#Examples for asy.varCS2D
asy.varCS2D(.5)

tseq<-seq(0.01,10,by=.1)
1tseg<-length(tseq)

asy.var<-vector()

for (i in 1:1tseq)

{
asy.var<-c(asy.var,asy.varCS2D(tseq[i]))

}

oldpar <- par(mar=c(5,5,4,2))
plot(tseq, asy.var,type="1",6xlab="t",
ylab=expression(paste(sigma”2,”(t)")),lty=1,xlim=range(tseq))

par(oldpar)
funsMuVarCSend.int Returns the mean and (asymptotic) variance of arc density of Cen-
tral Similarity Proximity Catch Digraph (CS-PCD) for 1D data - end-
interval case
Description

Two functions: muCSend. int and asy.varCSend. int.

muCSend. int returns the mean of the arc density of CS-PCD and asy.varCSend.int returns the
asymptotic variance of the arc density of CS-PCD for a given expansion parameter ¢ > 0 for 1D
uniform data in the left and right end-intervals for the interval (a, b).

See also (Ceyhan (2016)).

Usage

muCSend. int(t)

asy.varCSend.int(t)
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Arguments
t A positive real number which serves as the expansion parameter in CS proximity
region.
Details
funsMuVarCSend.int
Value

muCSend. int returns the mean and asy.varCSend. int returns the asymptotic variance of the arc
density of CS-PCD for uniform data in end-intervals

Author(s)

Elvan Ceyhan

References

Ceyhan E (2016). “Density of a Random Interval Catch Digraph Family and its Use for Testing
Uniformity.” REVSTAT, 14(4), 349-394.

See Also

muPEend. int and asy.varPEend. int

Examples

#Examples for muCSend.int
muCSend.int(1.2)

tseq<-seq(0.01,5,by=.05)
ltseq<-length(tseq)

mu.end<-vector()
for (i in 1:1tseq)
{
mu.end<-c(mu.end,muCSend.int(tseq[i]))

}

oldpar <- par(no.readonly = TRUE)

par(mar = c(5,4,4,2) + 0.1)

plot(tseq, mu.end, type="1",
ylab=expression(paste(mu,"”(t)")),xlab="t",1ty=1,xlim=range(tseq),ylim=c(0,1))
par(oldpar)

#Examples for asy.varCSend.int
asy.varCSend.int(1.2)

tseq<-seq(.01,5,by=.05)
ltseq<-length(tseq)
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var.end<-vector()

for (i in 1:1tseq)

{
var.end<-c(var.end,asy.varCSend.int(tseq[i]))

}

oldpar <- par(no.readonly = TRUE)
par(mar=c(5,5,4,2))
plot(tseq, var.end,type="1",6xlab="t",ylab=expression(paste(sigma*2,”(t)")),1lty=1,xlim=range(tseq))

par(oldpar)
funsMuVarPE1D Returns the mean and (asymptotic) variance of arc density of Propor-
tional Edge Proximity Catch Digraph (PE-PCD) for 1D data - middle
interval case
Description

The functions muPE1D and asy.varPE1D and their auxiliary functions.

muPE1D returns the mean of the (arc) density of PE-PCD and asy.varPE1D returns the (asymptotic)
variance of the arc density of PE-PCD for a given centrality parameter ¢ € (0,1) and an expan-
sion parameter » > 1 and for 1D uniform data in a finite interval (a,b), i.e., data from U(a,b)
distribution.

muPE1D uses auxiliary (internal) function muTPE1D which yields mean (i.e., expected value) of the
arc density of PE-PCD for a given ¢ € (0,1/2) and r > 1.

asy.varPE1D uses auxiliary (internal) functions fvar1 which yields asymptotic variance of the arc
density of PE-PCD for ¢ € (1/4,1/2) and r > 1; and fvar2 which yields asymptotic variance of
the arc density of PE-PCD for ¢ € (0,1/4) and r > 1.

See also (Ceyhan (2012)).

Usage

mulPE1D(r, c)
muPE1D(r, c)
fvari(r, c)
fvar2(r, c)

asy.varPE1D(r, c)
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Arguments
r A positive real number which serves as the expansion parameter in PE proximity
region; must be > 1.
c A positive real number in (0, 1) parameterizing the center inside int= (a,b).
For the interval, (a, b), the parameterized center is M. = a + ¢(b — a).
Value

muPE1D returns the mean and asy.varPE1D returns the asymptotic variance of the arc density of
PE-PCD for U(a, b) data

Author(s)
Elvan Ceyhan

References

Ceyhan E (2012). “The Distribution of the Relative Arc Density of a Family of Interval Catch
Digraph Based on Uniform Data.” Metrika, 75(6), 761-793.

See Also
muCS1D and asy.varCS1D

Examples

#Examples for muPE1D
muPE1D(1.2,.4)
muPETD(1.2, .6)

rseq<-seq(1.01,5,by=.1)
cseqg<-seq(0.01,.99,by=.1)

lrseg<-length(rseq)
lcseq<-length(cseq)

mu.grid<-matrix(@,nrow=lrseq,ncol=1lcseq)
for (i in 1:1rseq)
for (j in 1:1lcseq)
{
mu.grid[i, j1<-muPE1D(rseql[i],cseqlj])
3

persp(rseq,cseq,mu.grid, xlab="r", ylab="c", zlab="mu(r,c)", theta = -30, phi = 30,
expand = 0.5, col = "lightblue”, ltheta = 120, shade = 0.05, ticktype = "detailed")

#Examples for asy.varPE1D
asy.varPEID(1.2,.8)
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rseq<-seq(1.01,5,by=.1)
cseqg<-seq(0.01,.99,by=.1)

lrseq<-length(rseq)
lcseqg<-length(cseq)

var.grid<-matrix(@,nrow=1rseq,ncol=1cseq)
for (i in 1:1rseq)
for (j in 1:1lcseq)
{
var.grid[i, jl<-asy.varPE1D(rseql[il,cseql[j])
}

persp(rseq,cseq,var.grid, xlab="r", ylab="c", zlab="var(r,c)"”, theta = -30, phi = 30,
expand = 0.5, col = "lightblue”, ltheta = 120, shade = 0.05, ticktype = "detailed")

funsMuVarPE2D Returns the mean and (asymptotic) variance of arc density of Propor-
tional Edge Proximity Catch Digraph (PE-PCD) for 2D uniform data
in one triangle

Description

Two functions: muPE2D and asy.varPE2D.

muPE2D returns the mean of the (arc) density of PE-PCD and asy.varPE2D returns the asymptotic
variance of the arc density of PE-PCD for 2D uniform data in a triangle.

PE proximity regions are defined with expansion parameter » > 1 with respect to the triangle in
which the points reside and vertex regions are based on center of mass, C'M of the triangle.

See also (Ceyhan et al. (2006)).

Usage
muPE2D(r)

asy.varPE2D(r)

Arguments
r A positive real number which serves as the expansion parameter in PE proximity
region; must be > 1.
Value

muPE2D returns the mean and asy.varPE2D returns the (asymptotic) variance of the arc density of
PE-PCD for uniform data in any triangle.
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Author(s)

Elvan Ceyhan

References

Ceyhan E, Priebe CE, Wierman JC (2006). “Relative density of the random r-factor proximity
catch digraphs for testing spatial patterns of segregation and association.” Computational Statistics
& Data Analysis, 50(8), 1925-1964.

See Also

muCS2D and asy.varCS2D

Examples

#Examples for muPE2D
muPE2D(1.2)

rseq<-seq(1.01,5,by=.05)
lrseq<-length(rseq)

mu<-vector()
for (i in 1:1rseq)
{
mu<-c(mu,muPE2D(rseql[il))
3

plot(rseq, mu,type="1" xlab="r", ylab=expression(mu(r)),lty=1,
xlim=range(rseq),ylim=c(0,1))

#Examples for asy.varPE2D
asy.varPE2D(1.2)

rseq<-seq(1.01,5,by=.05)
lrseq<-length(rseq)

avar<-vector()
for (i in 1:1rseq)
{
avar<-c(avar,asy.varPE2D(rseq[i]))

}

oldpar <- par(mar=c(5,5,4,2))

plot(rseq, avar,type="1",6xlab="r",
ylab=expression(paste(sigma*2,”(r)")),lty=1,xlim=range(rseq))
par(oldpar)
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funsMuVarPEend.int Returns the mean and (asymptotic) variance of arc density of Propor-
tional Edge Proximity Catch Digraph (PE-PCD) for 1D data - end-
interval case

Description

Two functions: muPEend. int and asy.varPEend. int.

muPEend. int returns the mean of the arc density of PE-PCD and asy.varPEend. int returns the
asymptotic variance of the arc density of PE-PCD for a given expansion parameter » > 1 for 1D
uniform data in the left and right end-intervals for the interval (a, b).

See also (Ceyhan (2012)).

Usage

muPEend.int(r)

asy.varPEend.int(r)

Arguments
r A positive real number which serves as the expansion parameter in PE proximity
region; must be > 1.
Value

muPEend. int returns the mean and asy.varPEend. int returns the asymptotic variance of the arc
density of PE-PCD for uniform data in end-intervals

Author(s)

Elvan Ceyhan

References
Ceyhan E (2012). “The Distribution of the Relative Arc Density of a Family of Interval Catch
Digraph Based on Uniform Data.” Metrika, 75(6), 761-793.

See Also

muCSend. int and asy.varCSend. int
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Examples

#Examples for muPEend.int
muPEend.int(1.2)

rseq<-seq(1.01,5,by=.1)
lrseq<-length(rseq)

mu.end<-vector()

for (i in 1:1rseq)

{
mu.end<-c(mu.end,muPEend.int(rseq[i]))

}

plot(rseq, mu.end, type="1",
ylab=expression(paste(mu,”(r)")),xlab="r",1ty=1,xlim=range(rseq),ylim=c(0,1))

#Examples for asy.varPEend.int
asy.varPEend.int(1.2)

rseq<-seq(1.01,5,by=.1)
lrseq<-length(rseq)

var.end<-vector()

for (i in 1:1rseq)

{
var.end<-c(var.end,asy.varPEend.int(rseq[i]))

}

oldpar <- par(mar=c(5,5,4,2))
plot(rseq, var.end,type="1",
xlab="r",6ylab=expression(paste(sigma*2,”(r)")),1lty=1,xlim=range(rseq))

par(oldpar)
funsPDomNum2PE1D The functions for probability of domination number = 2 for Propor-
tional Edge Proximity Catch Digraphs (PE-PCDs) - middle interval
case
Description

The function Pdom.num2PE1D and its auxiliary functions.

Returns P(y = 2) for PE-PCD whose vertices are a uniform data set of size n in a finite interval
(a,b) where ~ stands for the domination number.
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The PE proximity region Npg(x,r,c) is defined with respect to (a,b) with centrality parameter
¢ € (0,1) and expansion parameter r > 1.

To compute the probability P(vy = 2) for PE-PCD in the 1D case, we partition the domain (r, c) =
(1,00) x (0, 1), and compute the probability for each partition set. The sample size (i.e., number of
vertices or data points) is a positive integer, n.

Usage

Pdom.num2AI(r, c, n)
Pdom.num2AII(r, c, n)
Pdom.num2AIII(r, c, n)
Pdom.num2AIV(r, c, n)
Pdom.num2A(r, c, n)
Pdom.num2Asym(r, c, n)
Pdom.num2BIII(r, c, n)
Pdom.num2B(r, c, n)
Pdom.num2Bsym(r, c, n)
Pdom.num2CIV(r, c, n)
Pdom.num2C(r, ¢, n)
Pdom.num2Csym(r, c, n)

Pdom.num2PE1D(r, c, n)

Arguments
r A positive real number which serves as the expansion parameter in PE proximity
region; must be > 1.
c A positive real number in (0, 1) parameterizing the center inside int= (a,b).
For the interval, (a, b), the parameterized center is M. = a + ¢(b — a).
n A positive integer representing the size of the uniform data set.
Value

P(domination number< 1) for PE-PCD whose vertices are a uniform data set of size n in a finite
interval (a, b)
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Auxiliary Functions for Pdom. num2PE1D

The auxiliary functions are Pdom. num2AI, Pdom.num2AII, Pdom.num2AIII, Pdom.num2AIV, Pdom.num2A,
Pdom. num2Asym, Pdom.num2BIII, Pdom.num2B, Pdom.num2B,Pdom.num2Bsym, Pdom.num2CIV, Pdom.num2C,
and Pdom. num2Csym, each corresponding to a partition of the domain of r and c. In particular, the

domain partition is handled in 3 cases as

CASEA:ce ((3—+5)/2,1/2)
CASE B: ¢ € (1/4, (3 — v/5)/2) and
CASEC: ¢ € (0,1/4).

Case A-ce ((3—05)/2,1/2)
In Case A, we compute P(y = 2) with
Pdom.num2AIV(r,c,n)if 1 <r < (1 —c¢)/c;
Pdom.num2AIII(r,c,n) if (1 —c)/c<r <1/(1—c);
Pdom.num2AII(r,c,n)if 1/(1 —¢) <r < 1/c;
and Pdom.num2AI(r,c,n) otherwise.

Pdom.num2A(r,c,n) combines these functions in Case A: ¢ € ((3 — v/5)/2,1/2). Due to the
symmetry in the PE proximity regions, we use Pdom.num2Asym(r,c,n) for cin (1/2, (v/5 —1)/2)
with the same auxiliary functions

Pdom.num2AIV(r,1-c,n) if 1 <r <¢/(1—c);
Pdom.num2AIII(r,1-c,n) if (¢/(1 —¢) <r < 1/c;
Pdom.num2AII(r,1-c,n)if l/c <r <1/(1 —c);

and Pdom.num2AI(r,1-c,n) otherwise.

CaseB-ce (1/4,(3—5)/2)
In Case B, we compute P(y = 2) with
Pdom. num2AIV(r,c,n) if 1 <7 < 1/(1 —¢);
Pdom.num2BIII(r,c,n)if 1/(1—¢c) <7 < (1—c)/c;
Pdom.num2AII(r,c,n) if (1 —¢)/c <r <1/c
and Pdom.num2AI(r,c,n) otherwise.

Pdom.num2B(r,c,n) combines these functions in Case B: ¢ € (1/4,(3 — v/5)/2). Due to the
symmetry in the PE proximity regions, we use Pdom.num2Bsym(r,c,n) for cin ((v/5 —1)/2,3/4)
with the same auxiliary functions

Pdom. num2AIV(r,1-c,n) if 1 <r < 1/¢;
Pdom.num2BIII(r,1-c,n)if 1/c <r <¢/(1—c);
Pdom.num2AII(r,1-c,n) if¢/(1 —¢c) <r < 1/(1—c¢);

and Pdom.num2AI(r,1-c,n) otherwise.
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CaseC-ce (0,1/4)
In Case C, we compute P(vy = 2) with
Pdom.num2AIV(r,c,n)if 1 <r < 1/(1 —¢);
Pdom.num2BIII(r,c,n)if 1/(1 —c) <r < (1 —+/1—4c)/(2¢);
Pdom. num2CIV(r,c,n) if (1 — /1T —4c)/(2¢c) < r < (1 + /1 —4c)/(2¢);
Pdom.num2BIII(r,c,n) if (1 + /1 —4c)/(2¢) <7 < 1/(1—c);
Pdom.num2AII(r,c,n)if 1/(1 —¢) <r < 1/c;
and Pdom.num2AI(r,c,n) otherwise.

Pdom.num2C(r,c,n) combines these functions in Case C: ¢ € (0,1/4). Due to the symmetry in
the PE proximity regions, we use Pdom. num2Csym(r,c,n) for ¢ € (3/4, 1) with the same auxiliary
functions

Pdom.num2AIV(r,1-c,n) if 1 <r < 1/¢;
Pdom.num2BIII(r,1-c,n)if1/c<r < (1 —+/1—4(1—¢))/(2(1 —¢));

Pdom.num2CIV(r,1-c,n) if (1—+/1—4(1—¢))/(2(1—¢)) <r< (1++/1—-4(1—-¢))/(2(1 -
c));

Pdom.num2BIII(r,1-c,n) if (14++/1—4(1—¢))/(2(1—¢)) <r<c/(1—c);
Pdom.num2AII(r,1-c,n)ifc/(1 —¢c) <r <1/(1—c);
and Pdom.num2AI(r,1-c,n) otherwise.

Combining Cases A, B, and C, we get our main function Pdom. num2PE1D which computes P(vy =
2) for any (r,c) in its domain.
Author(s)

Elvan Ceyhan

See Also

Pdom.num2PEtri and Pdom.num2PE1Dasy

Examples

#Examples for the main function Pdom.num2PE1D
r<-2
c<-.5

Pdom.num2PE1D(r,c,n=10)
Pdom.num2PE1D(r=1.5,c=1/1.5,n=100)
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funsRankOrderTe Returns the ranks and orders of points in decreasing distance to the
edges of the triangle

Description

Two functions: rank.dist2edges.std.tri and order.dist2edges.std.tri.

rank.dist2edges.std. tri finds the ranks of the distances of points in data, Xp, to the edges of
the standard equilateral triangle 7, = 7°((0,0), (1,0), (1/2,/3/2))

dec is a logical argument, default is TRUE, so the ranks are for decreasing distances, if FALSE it will
be in increasing distances.

order.dist2edges.std. tri finds the orders of the distances of points in data, Xp, to the edges of
T.. The arguments are as in rank.dist2edges.std. tri.

Usage

rank.dist2edges.std.tri(Xp, dec = TRUE)

order.dist2edges.std.tri(Xp, dec = TRUE)

Arguments
Xp A set of 2D points representing the data set in which ranking in terms of the
distance to the edges of T, is performed.
dec A logical argument indicating the how the ranking will be performed. If TRUE,
the ranks are for decreasing distances, and if FALSE they will be in increasing
distances, default is TRUE.
Value

A list with two elements

distances Distances from data points to the edges of T,

dist.rank The ranks of the data points in decreasing distances to the edges of T,
Author(s)

Elvan Ceyhan
Examples

#Examples for rank.dist2edges.std.tri
n<-10

set.seed(1)
Xp<-runif.std.tri(n)$gen.points
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dec.dist<-rank.dist2edges.std.tri(Xp)

dec.dist

dec.dist.rank<-dec.dist[[2]]

#the rank of distances to the edges in decreasing order
dec.dist.rank

A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C);

Xlim<-range(Te[,1])
Ylim<-range(Te[,21)
xd<-X1im[2]-X1im[1]
yd<-Y1lim[2]-Y1lim[1]

plot(A,pch=".",xlab="",ylab="",x1lim=X1lim+xd*c(-.0,.01),
ylim=Ylim+ydxc(-.01,.01))

polygon(Te)

points(Xp,pch=".")

text(Xp,labels = factor(dec.dist.rank) )

inc.dist<-rank.dist2edges.std.tri(Xp,dec = FALSE)

inc.dist

inc.dist.rank<-inc.dist[[2]]

#the rank of distances to the edges in increasing order
inc.dist.rank

dist<-inc.dist[[1]] #distances to the edges of the std eq. triangle

dist

plot(A,pch=".",xlab="",ylab="",x1im=X1im,ylim=Y1im)

polygon(Te)

points(Xp,pch=".",xlab="",ylab="", main="",x1lim=X1lim+xd*c(-.@5, .05),

ylim=Ylim+ydxc(-.05,.05))
text(Xp, labels = factor(inc.dist.rank))

#Examples for order.dist2edges.std.tri

n<-10

set.seed(1)

Xp<-runif.std.tri(n)$gen.points #try also Xp<-cbind(runif(n),runif(n))

dec.dist<-order.dist2edges.std.tri(Xp)

dec.dist

dec.dist.order<-dec.dist[[2]]

#the order of distances to the edges in decreasing order
dec.dist.order

A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C);

Xlim<-range(Te[,1])
Ylim<-range(Te[,21)
xd<-X1im[2]-X1im[1]
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yd<-Y1im[2]-Y1im[1]

plot(A,pch=".",x1lab="" ylab="",6xlim=X1lim+xd*c(-.01,.01),
ylim=Ylimt+ydxc(-.01,.01))
polygon(Te)

points(Xp,pch=".")
text(Xp[dec.dist.order,],labels = factor(1:n) )

inc.dist<-order.dist2edges.std.tri(Xp,dec = FALSE)

inc.dist

inc.dist.order<-inc.dist[[2]]

#the order of distances to the edges in increasing order
inc.dist.order

dist<-inc.dist[[1]] #distances to the edges of the std eq. triangle
dist

dist[inc.dist.order] #distances in increasing order

plot(A,pch=".",xlab="",ylab="" xlim=Xlim+xd*c(-.05, .05),
ylim=Ylim+yd*c(-.05,.05))

polygon(Te)

points(Xp,pch=".")

text(Xplinc.dist.order,],labels = factor(1:n))

funsThMid2CC Two functions 1ineD1CCinTb and 1ineD2CCinTb which are of class
"TriLines" — The lines joining the midpoints of edges to the circum-
center (C'C') in the standard basic triangle.

Description

Returns the equation, slope, intercept, and y-coordinates of the lines joining Dy and C'C and
also Dy and C'C, in the standard basic triangle T, = T(A = (0,0), B = (1,0),C = (c1,¢2))
where ¢ isin [0,1/2],c2 > 0and (1 —¢1)? +¢3 < land D; = (B+C)/2and Dy = (A+C)/2
are the midpoints of edges BC' and AC.

Any given triangle can be mapped to the standard basic triangle by a combination of rigid body
motions (i.e., translation, rotation and reflection) and scaling, preserving uniformity of the points
in the original triangle. Hence standard basic triangle is useful for simulation studies under the
uniformity hypothesis. x-coordinates are provided in vector x.

Usage

1lineD1CCinTh(x, cl1, c2)

lineD2CCinTb(x, c1, c2)
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Arguments

X

cl, c2

Value

funsTbMid2CC

A single scalar or a vector of scalars.

Positive real numbers which constitute the vertex of the standard basic triangle
adjacent to the shorter edges; ¢; must be in [0,1/2], co > 0 and (1 —c;)?+c3 <
1.

A list with the elements

txt1
txt2
mtitle
cent

cent.name

tri

X

slope
intercept

equation

Author(s)

Elvan Ceyhan

See Also

Longer description of the line.

Shorter description of the line (to be inserted over the line in the plot).
The "main” title for the plot of the line.

The center chosen inside the standard equilateral triangle.

The name of the center inside the standard basic triangle. It is "CC" for these
two functions.

The triangle (it is the standard basic triangle for this function).

The input vector, can be a scalar or a vector of scalars, which constitute the
z-coordinates of the point(s) of interest on the line.

The output vector, will be a scalar if x is a scalar or a vector of scalars if x is a
vector of scalar, constitutes the y-coordinates of the point(s) of interest on the
line.

Slope of the line.
Intercept of the line.

Equation of the line.

lineA2CMinTe, 1ineB2CMinTe, 1ineA2MinTe, 1ineB2MinTe, and 1ineC2MinTe

Examples

#Examples for 1lineD1CCinTb

c1<-.4; c2<-.6;

A<-c(0,0); B<-c(1,0); C<-c(cl1,c2); #the vertices of the standard basic triangle Tb

Th<-rbind(A,B,C)

xfence<-abs(A[1]-B[1]1)*.25 #how far to go at the lower and upper ends in the x-coordinate
x<-seq(min(A[1],B[1])-xfence,max(A[1],B[1])+xfence,by=.1) #try also by=.01

1nD1CC<-1ineD1CCinTh(x,c1,c2)
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1nD1CC
summary (1nD1CC)
plot(1nD1CC)

CC<-circumcenter.basic.tri(c1,c2) #the circumcenter

cc

D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2; #midpoints of the edges
Ds<-rbind(D1,D2,D3)

x1<-seq(@,1,by=.1) #try also by=.01
y1<-1ineD1CCinTb(x1,c1,c2)$y

Xlim<-range(Tb[,1],x1)
Ylim<-range(Tb[,21,y1)
xd<-X1im[2]-X1im[1]
yd<-Y1lim[2]-Y1lim[1]

plot(A,pch=".",asp=1,xlab="",6ylab="" 6axes=TRUE,xlim=X1lim+xd*c(-.05, .05),ylim=Y1lim+yd*c(-.05,.05))
polygon(Tb)

L<-matrix(rep(CC,3),ncol=2,byrow=TRUE); R<-Ds

segments(L[,1], L[,2], RC,1]1, RC,21, 1ty=2)

txt<-rbind(Tb,CC,D1,D2,D3)
xc<-txt[,1]+c(-.03,.04,.03,.02,.09,-.08,0)
ye<-txt[,2]+c(.02,.02,.04,.08,.03,.03,-.05)
txt.str<-c("A"”,"B","C","CC","D1","D2","D3")
text(xc,yc, txt.str)

lines(x1,y1,type="1",1ty=2)
text(.8,.5,"1ineD1CCinTh")

cl<-.4; c2<-.6;
x1<-seq(@,1,by=.1) #try also by=.01
1lineD1CCinTh(x1,c1,c2)

#Examples for 1ineD2CCinTb
c1<-.4; c2<-.6;
A<-c(0,0); B<-c(1,0); C<-c(cl,c2); #the vertices of the standard basic triangle Tb

Th<-rbind(A,B,C)

xfence<-abs(A[1]-B[1]1)*.25 #how far to go at the lower and upper ends in the x-coordinate
x<-seq(min(A[1],B[1])-xfence,max(A[1],B[1])+xfence,by=.1) #try also by=.01

1nD2CC<-1ineD2CCinTh(x,c1,c2)
1nD2CC

summary (1nD2CC)

plot(1nD2CC)

CC<-circumcenter.basic.tri(cl1,c2) #the circumcenter
cc
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D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2; #midpoints of the edges
Ds<-rbind(D1,D2,D3)

x2<-seq(@,1,by=.1) #try also by=.01
y2<-1ineD2CCinTb(x2,c1,c2)$y

Xlim<-range(Tb[,1],x1)
Ylim<-range(Tb[,2],y2)
xd<-X1im[2]-X1im[1]
yd<-Y1lim[2]-Y1lim[1]

plot(A,pch=".",asp=1,xlab="",6ylab="" 6axes=TRUE,xlim=X1lim+xd*c(-.05, .05),ylim=Y1lim+yd*c(-.05, .05))
polygon(Tb)

L<-matrix(rep(CC,3),ncol=2,byrow=TRUE); R<-Ds

segments(L[,1], L[,2]1, RL,1]1, RL,21, 1ty=2)

txt<-rbind(Tb,CC,D1,D2,D3)
xc<-txt[,1]+c(-.03,.04,.03,.02,.09,-.08,0)
ye<-txt[,2]+c(.02,.02,.04,.08,.03,.03,-.05)
txt.str<-c("A"”,"B","C","CC","D1","D2","D3")
text(xc,yc, txt.str)

lines(x2,y2,type="1",1ty=2)
text(@,.5,"1ineD2CCinTb")

IarcAShasic.tri The indicator for the presence of an arc from a point to another for Arc
Slice Proximity Catch Digraphs (AS-PCDs) - standard basic triangle
case

Description

Returns I(p2 € Nag(pl)) for points p1 and p2, that is, returns 1 if p2 is in N4g(pl), returns O
otherwise, where N 4g(x) is the AS proximity region for point z.

AS proximity region is constructed in the standard basic triangle T, = T'((0,0), (1,0), (c1, ¢2))
where ¢y isin [0,1/2],ca > 0and (1 — ¢1)? + 3 < 1.

Vertex regions are based on the center, M = (mq,ms) in Cartesian coordinates or M = («, 3,7)
in barycentric coordinates in the interior of the standard basic triangle T} or based on circumcenter
of Tj; default is M="CC", i.e., circumcenter of Tj. rv is the index of the vertex region p1 resides,
with default=NULL.

If p1 and p2 are distinct and either of them are outside T3, the function returns 0, but if they are
identical, then it returns 1 regardless of their locations (i.e., it allows loops).

Any given triangle can be mapped to the standard basic triangle by a combination of rigid body
motions (i.e., translation, rotation and reflection) and scaling, preserving uniformity of the points
in the original triangle. Hence standard basic triangle is useful for simulation studies under the
uniformity hypothesis.

See also (Ceyhan (2005, 2010)).
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Usage

IarcASbasic.tri(pl, p2, c1, c2, M = "CC", rv = NULL)

Arguments
pl A 2D point whose AS proximity region is constructed.
p2 A 2D point. The function determines whether p2 is inside the AS proximity
region of p1 or not.
cl, c2 Positive real numbers representing the top vertex in standard basic triangle 73, =
T((0,0),(1,0), (c1,cz2)), c; mustbein [0,1/2],co > 0and (1 —¢1)? +¢3 < 1.
M The center of the triangle. "CC" stands for circumcenter or a 2D point in Carte-
sian coordinates or a 3D point in barycentric coordinates which serves as a center
in the interior of the triangle T}; default is M="CC" i.e., the circumcenter of T}.
rv The index of the M-vertex region in 7} containing the point, either 1,2, 3 or NULL
(default is NULL).
Value

I(p2 € Nag(pl)) for points p1 and p2, that is, returns 1 if p2 is in Nag(pl) (i.e., if there is an arc
from p1 to p2), returns O otherwise.
Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number
of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

See Also

IarcAStri and NAStri

Examples

c1<-.4; c2<-.6;
A<-c(0,0); B<-c(1,0); C<-c(cl1,c2);
Tb<-rbind(A,B,C)
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M<-as.numeric(runif.basic.tri(1,c1,c2)$g) #try also M<-c(.6,.2)

P1<-as.numeric(runif.basic.tri(1,c1,c2)$g)
P2<-as.numeric(runif.basic.tri(1,c1,c2)$g)
IarcASbasic.tri(P1,P2,c1,c2,M)

P1<-c(.3,.2)
P2<-c(.6,.2)
IarcASbasic.tri(P1,P2,c1,c2,M)

#or try
Rv<-rel.vert.basic.triCC(P1,c1,c2)$rv
IarcASbasic.tri(P1,P2,c1,c2,M,Rv)

P1<-c(.3,.2)
pP2<-c(.8,.2)
IarcASbasic.tri(P1,P2,c1,c2,M)

P3<-c(.5,.4)
IarcASbasic.tri(P1,P3,c1,c2,M)

P4<-c(1.5,.4)
IarcASbasic.tri(P1,P4,c1,c2,M)
IarcASbasic.tri(P4,P4,c1,c2,M)

c1<-.4; c2<-.6;

P1<-c(.3,.2)

pP2<-c(.6,.2)
IarcASbasic.tri(P1,P2,c1,c2,M)

TarcASset2pnt.tri The indicator for the presence of an arc from a point in set S to the
point p for Arc Slice Proximity Catch Digraphs (AS-PCDs) - one tri-
angle case

Description

Returns I(pt € Nag(z) for some x € S), that is, returns 1 if p is in UpesNag(z), returns 0
otherwise, where N 4g(x) is the AS proximity region for point x.

AS proximity regions are constructed with respect to the triangle, tri= T'(A, B, C) =(rv=1,rv=2,rv=3),
and vertices of tri are also labeled as 1,2, and 3, respectively.

Vertex regions are based on the center, M = (my,ms) in Cartesian coordinates or M = («, 3,7)

in barycentric coordinates in the interior of the triangle tri or based on circumcenter of tri; default
is M="CC", i.e., circumcenter of tri.

If p is not in S and either p or all points in S are outside tri, it returns 0, but if p is in S, then it
always returns 1 (i.e., loops are allowed).
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See also (Ceyhan (2005, 2010)).

Usage

IarcASset2pnt.tri(S, p, tri, M = "CC")

Arguments

S A set of 2D points whose AS proximity regions are considered.

p A 2D point. The function determines whether p is inside the union of AS prox-
imity regions of points in S or not.

tri Three 2D points, stacked row-wise, each row representing a vertex of the trian-
gle.

M The center of the triangle. "CC" stands for circumcenter of the triangle tri or a
2D point in Cartesian coordinates or a 3D point in barycentric coordinates which
serves as a center in the interior of tri; default is M="CC" i.e., the circumcenter
of tri.

Value

I(pt € UginsNas(x,r)), that is, returns 1 if p is in S or inside Nag(z) for at least one x in S,
returns 0 otherwise, where AS proximity region is constructed in tri

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number

of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

See Also

IarcAStri, IarcASset2pnt.tri, and IarcCSset2pnt.tri

Examples

A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
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n<-10

set.seed(1)
Xp<-runif.tri(n,Tr)$gen.points

S<-rbind(Xp[1,]1,Xp[2,]1) #try also S<-c(1.5,1)
M<-as.numeric(runif.tri(1,Tr)$g) #try also M<-c(1.6,1.2)
IarcASset2pnt.tri(S,Xp[3,]1,Tr,M)

S<-rbind(Xp[1,]1,Xp[2,]1,Xp[3,],Xp[5,1)
IarcASset2pnt.tri(S,Xp[3,]1,Tr,M)

IarcASset2pnt.tri(S,Xpl[6,1,Tr,M)

S<-rbind(c(.1,.1),c(.3,.4),c(.5,.3))
IarcASset2pnt.tri(S,Xp[3,]1,Tr ,M)

IarcASset2pnt.tri(c(.2,.5),Xp[2,],Tr M)
IarcASset2pnt.tri(Xp,c(.2,.5),Tr,M)
TarcASset2pnt.tri(Xp,Xp[2,],Tr,M)
IarcASset2pnt.tri(c(.2,.5),c(.2,.5),Tr,M)
IarcASset2pnt.tri(Xp[5,]1,Xp[2,]1,Tr,M)

S<-rbind(Xp[1,1,XpL2,],XpL3,],XpL5,],c(.2,.5))
IarcASset2pnt.tri(S,Xp[3,1,Tr,M)

P<-c(.4,.2)

S<-Xplc(1,3,4),]
TarcASset2pnt.tri(Xp,P,Tr ,M)
IarcASset2pnt.tri(S,P,Tr ,M)

TarcASset2pnt.tri(rbind(S,S),P,Tr,M)

TarcAStri The indicator for the presence of an arc from a point to another for
Arc Slice Proximity Catch Digraphs (AS-PCDs) - one triangle case

Description

Returns I(p2 € Nag(pl)) for points p1 and p2, that is, returns 1 if p2 is in Nag(pl), returns O
otherwise, where N 4g(x) is the AS proximity region for point x.

AS proximity regions are constructed with respect to the triangle, tri= T'(A, B,C) =(rv=1,rv=2,rv=3),
and vertex regions are based on the center, M = (mj,mso) in Cartesian coordinates or M =

(c, B8,7) in barycentric coordinates in the interior of the triangle tri or based on circumcenter of

tri; default is M="CC", i.e., circumcenter of tri. rv is the index of the vertex region p1 resides,

with default=NULL.
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If p1 and p2 are distinct and either of them are outside tri, the function returns 0, but if they are
identical, then it returns 1 regardless of their locations (i.e., it allows loops).

See also (Ceyhan (2005, 2010)).

Usage

IarcAStri(pl, p2, tri, M = "CC", rv = NULL)

Arguments

pl A 2D point whose AS proximity region is constructed.

p2 A 2D point. The function determines whether p2 is inside the AS proximity
region of p1 or not.

tri Three 2D points, stacked row-wise, each row representing a vertex of the trian-
gle.

M The center of the triangle. "CC" stands for circumcenter of the triangle tri or a
2D point in Cartesian coordinates or a 3D point in barycentric coordinates which
serves as a center in the interior of tri; default is M="CC" i.e., the circumcenter
of tri.

rv The index of the M-vertex region in tri containing the point, either 1,2,3 or
NULL (default is NULL).

Value

I(p2 € Nag(pl)) for p1, that is, returns 1 if p2 is in N4g(p1), returns 0 otherwise

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number

of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

See Also

IarcASbasic.tri, IarcPEtri, and IarcCStri
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Examples

A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
M<-as.numeric(runif.tri(1,Tr)$g) #try also M<-c(1.6,1.2)

P1<-as.numeric(runif.tri(1,Tr)$g)
P2<-as.numeric(runif.tri(1,Tr)$g)
IarcAStri(P1,P2,Tr,M)

P1<-c(1.3,1.2)
P2<-c(1.8,.5)
IarcAStri(P1,P2,Tr,M)
IarcAStri(P1,P1,Tr,M)

#or try
Rv<-rel.vert.triCC(P1,Tr)$rv
IarcAStri(P1,P2,Tr,M,Rv)

P3<-c(1.6,1.4)
IarcAStri(P1,P3,Tr,M)

P4<-c(1.5,1.0)
IarcAStri(P1,P4,Tr,M)

P5<-c(.5,1.0)
IarcAStri(P1,P5,Tr,M)
IarcAStri(P5,P5,Tr,M)

#or try
Rv<-rel.vert.triCC(P5,Tr)$rv
IarcAStri(P5,P5,Tr ,M,Rv)

TarcCS.Te.onesixth The indicator for the presence of an arc from a point to another for
Central Similarity Proximity Catch Digraphs (CS-PCDs) - first one-
sixth of the standard equilateral triangle case

Description

Returns I (p2isin Nog(pl,t = 1)) for points p1 and p2, that is, returns 1 if p2 isin Nog(pl,t = 1),
returns O otherwise, where Nog(z,¢ = 1) is the CS proximity region for point 2 with expansion
parameter t = 1.

CS proximity region is defined with respect to the standard equilateral triangle T, = T'(A4, B,C) =
T((0,0),(1,0),(1/2,1/3/2)) and edge regions are based on the center of mass CM = (1/2,/3/6).
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Here p1 must lie in the first one-sixth of T, which is the triangle with vertices T'(A, D3, CM) =
T7((0,0),(1/2,0),CM). If p1 and p2 are distinct and p1 is outside of T (A, D3, CM) or p2 is
outside T, it returns 0, but if they are identical, then it returns 1 regardless of their locations (i.e., it
allows loops).

Usage

IarcCS.Te.onesixth(p1, p2)

Arguments
pl A 2D point whose CS proximity region is constructed.
p2 A 2D point. The function determines whether p2 is inside the CS proximity
region of p1 or not.
Value

I(p2isin Negg(pl,t = 1)) for p1 in the first one-sixth of T¢, T'(A, D3, C M), that is, returns 1 if
p2isin Nog(pl,t = 1), returns O otherwise

Author(s)

Elvan Ceyhan

See Also

IarcCSstd. tri

TarcCSbasic.tri The indicator for the presence of an arc from a point to another for
Central Similarity Proximity Catch Digraphs (CS-PCDs) - standard
basic triangle case

Description

Returns I(p2 isin Nog(pl,t)) for points p1 and p2, that is, returns 1 if p2 is in Nog(pl, t), returns
0 otherwise, where Nog(x,t) is the CS proximity region for point z with expansion parameter
r>1.

CS proximity region is defined with respect to the standard basic triangle T, = T'((0, 0), (1, 0), (¢1, ¢2))
where ¢; isin [0,1/2], co > 0 and (1 — ¢1)? + % < 1.

Edge regions are based on the center, M = (m1,ms) in Cartesian coordinates or M = («, 3,7)
in barycentric coordinates in the interior of the standard basic triangle T}; default is M = (1,1,1)
i.e., the center of mass of 7}. re is the index of the edge region p1 resides, with default=NULL.

If p1 and p2 are distinct and either of them are outside 7}, it returns 0, but if they are identical, then
it returns 1 regardless of their locations (i.e., it allows loops).
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Any given triangle can be mapped to the standard basic triangle by a combination of rigid body
motions (i.e., translation, rotation, and reflection) and scaling, preserving uniformity of the points
in the original triangle. Hence standard basic triangle is useful for simulation studies under the
uniformity hypothesis.

See also (Ceyhan (2005, 2010); Ceyhan et al. (2007)).

Usage

IarcCSbasic.tri(p1, p2, t, c1, c2, M =c(1, 1, 1), re = NULL)

Arguments

pl
p2

cl, c2

re

Value

A 2D point whose CS proximity region is constructed.

A 2D point. The function determines whether p2 is inside the CS proximity
region of p1 or not.

A positive real number which serves as the expansion parameter in CS proximity
region; must be > 1

Positive real numbers which constitute the vertex of the standard basic triangle
adjacent to the shorter edges; ¢; must be in [0,1/2], co > 0and (1 —¢;)?+c3 <
1.

A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the standard basic triangle or circum-
center of Tj; defaultis M = (1,1, 1) i.e., the center of mass of Tj.

The index of the edge region in 7} containing the point, either 1,2,3 or NULL
(default is NULL).

I(p2 is in N¢g(pl,t)) for points p1 and p2, that is, returns 1 if p2 is in Nog(pl,t), returns O

otherwise

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E, Priebe CE, Marchette DJ (2007). “A new family of random graphs for testing spatial
segregation.” Canadian Journal of Statistics, 35(1), 27-50.
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See Also

IarcCStri and IarcCSstd.tri

Examples

cl1<-.4; c2<-.6
A<-c(0,0); B<-c(1,0); C<-c(cl1,c2);
Th<-rbind(A,B,C);

M<-as.numeric(runif.basic.tri(1,c1,c2)%g)
tau<-2

P1<-as.numeric(runif.basic.tri(1,c1,c2)$g)
P2<-as.numeric(runif.basic.tri(1,c1,c2)$g)
IarcCSbasic.tri(P1,P2,tau,cl1,c2,M)

P1<-c(.4,.2)

pP2<-c(.5,.26)
IarcCSbasic.tri(P1,P2,tau,cl,c2,M)
IarcCSbasic.tri(P1,P1,tau,cl1,c2,M)

#or try

Re<-rel.edge.basic.tri(P1,c1,c2,M)$re
IarcCSbasic.tri(P1,P2,tau,c1,c2,M,Re)
IarcCSbasic.tri(P1,P1,tau,c1,c2,M,Re)

IarcCSedge.reg.std.tri

The indicator for the presence of an arc from a point to another for
Central Similarity Proximity Catch Digraphs (CS-PCDs) - standard
equilateral triangle case

Description

Returns I (p2 isin Nog(pl,t)) for points p1 and p2, that is, returns 1 if p2 is in Nog(pl, t), returns
0 otherwise, where Nog(z,t) is the CS proximity region for point  with expansion parameter
t > 0. This function is equivalent to IarcCSstd. tri, except that it computes the indicator using the
functions IarcCSstd.triRAB, IarcCSstd.triRBC and IarcCSstd. triRAC which are edge-region
specific indicator functions. For example, IarcCSstd. triRAB computes I(p2 is in Nog(pl,t)) for
points p1 and p2 when p1 resides in the edge region of edge AB.

CS proximity region is defined with respect to the standard equilateral triangle T, = T'(v = 1,v =
2,v=3) =T((0,0),(1,0), (1/2,/3/2)) and edge regions are based on the center M = (my, mz)
in Cartesian coordinates or M = («, [3,y) in barycentric coordinates in the interior of 7T ; default
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is M = (1,1,1) i.e., the center of mass of T,. re is the index of the edge region p1 resides, with
default=NULL.

If p1 and p2 are distinct and either of them are outside T, it returns O, but if they are identical, then
it returns 1 regardless of their locations (i.e., it allows loops).

See also (Ceyhan (2005); Ceyhan et al. (2007); Ceyhan (2014)).

Usage

IarcCSedge.reg.std.tri(pl, p2, t, M =c(1, 1, 1), re = NULL)

Arguments
pl A 2D point whose CS proximity region is constructed.
p2 A 2D point. The function determines whether p2 is inside the CS proximity
region of p1 or not.
t A positive real number which serves as the expansion parameter in CS proximity
region.
M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the standard equilateral triangle T¢;
defaultis M = (1,1, 1) i.e. the center of mass of 7.
re The index of the edge region in 7, containing the point, either 1,2,3 or NULL
(default is NULL).
Value

I(p2isin Neg(pl,t)) for p1, that is, returns 1 if p2 is in Nog(pl, t), returns 0 otherwise

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2014). “Comparison of Relative Density of Two Random Geometric Digraph Fami-
lies in Testing Spatial Clustering.” TEST, 23(1), 100-134.

Ceyhan E, Priebe CE, Marchette DJ (2007). “A new family of random graphs for testing spatial
segregation.” Canadian Journal of Statistics, 35(1), 27-50.

See Also

IarcCStri and IarcPEstd. tri
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Examples

A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C);
n<-3

set.seed(1)
Xp<-runif.std.tri(n)$gen.points

M<-as.numeric(runif.std.tri(1)$g) #try also M<-c(.6,.2)

t<-1
IarcCSedge.reg.std.tri(Xp[1,]1,Xp[2,]1,t,M)
IarcCSstd.tri(Xp[1,1,Xp[2,],t,M)

#or try
re<-rel.edge.std.triCM(Xp[1,]1)$re
IarcCSedge.reg.std.tri(Xp[1,1,Xp[2,]1,t,M,re=re)

TarcCSend.int The indicator for the presence of an arc from a point to another
for Central Similarity Proximity Catch Digraphs (CS-PCDs) - end-
interval case

Description

Returns I(p2 in Nos(p1,t)) for points p; and po, that is, returns 1 if py is in Nog(p1, t), returns 0
otherwise, where N¢og(xz,t) is the CS proximity region for point x with expansion parameter ¢ > 0
for the region outside the interval (a, b).

rv is the index of the end vertex region p; resides, with default=NULL, and rv=1 for left end-interval
and rv=2 for the right end-interval. If p; and p- are distinct and either of them are inside interval
int, it returns 0, but if they are identical, then it returns 1 regardless of their locations (i.e., it allows
loops).

See also (Ceyhan (2016)).

Usage

IarcCSend.int(pl1, p2, int, t, rv = NULL)

Arguments
p1 A 1D point for which the CS proximity region is constructed.
p2 A 1D point to check whether it is inside the proximity region or not.

int A vector of two real numbers representing an interval.
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t A positive real number which serves as the expansion parameter in CS proximity
region.
rv Index of the end-interval containing the point, either 1, 2 or NULL (default=NULL).
Value

I(py in Nog(p1,t)) for points py and po, that is, returns 1 if ps is in Nog(p1,t) (i.e., if there is an
arc from p; to ps), returns O otherwise

Author(s)

Elvan Ceyhan

References

Ceyhan E (2016). “Density of a Random Interval Catch Digraph Family and its Use for Testing
Uniformity.” REVSTAT, 14(4), 349-394.

See Also

IarcCSmid.int, IarcPEmid.int, and IarcPEend.int

Examples

a<-0; b<-10; int<-c(a,b)
t<-2

IarcCSend.int(15,17,int,t)
IarcCSend.int(15,15,int,t)

IarcCSend.int(1.5,17,int,t)
IarcCSend.int(1.5,1.5,int,t)

IarcCSend.int(-15,17,int,t)
IarcCSend.int(-15,-17,int,t)

a<-0; b<-10; int<-c(a,b)
t<-.5

IarcCSend.int(15,17,int,t)
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TarcCSint The indicator for the presence of an arc from a point to another for
Central Similarity Proximity Catch Digraphs (CS-PCDs) - one inter-
val case

Description

Returns I(py in Neos(p1,t, ¢)) for points p; and po, that is, returns 1 if po is in Nog(p1, t, ¢), returns
0 otherwise, where Nog(z,t, ¢) is the CS proximity region for point « with expansion parameter
t > 0 and centrality parameter ¢ € (0, 1).

CS proximity region is constructed with respect to the interval (a, b). This function works whether
p1 and po are inside or outside the interval int.

Vertex regions for middle intervals are based on the center associated with the centrality parameter
¢ € (0,1). If p; and po are identical, then it returns 1 regardless of their locations (i.e., loops are
allowed in the digraph).

See also (Ceyhan (2016)).

Usage

IarcCSint(p1, p2, int, t, ¢ = 0.5)

Arguments
pl A 1D point for which the proximity region is constructed.
p2 A 1D point for which it is checked whether it resides in the proximity region of
p1 Or not.
int A vector of two real numbers representing an interval.
t A positive real number which serves as the expansion parameter in CS proximity
region.
c A positive real number in (0, 1) parameterizing the center inside int= (a,b)
with the default c=. 5. For the interval, int= (a, b), the parameterized center is
M.=a+c(b—a).
Value

I(ps in Neos(pi,t, ¢)) for p2, that is, returns 1 if ps in Nog(p1, ¢, ¢), returns 0 otherwise

Author(s)

Elvan Ceyhan

References

Ceyhan E (2016). “Density of a Random Interval Catch Digraph Family and its Use for Testing
Uniformity.” REVSTAT, 14(4), 349-394.
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See Also

IarcCSmid.int, IarcCSend.int and IarcPEint

Examples

c<-.4
t<-2
a<-0; b<-10; int<-c(a,b)

IarcCSint(7,5,int,t,c)
IarcCSint(17,17,int,t,c)
IarcCSint(15,17,int,t,c)
IarcCSint(1,3,int,t,c)

IarcCSint(-17,17,int,t,c)

IarcCSint(3,5,int,t,c)
IarcCSint(3,3,int,t,c)
IarcCSint(4,5,int,t,c)
IarcCSint(a,5,int,t,c)

c<-.4
r<-2

a<-0; b<-10; int<-c(a,b)

IarcCSint(7,5,int,t,c)

TarcCSmid.int The indicator for the presence of an arc from a point to another for
Central Similarity Proximity Catch Digraphs (CS-PCDs) - middle in-
terval case

Description

Returns I(ps in Neg(pa,t,c)) for points py and po, that is, returns 1 if po is in Nog(pi,t,c),
returns 0 otherwise, where N¢og(z, ¢, ¢) is the CS proximity region for point « and is constructed
with expansion parameter ¢ > 0 and centrality parameter ¢ € (0, 1) for the interval (a, b).

CS proximity regions are defined with respect to the middle interval int and vertex regions are
based on the center associated with the centrality parameter ¢ € (0, 1). For the interval, int= (a, b),
the parameterized center is M. = a + ¢(b — a). rv is the index of the vertex region p; resides, with
default=NULL.

If p; and p- are distinct and either of them are outside interval int, it returns O, but if they are
identical, then it returns 1 regardless of their locations (i.e., loops are allowed in the digraph).

See also (Ceyhan (2016)).

Usage

IarcCSmid.int(p1, p2, int, t, ¢ = 0.5, rv = NULL)
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Arguments

p1, p2

int

rv

Value

157

1D points; p; is the point for which the proximity region, Nog(p1, t, ¢) is con-
structed and ps is the point which the function is checking whether its inside
Nes(p1,t, c) or not.

A vector of two real numbers representing an interval.

A positive real number which serves as the expansion parameter in CS proximity
region.

A positive real number in (0, 1) parameterizing the center inside int= (a,b)
with the default c=. 5. For the interval, int= (a, b), the parameterized center is
M.=a+c(b—a).

Index of the end-interval containing the point, either 1,2 or NULL (default is
NULL).

I(py in Neogs(p1,t,c)) for points p; and po that is, returns 1 if py is in Nog(p1, ¢, ¢), returns O

otherwise

Author(s)

Elvan Ceyhan

References

Ceyhan E (2016). “Density of a Random Interval Catch Digraph Family and its Use for Testing
Uniformity.” REVSTAT, 14(4), 349-394.

See Also

IarcCSend.int, IarcPEmid.int, and IarcPEend.int

Examples

c<-.5
t<-2

a<-0; b<-10; int<-c(a,b)

IarcCSmid.int(7,5,int,t,c)
IarcCSmid.int(7,7,int,t,c)
IarcCSmid.int(7,5,int,t,c=.4)

IarcCSmid.int(1,3,int,t,c)

IarcCSmid.int(9,11,int,t,c)

IarcCSmid.int(19,1,int,t,c)
IarcCSmid.int(19,19,int,t,c)

IarcCSmid.int(3,5,int,t,c)



158 TarcCSset2pnt.std.tri

#or try
Rv<-rel.vert.mid.int(3,int,c)$rv
IarcCSmid.int(3,5,int,t,c,rv=Rv)

IarcCSmid.int(7,5,int,t,c)

IarcCSset2pnt.std.tri The indicator for the presence of an arc from a point in set S to the
point p for Central Similarity Proximity Catch Digraphs (CS-PCDs) -
standard equilateral triangle case

Description

Returns I(p in Nog(x,t) for some z in S), that is, returns 1 if p is in Uy;sNog(x, t), returns O
otherwise, CS proximity region is constructed with respect to the standard equilateral triangle T, =
T(A,B,C) =T((0,0),(1,0),(1/2,1/3/2)) with the expansion parameter ¢ > 0 and edge regions
are based on center M = (mj,mg) in Cartesian coordinates or M = (a, f,7) in barycentric
coordinates in the interior of T,; default is M = (1,1,1) i.e., the center of mass of T, (which is
equivalent to circumcenter of 7).

Edges of T., AB, BC, AC, are also labeled as edges 3, 1, and 2, respectively. If p is not in S
and either p or all points in S are outside T, it returns 0, but if p is in S, then it always returns 1
regardless of its location (i.e., loops are allowed).

See also (Ceyhan (2012)).

Usage
IarcCSset2pnt.std.tri(S, p, t, M =c(1, 1, 1))

Arguments
S A set of 2D points. Presence of an arc from a point in S to point p is checked by
the function.
p A 2D point. Presence of an arc from a point in S to point p is checked by the
function.
t A positive real number which serves as the expansion parameter in CS proximity
region in the standard equilateral triangle T}, = T'((0,0), (1,0), (1/2,/3/2)).
M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the standard equilateral triangle T;
defaultis M = (1,1, 1) i.e., the center of mass of Tt.
Value

I(p is in UginsNes(x, t)), that is, returns 1 if p is in S or inside Nog(x,t) for at least one x in
S, returns 0 otherwise. CS proximity region is constructed with respect to the standard equilateral
triangle T, = T'(A, B,C) = T((0,0), (1,0), (1/2,+/3/2)) with M-edge regions.
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Author(s)

Elvan Ceyhan

References

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number of
random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

See Also

IarcCSset2pnt.tri, IarcCSstd.tri, IarcCStri, and IarcPEset2pnt.std.tri

Examples

A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C);
n<-10

set.seed(1)
Xp<-runif.std.tri(n)$gen.points

M<-as.numeric(runif.std.tri(1)$g) #try also M<-c(.6,.2)
t<-.5

S<-rbind(Xp[1,]1,Xp[2,]1) #try also S<-c(.5,.5)
TarcCSset2pnt.std.tri(S,Xp[3,]1,t,M)
IarcCSset2pnt.std.tri(S,Xp[3,]1,t=1,M)
IarcCSset2pnt.std.tri(S,Xp[3,],t=1.5,M)

S<-rbind(c(.1,.1),c(.3,.4),c(.5,.3))
IarcCSset2pnt.std.tri(S,Xp[3,1]1,t,M)

TarcCSset2pnt.tri The indicator for the presence of an arc from a point in set S to the
point p for Central Similarity Proximity Catch Digraphs (CS-PCDs) -
one triangle case

Description

Returns I(p in Ngg(z,t) for some x in S), that is, returns 1 if p in Ug;nsNos(x,t), returns O
otherwise.

CS proximity region is constructed with respect to the triangle tri with the expansion parameter
t > 0 and edge regions are based on the center, M = (my,mz) in Cartesian coordinates or M =
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(c, B,7) in barycentric coordinates in the interior of the triangle tri; defaultis M = (1,1,1) i.e.,
the center of mass of tri.

Edges of tri= T(A, B,C), AB, BC, AC, are also labeled as edges 3, 1, and 2, respectively. If p
is not in S and either p or all points in S are outside tri, it returns O, but if p is in S, then it always
returns 1 regardless of its location (i.e., loops are allowed).

Usage

IarcCSset2pnt.tri(S, p, tri, t, M =c(1, 1, 1))

Arguments
S A set of 2D points. Presence of an arc from a point in S to point p is checked by
the function.
p A 2D point. Presence of an arc from a point in S to point p is checked by the
function.
tri A 3 x 2 matrix with each row representing a vertex of the triangle.
t A positive real number which serves as the expansion parameter in CS proximity
region constructed in the triangle tri.
M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the triangle tri; default is M =
(1,1,1) i.e., the center of mass of tri.
Value

I(p is in UginsNes(x,t)), that is, returns 1 if p is in S or inside N¢g(«,t) for at least one x in S,
returns 0 otherwise where CS proximity region is constructed with respect to the triangle tri

Author(s)

Elvan Ceyhan

See Also

IarcCSset2pnt.std.tri, IarcCStri, IarcCSstd.tri, IarcASset2pnt.tri, and IarcPEset2pnt.tri
Examples

A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
n<-10

set.seed(1)
Xp<-runif.tri(n,Tr)$gen.points

S<-rbind(Xp[1,]1,Xp[2,]1) #try also S<-c(1.5,1)

M<-as.numeric(runif.tri(1,Tr)$g) #try also M<-c(1.6,1.0)
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tau<-.5

IarcCSset2pnt.tri(S,Xp[3,]1,Tr,tau,M)
IarcCSset2pnt.tri(S,Xp[3,]1,Tr,t=1,M)
IarcCSset2pnt.tri(S,Xpl[3,]1,Tr,t=1.5,M)

S<-rbind(c(.1,.1),c(.3,.4),c(.5,.3))
IarcCSset2pnt.tri(S,Xpl[3,]1,Tr,tau,M)

TarcCSstd. tri The indicator for the presence of an arc from a point to another for
Central Similarity Proximity Catch Digraphs (CS-PCDs) - standard
equilateral triangle case

Description

Returns I(p2 isin Nog(pl,t)) for points p1 and p2, that is, returns 1 if p2 is in Nog(pl, t), returns
0 otherwise, where Nog(x,t) is the CS proximity region for point 2 with expansion parameter
t>0.

CS proximity region is defined with respect to the standard equilateral triangle 7, = T(v =
Lv = 2,0 = 3) = T((0,0),(1,0),(1/2,1/3/2)) and vertex regions are based on the center
M = (my, ms) in Cartesian coordinates or M = («, /3, ) in barycentric coordinates in the interior
of T,; default is M = (1,1, 1) i.e., the center of mass of 7. rv is the index of the vertex region p1
resides, with default=NULL.

If p1 and p2 are distinct and either of them are outside T, it returns 0, but if they are identical, then
it returns 1 regardless of their locations (i.e., it allows loops).

See also (Ceyhan (2005, 2010); Ceyhan et al. (2007)).

Usage
IarcCSstd.tri(pl, p2, t, M =c(1, 1, 1), re = NULL)

Arguments

pl A 2D point whose CS proximity region is constructed.

p2 A 2D point. The function determines whether p2 is inside the CS proximity
region of p1 or not.

t A positive real number which serves as the expansion parameter in CS proximity
region.

M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the standard equilateral triangle T¢;
defaultis M = (1,1, 1) i.e. the center of mass of 7.

re The index of the edge region in 7, containing the point, either 1,2,3 or NULL

(default is NULL).
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Value

I(p2 is in Ngg(pl,t)) for points p1 and p2, that is, returns 1 if p2 is in Nog(pl,t), returns O
otherwise

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E, Priebe CE, Marchette DJ (2007). “A new family of random graphs for testing spatial
segregation.” Canadian Journal of Statistics, 35(1), 27-50.

See Also

IarcCStri, IarcCSbasic.tri, and IarcPEstd. tri

Examples

A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C)
n<-3

set.seed(1)
Xp<-runif.std.tri(n)$gen.points

M<-as.numeric(runif.std.tri(1)$g) #try also M<-c(.6,.2) or M=(A+B+C)/3

IarcCSstd.tri(Xp[1,],Xp[3,]1,t=2,M)
TarcCSstd.tri(c(0,1),Xp[3,]1,t=2,M)

#or try
Re<-rel.edge.tri(Xp[1,],Te,M) $re
IarcCSstd.tri(Xp[1,]1,Xp[3,]1,t=2,M,Re)
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IarcCSt1.std.tri The indicator for the presence of an arc from a point to another for
Central Similarity Proximity Catch Digraphs (CS-PCDs) - standard
equilateral triangle case witht = 1

Description

Returns I(p2isin Nog(pl,t = 1)) for points p1 and p2, that is, returns 1 if p2 isin Nog(pl,t = 1),
returns O otherwise, where Nog(z,t = 1) is the CS proximity region for point 2 with expansion
parameter t = 1.

CS proximity region is defined with respect to the standard equilateral triangle 7, = T'(A4, B,C) =
T((0,0),(1,0),(1/2,1/3/2)) and edge regions are based on the center of mass CM = (1/2,/3/6).

If p1 and p2 are distinct and either are outside T, it returns O, but if they are identical, then it returns
1 regardless of their locations (i.e., it allows loops).

Usage

IarcCSt1.std.tri(pl, p2)

Arguments
pl A 2D point whose CS proximity region is constructed.
p2 A 2D point. The function determines whether p2 is inside the CS proximity
region of p1 or not.
Value

I(p2 is in Nog(pl,t = 1)) for p1 in T, that is, returns 1 if p2 is in Nog(pl,t = 1), returns O
otherwise

Author(s)

Elvan Ceyhan

See Also

IarcCSstd. tri

Examples

A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C);
n<-3

set.seed(1)
Xp<-runif.std.tri(n)$gen.points
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IarcCSt1.std.tri(Xp[1,1,Xpl[2,]1)
IarcCSt1.std.tri(c(.2,.5),Xpl2,]1)

TarcCStri The indicator for the presence of an arc from one point to another for
Central Similarity Proximity Catch Digraphs (CS-PCDs)

Description

Returns I (p2 isin Neog(pl,t)) for points p1 and p2, that is, returns 1 if p2 is in NC'S(p1, t), returns
0 otherwise, where Nog(z, ) is the CS proximity region for point = with the expansion parameter
t>0.

CS proximity region is constructed with respect to the triangle tri and edge regions are based on
the center, M = (my,mg) in Cartesian coordinates or M = («, 3, ) in barycentric coordinates in
the interior of tri or based on the circumcenter of tri. re is the index of the edge region p resides,
with default=NULL

If p1 and p2 are distinct and either of them are outside tri, it returns 0, but if they are identical,
then it returns 1 regardless of their locations (i.e., it allows loops).

See also (Ceyhan (2005); Ceyhan et al. (2007); Ceyhan (2014)).

Usage

IarcCStri(p1, p2, tri, t, M, re = NULL)

Arguments
pl A 2D point whose CS proximity region is constructed.
p2 A 2D point. The function determines whether p2 is inside the CS proximity
region of p1 or not.
tri A 3 x 2 matrix with each row representing a vertex of the triangle.
t A positive real number which serves as the expansion parameter in CS proximity
region.
M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the triangle tri.
re Index of the M-edge region containing the point p, either 1,2, 3 or NULL (default
is NULL).
Value

I(p2 isin NC'S(pl,t)) for p1, that is, returns 1 if p2 is in NC'S(pl, t), returns O otherwise
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Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2014). “Comparison of Relative Density of Two Random Geometric Digraph Fami-
lies in Testing Spatial Clustering.” TEST, 23(1), 100-134.

Ceyhan E, Priebe CE, Marchette DJ (2007). “A new family of random graphs for testing spatial
segregation.” Canadian Journal of Statistics, 35(1), 27-50.
See Also

IarcAStri, IarcPEtri, IarcCStri, and IarcCSstd. tri

Examples

A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
tau<-1.5

M<-as.numeric(runif.tri(1,Tr)$g) #try also M<-c(1.6,1.2)

n<-10
set.seed(1)
Xp<-runif.tri(n,Tr)$g

IarcCStri(Xp[1,71,Xpl2,],Tr,tau,M)

P1<-as.numeric(runif.tri(1,Tr)$g)
P2<-as.numeric(runif.tri(1,Tr)$g)
IarcCStri(P1,P2,Tr,tau,M)

#or try
re<-rel.edges.tri(P1,Tr,M)$re
IarcCStri(P1,P2,Tr,tau,M,re)

TIarcCStri.alt An alternative to the function IarcCStri which yields the indicator for
the presence of an arc from one point to another for Central Similarity
Proximity Catch Digraphs (CS-PCDs)
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Description

Returns I(p2 is in Neog(pl,t)) for points p1 and p2, that is, returns 1 if p2 is in Nog(pl, t), returns
0 otherwise, where Nog(x, t) is the CS proximity region for point = with the expansion parameter
t> 0.

CS proximity region is constructed with respect to the triangle tri and edge regions are based on the
center of mass, C'M. re is the index of the C' M-edge region p resides, with default=NULL but must
be provided as vertices (y1, Y2, y3) for re = 3 as rbind(y2,y3,y1) for re = 1 and as rbind(y1,y3,y2)
for re = 2 for triangle T'(y1, Y2, y3)-

If p1 and p2 are distinct and either of them are outside tri, it returns 0, but if they are identical,
then it returns 1 regardless of their locations (i.e., it allows loops).

See also (Ceyhan (2005); Ceyhan et al. (2007); Ceyhan (2014)).

Usage
IarcCStri.alt(pl, p2, tri, t, re = NULL)

Arguments
pl A 2D point whose CS proximity region is constructed.
p2 A 2D point. The function determines whether p2 is inside the CS proximity
region of p1 or not.
tri A 3 x 2 matrix with each row representing a vertex of the triangle.
t A positive real number which serves as the expansion parameter in CS proximity
region.
re Index of the C'M-edge region containing the point p, either 1,2,3 or NULL,
default=NULL but must be provided (row-wise) as vertices (y1, y2, y3) for re=3
as (ya,ys3,y1) for re=1 and as (y1, ys, y2) for re=2 for triangle T'(y1, y2, y3).
Value

I(p2isin Neg(pl,t)) for p1, that is, returns 1 if p2 is in Nog(pl, t), returns 0 otherwise.

Author(s)
Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2014). “Comparison of Relative Density of Two Random Geometric Digraph Fami-
lies in Testing Spatial Clustering.” TEST, 23(1), 100-134.

Ceyhan E, Priebe CE, Marchette DJ (2007). “A new family of random graphs for testing spatial
segregation.” Canadian Journal of Statistics, 35(1), 27-50.
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See Also

IarcAStri, IarcPEtri, IarcCStri, and IarcCSstd. tri

Examples

A<-c(1,1); B<-c(2,0); C<-c(1.6,2);
Tr<-rbind(A,B,C);

t<-1.5
P1<-c(.4,.2)
P2<-c(1.8,.5)

TarcCStri(P1,P2,Tr,t,M=c(1,1,1))
IarcCStri.alt(P1,P2,Tr,t)

IarcCStri(P2,P1,Tr,t,M=c(1,1,1))
IarcCStri.alt(P2,P1,Tr,t)

#or try
re<-rel.edges.triCM(P1,Tr)$re
IarcCStri(P1,P2,Tr,t,M=c(1,1,1),re)
TarcCStri.alt(P1,P2,Tr,t,re)

TarcPEbasic.tri The indicator for the presence of an arc from a point to another for
Proportional Edge Proximity Catch Digraphs (PE-PCDs) - standard
basic triangle case

Description

Returns I(p2 is in Npg(pl,r)) for points p1 and p2 in the standard basic triangle, that is, returns
1 if p2 is in Npg(pl,r), and returns O otherwise, where Npg(z, ) is the PE proximity region for
point x with expansion parameter » > 1.

PE proximity region is defined with respect to the standard basic triangle T, = T'((0,0), (1, 0), (¢1, ¢2))
where ¢y isin [0,1/2], co > 0and (1 — ¢1)? + % < 1.

Vertex regions are based on the center, M = (mq,mz2) in Cartesian coordinates or M = (a, 3, 7)

in barycentric coordinates in the interior of the standard basic triangle T} or based on circumcenter

of Ty; defaultis M = (1,1, 1), i.e., the center of mass of T}. rv is the index of the vertex region p1
resides, with default=NULL.

If p1 and p2 are distinct and either of them are outside 7, it returns O, but if they are identical, then
it returns 1 regardless of their locations (i.e., it allows loops).

Any given triangle can be mapped to the standard basic triangle by a combination of rigid body
motions (i.e., translation, rotation and reflection) and scaling, preserving uniformity of the points
in the original triangle. Hence, standard basic triangle is useful for simulation studies under the
uniformity hypothesis.

See also (Ceyhan (2005, 2010); Ceyhan et al. (2006)).
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Usage

IarcPEbasic.tri

IarcPEbasic.tri(pl, p2, r, c1, c2, M =c(1, 1, 1), rv = NULL)

Arguments

pl
p2

cl, c2

rv

Value

A 2D point whose PE proximity region is constructed.

A 2D point. The function determines whether p2 is inside the PE proximity
region of p1 or not.

A positive real number which serves as the expansion parameter in PE proximity
region; must be > 1

Positive real numbers which constitute the vertex of the standard basic triangle
adjacent to the shorter edges; ¢; must be in [0,1/2], co > 0 and (1 —c;)?+c3 <
1.

A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the standard basic triangle or circum-
center of T}, which may be entered as "CC" as well; default is M = (1,1,1),
i.e., the center of mass of Tj,.

The index of the vertex region in 7} containing the point, either 1,2, 3 or NULL
(default is NULL).

I(p2isin Npg(pl,r)) for points p1 and p2 in the standard basic triangle, that is, returns 1 if p2 is
in Npg(pl,r), and returns O otherwise.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E, Priebe CE, Wierman JC (2006). “Relative density of the random r-factor proximity
catch digraphs for testing spatial patterns of segregation and association.” Computational Statistics
& Data Analysis, 50(8), 1925-1964.

See Also

IarcPEtri and IarcPEstd. tri
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Examples

cl<-.4; c2<-.6
A<-c(0,0); B<-c(1,0); C<-c(cl1,c2);
Tb<-rbind(A,B,C);

M<-as.numeric(runif.basic.tri(1,c1,c2)$g)
r<-2

P1<-as.numeric(runif.basic.tri(1,c1,c2)$g)
P2<-as.numeric(runif.basic.tri(1,c1,c2)$g)
IarcPEbasic.tri(P1,P2,r,c1,c2,M)

P1<-c(.4,.2)

P2<-c(.5,.26)
IarcPEbasic.tri(P1,P2,r,c1,c2,M)
IarcPEbasic.tri(P2,P1,r,c1,c2,M)

#or try
Rv<-rel.vert.basic.tri(P1,c1,c2,M)$rv
IarcPEbasic.tri(P1,P2,r,c1,c2,M,Rv)

IarcPEend.int The indicator for the presence of an arc from a point to another
for Proportional Edge Proximity Catch Digraphs (PE-PCDs) - end-
interval case

Description

Returns I (ps € Npg(p1,7)) for points p; and po, that is, returns 1 if ps is in Npg(p1, ), returns O
otherwise, where Npg(x,r) is the PE proximity region for point = with expansion parameter r > 1
for the region outside the interval (a, b).

rv is the index of the end vertex region p; resides, with default=NULL, and rv=1 for left end-interval
and rv=2 for the right end-interval. If p; and p- are distinct and either of them are inside interval
int, it returns 0, but if they are identical, then it returns 1 regardless of their locations (i.e., it allows
loops).

See also (Ceyhan (2012)).

Usage

IarcPEend.int(p1, p2, int, r, rv = NULL)
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Arguments
pl A 1D point whose PE proximity region is constructed.
p2 A 1D point. The function determines whether p, is inside the PE proximity
region of p; or not.
int A vector of two real numbers representing an interval.
r A positive real number which serves as the expansion parameter in PE proximity
region; must be > 1.
rv Index of the end-interval containing the point, either 1,2 or NULL (default is
NULL).
Value
I(ps € Npg(p1,r)) for points p; and pa, that is, returns 1 if py is in Npg(p1,7) (ie., if there is an
arc from p; to ps), returns O otherwise
Author(s)
Elvan Ceyhan
References
Ceyhan E (2012). “The Distribution of the Relative Arc Density of a Family of Interval Catch
Digraph Based on Uniform Data.” Metrika, 75(6), 761-793.
See Also
IarcPEmid.int, IarcCSmid.int, and IarcCSend.int
Examples
a<-0; b<-10; int<-c(a,b)
r<-2
IarcPEend.int(15,17,int,r)
IarcPEend.int(1.5,17,int,r)
IarcPEend.int(-15,17,int,r)
IarcPEint The indicator for the presence of an arc from a point to another for

Proportional Edge Proximity Catch Digraphs (PE-PCDs) - one inter-
val case
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Description

Returns I(p2 € Npg(p1,7,c¢)) for points p; and po, that is, returns 1 if py is in Npg(p1,7, ),
returns O otherwise, where Npg(x,r,c) is the PE proximity region for point « with expansion
parameter r > 1 and centrality parameter ¢ € (0,1).

PE proximity region is constructed with respect to the interval (a, b). This function works whether
p1 and po are inside or outside the interval int.

Vertex regions for middle intervals are based on the center associated with the centrality parameter
¢ € (0,1). If p; and po are identical, then it returns 1 regardless of their locations (i.e., loops are
allowed in the digraph).

See also (Ceyhan (2012)).

Usage

IarcPEint(p1, p2, int, r, ¢ = 0.5)

Arguments
p1 A 1D point for which the proximity region is constructed.
p2 A 1D point for which it is checked whether it resides in the proximity region of
p1 Or not.
int A vector of two real numbers representing an interval.
r A positive real number which serves as the expansion parameter in PE proximity
region must be > 1.
c A positive real number in (0, 1) parameterizing the center inside int= (a,b)
with the default c=. 5. For the interval, int= (a, b), the parameterized center is
M.=a+c(b—a).
Value

I(ps € Npg(p1,r,c)), thatis, returns 1 if ps in Npg(p1, 7, ), returns O otherwise

Author(s)

Elvan Ceyhan

References
Ceyhan E (2012). “The Distribution of the Relative Arc Density of a Family of Interval Catch
Digraph Based on Uniform Data.” Metrika, 75(6), 761-793.

See Also

IarcPEmid. int, IarcPEend.int and IarcCSint
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Examples

c<-.4
r<-2
a<-0; b<-10; int<-c(a,b)

IarcPEint(7,5,int,r,c)
IarcPEint(15,17,int,r,c)
IarcPEint(1,3,int,r,c)

IarcPEmid.int The indicator for the presence of an arc from a point to another for
Proportional Edge Proximity Catch Digraphs (PE-PCDs) - middle in-
terval case

Description

Returns I(p2 € Npg(p1,7,c)) for points p; and po, that is, returns 1 if py is in Npg(p1,7, ),
returns O otherwise, where Npg(z, 7, c) is the PE proximity region for point x and is constructed
with expansion parameter r > 1 and centrality parameter ¢ € (0, 1) for the interval (a, b).

PE proximity regions are defined with respect to the middle interval int and vertex regions are based
on the center associated with the centrality parameter ¢ € (0, 1). For the interval, int= (a, b), the
parameterized center is M. = a + ¢(b — a). rv is the index of the vertex region p; resides, with
default=NULL. If p; and p, are distinct and either of them are outside interval int, it returns 0, but
if they are identical, then it returns 1 regardless of their locations (i.e., loops are allowed in the
digraph).

See also (Ceyhan (2012, 2016)).

Usage

IarcPEmid.int(pl1, x2, int, r, ¢ = 0.5, rv = NULL)

Arguments

p1, x2 1D points; p; is the point for which the proximity region, Npg(p1,r,c) is con-
structed and ps is the point which the function is checking whether its inside
Npg(p1,r,c) or not.

int A vector of two real numbers representing an interval.

r A positive real number which serves as the expansion parameter in PE proximity
region; must be > 1.

c A positive real number in (0, 1) parameterizing the center inside int= (a, b)

with the default c=. 5. For the interval, int= (a, b), the parameterized center is
M.=a+c(b—a).

rv The index of the vertex region p; resides, with default=NULL.
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Value
I(p2 € Npg(p1,r,c)) for points p; and po that is, returns 1 if py is in Npg(p1, 7, ¢), returns O
otherwise

Author(s)

Elvan Ceyhan

References
Ceyhan E (2012). “The Distribution of the Relative Arc Density of a Family of Interval Catch Di-
graph Based on Uniform Data.” Metrika, 75(6), 761-793.

Ceyhan E (2016). “Density of a Random Interval Catch Digraph Family and its Use for Testing
Uniformity.” REVSTAT, 14(4), 349-394.

See Also

IarcPEend.int, IarcCSmid.int, and IarcCSend.int

Examples
c<-.4
r<-2
a<-0; b<-10; int<-c(a,b)

IarcPEmid.int(7,5,int,r,c)
IarcPEmid.int(1,3,int,r,c)

IarcPEset2pnt.std.tri The indicator for the presence of an arc from a point in set S to the
point p or Proportional Edge Proximity Catch Digraphs (PE-PCDs) -
standard equilateral triangle case

Description

Returns [ (p in Npg(z,r) for some z in S) for S, in the standard equilateral triangle, that is, returns
Lif pisin UginsNpg(z, ), and returns 0 otherwise.

PE proximity region is constructed with respect to the standard equilateral triangle T, = T'(4, B,C) =
T((0,0), (1,0), (1/2,4/3/2)) with the expansion parameter > 1 and vertex regions are based on
center M = (m1,ms) in Cartesian coordinates or M = («, 3, ) in barycentric coordinates in the
interior of T,; default is M = (1,1, 1), i.e., the center of mass of T, (which is equivalent to the
circumcenter for T}).

Vertices of T, are also labeled as 1, 2, and 3, respectively. If p is not in S and either p or all points in
S are outside T, it returns 0, but if p is in S, then it always returns 1 regardless of its location (i.e.,
loops are allowed).
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Usage

IarcPEset2pnt.std.tri(S, p, r, M =c(1, 1, 1))

Arguments

S A set of 2D points. Presence of an arc from a point in S to point p is checked by
the function.

p A 2D point. Presence of an arc from a point in S to point p is checked by the
function.

r A positive real number which serves as the expansion parameter in PE proximity
region in the standard equilateral triangle T, = T'((0,0), (1,0), (1/2,v/3/2));
must be > 1.

M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the standard equilateral triangle T¢;
defaultis M = (1,1, 1) i.e., the center of mass of Te.

Value

I(pisin Ugins Npg(z,7)) for S in the standard equilateral triangle, that is, returns 1 if p is in S or
inside Npg(x,r) for at least one z in S, and returns 0 otherwise. PE proximity region is constructed
with respect to the standard equilateral triangle T, = T'(A, B, C") = T((0,0), (1,0), (1/2,v/3/2))
with M-vertex regions

Author(s)

Elvan Ceyhan

See Also

IarcPEset2pnt.tri, IarcPEstd. tri, IarcPEtri, and IarcCSset2pnt.std.tri

Examples

A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C);
n<-10

set.seed(1)
Xp<-runif.std.tri(n)$gen.points

M<-as.numeric(runif.std.tri(1)$g) #try also M<-c(.6,.2)
r<-1.5

S<-rbind(Xp[1,]1,Xp[2,]1) #try also S<-c(.5,.5)
IarcPEset2pnt.std.tri(S,Xp[3,1,r,M)

IarcPEset2pnt.std.tri(S,Xp[3,]1,r=1,M)

S<-rbind(Xp[1,1,Xp[2,]1,Xp[3,],Xp[5,1)
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IarcPEset2pnt.std.tri(S,Xp[3,],r,M)

IarcPEset2pnt.std.tri(S,Xp[6,]1,r,M)
IarcPEset2pnt.std.tri(S,Xp[6,],r=1.25,M)

P<-c(.4,.2)
S<-XpLc(1,3,4),1
IarcPEset2pnt.std.tri(Xp,P,r ,M)

TarcPEset2pnt.tri The indicator for the presence of an arc from a point in set S to the
point p for Proportional Edge Proximity Catch Digraphs (PE-PCDs)
- one triangle case

Description

Returns I(p in Npg(z,r) for some x in S), that is, returns 1 if p is in Ugins Npg(z,7), and returns
0 otherwise.

PE proximity region is constructed with respect to the triangle tri with the expansion parameter
r > 1 and vertex regions are based on the center, M = (m;, ms) in Cartesian coordinates or M =
(a, B8,7) in barycentric coordinates in the interior of the triangle tri or based on the circumcenter
of tri; defaultis M = (1,1, 1), i.e., the center of mass of tri. Vertices of tri are also labeled as
1, 2, and 3, respectively.

If p is not in S and either p or all points in S are outside tri, it returns O, but if p is in S, then it
always returns 1 regardless of its location (i.e., loops are allowed).

Usage

TarcPEset2pnt.tri(S, p, tri, r, M =c(1, 1, 1))

Arguments

S A set of 2D points. Presence of an arc from a point in S to point p is checked by
the function.

p A 2D point. Presence of an arc from a point in S to point p is checked by the
function.

tri A 3 x 2 matrix with each row representing a vertex of the triangle.

r A positive real number which serves as the expansion parameter in PE proximity
region constructed in the triangle tri; must be > 1.

M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates

which serves as a center in the interior of the triangle tri or the circumcenter
of tri which may be entered as "CC" as well; defaultis M = (1,1,1), i.e., the
center of mass of tri.
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Value

I(pisin UyinsNpg(x,r)), that is, returns 1 if p is in S or inside Npg(x, ) for at least one x in S,
and returns 0 otherwise, where PE proximity region is constructed with respect to the triangle tri

Author(s)

Elvan Ceyhan

See Also

IarcPEset2pnt.std.tri, IarcPEtri, IarcPEstd. tri, IarcASset2pnt.tri, and IarcCSset2pnt.tri
Examples

A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
n<-10

set.seed(1)
Xp<-runif.tri(n,Tr)$gen.points

M<-as.numeric(runif.tri(1,Tr)$g) #try also M<-c(1.6,1.0)
r<-1.5
S<-rbind(Xp[1,]1,Xp[2,]1) #try also S<-c(1.5,1)

IarcPEset2pnt.tri(S,Xp[3,1,Tr,r,M)
IarcPEset2pnt.tri(S,Xp[3,],r=1,Tr M)

S<-rbind(Xp[1,]1,Xp[2,]1,Xp[3,],Xp[5,1)
IarcPEset2pnt.tri(S,Xp[3,1,Tr,r,M)

S<-rbind(c(.1,.1),c(.3,.4),c(.5,.3))
IarcPEset2pnt.tri(S,Xp[3,1,Tr,r,M)

P<-c(.4,.2)
S<-Xp[e(1,3,4),1
IarcPEset2pnt.tri(Xp,P,Tr,r,M)

TarcPEstd. tetra The indicator for the presence of an arc from a point to another for
Proportional Edge Proximity Catch Digraphs (PE-PCDs) - standard
regular tetrahedron case
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Description

Returns I(p2isin Npg(pl,r)) for points p1 and p2, that is, returns 1 if p2 is in Npg(pl, ), returns
0 otherwise, where Npg(z,r) is the PE proximity region for point z with expansion parameter
r>1.

PE proximity region is defined with respect to the standard regular tetrahedron 7}, = T'(v = 1,v =
2,v = 3,v = 4) = T((0,0,0),(1,0,0), (1/2,4/3/2,0), (1/2,1/3/6,/6/3)) and vertex regions
are based on the circumcenter (which is equivalent to the center of mass for standard regular tetra-
hedron) of T}. rv is the index of the vertex region p1 resides, with default=NULL.

If p1 and p2 are distinct and either of them are outside 7}, it returns O, but if they are identical, then
it returns 1 regardless of their locations (i.e., it allows loops).

See also (Ceyhan (2005, 2010)).

Usage

IarcPEstd.tetra(pl, p2, r, rv = NULL)

Arguments
p1 A 3D point whose PE proximity region is constructed.
p2 A 3D point. The function determines whether p2 is inside the PE proximity
region of p1 or not.
r A positive real number which serves as the expansion parameter in PE proximity
region; must be > 1.
rv Index of the vertex region containing the point, either 1,2, 3, 4 (default is NULL).
Value

I(p2 is in Npg(pl,r)) for points p1 and p2, that is, returns 1 if p2 is in Npg(pl,r), returns O
otherwise
Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

See Also

IarcPEtetra, IarcPEtri and IarcPEint
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Examples

A<-c(0,0,0); B<-c(1,0,0); C<-c(1/2,sqrt(3)/2,0); D<-c(1/2,sqrt(3)/6,sqrt(6)/3)
tetra<-rbind(A,B,C,D)

n<-3 #try also n<-20
Xp<-runif.std.tetra(n)$g

r<-1.5

IarcPEstd. tetra(Xp[1,1]1,Xp[3,1,r)
IarcPEstd.tetra(c(.4,.4,.4),c(.5,.5,.5),r)

#or try
RV<-rel.vert.tetraCC(Xp[1,],tetra)$rv
TarcPEstd.tetra(Xp[1,],Xp[3,]1,r,rv=RV)

P1<-c(.1,.1,.1)
P2<-c(.5,.5,.5)
IarcPEstd.tetra(P1,P2,r)

TarcPEstd. tri The indicator for the presence of an arc from a point to another for
Proportional Edge Proximity Catch Digraphs (PE-PCDs) - standard
equilateral triangle case

Description

Returns I(p2 is in Npg(pl,r)) for points p1 and p2 in the standard equilateral triangle, that is,
returns 1 if p2 is in Npg(pl,r), and returns O otherwise, where Npg(x,r) is the PE proximity
region for point x with expansion parameter r > 1.

PE proximity region is defined with respect to the standard equilateral triangle T, = T(v =
Lv = 2,0 = 3) = T((0,0),(1,0),(1/2,1/3/2)) and vertex regions are based on the center
M = (my, ms) in Cartesian coordinates or M = («, /3, ) in barycentric coordinates in the interior
of T,; defaultis M = (1,1, 1), i.e., the center of mass of T,. rv is the index of the vertex region p1
resides, with default=NULL.

If p1 and p2 are distinct and either of them are outside T+, it returns O, but if they are identical, then
it returns 1 regardless of their locations (i.e., it allows loops).

See also (Ceyhan (2005, 2010); Ceyhan et al. (2007)).

Usage

IarcPEstd.tri(pl, p2, r, M =c(1, 1, 1), rv = NULL)
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Arguments

pl
p2

rv

Value

179

A 2D point whose PE proximity region is constructed.

A 2D point. The function determines whether p2 is inside the PE proximity
region of p1 or not.

A positive real number which serves as the expansion parameter in PE proximity
region; must be > 1.

A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the standard equilateral triangle T;
defaultis M = (1,1, 1) i.e. the center of mass of Tt.

The index of the vertex region in 7, containing the point, either 1,2, 3 or NULL
(default is NULL).

I(p2isin Npg(pl,r)) for points p1 and p2 in the standard equilateral triangle, that is, returns 1 if
p2isin Npg(pl,r), and returns O otherwise.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E, Priebe CE, Marchette DJ (2007). “A new family of random graphs for testing spatial
segregation.” Canadian Journal of Statistics, 35(1), 27-50.

See Also

IarcPEtri, IarcPEbasic.tri, and IarcCSstd. tri

Examples

A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);

Te<-rbind(A,B,C)

n<-3

set.seed(1)

Xp<-runif.std.tri(n)$gen.points

M<-as.numeric(runif.std.tri(1)$g) #try also M<-c(.6,.2)
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IarcPEstd.tri(Xp[1,],Xp[3,]1,r=1.5,M)
IarcPEstd.tri(Xp[1,1,Xp[3,]1,r=2,M)

#or try
Rv<-rel.vert.std.triCM(Xp[1,1)$rv
IarcPEstd.tri(Xp[1,1,Xp[3,],r=2,rv=Rv)

P1<-c(.4,.2)
P2<-c(.5,.26)
r<-2

IarcPEstd.tri(P1,P2,r ,M)

TarcPEtetra The indicator for the presence of an arc from one 3D point to another
3D point for Proportional Edge Proximity Catch Digraphs (PE-PCDs)

Description

Returns I(p2 is in Npg(pl,r)) for 3D points p1 and p2, that is, returns 1 if p2 is in Npg(pl,r),
returns O otherwise, where Npg(z,r) is the PE proximity region for point  with the expansion
parameter r > 1.

PE proximity region is constructed with respect to the tetrahedron th and vertex regions are based
on the center M which is circumcenter ("CC") or center of mass ("CM") of th with default="CM". rv
is the index of the vertex region p1 resides, with default=NULL.

If p1 and p2 are distinct and either of them are outside th, it returns O, but if they are identical, then
it returns 1 regardless of their locations (i.e., it allows loops).

See also (Ceyhan (2005, 2010)).

Usage

IarcPEtetra(pl, p2, th, r, M = "CM", rv = NULL)

Arguments

pl A 3D point whose PE proximity region is constructed.

p2 A 3D point. The function determines whether p2 is inside the PE proximity
region of p1 or not.

th A 4 x 3 matrix with each row representing a vertex of the tetrahedron.

r A positive real number which serves as the expansion parameter in PE proximity
region; must be > 1.

M The center to be used in the construction of the vertex regions in the tetrahedron,
th. Currently it only takes "CC" for circumcenter and "CM" for center of mass;
default="CM".

rv Index of the M-vertex region containing the point, either 1,2,3,4 (default is

NULL).
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Value

I(p2isin Npg(pl,r)) for p1, that is, returns 1 if p2 is in Npg(pl, ), returns O otherwise

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

See Also

IarcPEstd. tetra, IarcPEtri and IarcPEint

Examples

A<-c(0,0,0); B<-c(1,0,0); C<-c(1/2,sqrt(3)/2,0); D<-c(1/2,sqrt(3)/6,sqrt(6)/3)
tetra<-rbind(A,B,C,D)
n<-3 #try also n<-20

Xp<-runif.tetra(n,tetra)s$g

M<-"CM" #try also M<-"CC"
r<-1.5

IarcPEtetra(Xp[1,1,Xp[2,],tetra,r) #uses the default M="CM"
IarcPEtetra(Xp[1,1]1,Xp[2,1], tetra,r ,M)

IarcPEtetra(c(.4,.4,.4),c(.5,.5,.5),tetra,r,M)

#or try
RV<-rel.vert.tetraCC(Xp[1,],tetra)$rv
IarcPEtetra(Xp[1,1]1,Xp[3,1,tetra,r,M,rv=RV)

P1<-c(.1,.1,.1)
P2<-c(.5,.5,.5)
IarcPEtetra(P1,P2,tetra,r ,M)
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IarcPEtri

TarcPEtri The indicator for the presence of an arc from a point to another for
Proportional Edge Proximity Catch Digraphs (PE-PCDs) - one trian-
gle case

Description

Returns I(p2 is in Npg(pl,r)) for points p1 and p2, that is, returns 1 if p2 is in Npg(pl,r), and
returns 0 otherwise, where Npg(z,r) is the PE proximity region for point 2 with the expansion

parameter r > 1.

PE proximity region is constructed with respect to the triangle tri and vertex regions are based on
the center, M = (m1, ms) in Cartesian coordinates or M = («, 3,) in barycentric coordinates in
the interior of tri or based on the circumcenter of tri; defaultis M = (1,1, 1), i.e., the center of
mass of tri. rv is the index of the vertex region p1 resides, with default=NULL.

If p1 and p2 are distinct and either of them are outside tri, it returns 0, but if they are identical,
then it returns 1 regardless of their locations (i.e., it allows loops).

See also (Ceyhan (2005); Ceyhan et al. (2006); Ceyhan (2011)).

Usage

IarcPEtri(p1, p2, tri, r, M =c(1, 1, 1), rv = NULL)

Arguments

p1
p2

tri

rv

Value

A 2D point whose PE proximity region is constructed.

A 2D point. The function determines whether p2 is inside the PE proximity
region of p1 or not.

A 3 x 2 matrix with each row representing a vertex of the triangle.

A positive real number which serves as the expansion parameter in PE proximity
region; must be > 1.

A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the triangle tri or the circumcenter
of tri which may be entered as "CC" as well; defaultis M = (1,1,1), i.e., the
center of mass of tri.

Index of the M-vertex region containing the point, either 1,2, 3 or NULL (default
is NULL).

I(p2isin Npg(pl,r)) for points p1 and p2, that is, returns 1 if p2 is in Npg(pl, r), and returns O

otherwise.

Author(s)

Elvan Ceyhan
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References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2011). “Spatial Clustering Tests Based on Domination Number of a New Random
Digraph Family.” Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

Ceyhan E, Priebe CE, Wierman JC (2006). “Relative density of the random r-factor proximity
catch digraphs for testing spatial patterns of segregation and association.” Computational Statistics
& Data Analysis, 50(8), 1925-1964.

See Also

IarcPEbasic.tri, IarcPEstd.tri, IarcAStri, and IarcCStri

Examples

A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);

M<-as.numeric(runif.tri(1,Tr)$g) #try also M<-c(1.6,1.0);
r<-1.5

n<-3
set.seed(1)
Xp<-runif.tri(n,Tr)$g

IarcPEtri(Xp[1,],Xpl[2,1,Tr,r,M)

P1<-as.numeric(runif.tri(1,Tr)$g)
P2<-as.numeric(runif.tri(1,Tr)$g)
IarcPEtri(P1,P2,Tr,r,M)

P1<-c(.4,.2)
P2<-c(1.8,.5)
IarcPEtri(P1,P2,Tr,r ,M)
IarcPEtri(P2,P1,Tr,r ,M)

M<-c(1.3,1.3)
r<-2

#or try
Rv<-rel.vert.tri(P1,Tr,M)$rv
IarcPEtri(P1,P2,Tr,r,M,Rv)
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Idom.num.up.bnd Indicator for an upper bound for the domination number by the exact
algorithm

Description

Returns 1 if the domination number is less than or equal to the prespecified value k and also the
indices (i.e., row numbers) of a dominating set of size k based on the incidence matrix Inc.Mat
of a graph or a digraph. Here the row number in the incidence matrix corresponds to the index of
the vertex (i.e., index of the data point). The function works whether loops are allowed or not (i.e.,
whether the first diagonal is all 1 or all 0). It takes a rather long time for large number of vertices
(i.e., large number of row numbers).

Usage

Idom.num.up.bnd(Inc.Mat, k)

Arguments
Inc.Mat A square matrix consisting of 0’s and 1’s which represents the incidence matrix
of a graph or digraph.
k A positive integer for the upper bound (to be checked) for the domination num-
ber.
Value

A list with two elements

dom.up.bnd The upper bound (to be checked) for the domination number. It is prespecified
as k in the function arguments.

Idom.num.up.bnd
The indicator for the upper bound for domination number of the graph or digraph
being the specified value k or not. It returns 1 if the upper bound is k, and 0
otherwise based on the incidence matrix Inc.Mat of the graph or digraph.

ind.dom.set Indices of the rows in the incidence matrix Inc.Mat that correspond to the ver-
tices in the dominating set of size k if it exists, otherwise it yields NULL.

Author(s)

Elvan Ceyhan

See Also

dom.num.exact and dom.num.greedy
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Examples

n<-10
M<-matrix(sample(c(@,1),n*2,replace=TRUE),nrow=n)
diag(M)<-1

dom. num. greedy (M)
Idom.num.up.bnd(M,2)

for (k in 1:n)
print(c(k,Idom.num.up.bnd(M,k)))

Idom.num1ASbasic.tri  The indicator for a point being a dominating point for Arc Slice Prox-
imity Catch Digraphs (AS-PCDs) - standard basic triangle case

Description

Returns I(p is a dominating point of the AS-PCD) where the vertices of the AS-PCD are the 2D data
set Xp, that is, returns 1 if p is a dominating point of AS-PCD, returns 0 otherwise. AS proximity
regions are defined with respect to the standard basic triangle, T3, ¢ is in [0,1/2], co > 0 and
(1-c1)?+c3 < 1.

Any given triangle can be mapped to the standard basic triangle by a combination of rigid body
motions (i.e., translation, rotation and reflection) and scaling, preserving uniformity of the points
in the original triangle. Hence standard basic triangle is useful for simulation studies under the
uniformity hypothesis.

Vertex regions are based on the center, M = (mq,ms) in Cartesian coordinates or M = («, 3,7)
in barycentric coordinates in the interior of the standard basic triangle T} or based on circumcenter
of Ty; default is M="CC", i.e., circumcenter of 7. Point, p, is in the vertex region of vertex rv
(default is NULL); vertices are labeled as 1,2, 3 in the order they are stacked row-wise.

ch.data.pnt is for checking whether point p is a data point in Xp or not (default is FALSE), so by
default this function checks whether the point p would be a dominating point if it actually were in
the data set.

See also (Ceyhan (2005, 2010)).

Usage
Idom.numlASbasic.tri(p, Xp, c1, c2, M = "CC", rv = NULL, ch.data.pnt = FALSE)

Arguments

p A 2D point that is to be tested for being a dominating point or not of the AS-
PCD.

Xp A set of 2D points which constitutes the vertices of the AS-PCD.
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cl, c2

rv

ch.data.pnt

Value

Idom.num1ASbasic.tri

Positive real numbers which constitute the vertex of the standard basic triangle
adjacent to the shorter edges; ¢; must be in [0,1/2], co > 0 and (1 —c;)? 4¢3 <
1.

The center of the triangle. "CC" stands for circumcenter of the triangle 7} or
a 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the triangle T3; default is M="CC" i.e.,
the circumcenter of 7.

Index of the vertex whose region contains point p, rv takes the vertex labels as
1,2, 3 as in the row order of the vertices in 7T5.

A logical argument for checking whether point p is a data point in Xp or not
(default is FALSE).

I(p is a dominating point of the AS-PCD) where the vertices of the AS-PCD are the 2D data set Xp,
that is, returns 1 if p is a dominating point, returns 0 otherwise

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010).

“Extension of One-Dimensional Proximity Regions to Higher Dimensions.”

Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012).

“An investigation of new graph invariants related to the domination number

of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),

299-334.

See Also

Idom.num1AStri and Idom.num1PEbasic.tri

Examples

cl<-.4; c2<-.6;

A<-c(0,0); B<-c(1,0); C<-c(cl1,c2);

Th<-rbind(A,B,C)
n<-10

set.seed(1)

Xp<-runif.basic.tri(n,cl1,c2)$g
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M<-as.numeric(runif.basic.tri(1,c1,c2)$g) #try also M<-c(.6,.2)
Idom.numlASbasic.tri(Xp[1,],Xp,c1,c2,M)

gam.vec<-vector()
for (i in 1:n)
{gam.vec<-c(gam.vec,Idom.numlASbasic.tri(Xp[i,],Xp,c1,c2,M))}

ind.gam1<-which(gam.vec==1)
ind.gami

#or try
Rv<-rel.vert.basic.triCC(Xp[1,],c1,c2)$rv
Idom.numlASbasic.tri(Xp[1,],Xp,c1,c2,M,Rv)

Idom.numlASbasic.tri(c(.2,.4),Xp,c1,c2,M)
Idom.numlASbasic.tri(c(.2,.4),c(.2,.4),c1,c2,M)

Xp2<-rbind(Xp,c(.2,.4))
Idom.numlASbasic.tri(Xp[1,],Xp2,c1,c2,M)

CC<-circumcenter.basic.tri(c1,c2) #the circumcenter

if (dimension(M)==3) {M<-bary2cart(M,Tb)}
#need to run this when M is given in barycentric coordinates

if (isTRUE(all.equal(M,CC)) || identical(M,"CC"))
{cent<-CC

D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
Ds<-rbind(D1,D2,D3)

cent.name<-"CC"

} else

{cent<-M

cent.name<-"M"
Ds<-prj.cent2edges.basic.tri(c1,c2,M)

3

Xlim<-range(Tb[,11,Xp[,1]1)
Ylim<-range(Tb[,2]1,Xp[,21)
xd<-X1im[2]-X1im[1]
yd<-Ylim[2]-Y1lim[1]

plot(A,pch="." xlab="",6ylab="",
x1im=X1lim+xd*c(-.05,.05),ylim=Y1lim+ydxc(-.05,.05))
polygon(Tb)

L<-rbind(cent,cent,cent); R<-Ds
segments(L[,1], L[,21, R[,1], RL,2], 1lty=2)
points(Xp)
points(rbind(Xp[ind.gam1,]),pch=4,co0l=2)

txt<-rbind(Tb, cent,Ds)
xc<-txt[,1]+c(-.03,.03,.02,.06,.06,-0.05,.01)
ye<-txt[,2]+c(.02,.02,.03,.0,.03,.03,-.03)
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txt.str<-c("A","B","C",cent.name,”D1","D2","D3")
text(xc,yc, txt.str)

Idom.numlASbasic.tri(c(.4,.2),Xp,c1,c2,M)
Idom.numlASbasic.tri(c(.5,.11),Xp,c1,c2,M)

Idom.numlASbasic.tri(c(.5,.11),Xp,c1,c2,M,ch.data.pnt=FALSE)
#gives an error message if ch.data.pnt=TRUE since the point is not in the standard basic triangle

Idom.numTAStri The indicator for a point being a dominating point for Arc Slice Prox-
imity Catch Digraphs (AS-PCDs) - one triangle case

Description

Returns I(p is a dominating point of the AS-PCD whose vertices are the 2D data set Xp), that is,
returns 1 if p is a dominating point of AS-PCD, returns 0 otherwise. Point, p, is in the region of
vertex rv (default is NULL); vertices are labeled as 1,2, 3 in the order they are stacked row-wise in
tri.

AS proximity regions are defined with respect to the triangle tri and vertex regions are based on
the center, M = (m1, mg) in Cartesian coordinates or M = («, 3, ) in barycentric coordinates in
the interior of the triangle tri or based on circumcenter of tri; defaultis M="CC", i.e., circumcenter
of tri.

ch.data.pnt is for checking whether point p is a data point in Xp or not (default is FALSE), so by
default this function checks whether the point p would be a dominating point if it actually were in
the data set.

See also (Ceyhan (2005, 2010)).

Usage
Idom.numlAStri(p, Xp, tri, M = "CC", rv = NULL, ch.data.pnt = FALSE)

Arguments
p A 2D point that is to be tested for being a dominating point or not of the AS-
PCD.
Xp A set of 2D points which constitutes the vertices of the AS-PCD.
tri Three 2D points, stacked row-wise, each row representing a vertex of the trian-
gle.
M The center of the triangle. "CC" stands for circumcenter of the triangle tri or

a 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the triangle T3; default is M="CC" i.e.,
the circumcenter of tri.
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rv Index of the vertex whose region contains point p, rv takes the vertex labels as
1,2, 3 as in the row order of the vertices in tri.

ch.data.pnt A logical argument for checking whether point p is a data point in Xp or not
(default is FALSE).

Value

I(p is a dominating point of the AS-PCD whose vertices are the 2D data set Xp), that is, returns 1 if
p is a dominating point of the AS-PCD, returns 0 otherwise

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number
of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

See Also

Idom.numlASbasic.tri

Examples

A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
n<-10

set.seed(1)
Xp<-runif.tri(n,Tr)$g

M<-as.numeric(runif.tri(1,Tr)$g) #try also M<-c(1.6,1.2)

Idom.numl1AStri(Xp[1,],Xp,Tr,M)
Idom.numlAStri(Xp[1,]1,Xp[1,]1,Tr,M)
Idom.numl1AStri(c(1.5,1.5),c(1.6,1),Tr,M)
Idom.numlAStri(c(1.6,1),c(1.5,1.5),Tr ,M)

gam.vec<-vector()
for (i in 1:n)
{gam.vec<-c(gam.vec,Idom.num1AStri(Xp[i,],Xp,Tr,M))}
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ind.gaml<-which(gam.vec==1)
ind.gamil

#or try
Rv<-rel.vert.triCC(Xp[1,]1,Tr)$rv
Idom.numlAStri(Xp[1,]1,Xp,Tr,M,Rv)

Idom.numlAStri(c(.2,.4),Xp,Tr ,M)
Idom.numl1AStri(c(.2,.4),c(.2,.4),Tr,M)

Xp2<-rbind(Xp,c(.2,.4))
Idom.numlAStri(Xp[1,]1,Xp2,Tr ,M)

if (dimension(M)==3) {M<-bary2cart(M,Tr)}
#need to run this when M is given in barycentric coordinates

CC<-circumcenter.tri(Tr) #the circumcenter

if (isTRUE(all.equal(M,CC)) || identical(M,"”CC"))
{cent<-CC

D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
Ds<-rbind(D1,D2,D3)

cent.name<-"CC"

} else

{cent<-M

cent.name<-"M"

Ds<-prj.cent2edges(Tr,M)

3

Xlim<-range(Tr[,1]1,Xp[,11)
Ylim<-range(Tr[,21,Xp[,21)
xd<-X1im[2]-X1im[1]
yd<-Y1im[2]-Ylim[1]

plot(A,pch=".",x1lab="",ylab="" xlim=Xlim+xd*c(-.05, .05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)

points(Xp)

L<-rbind(cent,cent,cent); R<-Ds

segments(L[,1], L[,2], R[,1], R[,2]1, lty=2)
points(rbind(Xp[ind.gam1,1),pch=4,col=2)

txt<-rbind(Tr,cent,Ds)

xc<-txt[,1]

ye<-txt[,2]
txt.str<-c("A","B","C",cent.name,”D1","D2","D3")
text(xc,yc, txt.str)
Idom.numlAStri(c(1.5,1.1),Xp,Tr,M)
Idom.numlAStri(c(1.5,1.1),Xp,Tr,M)

Idom.numlAStri(c(1.5,1.1),Xp,Tr,M,ch.data.pnt=FALSE)
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#gives an error message if ch.data.pnt=TRUE since point p is not a data point in Xp

Idom.num1CS.Te.onesixth

The indicator for a point being a dominating point for Central Sim-
ilarity Proximity Catch Digraphs (CS-PCDs) - first one-sixth of the
standard equilateral triangle case

Description

Returns I(p is a dominating point of the 2D data set Xp of CS-PCD) in the standard equilateral
triangle T, = T(A, B,C) = T((0,0), (1,0), (1/2,4/3/2)), that is, returns 1 if p is a dominating
point of CS-PCD, returns 0 otherwise.

Point, p, must lie in the first one-sixth of T, which is the triangle with vertices T'(A, D3, CM) =
T((0,0), (1/2,0), CM).

CS proximity region is constructed with respect to T, with expansion parameter ¢t = 1.

ch.data.pnt is for checking whether point p is a data point in Xp or not (default is FALSE), so by
default this function checks whether the point p would be a dominating point if it actually were in
the data set.

See also (Ceyhan (2005)).

Usage

Idom.num1CS.Te.onesixth(p, Xp, ch.data.pnt = FALSE)

Arguments
p A 2D point that is to be tested for being a dominating point or not of the CS-
PCD.
Xp A set of 2D points which constitutes the vertices of the CS-PCD.
ch.data.pnt A logical argument for checking whether point p is a data point in Xp or not
(default is FALSE).
Value

I(p is a dominating point of the CS-PCD) where the vertices of the CS-PCD are the 2D data set Xp,
that is, returns 1 if p is a dominating point, returns 0 otherwise

Author(s)

Elvan Ceyhan
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References

Idom.num1CSint

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

See Also

Idom.num1CSstd.tri and Idom.num1CSt1std. tri

Idom.num1CSint

The indicator for a point being a dominating point for Central Simi-
larity Proximity Catch Digraphs (CS-PCDs) for an interval

Description

Returns I (p is a dominating point of CS-PCD) where the vertices of the CS-PCD are the 1D data

set Xp).

CS proximity region is defined with respect to the interval int with an expansion parameter, ¢ > 0,
and a centrality parameter, ¢ € (0, 1), so arcs may exist for Xp points inside the interval int= (a, b).

Vertex regions are based on the center associated with the centrality parameter ¢ € (0, 1). rv is the
index of the vertex region p resides, with default=NULL.

ch.data.pnt is for checking whether point p is a data point in Xp or not (default is FALSE), so by
default this function checks whether the point p would be a dominating point if it actually were in

the data set.

Usage

Idom.num1CSint(p, Xp, int, t, ¢ = 0.5, rv = NULL, ch.data.pnt = FALSE)

Arguments

p

Xp

int

rv

ch.data.pnt

A 1D point that is to be tested for being a dominating point or not of the CS-
PCD.

A set of 1D points which constitutes the vertices of the CS-PCD.
A vector of two real numbers representing an interval.

A positive real number which serves as the expansion parameter in CS proximity
region.

A positive real number in (0, 1) parameterizing the center inside int= (a, b)
with the default c=. 5. For the interval, int= (a, b), the parameterized center is
M.=a+c(b—a).

Index of the vertex region in which the point resides, either 1,2 or NULL (default
is NULL).

A logical argument for checking whether point p is a data point in Xp or not
(default is FALSE).
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Value

I(p is a dominating point of CS-PCD) where the vertices of the CS-PCD are the 1D data set Xp),
that is, returns 1 if p is a dominating point, returns 0 otherwise

Author(s)

Elvan Ceyhan

See Also

Idom.numl1PEint

Examples

t<-2
c<-.4
a<-0; b<-10; int<-c(a,b)

Mc<-centerMc(int,c)
n<-10

set.seed(1)
Xp<-runif(n,a,b)

Idom.num1CSint (Xp[51,Xp,int,t,c)

Idom.num1CSint(2,Xp,int,t,c,ch.data.pnt = FALSE)
#gives an error if ch.data.pnt = TRUE since p is not a data point in Xp

gam.vec<-vector()
for (i in 1:n)
{gam.vec<-c(gam.vec,Idom.num1CSint(Xp[i],Xp,int,t,c))}

ind.gaml1<-which(gam.vec==1)
ind.gaml

domset<-Xp[ind.gam1]
if (length(ind.gam1)==0)
{domset<-NA}

#or try
Rv<-rel.vert.mid.int(Xp[5]1,int,c)$rv
Idom.num1CSint(Xp[5]1,Xp,int,t,c,Rv)

Xlim<-range(a,b,Xp)
xd<-X1im[2]-X1im[1]

plot(cbind(a,),xlab="",pch=".",x1lim=X1im+xd*c(-.05,.05))
abline(h=0)

abline(v=c(a,b,Mc),col=c(1,1,2),1ty=2)
points(cbind(Xp,@))

points(cbind(domset,@),pch=4,col=2)
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text(cbind(c(a,b,Mc),-0.1),c("a","b","Mc"))
Idom.num1CSint (Xp[5]1,Xp,int,t,c)
n<-10

Xp2<-runif(n,atb,b+10)
Idom.num1CSint(5,Xp2,int,t,c)

Idom.numiCSstd. tri The indicator for a point being a dominating point for Central Sim-
ilarity Proximity Catch Digraphs (CS-PCDs) - standard equilateral
triangle case

Description

Returns I(p is a dominating point of the CS-PCD) where the vertices of the CS-PCD are the 2D
data set Xp in the standard equilateral triangle 7, = T'(A, B, C) = T((0,0), (1,0), (1/2,/3/2)),
that is, returns 1 if p is a dominating point of CS-PCD, returns 0 otherwise.

CS proximity region is constructed with respect to 7, with expansion parameter ¢ > 0 and edge
regions are based on center of mass CM = (1/2,/3/6).

ch.data.pnt is for checking whether point p is a data point in Xp or not (default is FALSE), so by
default this function checks whether the point p would be a dominating point if it actually were in
the data set.

See also (Ceyhan (2005, 2010)).

Usage

Idom.num1CSstd.tri(p, Xp, t, ch.data.pnt = FALSE)

Arguments
p A 2D point that is to be tested for being a dominating point or not of the CS-
PCD.
Xp A set of 2D points which constitutes the vertices of the CS-PCD.
t A positive real number which serves as the expansion parameter in CS proximity
region.
ch.data.pnt A logical argument for checking whether point p is a data point in Xp or not
(default is FALSE).
Value

I(p is a dominating point of the CS-PCD) where the vertices of the CS-PCD are the 2D data set Xp,
that is, returns 1 if p is a dominating point, returns 0 otherwise
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Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number
of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

See Also

Idom.num1CStistd.tri

Examples

A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
CM<-(A+B+C)/3

Te<-rbind(A,B,C);

t<-1.5

n<-10 #try also n<-20

set.seed(1)
Xp<-runif.std.tri(n)$gen.points

Idom.numl1CSstd.tri(Xp[3,1,Xp,t)
Idom.numl1CSstd.tri(c(1,2),c(1,2),t)
Idom.num1CSstd.tri(c(1,2),c(1,2),t,ch.data.pnt = TRUE)

gam.vec<-vector()
for (i in 1:n)
{gam.vec<-c(gam.vec,Idom.num1CSstd.tri(Xp[i,],Xp,t))}

ind.gam1<-which(gam.vec==1)
ind.gamil

Xlim<-range(Te[,1],Xp[,1]1)
Ylim<-range(Te[,21,Xp[,2]1)
xd<-X1im[2]-X1im[1]
yd<-Ylim[2]-Y1im[1]

plot(Te,pch=".",xlab="",ylab="",6x1lim=X1lim+xd*c(-.05,.05),ylim=Y1lim+ydxc(-.05,.05))
polygon(Te)
points(Xp)
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L<-Te; R<-matrix(rep(CM,3),ncol=2,byrow=TRUE);

segments(L[,1], L[,2], RL[,1], R[,2]1, lty=2)
points(rbind(Xp[ind.gam1,]),pch=4,col=2)

#rbind is to insert the points correctly if there is only one dominating point

txt<-rbind(Te,CM)
xc<-txt[,1]+c(-.02,.02,.01,.05)
ye<-txt[,2]+c(.02,.02,.03,.02)
txt.str<-c("A","B","C","CM")
text(xc,yc, txt.str)

Idom.numl1CSstd.tri(c(1,2),Xp,t,ch.data.pnt = FALSE)
#gives an error if ch.data.pnt = TRUE message since p is not a data point

Idom.num1CStistd.tri  The indicator for a point being a dominating point for Central Sim-
ilarity Proximity Catch Digraphs (CS-PCDs) - standard equilateral
triangle case witht = 1

Description

Returns [(p is a dominating point of the CS-PCD) where the vertices of the CS-PCD are the 2D
data set Xp in the standard equilateral triangle T, = T'(A, B, C) = T((0,0), (1,0), (1/2,/3/2)),
that is, returns 1 if p is a dominating point of CS-PCD, returns O otherwise.

Point, p, is in the edge region of edge re (default is NULL); vertices are labeled as 1, 2, 3 in the order

they are stacked row-wise in T, and the opposite edges are labeled with label of the vertices (that
is, edge numbering is 1, 2, and 3 for edges AB, BC, and AC).

CS proximity region is constructed with respect to 7, with expansion parameter ¢ = 1 and edge
regions are based on center of mass CM = (1/2,/3/6).

ch.data.pnt is for checking whether point p is a data point in Xp or not (default is FALSE), so by
default this function checks whether the point p would be a dominating point if it actually were in
the data set.

See also (Ceyhan (2005, 2010)).

Usage

Idom.num1CSt1std.tri(p, Xp, re = NULL, ch.data.pnt = FALSE)

Arguments
p A 2D point that is to be tested for being a dominating point or not of the CS-
PCD.
Xp A set of 2D points which constitutes the vertices of the CS-PCD.
re The index of the edge region in 7, containing the point, either 1,2,3 or NULL

(default is NULL).
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ch.data.pnt A logical argument for checking whether point p is a data point in Xp or not
(default is FALSE).
Value
I(p is a dominating point of the CS-PCD) where the vertices of the CS-PCD are the 2D data set Xp,
that is, returns 1 if p is a dominating point, returns 0 otherwise.
Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number
of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

See Also

Idom.num1CSstd. tri
Examples

A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
CM<-(A+B+C)/3

Te<-rbind(A,B,C);

n<-10

set.seed(1)
Xp<-runif.std.tri(n)$gen.points

Idom.num1CStistd. tri(Xp[3,],Xp)

Idom.num1CSt1std.tri(c(1,2),c(1,2))
Idom.num1CStistd.tri(c(1,2),c(1,2),ch.data.pnt = TRUE)

gam.vec<-vector()
for (i in 1:n)
{gam.vec<-c(gam.vec,Idom.num1CStIstd.tri(Xp[i,1,Xp))}

ind.gaml<-which(gam.vec==1)
ind.gaml
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Xlim<-range(Te[,11,Xp[,1]1)
Ylim<-range(Te[,21,Xp[,2]1)
xd<-X1im[2]-X1im[1]
yd<-Ylim[2]-Y1im[1]

plot(Te,pch=".",xlab="",ylab="",6x1lim=X1lim+xdxc(-.05,.05),ylim=Y1lim+ydxc(-.05,.05))
polygon(Te)

points(Xp)

L<-Te; R<-matrix(rep(CM,3),ncol=2,byrow=TRUE);

segments(L[,1], L[,2], RC,1], R[,2]1, lty=2)
points(rbind(Xp[ind.gam1,]),pch=4,col=2)

#rbind is to insert the points correctly if there is only one dominating point

txt<-rbind(Te,CM)
xc<-txt[,1]+c(-.02,.02,.01,.05)
ye<-txt[,2]+c(.02,.02,.03,.02)
txt.str<-c("A"”,"B","C","CM")
text(xc,yc, txt.str)

Idom.numiPEbasic.tri  The indicator for a point being a dominating point or not for Propor-
tional Edge Proximity Catch Digraphs (PE-PCDs) - standard basic
triangle case

Description

Returns /(p is a dominating point of the PE-PCD) where the vertices of the PE-PCD are the 2D
data set Xp for data in the standard basic triangle T, = T'((0,0), (1,0), (c1, ¢2)), that is, returns 1 if
p is a dominating point of PE-PCD, and returns 0O otherwise.

PE proximity regions are defined with respect to the standard basic triangle 7} In the standard basic
triangle, Ty, ¢y isin [0,1/2], co > 0and (1 —¢1)? + 2 < 1.

Any given triangle can be mapped to the standard basic triangle by a combination of rigid body
motions (i.e., translation, rotation and reflection) and scaling, preserving uniformity of the points
in the original triangle. Hence, standard basic triangle is useful for simulation studies under the
uniformity hypothesis.

Vertex regions are based on center M = (mq,ms) in Cartesian coordinates or M = («, 5,7) in
barycentric coordinates in the interior of a standard basic triangle to the edges on the extension of
the lines joining M to the vertices or based on the circumcenter of Tj; defaultis M = (1,1, 1), i.e.,
the center of mass of T3. Point, p, is in the vertex region of vertex rv (default is NULL); vertices are
labeled as 1, 2, 3 in the order they are stacked row-wise.

ch.data.pnt is for checking whether point p is a data point in Xp or not (default is FALSE), so by
default this function checks whether the point p would be a dominating point if it actually were in
the data set.

See also (Ceyhan (2005, 2011)).
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Usage
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Idom.numi1PEbasic.tri(

p,
Xp,
r,
c1,
c2,

M=c(, 1, 1),

rv = NULL,
ch.data.pnt

Arguments

p

Xp
-

cl, c2

rv

ch.data.pnt

Value

FALSE

A 2D point that is to be tested for being a dominating point or not of the PE-
PCD.

A set of 2D points which constitutes the vertices of the PE-PCD.

A positive real number which serves as the expansion parameter in PE proximity
region; must be > 1.

Positive real numbers which constitute the vertex of the standard basic triangle
adjacent to the shorter edges; c; mustbe in [0,1/2], c; > 0and (1—¢;)?+¢3 <
1.

A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the standard basic triangle 73 or the
circumcenter of 73 which may be entered as "CC" as well; default is M =
(1,1,1), i.e., the center of mass of T5.

Index of the vertex whose region contains point p, rv takes the vertex labels as
1,2, 3 as in the row order of the vertices in T5.

A logical argument for checking whether point p is a data point in Xp or not
(default is FALSE).

I(p is a dominating point of the PE-PCD) where the vertices of the PE-PCD are the 2D data set Xp,
that is, returns 1 if p is a dominating point, and returns O otherwise.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2011). “Spatial Clustering Tests Based on Domination Number of a New Random
Digraph Family.” Communications in Statistics - Theory and Methods, 40(8), 1363-1395.
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See Also

Idom.numlASbasic. tri and Idom.numlAStri

Examples

cl<-.4; c2<-.6;

A<-c(0,0); B<-c(1,0); C<-c(cl,c2);
Th<-rbind(A,B,C)

n<-10 #try also n<-20

set.seed(1)
Xp<-runif.basic.tri(n,cl1,c2)%g

M<-as.numeric(runif.basic.tri(1,c1,c2)$g) #try also M<-c(.6,.3)
r<-2

P<-c(.4,.2)
Idom.numl1PEbasic.tri(P,Xp,r,c1,c2,M)
Idom.numl1PEbasic.tri(Xp[1,],Xp,r,c1,c2,M)

Idom.numlPEbasic.tri(c(1,1),Xp,r,c1,c2,M,ch.data.pnt = FALSE)
#gives an error message if ch.data.pnt = TRUE since point p=c(1,1) is not a data point in Xp

#or try
Rv<-rel.vert.basic.tri(Xp[1,]1,c1,c2,M)$rv
Idom.numl1PEbasic.tri(Xp[1,],Xp,r,c1,c2,M,Rv)

gam.vec<-vector()
for (i in 1:n)
{gam.vec<-c(gam.vec,Idom.numlPEbasic.tri(Xp[i,],Xp,r,c1,c2,M))}

ind.gam1<-which(gam.vec==1)
ind.gaml

Xlim<-range(Tb[,1],Xp[,1]1)
Ylim<-range(Tb[,21,Xp[,2]1)
xd<-X1im[2]-X1im[1]
yd<-Ylim[2]-Y1im[1]

if (dimension(M)==3) {M<-bary2cart(M,Tb)}
#need to run this when M is given in barycentric coordinates

if (identical(M,circumcenter.tri(Th)))

{
plot(Tb,pch="." ,asp=1,xlab="",ylab="", axes=TRUE,
xlim=X1lim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tb)

points(Xp,pch=1,col=1)
Ds<-rbind((B+C)/2, (A+C)/2, (A+B)/2)
} else
{plot(Tb,pch=".",xlab="" 6ylab="" axes=TRUE,
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x1lim=X1lim+xd*c(-.05,.05),ylim=Ylim+ydxc(-.05,.05))
polygon(Tb)
points(Xp,pch=1,col=1)
Ds<-prj.cent2edges.basic.tri(c1,c2,M)}
L<-rbind(M,M,M); R<-Ds
segments(L[,1], L[,2]1, RL,11, RL,2], 1ty=2)
points(rbind(Xp[ind.gam1,]),pch=4,col=2)

txt<-rbind(Tb,M,Ds)
xc<-txt[,1]+c(-.02,.02,.02,-.02,.03,-.03,.01)
ye<-txt[,2]+c(.02,.02,.02,-.02,.02,.02,-.03)
txt.str<-c("A"”,"B","C","M","D1","D2","D3")
text(xc,yc, txt.str)

Idom.numlPEbasic.tri(c(.2,.1),Xp,r,c1,c2,M,ch.data.pnt=FALSE)
#gives an error message if ch.data.pnt=TRUE since point p is not a data point in Xp

Idom.num1PEint The indicator for a point being a dominating point for Proportional
Edge Proximity Catch Digraphs (PE-PCDs) for an interval

Description
Returns I(p is a dominating point of the PE-PCD) where the vertices of the PE-PCD are the 1D
data set Xp.

PE proximity region is defined with respect to the interval int with an expansion parameter, r > 1,
and a centrality parameter, ¢ € (0, 1), so arcs may exist for Xp points inside the interval int= (a, b).

Vertex regions are based on the center associated with the centrality parameter ¢ € (0, 1). rv is the
index of the vertex region p resides, with default=NULL.

ch.data.pnt is for checking whether point p is a data point in Xp or not (default is FALSE), so by
default this function checks whether the point p would be a dominating point if it actually were in
the data set.

Usage
Idom.numl1PEint(p, Xp, int, r, ¢ = 0.5, rv = NULL, ch.data.pnt = FALSE)

Arguments
p A 1D point that is to be tested for being a dominating point or not of the PE-
PCD.
Xp A set of 1D points which constitutes the vertices of the PE-PCD.
int A vector of two real numbers representing an interval.
r A positive real number which serves as the expansion parameter in PE proximity

region; must be > 1.
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c A positive real number in (0, 1) parameterizing the center inside int= (a,b).
For the interval, int= (a, b), the parameterized center is M. = a + ¢(b — a);
default c=.5.

rv Index of the vertex region in which the point resides, either 1,2 or NULL (default
is NULL).

ch.data.pnt A logical argument for checking whether point p is a data point in Xp or not

(default is FALSE).

Value

I(p is a dominating point of the PE-PCD) where the vertices of the PE-PCD are the 1D data set Xp,
that is, returns 1 if p is a dominating point, returns 0 otherwise

Author(s)

Elvan Ceyhan

See Also

Idom.numl1PEtri

Examples
r<-2
c<-.4
a<-0; b<-10
int=c(a,b)

Mc<-centerMc(int,c)
n<-10

set.seed(1)
Xp<-runif(n,a,b)

Idom.numlPEint(Xp[5],Xp,int,r,c)

gam.vec<-vector()
for (i in 1:n)
{gam.vec<-c(gam.vec,Idom.num1PEint(Xp[i],Xp,int,r,c))}

ind.gam1<-which(gam.vec==1)
ind.gaml

domset<-Xp[ind.gam1]
if (length(ind.gam1)==0)
{domset<-NA}

#or try
Rv<-rel.vert.mid.int(Xp[5],int,c)$rv
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Idom.num1PEint (Xp[5],Xp,int,r,c,Rv)

Xlim<-range(a,b, Xp)
xd<-X1im[2]-X1im[1]

plot(cbind(a,),xlab="",pch=".", x1lim=X1im+xd*c(-.05, .05))
abline(h=0)

points(cbind(Xp,@))
abline(v=c(a,b,Mc),col=c(1,1,2),1ty=2)
points(cbind(domset,®@),pch=4,col=2)
text(cbind(c(a,b,Mc),-0.1),c("a","b","Mc"))

Idom.num1PEint(2,Xp,int,r,c,ch.data.pnt = FALSE)
#gives an error message if ch.data.pnt = TRUE since point p is not a data point in Xp

Idom.numiPEstd.tetra The indicator for a 3D point being a dominating point for Propor-
tional Edge Proximity Catch Digraphs (PE-PCDs) - standard regular
tetrahedron case

Description

Returns I (p is a dominating point of the PE-PCD) where the vertices of the PE-PCD are the 3D data
set Xp in the standard regular tetrahedron 73, = 7'((0, 0,0), (1,0,0), (1/2,4/3/2,0), (1/2,/3/6,+/6/3)),
that is, returns 1 if p is a dominating point of PE-PCD, returns 0 otherwise.

Point, p, is in the vertex region of vertex rv (default is NULL); vertices are labeled as 1,2, 3,4 in the
order they are stacked row-wise in 77,.

PE proximity region is constructed with respect to the tetrahedron 7j, with expansion parameter
r > 1 and vertex regions are based on center of mass C'M (equivalent to circumcenter in this case).

ch.data.pnt is for checking whether point p is a data point in Xp or not (default is FALSE), so by
default this function checks whether the point p would be a dominating point if it actually were in
the data set.

See also (Ceyhan (2005, 2010)).

Usage

Idom.num1PEstd.tetra(p, Xp, r, rv = NULL, ch.data.pnt = FALSE)

Arguments
p A 3D point that is to be tested for being a dominating point or not of the PE-
PCD.
Xp A set of 3D points which constitutes the vertices of the PE-PCD.
r A positive real number which serves as the expansion parameter in PE proximity

region; must be > 1.



204 Idom.num1PEstd.tetra

rv Index of the vertex whose region contains point p, rv takes the vertex labels
as 1,2,3,4 as in the row order of the vertices in standard regular tetrahedron,
default is NULL.

ch.data.pnt A logical argument for checking whether point p is a data point in Xp or not
(default is FALSE).
Value
I(p is a dominating point of the PE-PCD) where the vertices of the PE-PCD are the 3D data set Xp,
that is, returns 1 if p is a dominating point, returns 0 otherwise
Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

See Also

Idom.numl1PEtetra, Idom.num1PEtri and Idom.numl1PEbasic. tri

Examples

set.seed(123)
A<-c(0,0,0); B<-c(1,0,0); C<-c(1/2,sqrt(3)/2,0); D<-c(1/2,sqrt(3)/6,sqrt(6)/3)
tetra<-rbind(A,B,C,D)

n<-5 #try also n<-20
Xp<-runif.std.tetra(n)$g #try also Xp<-cbind(runif(n),runif(n),runif(n))
r<-1.5

P<-c(.4,.1,.2)
Idom.numl1PEstd.tetra(Xp[1,],Xp,r)
Idom.numl1PEstd. tetra(P,Xp,r)

Idom.numl1PEstd.tetra(Xp[1,],Xp,r)
Idom.numl1PEstd.tetra(Xp[1,]1,Xpl1,1,r)

#or try
RV<-rel.vert.tetraCC(Xp[1,],tetra)$rv
Idom.numl1PEstd.tetra(Xp[1,],Xp,r,rv=RV)

Idom.numl1PEstd. tetra(c(-1,-1,-1),Xp,r)
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Idom.num1PEstd.tetra(c(-1,-1,-1),c(-1,-1,-1),r)

gam.vec<-vector()
for (i in 1:n)
{gam.vec<-c(gam.vec,Idom.numlPEstd.tetra(Xp[i,1,Xp,r))}

ind.gam1<-which(gam.vec==1)
ind.gaml
gl.pts<-Xp[ind.gam1l,]

Xlim<-range(tetral,11,Xp[,1]1)
Ylim<-range(tetral,2]1,Xp[,2])
Zlim<-range(tetral,3],Xp[,3])
xd<-X1im[2]-X1im[1]
yd<-Ylim[2]-Y1lim[1]
zd<-Z1lim[2]1-Z1im[1]

plot3D::scatter3D(Xp[,1]1,Xp[,21,XpL,3], phi =0,theta=40, bty = "g",
x1lim=X1im+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05), zlim=Zlim+zd*c(-.05,.05),
pch = 20, cex = 1, ticktype = "detailed")
#add the vertices of the tetrahedron
plot3D::points3D(tetral,1],tetral,2],tetral,3], add=TRUE)
L<-rbind(A,A,A,B,B,C); R<-rbind(B,C,D,C,D,D)
plot3D::segments3D(L[,1], L[,2], L[,3], RC,11, RC,21,RE,3], add=TRUE,1lwd=2)
if (length(gl.pts)!=0)
{
if (length(gl.pts)==3) gl.pts<-matrix(gl.pts,nrow=1)
plot3D::points3D(gl.pts[,1]1,g1.pts[,2],g1.pts[,3], pch=4,col="red"”, add=TRUE)}

plot3D::text3D(tetral,1],tetral,2],tetral,3], labels=c("A","B","C","D"), add=TRUE)

CM<-apply(tetra,2,mean)

D1<-(A+B)/2; D2<-(A+C)/2; D3<-(A+D)/2; D4<-(B+C)/2; D5<-(B+D)/2; D6<-(C+D)/2;
L<-rbind(D1,D2,D3,D4,D5,D6); R<-matrix(rep(CM,6),ncol=3,byrow=TRUE)
plot3D::segments3D(L[,1]1, L[,2], L[,3], R[,1]1, RL,21,R[,3]1, add=TRUE,1ty=2)

P<-c(.4,.1,.2)
Idom.numl1PEstd. tetra(P,Xp,r)

Idom.numl1PEstd.tetra(c(-1,-1,-1),Xp,r,ch.data.pnt = FALSE)
#gives an error message if ch.data.pnt = TRUE

Idom.numiPEtetra The indicator for a 3D point being a dominating point for Proportional
Edge Proximity Catch Digraphs (PE-PCDs) - one tetrahedron case
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Description

Returns /(p is a dominating point of the PE-PCD) where the vertices of the PE-PCD are the 2D
data set Xp in the tetrahedron th, that is, returns 1 if p is a dominating point of PE-PCD, returns 0
otherwise.

Point, p, is in the vertex region of vertex rv (default is NULL); vertices are labeled as 1,2, 3,4 in the
order they are stacked row-wise in th.

PE proximity region is constructed with respect to the tetrahedron th with expansion parameter
r > 1 and vertex regions are based on center of mass (M="CM") or circumcenter (M="CC") only. and
vertex regions are based on center of mass C'M (equivalent to circumcenter in this case).

ch.data.pnt is for checking whether point p is a data point in Xp or not (default is FALSE), so by
default this function checks whether the point p would be a dominating point if it actually were in
the data set.

See also (Ceyhan (2005, 2010)).

Usage

Idom.numlPEtetra(p, Xp, th, r, M = "CM", rv = NULL, ch.data.pnt = FALSE)

Arguments

p A 3D point that is to be tested for being a dominating point or not of the PE-
PCD.

Xp A set of 3D points which constitutes the vertices of the PE-PCD.

th A 4 x 3 matrix with each row representing a vertex of the tetrahedron.

r A positive real number which serves as the expansion parameter in PE proximity
region; must be > 1.

M The center to be used in the construction of the vertex regions in the tetrahedron,
th. Currently it only takes "CC" for circumcenter and "CM" for center of mass;
default="CM".

rv Index of the vertex whose region contains point p, rv takes the vertex labels as
1,2,3,4 as in the row order of the vertices in standard tetrahedron, default is
NULL.

ch.data.pnt A logical argument for checking whether point p is a data point in Xp or not
(default is FALSE).

Value

I(p is a dominating point of the PE-PCD) where the vertices of the PE-PCD are the 2D data set Xp,
that is, returns 1 if p is a dominating point, returns 0 otherwise

Author(s)

Elvan Ceyhan
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References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

See Also

Idom.numl1PEstd. tetra, Idom.num1PEtri and Idom.num1PEbasic.tri

Examples

A<-c(0,0,0); B<-c(1,0,0); C<-c(1/2,sqrt(3)/2,0); D<-c(1/2,sqrt(3)/6,sqrt(6)/3)
tetra<-rbind(A,B,C,D)
n<-5 #try also n<-20

Xp<-runif.tetra(n,tetra)$g #try also Xp<-cbind(runif(n),runif(n),runif(n))

M<-"CM"; cent<-apply(tetra,2,mean) #center of mass
#try also M<-"CC"; cent<-circumcenter.tetra(tetra) #circumcenter

r<-2

P<-c(.4,.1,.2)
Idom.num1PEtetra(Xpl[1,], Xp, tetra,r,M)
Idom.numl1PEtetra(P,Xp, tetra,r,M)

#or try
RV<-rel.vert.tetraCC(Xp[1,],tetra)$rv
Idom.numlPEtetra(Xp[1,],Xp, tetra,r,M, rv=RV)

Idom.numlPEtetra(c(-1,-1,-1),Xp, tetra,r,M)
Idom.numlPEtetra(c(-1,-1,-1),c(-1,-1,-1),tetra,r ,M)

gam.vec<-vector()
for (i in 1:n)
{gam.vec<-c(gam.vec,Idom.numiPEtetra(Xp[i,],Xp, tetra,r,M))}

ind.gaml<-which(gam.vec==1)
ind.gaml
gl.pts<-Xp[ind.gaml,]

Xlim<-range(tetral,1],Xp[,1],cent[1])
Ylim<-range(tetra[l,2],Xp[,2],cent[2])
Zlim<-range(tetral,3],Xp[,3],cent[3])
xd<-X1im[2]-X1im[1]
yd<-Ylim[2]-Y1lim[1]
zd<-Z1lim[2]-Z1im[1]
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plot3D::scatter3D(Xp[,1]1,Xp[,2],Xp[,3], phi =0, theta=40, bty = "g",

x1lim=X1lim+xd*c(-.05,.05),ylim=Y1lim+yd*xc(-.05,.05), zlim=Zlim+zd*c(-.05,.05),
pch = 20, cex = 1, ticktype = "detailed")

#add the vertices of the tetrahedron

plot3D::points3D(tetral,1],tetral,2],tetral,3], add=TRUE)

L<-rbind(A,A,A,B,B,C); R<-rbind(B,C,D,C,D,D)

plot3D::segments3D(L[,1]1, L[,2], L[,3], R[,1]1, RL,21,R[,3], add=TRUE,1lwd=2)

if (length(gl.pts)!=0)

{plot3D::points3D(gl.pts[,1],g1.pts[,2],g1.pts[,3], pch=4,col="red"”, add=TRUE)}

plot3D::text3D(tetral,1],tetral,2],tetral,3], labels=c("A","B","C","D"), add=TRUE)
D1<-(A+B)/2; D2<-(A+C)/2; D3<-(A+D)/2; D4<-(B+C)/2; D5<-(B+D)/2; D6<-(C+D)/2;
L<-rbind(D1,D2,D3,D4,D5,D6); R<-rbind(cent,cent,cent,cent,cent,cent)
plot3D::segments3D(L[,1], L[,2], L[,3], R(,1]1, R[,21,R[,3], add=TRUE, lty=2)

P<-c(.4,.1,.2)
Idom.numl1PEtetra(P,Xp, tetra,r,M)

Idom.numlPEtetra(c(-1,-1,-1),Xp, tetra,r,M,ch.data.pnt = FALSE)
#gives an error message if ch.data.pnt = TRUE since p is not a data point

Idom.num1PEtri The indicator for a point being a dominating point for Proportional
Edge Proximity Catch Digraphs (PE-PCDs) - one triangle case

Description

Returns I(p is a dominating point of the PE-PCD) where the vertices of the PE-PCD are the 2D
data set Xp in the triangle tri, that is, returns 1 if p is a dominating point of PE-PCD, and returns 0
otherwise.

Point, p, is in the vertex region of vertex rv (default is NULL); vertices are labeled as 1,2, 3 in the
order they are stacked row-wise in tri.

PE proximity region is constructed with respect to the triangle tri with expansion parameter r > 1
and vertex regions are based on center M = (my,ms) in Cartesian coordinates or M = («, 3,7)
in barycentric coordinates in the interior of the triangle tri or based on the circumcenter of tri;
defaultis M = (1,1, 1), i.e., the center of mass of tri.

ch.data.pnt is for checking whether point p is a data point in Xp or not (default is FALSE), so by
default this function checks whether the point p would be a dominating point if it actually were in
the data set.

See also (Ceyhan (2005); Ceyhan and Priebe (2007); Ceyhan (2011, 2012)).

Usage

Idom.numlPEtri(p, Xp, tri, r, M =c(1, 1, 1), rv = NULL, ch.data.pnt = FALSE)
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Arguments

p

Xp

tri

rv

ch.data.pnt

Value
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A 2D point that is to be tested for being a dominating point or not of the PE-
PCD.

A set of 2D points which constitutes the vertices of the PE-PCD.
A 3 x 2 matrix with each row representing a vertex of the triangle.

A positive real number which serves as the expansion parameter in PE proximity
region; must be > 1.

A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the triangle tri or the circumcenter
of tri which may be entered as "CC" as well; defaultis M = (1,1,1), i.e., the
center of mass of tri.

Index of the vertex whose region contains point p, rv takes the vertex labels as
1,2, 3 as in the row order of the vertices in tri.

A logical argument for checking whether point p is a data point in Xp or not
(default is FALSE).

I(p is a dominating point of the PE-PCD) where the vertices of the PE-PCD are the 2D data set Xp,
that is, returns 1 if p is a dominating point, and returns O otherwise.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2011). “Spatial Clustering Tests Based on Domination Number of a New Random
Digraph Family.” Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number
of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),

299-334.

Ceyhan E, Priebe CE (2007). “On the Distribution of the Domination Number of a New Family
of Parametrized Random Digraphs.” Model Assisted Statistics and Applications, 1(4), 231-255.

See Also

Idom.numlPEbasic. tri and Idom.numlAStri
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Examples

A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
n<-10 #try also n<-20

set.seed(1)
Xp<-runif.tri(n,Tr)$g

M<-as.numeric(runif.tri(1,Tr)$g) #try also M<-c(1.6,1.0)
r<-1.5 #try also r<-2

Idom.num1PEtri(Xp[1,],Xp,Tr,r,M)
Idom.num1PEtri(c(1,2),c(1,2),Tr,r,M)
Idom.numl1PEtri(c(1,2),c(1,2),Tr,r,M,ch.data.pnt = TRUE)

gam.vec<-vector()
for (i in 1:n)
{gam.vec<-c(gam.vec,Idom.num1PEtri(Xp[i,],Xp,Tr,r,M)}

ind.gaml<-which(gam.vec==1)
ind.gaml

#or try
Rv<-rel.vert.tri(Xp[1,],Tr,M)$rv
Idom.numl1PEtri(Xp[1,],Xp,Tr,r,M,Rv)

Ds<-prj.cent2edges(Tr,M)

if (dimension(M)==3) {M<-bary2cart(M,Tr)}
#need to run this when M is given in barycentric coordinates

Xlim<-range(Tr[,11,Xp[,11,M[11)
Ylim<-range(Tr[,2],Xp[,2]1,M[2])
xd<-X1im[2]-X1im[1]
yd<-Ylim[2]-Y1lim[1]

plot(Tr,pch="." ,xlab="" ylab="",axes=TRUE,
xlim=X1lim+xd*c(-.05,.05),ylim=Y1lim+ydxc(-.05,.05))
polygon(Tr)

points(Xp,pch=1,col=1)

L<-rbind(M,M,M); R<-Ds

segments(L[,1], L[,2]1, R[,1], R[,2]1, lty=2)
points(rbind(Xp[ind.gam1,]),pch=4,co0l=2)

#rbind is to insert the points correctly if there is only one dominating point

txt<-rbind(Tr,M,Ds)
xc<-txt[,1]+c(-.02,.03,.02,-.02,.04,-.03,.0)
ye<-txt[,2]+c(.02,.02,.05,-.03,.04,.06,-.07)
txt.str<-c(”A","B","C","M","D1","D2","D3")
text(xc,yc, txt.str)
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P<-c(1.4,1)
Idom.num1PEtri(P,P,Tr,r,M)
Idom.numlPEtri(Xp[1,]1,Xp,Tr,r,M)

Idom.num1PEtri(c(1,2),Xp,Tr,r ,M,ch.data.pnt = FALSE)
#gives an error message if ch.data.pnt = TRUE since p is not a data point

Idom.num2ASbasic.tri  The indicator for two points being a dominating set for Arc Slice Prox-
imity Catch Digraphs (AS-PCDs) - standard basic triangle case

Description

Returns I({p1,p2} is a dominating set of AS-PCD) where vertices of AS-PCD are the 2D data set
Xp), that is, returns 1 if {p1,p2} is a dominating set of AS-PCD, returns 0 otherwise.

AS proximity regions are defined with respect to the standard basic triangle T, = T'(¢(0, 0), ¢(1,0), ¢(c1, ¢2)),
In the standard basic triangle, T}, ¢ is in [0,1/2], co > 0 and (1 — ¢1)% + 3 < 1.

Any given triangle can be mapped to the standard basic triangle by a combination of rigid body
motions (i.e., translation, rotation and reflection) and scaling, preserving uniformity of the points
in the original triangle. Hence standard basic triangle is useful for simulation studies under the
uniformity hypothesis.

Point, p1, is in the vertex region of vertex rv1 (default is NULL) and point, p2, is in the vertex region
of vertex rv2 (default is NULL); vertices are labeled as 1, 2, 3 in the order they are stacked row-wise.

Vertex regions are based on the center, M = (mq,mz2) in Cartesian coordinates or M = (a, 3, 7)
in barycentric coordinates in the interior of the standard basic triangle T}, or based on circumcenter
of Ty; default is M="CC", i.e., circumcenter of T}.

ch.data.pnts is for checking whether points p1 and p2 are data points in Xp or not (default is
FALSE), so by default this function checks whether the points p1 and p2 would be a dominating set
if they actually were in the data set.

See also (Ceyhan (2005, 2010)).

Usage

Idom.num2ASbasic.tri(
p1,
P2,
Xp,
c1,
c2,
M = "CC",
rvl = NULL,
rv2 = NULL,
ch.data.pnts = FALSE
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Arguments

p1, p2
Xp
cl, c2

rvl, rv2

ch.data.pnts

Value

Idom.num2ASbasic.tri

Two 2D points to be tested for constituting a dominating set of the AS-PCD.
A set of 2D points which constitutes the vertices of the AS-PCD.

Positive real numbers which constitute the vertex of the standard basic triangle
adjacent to the shorter edges; ¢; must be in [0,1/2], co > 0 and (1 —c;)? 4¢3 <
1.

The center of the triangle. "CC" stands for circumcenter of the triangle 7} or
a 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the triangle 7}; default is M="CC" i.e.,
the circumcenter of T3

The indices of the vertices whose regions contains p1 and p2, respectively. They
take the vertex labels as 1, 2, 3 as in the row order of the vertices in T}, (default
is NULL for both).

A logical argument for checking whether points p1 and p2 are data points in Xp
or not (default is FALSE).

I({p1,p2} is a dominating set of the AS-PCD) where the vertices of AS-PCD are the 2D data set
Xp), that is, returns 1 if {p1,p2} is a dominating set of AS-PCD, returns 0 otherwise

Author(s)
Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number
of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),

299-334.

See Also

Idom.num2AStri

Examples

cl1<-.4; c2<-.6;

A<-c(0,0); B<-c(1,0); C<-c(cl1,c2);

Th<-rbind(A,B,C)
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n<-10

set.seed(1)
Xp<-runif.basic.tri(n,cl1,c2)$g

M<-as.numeric(runif.basic.tri(1,cl1,c2)$%$g) #try also M<-c(.6,.2)

Idom.num2ASbasic.tri(Xp[1,],Xpl[2,]1,Xp,c1,c2,M)
Idom.num2AShasic.tri(Xp[1,],Xp[1,],Xp,c1,c2,M) #one point can not a dominating set of size two

Idom.num2ASbasic.tri(c(.2,.4),c(.2,.5),rbind(c(.2,.4),c(.2,.5)),c1,c2,M)

ind.gam2<-vector()
for (i in 1:(n-1))
for (j in (i+1):n)
{if (Idom.num2ASbasic.tri(Xp[i,],Xp[],],Xp,c1,c2,M)==1)
ind.gam2<-rbind(ind.gam2,c(i,j))}
ind.gam2

#or try

rvi<-rel.vert.basic.triCC(Xp[1,]1,c1,c2)$rv
rv2<-rel.vert.basic.triCC(Xp[2,],c1,c2)$rv
Idom.num2ASbasic.tri(Xp[1,]1,Xp[2,],Xp,c1,c2,M,rv1,rv2)
Idom.num2ASbasic.tri(c(.2,.4),Xp[2,]1,Xp,c1,c2,M,rv1,rv2)

#or try
rvi<-rel.vert.basic.triCC(Xp[1,]1,c1,c2)$rv
Idom.num2ASbasic.tri(Xp[1,],Xp[2,],Xp,c1,c2,M,rv1)

#or try
Rv2<-rel.vert.basic.triCC(Xp[2,],c1,c2)$rv
Idom.num2ASbasic.tri(Xp[1,],Xp[2,],Xp,c1,c2,M,rv2=Rv2)

Idom.num2ASbasic.tri(c(.3,.2),c(.35,.25),Xp,c1,c2,M)

Idom.num2AStri The indicator for two points constituting a dominating set for Arc Slice
Proximity Catch Digraphs (AS-PCDs) - one triangle case

Description

Returns I({p1,p2} is a dominating set of the AS-PCD) where vertices of the AS-PCD are the 2D
data set Xp), that is, returns 1 if {p1,p2} is a dominating set of AS-PCD, returns 0 otherwise.

AS proximity regions are defined with respect to the triangle tri. Point, p1, is in the region of
vertex rv1 (default is NULL) and point, p2, is in the region of vertex rv2 (default is NULL); vertices
(and hence rv1 and rv?2) are labeled as 1, 2, 3 in the order they are stacked row-wise in tri.
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Idom.num2AStri

Vertex regions are based on the center M="CC" for circumcenter of tri; or M = (mq,m2) in
Cartesian coordinates or M = (, 3,~) in barycentric coordinates in the interior of the triangle

tri; default is M="

ch.data.pnts is

CC" the circumcenter of tri.

for checking whether points p1 and p2 are data points in Xp or not (default is

FALSE), so by default this function checks whether the points p1 and p2 would constitute dominating

set if they actually

were in the data set.

See also (Ceyhan (2005, 2010)).

Usage
Idom.num2AStri(

F)‘I ’

pz)

Xp,

tri,

M = "CcC"”,

rvl = NULL,
rv2 = NULL,

ch.data.pnts

Arguments
p1, p2
Xp
tri
M
rvl, rv2

ch.data.pnts

Value

= FALSE

Two 2D points to be tested for constituting a dominating set of the AS-PCD.
A set of 2D points which constitutes the vertices of the AS-PCD.

Three 2D points, stacked row-wise, each row representing a vertex of the trian-
gle.

The center of the triangle. "CC" stands for circumcenter of the triangle tri or
a 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the triangle 73; default is M="CC" i.e.,
the circumcenter of tri.

The indices of the vertices whose regions contains p1 and p2, respectively. They
take the vertex labels as 1, 2, 3 as in the row order of the vertices in tri (default
is NULL for both).

A logical argument for checking whether points p1 and p2 are data points in Xp
or not (default is FALSE).

I({p1,p2} is a dominating set of the AS-PCD) where vertices of the AS-PCD are the 2D data set

Xp), that is, returns

Author(s)

Elvan Ceyhan

1if {p1,p2} is a dominating set of AS-PCD, returns O otherwise
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References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number
of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

See Also

Idom.num2ASbasic.tri

Examples

A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
n<-10

set.seed(1)
Xp<-runif.tri(n,Tr)$g

M<-as.numeric(runif.tri(1,Tr)$g) #try also M<-c(1.6,1.2)

Idom.num2AStri(Xpl1,],Xpl2,],Xp,Tr,M)
Idom.num2AStri(Xp[1,]1,Xpl[1,1,Xp,Tr,M) #same two points cannot be a dominating set of size 2

Idom.num2AStri(c(.2,.4),Xpl2,1,Xp,Tr M)
Idom.num2AStri(c(.2,.4),c(.2,.5),Xp,Tr,M)
Idom.num2AStri(c(.2,.4),c(.2,.5),rbind(c(.2,.4),c(.2,.5)),Tr,M)

#or try

rvi<-rel.vert.triCC(c(.2,.4),Tr)$rv

rv2<-rel.vert.triCC(c(.2,.5),Tr)$rv
Idom.num2AStri(c(.2,.4),c(.2,.5),rbind(c(.2,.4),c(.2,.5)),Tr,M,rvl,rv2)

ind.gam2<-vector()
for (i in 1:(n-1))
for (j in (i+1):n)
{if (Idom.num2AStri(Xp[i,J],Xp[j,]1,Xp,Tr,M)==1)
ind.gam2<-rbind(ind.gam2,c(i,j))}
ind.gam2

#or try

rvi<-rel.vert.triCC(Xp[1,]1,Tr)$rv
rv2<-rel.vert.triCC(Xp[2,]1,Tr)$rv
Idom.num2AStri(Xp[1,1,Xp[2,]1,Xp,Tr,M,rvil,rv2)
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#or try
rvi<-rel.vert.triCC(Xp[1,]1,Tr)$rv
Idom.num2AStri(Xp[1,],Xp[2,1,Xp,Tr ,M,rv1)

#or try
Rv2<-rel.vert.triCC(Xp[2,]1,Tr)$rv
Idom.num2AStri(Xp[1,1,Xp[2,1,Xp,Tr,M,rv2=Rv2)

Idom.num2AStri(c(1.3,1.2),c(1.35,1.25),Xp,Tr,M)

Idom.num2CS.Te.onesixth

The indicator for two points constituting a dominating set for Central
Similarity Proximity Catch Digraphs (CS-PCDs) - first one-sixth of the
standard equilateral triangle case

Description
Returns I({p1,p2} is a dominating set of the CS-PCD) where the vertices of the CS-PCD are the
2D data set Xp), that is, returns 1 if p is a dominating point of CS-PCD, returns 0 otherwise.

CS proximity region is constructed with respect to the standard equilateral triangle T, = T'(A, B, C) =
T((0,0),(1,0),(1/2,4/3/2)) and with expansion parameter ¢ = 1. Point, p1, must lie in the first
one-sixth of T, which is the triangle with vertices T'(A, D3, CM) = T'((0,0), (1/2,0), CM).

ch.data.pnts is for checking whether points p1 and p2 are data points in Xp or not (default is
FALSE), so by default this function checks whether the points p1 and p2 would be a dominating set
if they actually were in the data set.

See also (Ceyhan (2005)).

Usage

Idom.num2CS.Te.onesixth(p1, p2, Xp, ch.data.pnts = FALSE)

Arguments
p1, p2 Two 2D points to be tested for constituting a dominating set of the CS-PCD.
Xp A set of 2D points which constitutes the vertices of the CS-PCD.

ch.data.pnts A logical argument for checking whether points p1 and p2 are data points in Xp
or not (default is FALSE).

Value

I({p1,p2} is a dominating set of the CS-PCD) where the vertices of the CS-PCD are the 2D data
set Xp), that is, returns 1 if {p1,p2} is a dominating set of CS-PCD, returns 0 otherwise
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Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

See Also

Idom.num2CSstd. tri

Idom.num2PEbasic.tri  The indicator for two points being a dominating set for Proportional
Edge Proximity Catch Digraphs (PE-PCDs) - standard basic triangle
case

Description

Returns I({p1,p2} is a dominating set of the PE-PCD) where the vertices of the PE-PCD are the
2D data set Xp in the standard basic triangle T, = 7°((0,0), (1,0), (¢1,¢2)), that is, returns 1 if
{p1,p2} is a dominating set of PE-PCD, and returns 0 otherwise.

PE proximity regions are defined with respect to 73. In the standard basic triangle, T3, ¢ is in
[0,1/2],¢2 > 0and (1 —c1)? +c3 < 1.

Any given triangle can be mapped to the standard basic triangle by a combination of rigid body
motions (i.e., translation, rotation and reflection) and scaling, preserving uniformity of the points
in the original triangle. Hence, standard basic triangle is useful for simulation studies under the
uniformity hypothesis.

Vertex regions are based on center M = (mq,ms) in Cartesian coordinates or M = («, 3,7) in
barycentric coordinates in the interior of a standard basic triangle T; default is M = (1,1,1), i.e.,
the center of mass of 7j. Point, p1, is in the vertex region of vertex rv1 (default is NULL); and point,
p2, is in the vertex region of vertex rv2 (default is NULL); vertices are labeled as 1, 2, 3 in the order
they are stacked row-wise.

ch.data.pnts is for checking whether points p1 and p2 are both data points in Xp or not (de-
fault is FALSE), so by default this function checks whether the points p1 and p2 would constitute a
dominating set if they both were actually in the data set.

See also (Ceyhan (2005, 2011)).

Usage

Idom.num2PEbasic.tri(
p1,
p2,
Xp,
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r’

cl,

c2,

M=cC, 1, 1),

rvl = NULL,

rv2 = NULL,
ch.data.pnts = FALSE

)

Arguments

p1, p2 Two 2D points to be tested for constituting a dominating set of the PE-PCD.

Xp A set of 2D points which constitutes the vertices of the PE-PCD.

r A positive real number which serves as the expansion parameter in PE proximity
region; must be > 1.

cl, c2 Positive real numbers which constitute the vertex of the standard basic triangle.
adjacent to the shorter edges; ¢; must be in [0,1/2], co > 0 and (1 —c;)?+c3 <
1.

M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the standard basic triangle 73 or the
circumcenter of 7; which may be entered as "CC" as well; default is M =
(1,1,1), i.e., the center of mass of Tj.

rvl, rv2 The indices of the vertices whose regions contains p1 and p2, respectively. They

take the vertex labels as 1, 2, 3 as in the row order of the vertices in T}, (default
is NULL for both).

ch.data.pnts A logical argument for checking whether points p1 and p2 are data points in Xp
or not (default is FALSE).

Value

I({p1,p2} is a dominating set of the PE-PCD) where the vertices of the PE-PCD are the 2D data
set Xp, that is, returns 1 if {p1,p2} is a dominating set of PE-PCD, and returns 0 otherwise.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2011). “Spatial Clustering Tests Based on Domination Number of a New Random
Digraph Family.” Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

See Also

Idom.num2PEtri, Idom.num2ASbasic.tri, and Idom.num2AStri
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Examples

cl1<-.4; c2<-.6;

A<-c(0,0); B<-c(1,0); C<-c(cl1,c2);
Th<-rbind(A,B,C)

n<-10 #try also n<-20

set.seed(1)
Xp<-runif.basic.tri(n,c1,c2)$g

M<-as.numeric(runif.basic.tri(1,c1,c2)$%$g) #try also M<-c(.6,.3)
r<-2
Idom.num2PEbasic.tri(Xp[1,1,Xpl2,]1,Xp,r,c1,c2,M)

Idom.num2PEbasic.tri(c(1,2),c(1,3),rbind(c(1,2),c(1,3)),r,c1,c2,M)
Idom.num2PEbasic.tri(c(1,2),c(1,3),rbind(c(1,2),c(1,3)),r,c1,c2,M,
ch.data.pnts = TRUE)

ind.gam2<-vector()
for (i in 1:(n-1))
for (j in (i+1):n)
{if (Idom.num2PEbasic.tri(Xp[i,],Xp[],],Xp,r,c1,c2,M)==1)
ind.gam2<-rbind(ind.gam2,c(i,j))}
ind.gam2

#or try

rvi<-rel.vert.basic.tri(Xp[1,],c1,c2,M)$rv;
rv2<-rel.vert.basic.tri(Xp[2,],c1,c2,M)$rv;
Idom.num2PEbasic.tri(Xp[1,],Xpl[2,]1,Xp,r,c1,c2,M,rvl,rv2)

#or try
rvi<-rel.vert.basic.tri(Xp[1,],c1,c2,M)$rv;
Idom.num2PEbasic.tri(Xp[1,]1,Xp[2,]1,Xp,r,c1,c2,M,rv1)

#or try
rv2<-rel.vert.basic.tri(Xp[2,]1,c1,c2,M)$rv;
Idom.num2PEbasic.tri(Xp[1,],Xp[2,]1,Xp,r,c1,c2,M,rv2=rv2)

Idom.num2PEbasic.tri(c(1,2),Xp[2,]1,Xp,r,c1,c2,M,ch.data.pnts = FALSE)
#gives an error message if ch.data.pnts = TRUE since not both points are data points in Xp

Idom.num2PEstd.tetra  The indicator for two 3D points constituting a dominating set for Pro-
portional Edge Proximity Catch Digraphs (PE-PCDs) - standard reg-
ular tetrahedron case
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Description

Returns I({p1,p2} is a dominating set of the PE-PCD) where the vertices of the PE-PCD are the 3D
data set Xp in the standard regular tetrahedron T}, = T'((0,0,0), (1,0, 0), (1/2,/3/2,0), (1/2,v/3/6,/6/3)),
that is, returns 1 if {p1,p2} is a dominating set of PE-PCD, returns O otherwise.

Point, p1, is in the region of vertex rv1 (default is NULL) and point, p2, is in the region of vertex
rv2 (default is NULL); vertices (and hence rv1 and rv2) are labeled as 1, 2, 3, 4 in the order they are
stacked row-wise in 717},.

PE proximity region is constructed with respect to the tetrahedron 7}, with expansion parameter
r > 1 and vertex regions are based on center of mass C'M (equivalent to circumcenter in this case).
ch.data.pnts is for checking whether points p1 and p2 are data points in Xp or not (default is

FALSE), so by default this function checks whether the points p1 and p2 would constitute a domi-
nating set if they actually were both in the data set.

See also (Ceyhan (2005, 2010)).

Usage
Idom.num2PEstd. tetra(
p1,
P2,
Xp,
r )
rvl = NULL,
rv2 = NULL,
ch.data.pnts = FALSE
)
Arguments
p1, p2 Two 3D points to be tested for constituting a dominating set of the PE-PCD.
Xp A set of 3D points which constitutes the vertices of the PE-PCD.
r A positive real number which serves as the expansion parameter in PE proximity
region; must be > 1.
rvl, rv2 The indices of the vertices whose regions contains p1 and p2, respectively. They

take the vertex labels as 1, 2, 3, 4 as in the row order of the vertices in T}, (default
is NULL for both).

ch.data.pnts A logical argument for checking whether points p1 and p2 are data points in Xp
or not (default is FALSE).

Value

I({p1,p2} is a dominating set of the PE-PCD) where the vertices of the PE-PCD are the 3D data
set Xp), that is, returns 1 if {p1,p2} is a dominating set of PE-PCD, returns 0 otherwise

Author(s)

Elvan Ceyhan
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References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

See Also

Idom.num2PEtetra, Idom.num2PEtri and Idom.num2PEbasic. tri

Examples

A<-c(0,0,0); B<-c(1,0,0); C<-c(1/2,sqrt(3)/2,0); D<-c(1/2,sqrt(3)/6,sqrt(6)/3)
tetra<-rbind(A,B,C,D)

n<-5 #try also n<-20
Xp<-runif.std.tetra(n)$g #try also Xp<-cbind(runif(n),runif(n),runif(n))
r<-1.5

Idom.num2PEstd.tetra(Xp[1,]1,Xp[2,]1,Xp,r)

ind.gam2<-vector()

for (i in 1:(n-1))

for (j in (i+1):n)

{if (Idom.num2PEstd.tetra(Xpli,]1,Xp[j,1,Xp,r)==1)
ind.gam2<-rbind(ind.gam2,c(i,j))}

ind.gam2

#or try
rvi<-rel.vert.tetraCC(Xp[1,], tetra)$rv;rv2<-rel.vert.tetraCC(Xp[2,],tetra)s$rv
Idom.num2PEstd.tetra(Xp[1,]1,Xp[2,]1,Xp,r,rvl,rv2)

#or try
rvi<-rel.vert.tetraCC(Xp[1,], tetra)$rv;
Idom.num2PEstd. tetra(Xp[1,],Xp[2,]1,Xp,r,rv1)

#or try
rv2<-rel.vert.tetraCC(Xp[2,],tetra)$rv
Idom.num2PEstd.tetra(Xp[1,]1,Xp[2,]1,Xp,r,rv2=rv2)

P1<-c(.1,.1,.1)
P2<-c(.4,.1,.2)
Idom.num2PEstd. tetra(P1,P2,Xp,r)

Idom.num2PEstd.tetra(c(-1,-1,-1),Xp[2,]1,Xp,r,ch.data.pnts = FALSE)
#gives an error message if ch.data.pnts = TRUE
#since not both points, p1 and p2, are data points in Xp
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Idom.num2PEtetra The indicator for two 3D points constituting a dominating set for Pro-
portional Edge Proximity Catch Digraphs (PE-PCDs) - one tetrahe-
dron case

Description

Returns I({p1,p2} is a dominating set of the PE-PCD) where the vertices of the PE-PCD are the
3D data set Xp in the tetrahedron th, that is, returns 1 if {p1,p2} is a dominating set of PE-PCD,
returns 0 otherwise.

Point, p1, is in the region of vertex rv1 (default is NULL) and point, p2, is in the region of vertex
rv2 (default is NULL); vertices (and hence rv1 and rv2) are labeled as 1, 2, 3, 4 in the order they are
stacked row-wise in th.

PE proximity region is constructed with respect to the tetrahedron th with expansion parameter
r > 1 and vertex regions are based on center of mass (M="CM") or circumcenter (M="CC") only.

ch.data.pnts is for checking whether points p1 and p2 are both data points in Xp or not (de-
fault is FALSE), so by default this function checks whether the points p1 and p2 would constitute a
dominating set if they actually were both in the data set.

See also (Ceyhan (2005, 2010)).

Usage
Idom.num2PEtetra(
p1,
P2,
Xp,
th,
r ’
M = n CM n ,
rvl = NULL,
rv2 = NULL,
ch.data.pnts = FALSE
)
Arguments
p1, p2 Two 3D points to be tested for constituting a dominating set of the PE-PCD.
Xp A set of 3D points which constitutes the vertices of the PE-PCD.
th A 4 x 3 matrix with each row representing a vertex of the tetrahedron.
r A positive real number which serves as the expansion parameter in PE proximity

region; must be > 1.
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M The center to be used in the construction of the vertex regions in the tetrahedron,
th. Currently it only takes "CC" for circumcenter and "CM" for center of mass;
default="CM".

rvl, rv2 The indices of the vertices whose regions contains p1 and p2, respectively. They

take the vertex labels as 1, 2, 3, 4 as in the row order of the vertices in th (default
is NULL for both).

ch.data.pnts A logical argument for checking whether both points p1 and p2 are data points
in Xp or not (default is FALSE).
Value
I({p1,p2} is a dominating set of the PE-PCD) where the vertices of the PE-PCD are the 3D data
set Xp), that is, returns 1 if {p1,p2} is a dominating set of PE-PCD, returns 0 otherwise
Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.
See Also

Idom.num2PEstd. tetra, Idom.num2PEtri and Idom.num2PEbasic.tri

Examples

A<-c(0,0,0); B<-c(1,0,0); C<-c(1/2,sqrt(3)/2,0); D<-c(1/2,sqrt(3)/6,sqrt(6)/3)
tetra<-rbind(A,B,C,D)
n<-5

set.seed(1)
Xp<-runif.tetra(n,tetra)$g #try also Xp<-cbind(runif(n),runif(n),runif(n))

M<-"CM"; #try also M<-"CC";
r<-1.5

Idom.num2PEtetra(Xp[1,]1,Xp[2,],Xp, tetra,r,M)
Idom.num2PEtetra(c(-1,-1,-1),Xp[2,],Xp, tetra,r,M)

ind.gam2<-ind.gamn2<-vector()
for (i in 1:(n-1))
for (j in (i+1):n)
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{if (Idom.num2PEtetra(Xp[i,],Xp[],]1,Xp,tetra,r,M)==1)
{ind.gam2<-rbind(ind.gam2,c(i,j))
}

}
ind.gam2

#or try
rvi<-rel.vert.tetraCC(Xp[1,1],tetra)$rv;rv2<-rel.vert.tetraCC(Xp[2,1],tetra)$rv
Idom.num2PEtetra(Xp[1,],Xp[2,],Xp, tetra,r,M,rvi,rv2)

#or try
rvi<-rel.vert.tetraCC(Xp[1,], tetra)s$rv;
Idom.num2PEtetra(Xp[1,]1,Xpl[2,],Xp, tetra,r,M,rvl)

#or try
rv2<-rel.vert.tetraCC(Xp[2,], tetra)$rv
Idom.num2PEtetra(Xp[1,],Xp[2,]1,Xp, tetra,r,M,rv2=rv2)

P1<-c(.1,.1,.1)
P2<-c(.4,.1,.2)
Idom.num2PEtetra(P1,P2,Xp, tetra,r,M)

Idom.num2PEtetra(c(-1,-1,-1),Xp[2,],Xp, tetra,r,M,ch.data.pnts = FALSE)
#gives an error message if ch.data.pnts = TRUE
#since not both points, p1 and p2, are data points in Xp

Idom.num2PEtri The indicator for two points constituting a dominating set for Propor-
tional Edge Proximity Catch Digraphs (PE-PCDs) - one triangle case

Description

Returns I({p1,p2} is a dominating set of the PE-PCD) where the vertices of the PE-PCD are the
2D data set Xp, that is, returns 1 if {p1,p2} is a dominating set of PE-PCD, and returns 0 otherwise.

Point, p1, is in the region of vertex rv1 (default is NULL) and point, p2, is in the region of vertex
rv2 (default is NULL); vertices (and hence rv1 and rv2) are labeled as 1, 2, 3 in the order they are
stacked row-wise in tri.

PE proximity regions are defined with respect to the triangle tri and vertex regions are based on
center M = (m1,ms) in Cartesian coordinates or M = («, 3, ) in barycentric coordinates in the
interior of the triangle tri or circumcenter of tri; defaultis M = (1,1, 1), i.e., the center of mass
of tri.

ch.data.pnts is for checking whether points p1 and p2 are data points in Xp or not (default is
FALSE), so by default this function checks whether the points p1 and p2 would be a dominating set
if they actually were in the data set.

See also (Ceyhan (2005); Ceyhan and Priebe (2007); Ceyhan (2011, 2012)).



Idom.num2PEtri

Usage

Idom.num2PEtri(
p1,
P2,
Xp,
tri,
r,
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M=c(@, 1, 1),

rvl = NULL,
rv2 = NULL,
ch.data.pnts

Arguments

p1, p2
Xp

tri

rvl, rv2

ch.data.pnts

Value

= FALSE

Two 2D points to be tested for constituting a dominating set of the PE-PCD.
A set of 2D points which constitutes the vertices of the PE-PCD.
A 3 x 2 matrix with each row representing a vertex of the triangle.

A positive real number which serves as the expansion parameter in PE proximity
region; must be > 1.

A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the triangle tri or the circumcenter
of tri which may be entered as "CC" as well; defaultis M = (1,1,1), i.e., the
center of mass of tri.

The indices of the vertices whose regions contains p1 and p2, respectively. They
take the vertex labels as 1, 2, 3 as in the row order of the vertices in tri (default
is NULL for both).

A logical argument for checking whether points p1 and p2 are data points in Xp
or not (default is FALSE).

I({p1,p2} is a dominating set of the PE-PCD) where the vertices of the PE-PCD are the 2D data
set Xp, that is, returns 1 if {p1,p2} is a dominating set of PE-PCD, and returns 0 otherwise.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2011).

“Spatial Clustering Tests Based on Domination Number of a New Random

Digraph Family.” Communications in Statistics - Theory and Methods, 40(8), 1363-1395.
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Ceyhan E (2012). “An investigation of new graph invariants related to the domination number
of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

Ceyhan E, Priebe CE (2007). “On the Distribution of the Domination Number of a New Family
of Parametrized Random Digraphs.” Model Assisted Statistics and Applications, 1(4), 231-255.

See Also

Idom.num2PEbasic. tri, Idom.num2AStri, and Idom.num2PEtetra

Examples

A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
n<-10 #try also n<-20

set.seed(1)
Xp<-runif.tri(n,Tr)$g

M<-as.numeric(runif.tri(1,Tr)$g) #try also M<-c(1.6,1.0)
r<-1.5 #try also r<-2
Idom.num2PEtri(Xp[1,]1,Xpl2,],Xp,Tr,r,M)

ind.gam2<-vector()
for (i in 1:(n-1))
for (j in (i+1):n)
{if (Idom.num2PEtri(Xp[i,],Xplj,]1,Xp,Tr,r ,M)==1)
ind.gam2<-rbind(ind.gam2,c(i,j))}
ind.gam2

#or try

rvi<-rel.vert.tri(Xp[1,]1,Tr,M)$rv;
rv2<-rel.vert.tri(Xp[2,]1,Tr,M)$rv
Idom.num2PEtri(Xp[1,],Xp[2,],Xp,Tr,r,M,rvl,rv2)

Idom.num2PEtri(Xp[1,]1,c(1,2),Xp,Tr,r,M,ch.data.pnts = FALSE)
#gives an error message if ch.data.pnts = TRUE
#since not both points, p1 and p2, are data points in Xp

Idom.num3PEstd.tetra The indicator for three 3D points constituting a dominating set for
Proportional Edge Proximity Catch Digraphs (PE-PCDs) - standard
regular tetrahedron case
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Description

Returns I({p1,p2,pt3} is a dominating set of the PE-PCD) where the vertices of the PE-PCD are
the 3D data set Xp in the standard regular tetrahedron 7}, = T((0, 0,0), (1,0, 0), (1/2,v/3/2,0), (1/2,/3/6,/6/3)),
that is, returns 1 if {p1,p2,pt3} is a dominating set of PE-PCD, returns 0 otherwise.

Point, p1, is in the region of vertex rv1 (default is NULL), point, p2, is in the region of vertex rv2
(default is NULL); point, pt3), is in the region of vertex rv3) (default is NULL); vertices (and hence
rvl, rv2 and rv3) are labeled as 1,2, 3,4 in the order they are stacked row-wise in 7},.

PE proximity region is constructed with respect to the tetrahedron 7} with expansion parameter
r > 1 and vertex regions are based on center of mass C'M (equivalent to circumcenter in this case).

ch.data.pnts is for checking whether points p1, p2 and pt3 are all data points in Xp or not (default
is FALSE), so by default this function checks whether the points p1, p2 and pt3 would constitute a
dominating set if they actually were all in the data set.

See also (Ceyhan (2005, 2010)).

Usage
Idom.num3PEstd. tetra(
p1,
P2,
pt3,
Xp,
r ’
rvl = NULL,
rv2 = NULL,
rv3 = NULL,
ch.data.pnts = FALSE
)
Arguments
p1, p2, pt3 Three 3D points to be tested for constituting a dominating set of the PE-PCD.
Xp A set of 3D points which constitutes the vertices of the PE-PCD.
r A positive real number which serves as the expansion parameter in PE proximity

region; must be > 1.

rvl, rv2, rv3 The indices of the vertices whose regions contains p1, p2 and pt3, respectively.
They take the vertex labels as 1,2, 3,4 as in the row order of the vertices in T},
(default is NULL for all).

ch.data.pnts A logical argument for checking whether points p1 and p2 are data points in Xp
or not (default is FALSE).
Value

I({p1,p2,pt3} is a dominating set of the PE-PCD) where the vertices of the PE-PCD are the 3D
data set Xp), that is, returns 1 if {p1,p2,pt3} is a dominating set of PE-PCD, returns O otherwise
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Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

See Also

Idom.num3PEtetra

Examples

set.seed(123)

A<-c(0,0,0); B<-c(1,0,0); C<-c(1/2,sqrt(3)/2,0); D<-c(1/2,sqrt(3)/6,sqrt(6)/3)
tetra<-rbind(A,B,C,D)

n<-5 #try 20, 40, 100 (larger n may take a long time)

Xp<-runif.std.tetra(n)$g #try also Xp<-cbind(runif(n),runif(n),runif(n))
r<-1.25

Idom.num3PEstd.tetra(Xp[1,1,Xp[2,]1,Xp[3,]1,Xp,r)

ind.gam3<-vector()

for (i in 1:(n-2))

for (j in (i+1):(n-1))
for (k in (j+1):n)

{if (Idom.num3PEstd.tetra(Xp[i,],Xp[]j,],Xplk,]1,Xp,r)==1)
ind.gam3<-rbind(ind.gam3,c(i,j,k))}

ind.gam3

#or try

rvi<-rel.vert.tetraCC(Xp[1,1],tetra)$rv; rv2<-rel.vert.tetraCC(Xp[2,],tetra)$rv;
rv3<-rel.vert.tetraCC(Xp[3,], tetra)$rv
Idom.num3PEstd.tetra(Xp[1,],Xp[2,]1,Xp[3,]1,Xp,r,rvl,rv2,rv3)

#or try
rvi<-rel.vert.tetraCC(Xp[1,],tetra)$rv;
Idom.num3PEstd.tetra(Xp[1,],Xpl[2,]1,Xp[3,]1,Xp,r,rvl)

#or try
rv2<-rel.vert.tetraCC(Xp[2,],tetra)$rv
Idom.num3PEstd.tetra(Xp[1,],Xp[2,]1,Xp[3,]1,Xp,r,rv2=rv2)

Pi<-c(.1,.1,.1)
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P2<-c(.3,.3,.3)
P3<-c(.4,.1,.2)
Idom.num3PEstd. tetra(P1,P2,P3,Xp,r)
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Idom.num3PEstd.tetra(Xp[1,]1,c(1,1,1),Xp[3,]1,Xp,r,ch.data.pnts = FALSE)
#gives an error message if ch.data.pnts = TRUE since not all points are data points in Xp

Idom.num3PEtetra

The indicator for three 3D points constituting a dominating set for
Proportional Edge Proximity Catch Digraphs (PE-PCDs) - one tetra-
hedron case

Description

Returns I({p1,p2,pt3} is a dominating set of the PE-PCD) where the vertices of the PE-PCD are
the 3D data set Xp in the tetrahedron th, that is, returns 1 if {p1,p2,pt3} is a dominating set of
PE-PCD, returns O otherwise.

Point, p1, is in the region of vertex rv1 (default is NULL), point, p2, is in the region of vertex rv2
(default is NULL); point, pt3), is in the region of vertex rv3) (default is NULL); vertices (and hence
rvl, rv2and rv3) are labeled as 1, 2, 3,4 in the order they are stacked row-wise in th.

PE proximity region is constructed with respect to the tetrahedron th with expansion parameter
r > 1 and vertex regions are based on center of mass C'M (equivalent to circumcenter in this case).

ch.data.pnts is for checking whether points p1, p2 and pt3 are all data points in Xp or not (default
is FALSE), so by default this function checks whether the points p1, p2 and pt3 would constitute a
dominating set if they actually were all in the data set.

See also (Ceyhan (2005, 2010)).

Usage

Idom.num3PEtetra(

p1,
P2,
pt3,
Xp,
th,

rv3

HCMH ,

NULL,
NULL,
NULL,

ch.data.pnts

= FALSE
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Arguments

p1, p2, pt3
Xp
th

r

rvl, rv2, rv3

ch.data.pnts

Value

Idom.num3PEtetra

Three 3D points to be tested for constituting a dominating set of the PE-PCD.
A set of 3D points which constitutes the vertices of the PE-PCD.
A 4 x 3 matrix with each row representing a vertex of the tetrahedron.

A positive real number which serves as the expansion parameter in PE proximity
region; must be > 1.

The center to be used in the construction of the vertex regions in the tetrahedron,
th. Currently it only takes "CC" for circumcenter and "CM" for center of mass;
default="CM".

The indices of the vertices whose regions contains p1, p2 and pt3, respectively.
They take the vertex labels as 1,2, 3,4 as in the row order of the vertices in th
( default is NULL for all).

A logical argument for checking whether points p1 and p2 are data points in Xp
or not (default is FALSE).

I({p1,p2,pt3} is a dominating set of the PE-PCD) where the vertices of the PE-PCD are the 3D
data set Xp), that is, returns 1 if {p1,p2,pt3} is a dominating set of PE-PCD, returns 0 otherwise

Author(s)
Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

See Also

Idom.num3PEstd. tetra

Examples

set.seed(123)

A<-c(0,0,0); B<-c(1,0,0); C<-c(1/2,sqrt(3)/2,0); D<-c(1/2,sqrt(3)/6,sqrt(6)/3)
tetra<-rbind(A,B,C,D)

n<-5 #try 20, 40, 100 (larger n may take a long time)
Xp<-runif.tetra(n,tetra)$g

M<-"CM"; #try also M<-"CC";

r<-1.25
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Idom.num3PEtetra(Xp[1,]1,Xp[2,],Xp[3,]1,Xp,tetra,r,M)

ind.gam3<-vector()
for (i in 1:(n-2))
for (j in (i+1):(n-1))
for (k in (j+1):n)
{if (Idom.num3PEtetra(Xp[i,],Xp[],],Xplk,],Xp,tetra,r,M)==1)
ind.gam3<-rbind(ind.gam3,c(i, j,k))}

ind.gam3

#or try

rvi<-rel.vert.tetraCC(Xp[1,1],tetra)$rv; rv2<-rel.vert.tetraCC(Xp[2,],tetra)$rv;
rv3<-rel.vert.tetraCC(Xp[3,], tetra)$rv
Idom.num3PEtetra(Xp[1,]1,Xpl[2,],Xp[3,],Xp, tetra,r,M,rvi, rv2,rv3)

#or try
rvi<-rel.vert.tetraCC(Xp[1,], tetra)$rv;
Idom.num3PEtetra(Xp[1,]1,Xp[2,1,Xp[3,],Xp, tetra,r ,M,rvl)

#or try
rv2<-rel.vert.tetraCC(Xp[2,], tetra)$rv
Idom.num3PEtetra(Xp[1,1,Xp[2,]1,Xp[3,]1,Xp, tetra,r,M,rv2=rv2)

P1<-c(.1,.1,.1)
P2<-c(.3,.3,.3)
P3<-c(.4,.1,.2)
Idom.num3PEtetra(P1,P2,P3,Xp, tetra,r,M)

Idom.num3PEtetra(Xp[1,],c(1,1,1),Xp[3,],Xp,tetra,r,M,ch.data.pnts = FALSE)
#gives an error message if ch.data.pnts = TRUE since not all points are data points in Xp

Idom.numASup.bnd.tri Indicator for an upper bound for the domination number of Arc Slice
Proximity Catch Digraph (AS-PCD) by the exact algorithm - one tri-
angle case

Description

Returns I (domination number of AS-PCD whose vertices are the data points Xp is less than or equal
to k), that is, returns 1 if the domination number of AS-PCD is less than the prespecified value k,
returns O otherwise. It also provides the vertices (i.e., data points) in a dominating set of size k of
AS-PCD.

AS proximity regions are constructed with respect to the triangle tri and vertex regions are based
on the center, M = (my, mg) in Cartesian coordinates or M = («, 3,) in barycentric coordi-
nates in the interior of the triangle tri or based on circumcenter of tri; default is M="CC", i.e.,
circumcenter of tri.
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Idom.numASup.bnd.tri

The vertices of triangle, tri, are labeled as 1,2, 3 according to the row number the vertex is
recorded in tri. Loops are allowed in the digraph. It takes a long time for large number of vertices
(i.e., large number of row numbers).

Usage

Idom.numASup.bnd.tri(Xp, k, tri, M = "CC")

Arguments

Xp
k

tri

Value

A set of 2D points which constitute the vertices of the AS-PCD.

A positive integer to be tested for an upper bound for the domination number of
AS-PCDs.

Three 2D points, stacked row-wise, each row representing a vertex of the trian-
gle.

The center of the triangle. "CC" stands for circumcenter of the triangle tri or a
2D point in Cartesian coordinates or a 3D point in barycentric coordinates which
serves as a center in the interior of tri; default is M="CC" i.e., the circumcenter
of tri.

A list with the elements

domUB

Idom.num.up.bnd

ind.dom.set

Author(s)

Elvan Ceyhan

See Also

The suggested upper bound (to be checked) for the domination number of AS-
PCD. It is prespecified as k in the function arguments.

The indicator for the upper bound for domination number of AS-PCD being the
specified value k or not. It returns 1 if the upper bound is k, and 0 otherwise.

The vertices (i.e., data points) in the dominating set of size k if it exists, other-
wise it yields NULL.

Idom.numCSup.bnd. tri, Idom.numCSup.bnd.std. tri, Idom.num.up.bnd, and dom.num.exact

Examples

A<-c(1,1); B<-c(2,0); C<