onlineforecast: Forecast Modelling for Online Applications

A framework for fitting adaptive forecasting models. Provides a way to use forecasts as input to models, e.g. weather forecasts for energy related forecasting. The models can be fitted recursively and can easily be setup for updating parameters when new data arrives. See the included vignettes, the website <> and the paper "onlineforecast: An R package for adaptive and recursive forecasting" <>.

Version: 1.0.2
Depends: R (≥ 3.0.0)
Imports: Rcpp (≥ 0.12.18), R6 (≥ 2.2.2), splines (≥ 3.1.1), pbs, digest
LinkingTo: Rcpp, RcppArmadillo
Suggests: knitr, rmarkdown, R.rsp, testthat (≥ 3.0.0), data.table, plotly
Published: 2023-10-12
DOI: 10.32614/CRAN.package.onlineforecast
Author: Peder Bacher [cre], Hjorleifur G Bergsteinsson [aut]
Maintainer: Peder Bacher <pbac at>
License: GPL-3
NeedsCompilation: yes
Citation: onlineforecast citation info
In views: TimeSeries
CRAN checks: onlineforecast results


Reference manual: onlineforecast.pdf
Vignettes: Forecast evaluation
Model selection
Setup and use onlineforecast models
Setup of data for an onlineforecast model


Package source: onlineforecast_1.0.2.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release (arm64): onlineforecast_1.0.2.tgz, r-oldrel (arm64): onlineforecast_1.0.2.tgz, r-release (x86_64): onlineforecast_1.0.2.tgz, r-oldrel (x86_64): onlineforecast_1.0.2.tgz
Old sources: onlineforecast archive


Please use the canonical form to link to this page.