
Copyright	(2021)	Mayo	Foundation	for	Medical	Education	and	Research	

The meerva R-package for analysis of data subject to measurement
error with an internal validation subsample

Walter	K.	Kremers,	Mayo	Clinic,	Rochester	MN	

26	October	2021	

The Package
				Sometimes	data	for	analysis	are	obtained	using	more	convenient	or	less	expensive	means	
yielding	“surrogate”	variables	for	what	could	be	obtained	more	accurately,	albeit	with	less	
convenience;	or	less	conveniently	or	at	more	expense	yielding	“reference”	variables,	thought	of	as	
being	measured	without	error.	Analysis	of	the	surrogate	variables	measured	with	error	generally	
yields	biased	estimates	when	the	objective	is	to	make	inference	about	the	reference	variables.	
Often	it	is	thought	that	ignoring	the	measurement	error	in	surrogate	variables	only	biases	effects	
toward	the	null	hypothesis,	but	this	need	not	be	the	case.	Measurement	errors	may	bias	parameter	
estimates	either	toward	or	away	from	the	null	hypothesis.	

				If	one	has	a	data	set	with	surrogate	variable	data	from	the	full	sample,	and	also	reference	
variable	data	from	a	randomly	selected	subsample,	then	one	can	assess	the	bias	introduced	by	
measurement	error	in	parameter	estimation,	and	use	this	information	to	derive	improved	
estimates	based	upon	all	available	data.	Formulaically	these	estimates	based	upon	the	reference	
variables	from	the	validation	subsample	combined	with	the	surrogate	variables	from	the	whole	
sample	can	be	interpreted	as	starting	with	the	estimate	from	reference	variables	in	the	validation	
subsample,	and	“augmenting”	this	with	additional	information	from	the	surrogate	variables.	This	
suggests	the	term	“augmented”	estimate.	

				The	meerva	package	calculates	these	augmented	estimates	in	the	regression	setting	when	there	
is	a	randomly	selected	subsample	with	both	surrogate	and	reference	variables.	Measurement	
errors	may	be	differential	or	non-differential,	in	any	or	all	predictors	(simultaneously)	as	well	as	
outcome.	The	augmented	estimates	derive,	in	part,	from	the	multivariate	correlation	between	
regression	model	parameter	estimates	from	the	reference	variables	and	the	surrogate	variables,	
both	from	the	validation	subset.	Because	the	validation	subsample	is	chosen	at	random	any	biases	
imposed	by	measurement	error,	whether	non-differential	or	differential,	are	reflected	in	this	
correlation	and	these	correlations	can	be	used	to	derive	estimates	for	the	reference	variables	
using	data	from	the	whole	sample.	The	augmented	estiamtes,	as	well	as	how	measurement	error	
may	arise	in	practice,	is	described	in	more	detail	by	Kremers	WK	(2021)	(arXiv:2106.14063,	
https://arxiv.org/abs/2106.14063)	and	is	an	extension	of	the	works	by	Chen	Y-H,	Chen	H.	(2000)	
doi:10.1111/1467-9868.00243,	Chen	Y-H.	(2002)	doi:10.1111/1467-9868.00324,	Wang	X,	Wang	
Q	(2015)	doi:10.1016/j.jmva.2015.05.017	and	Tong	J,	Huang	J,	Chubak	J,	et	al.	(2020)	
doi:10.1093/jamia/ocz180.	

meerva	R-package	 26	October	2021	2	

Using the meerva package
				The	main	function	in	the	meerva	package	is	meerva.fit()	which	calculates	estimates	from	the	
input	dataset.	We	provide	no	example	datasets	with	meerva	but	instead	provide	programs	to	
generate	example	data.	In	fact	there	are	three	functions	to	generate	simulated	data	with	
measurement	error	of	appropriate	form	for	analysis	1)	meerva.sim.brn()	for	binomial	outcome	
and	the	logistic	regression	setting	2)	meerva.sim.cox()	for	time	to	event	data	and	Cox	regression	
and	3)	meerva.sim.nrm()	for	normal	data	and	linear	regression.	Additionally	meerva.sim.block()	
performs	a	simulation	study	generating	multiple	datasets	and	stores	the	results	for	inspection	in	a	
list	object.	There	are	no	other	functions	in	the	package	intended	for	direct	usage	by	the	user	
barring	the	print(),	summary()	and	plot()	functions.	

				As	with	all	R-packages	one	must	first	install	the	package,	and	“add”	to	the	working	library.	This	
can	be	done	by	running	the	two	lines	of	code	install.packages(“meerva”)	and	library(meerva)	
from	the	R	“console”.	

Data requirements
				The	basic	data	elements	for	input	to	the	meerva	package	for	analysis	are	three	matrices	of	
predictors	and	three	vectors	of	outcomes.	When	fitting	a	model	in	the	Cox	regression	framework	
there	will	be	three	additional	vectors	for	event	vs	censoring	information.	These	are	submitted	as	
input	to	the	meerva.fit()	function.	This	may	be	somewhat	awkward	but	these	data	elements	are	
used	internally	for	calculations	so	it	is	quite	natural	from	a	data	flow	perspective.	The	intent	is	to	
eventually	write	the	function	meerva(),	which	would	serve	as	a	wrapper	for	meerva.fit(),	and	
parse	a	data	frame	into	the	pieces	described	here	and	pass	to	meerva.fit().	Many	of	the	R	functions	
for	statistical	analysis	work	in	this	manner,	e.g.	the	commonly	used	glm()	function	can	read	from	a	
data	frame	and	parse	the	predictor	variables	and	outcome	variable	before	passing	to	glm.fit(),	and	
similarly	for	coxph()	and	coxph.fit().	

				The	three	input	matrices	for	the	predictor	variables	are	x_val,	xs_val	and	xs_non.	The	first	
contains	the	information	on	the	reference	predictors	from	the	validation	subsample.	The	next,	
xs_val	contains	the	information	on	the	surrogate	predictors	from	the	validation	subsample.	xs_non	
contains	information	on	the	surrogate	predictors	form	the	non-validation	subsample,	that	is	the	
sample	units	not	included	in	the	validation	subsample.	Together	xs_val	and	xs_non	constitute	the	
surrogate	predictors	for	the	whole	sample.	The	three	vectors	for	the	predictor	variables	are	y_val,	
ys_val	and	ys_non,	with	a	naming	convention	parallel	to	that	of	the	predictor	variable	matrices.	

				By	default,	each	row	in	all	of	x_val,	xs_val,	y_val	and	ys_val	has	to	include	data	for	the	same	
sample	unit,	e.g.	row	i	has	to	include	the	data	for	same	patient	for	the	matrices	and	column	
vectors.	Similarly,	each	row	in	xs_non	and	ys_non	has	to	include	data	for	the	same	sample	unit.	
Importantly	then,	before	passing	data	to	meerva.fit	one	may	need	to	sort	the	data	and	check	for	
consistency	of	the	rows	for	these	different	data	units.	

meerva	R-package	 26	October	2021	3	

An example dataset
				To	demonstrate	usage	of	meerva.fit()	we	first	generate	a	dataset	for	analysis,	discuss	essential	
characteristics	of	the	data	as	required	for	analysis,	and	then	shown	an	example	analysis.	First	after	
running	the	analysis	do	we	go	into	detail	on	the	program	used	to	generate	the	simulated	data.	
Generation	of	simulated	data	may	be	less	of	interest	to	those	wanting	to	start	with	an	analysis.	

				The	code	

# Simulate logistic regression data with measurement error	
simd = meerva.sim.brn(n=4000, m=400,	
 beta = c(-0.5, 0.5, 0.2, 1, 0.5) , 	
 alpha1 = c(0.95, 0.90, 0.90, 0.95) , 	
 alpha2 = c(0.98,0.94,0.95,0.95) , 	
 bx3s1 = c(0.05, 0, 0, NA, NA) , 	
 bx3s2 = c(NA,NA,NA))	

generates	simulated	data	with	measurement	error	with	binomial	outcomes	and	intended	for	
analysis	using	the	logistic	regression	framework.	Here,	the	randomly	generated	data	are	stored	in	
the	output	object	simd.	This	full	dataset	has	sample	size	of	4000	and	the	validation	subsample	has	
size	400.	We	extract	data	in	the	format	required	for	input	to	the	analysis	program	meerva.fit()	
using	

# Read the simulated data to input data format	
x_val = simd$x_val # reference predictors from the validation subset	
y_val = simd$y_val # reference outcome from the validation subset	
xs_val = simd$xs_val # surrogate predictors from the validation subset	
ys_val = simd$ys_val # surrogate outcome from the validation subset	
xs_non = simd$xs_non # surrogate predictors from the non-validation 	
 # sample units	
ys_non = simd$ys_non # surrogate outcome from the non-validation 	
 # sample units	

Inspecting	the	first	few	rows	of	the	reference	predictor	variable	matrix	we	see	

# Print the first 10 elements of the y validaiton vector	
print(x_val[1:10,])	

## x1 x2 x3 x4	
## [1,] 0 0 0.3627536 1.12215988	
## [2,] 1 0 -1.2701380 -1.58351783	
## [3,] 0 0 0.2678254 -1.21744969	
## [4,] 0 0 0.8093085 -0.58526992	
## [5,] 0 0 -0.3055455 -0.95833154	
## [6,] 1 0 -1.0052097 0.06790784	
## [7,] 1 0 -0.3890501 -1.25104539	
## [8,] 0 0 1.9126599 -0.29773421	
## [9,] 0 0 0.7984876 0.57395013	
## [10,] 0 0 0.5495988 -0.22199711	

meerva	R-package	 26	October	2021	4	

As	suggested	by	their	appearance	x1	and	x2	are	binomial	predictors,	and	x3	and	x4	are	
quantitative.	Inspecting	the	first	few	elements	of	the	reference	outcome	vector	we	see	

# Print the first 10 elements of the y validaiton vector	
print(y_val[1:10])	

## [1] 0 0 0 1 0 1 0 1 1 0	

In	their	form	xs_val	and	ys_val	are	similar	to	x_val	and	y_val	but	include	the	surrogate	variables	
instead	of	the	reference	measures.	xs_non	and	ys_non	have	analogous	form	but	include	variables	
form	the	non-validation	subsample.	

Analysis
				To	perform	an	analysis	using	either	logistic,	Cox	or	linear	regression	the	user	need	only	pass	the	
data	to	meerva.fit()	as	the	program	first	inspects	the	data	to	determine	an	appropriate	model	
framework.	The	user	may	override	the	model	framework	for	analysis	selected	by	meerva.fit()by	
specifying	this	with	the	input	variables	faimlyr	and	familys	for	the	reference	and	surrogate	data,	
but	generally	will	not	need	to	do	this.	Current	family	options	are	binomial	for	logistic,	Cox	for	Cox	
regression	and	gaussian	for	linear	regression.	The	user	may	also	provide	vectors	for	sample	unit	
id’s	(identifier	or	index)	(e.g.	patient	id)	and	weights	for	sample	units	but	this	example	does	not	
involve	these.	Weights	may	be	used	in	case	of	sampling	with	unequal	probabilities	or	for	of	
propensity	scores.	The	sample	unit	id	can	be	used	in	case	of	repeat	records	for	sample	units.	This	
assures	use	of	sandwich	estimators	of	variances,	or	similar,	accounting	for	within	sample	unit	
(patient)	dependencies.	The	user	may	also	specify	whether	to	use	sandwich	variances	methods	in	
model	derivation	or	jackknife	estimates,	i.e.	choose	faster	or	more	accurate	calculations.	Here	we	
use	the	default	of	faster	calculations.	

				An	example	analysis	can	then	be	performed	and	results	printed	by	

Ex1 = meerva.fit(x_val = x_val , y_val = y_val , 	
 xs_val = xs_val, ys_val = ys_val, 	
 xs_non = xs_non, ys_non = ys_non)	
print(Ex1)	

## 	
## meerva.fit(x_val = x_val, y_val = y_val, xs_val = xs_val, ys_val = ys_val, 	
## xs_non = xs_non, ys_non = ys_non)	
## 	
## familyr familys compare comparec vmethod vmethodc vmethodr	
## [1,] "binomial" "binomial" "1" "ful" NA "ijk (alt)" "2" 	
## vmethods n_val n_ful dim_beta dim_gamma	
## [1,] "2" "400" "4000" "5" "5" 	
## 	
## Confidence intervals are for alpha = 0.05	
## 	
## Estimates for Beta using beta_aug 	
## estimate se lcl ucl z 	
## (Intercept) -0.6268576 0.10099079 -0.8247959 -0.4289193 -6.2070768 5.40e-10	

meerva	R-package	 26	October	2021	5	

## x1 0.7436406 0.20911103 0.3337905 1.1534907 3.5561999 3.76e-04	
## x2 0.1629424 0.23472323 -0.2971067 0.6229914 0.6941893 4.88e-01	
## x3 1.2740382 0.12226244 1.0344083 1.5136682 10.4205201 2.00e-25	
## x4 0.6054943 0.08634431 0.4362626 0.7747261 7.0125558 2.34e-12	

The	first	output	element	is	basically	a	readback	of	the	call	used	to	perform	the	analysis.	Next	are	a	
number	of	model	fit	parameters	which	are	either	determined	by	the	data	or	specified	by	the	user.	
The	first	2,	familyr	and	familys,	are	the	model	families	used	to	model	the	reference	data	(therefore	
the	r	in	familayr)	and	surrogate	data	(therefore	the	s	in	familys).	Usually,	the	reference	and	
surrogate	model	families	will	be	the	same	but	they	can	be	different,	for	example	surrogate	data	
might	fail	to	record	time	to	event	and	simply	record	whether	or	not	an	event	was	recorded.	Here,	
since	we	did	not	specify	the	model	family	the	meerva.fit()	function	identified	the	binomial	
outcomes	fron	the	data	and	fit	a	logistic	regression	model.	If	we	wanted	to	override	this	and	fit	a	
linear	model	we	could	have	specified	family=gaussian	and	familys=gaussian	when	calling	
meerva.fit().	The	other	elements	n_val,	n_ful,	dim_beta,	dim_gamma	describe	the	validation	sample	
size,	the	full	sample	size,	the	dimension	of	the	model	based	upon	the	reference	variables	and	the	
dimension	of	the	model	based	upon	the	surrogate	variables.	The	model	dimension	includes	that	of	
the	interecept	except	for	the	Cox	model	where	there	is	no	intercept.	In	many	cases,	possibly	most	
cases,	there	will	be	one	surrogate	variable	for	each	reference	variable.	The	method	though	allows	
for	multiple	surrogates	for	any	or	all	of	the	reference	variables,	meaning	the	models	based	upon	
surrogates	may	have	more	parameters	than	the	model	based	upon	reference	variables.	
Interestingly,	the	surrogate	set	may	have	fewer	variables	than	the	reference	set.	One	way	this	may	
arise	is	in	the	special	case	of	a	missing	data	where	a	common	set	of	variables	is	missing	in	a	
random	subset	of	the	data.	This	though	would	not	work	if	different	sample	units	had	different	
variables	missing,	unless	one	were	to	discard	some	data	to	obtain	the	needed	data	structure.	
Finally,	the	print	function	provides	the	augmented	estimates	for	the	regression	model,	based	upon	
both	the	reference	and	surrogate	variables,	along	with	standard	errors,	confidence	intervals	and	
p-values.	

				The	summary()	function,	provides	additional	output	beyond	that	of	the	print()	function.	In	
particular,	summary()	provides	model	fit	information	when	regressing	y_val	on	x_val,	ys_val	on	
xs_val	and	ys_non	on	xs_non,	as	in	

summary(Ex1)	

## 	
## meerva.fit(x_val = x_val, y_val = y_val, xs_val = xs_val, ys_val = ys_val, 	
## xs_non = xs_non, ys_non = ys_non)	
## 	
## familyr familys compare comparec vmethod vmethodc vmethodr	
## [1,] "binomial" "binomial" "1" "ful" NA "ijk (alt)" "2" 	
## vmethods n_val n_ful dim_beta dim_gamma	
## [1,] "2" "400" "4000" "5" "5" 	
## 	
## Confidence intervals are for alpha = 0.05	
## 	
## Estimates for Beta using beta_aug (references augmented with surrogates)	
## estimate se lcl ucl z 	

meerva	R-package	 26	October	2021	6	

## (Intercept) -0.6268576 0.10099079 -0.8247959 -0.4289193 -6.2070768 5.40e-10	
## x1 0.7436406 0.20911103 0.3337905 1.1534907 3.5561999 3.76e-04	
## x2 0.1629424 0.23472323 -0.2971067 0.6229914 0.6941893 4.88e-01	
## x3 1.2740382 0.12226244 1.0344083 1.5136682 10.4205201 2.00e-25	
## x4 0.6054943 0.08634431 0.4362626 0.7747261 7.0125558 2.34e-12	
## 	
## Estimates for Beta using beta_val (references alone	
## estimate se lcl ucl z 	
## (Intercept) -0.512907988 0.1573809 -0.8213688 -0.2044472 -3.2590239 1.12e-03	
## x1 0.711948072 0.2847698 0.1538095 1.2700867 2.5000825 1.24e-02	
## x2 0.007773179 0.3592342 -0.6963128 0.7118592 0.0216382 9.83e-01	
## x3 1.445910903 0.1573970 1.1374185 1.7544033 9.1863958 4.06e-20	
## x4 0.732347710 0.1205835 0.4960084 0.9686871 6.0733652 1.25e-09	
## 	
## Effective multiplicative increase in sample size by using augmented estimates	
## (Intercept) x_valx1 x_valx2 x_valx3 x_valx4 	
## 2.428512 1.854531 2.342303 1.657321 1.950331 	
## 	
## Estimates for Gamma using gamma_non (surrogates alone)	
## not for direct comparisons 	
## estimate se lcl ucl z 	
## (Intercept) -0.5725799 0.04480599 -0.66039798 -0.4847617 -12.779093 2.15e-37	
## x1s 0.6890032 0.07680289 0.53847226 0.8395341 8.971058 2.94e-19	
## x2 0.1270045 0.09739016 -0.06387674 0.3178857 1.304079 1.92e-01	
## x3s 0.8090865 0.04024644 0.73020489 0.8879680 20.103305 6.90e-90	
## x4 0.4086580 0.03559780 0.33888755 0.4784284 11.479866 1.67e-30	
## 	
## Correlations between beta_val and gamma_val 	
## [,1] [,2] [,3] [,4] [,5]	
## [1,] 0.80367933 -0.376471875 -0.31345870 -0.1774925 0.04358301	
## [2,] -0.39055533 0.706565488 0.05592196 0.1147770 0.02155382	
## [3,] -0.31205859 0.078158138 0.78865862 0.1008101 -0.05238810	
## [4,] -0.17820540 0.111477966 0.11389238 0.6517229 0.11937274	
## [5,] 0.06078147 -0.008493862 -0.05009483 0.1205559 0.73004945	

The	augmented	estimates	displayed	using	print()	are	actually	derived	in	part	on	these	other	
regression	model	fits.	The	summary()	function	also	describes	the	correlation	between	parameter	
estimates	from	the	models	based	upon	reference	and	surrogate	data	in	the	validation	subsample.	
These	individual	model	fits	and	correlation	may	be	useful	for	data	inspection	and	to	see	just	how	
similar	or	different	the	estimates	may	be	from	the	models	based	upon	reference	or	surrogate	data.	

Example binomial data
				In	the	section	above	“An	example	dataset”	we	used	the	code	

# Simulate logistic regression data with measurement error	
simd = meerva.sim.brn(n=4000, m=400,	
 beta = c(-0.5, 0.5, 0.2, 1, 0.5) , 	
 alpha1 = c(0.95, 0.90, 0.90, 0.95) , 	

meerva	R-package	 26	October	2021	7	

 alpha2 = c(0.98,0.94,0.95,0.95) , 	
 bx3s1 = c(0.05, 0, 0, NA, NA) , 	
 bx3s2 = c(NA,NA,NA))	

to	generate	a	simulated	data	and	store	the	data	in	an	object,	here	named	simd.	The	full	dataset	for	
this	example	has	size	4000	as	specified	by	the	input	n=4000.	The	validation	subsample,	with	
reference	and	surrogate	variables,	has	size	400	as	specified	by	m=400.	We	will	ignore	the	other	
input	parameters	for	the	moment	but	note	the	meerva.sim.brn()	generates	data	with	4	predictors,	
both	for	the	surrogate	data	subject	to	measurement	error	and	for	the	reference	data	not	subject	to	
error.	We	next	extract	the	data	for	analysis	from	this	object	with	the	code	(same	as	in	the	section	
“An	example	dataset”)	

# Read the simulated data to input data format	
x_val = simd$x_val # reference predictors from the validation subset	
y_val = simd$y_val # reference outcome from the validation subset	
xs_val = simd$xs_val # surrogate predictors from the validation subset	
ys_val = simd$ys_val # surrogate outcome from the validation subset	
xs_non = simd$xs_non # surrogate predictors from the non-validation 	
 # sample units	
ys_non = simd$ys_non # surrogate outcome from the non-validation 	
 # sample units	

With	the	data	elements	described	after	each	line	of	code.	Because	we	specified	a	validation	
subsample	of	size	400,	x_val	is	a	matrix	400	rows	tall	and	4	columns	wide.	Inspecting	the	first	10	
rows	(same	as	in	the	section	“An	example	dataset”)	

# Print the first 10 elements of the y validaiton vector	
x_val[1:10,]	

## x1 x2 x3 x4	
## [1,] 0 0 1.68763730 -0.67781913	
## [2,] 0 1 -0.39802125 1.31151150	
## [3,] 0 0 1.71577182 -0.32623965	
## [4,] 0 0 1.25245033 0.02819455	
## [5,] 1 0 -0.03601293 -0.04438002	
## [6,] 1 0 -2.28411085 -0.79361748	
## [7,] 0 0 1.48743603 2.38535937	
## [8,] 1 0 0.29237729 1.03242762	
## [9,] 1 0 2.22198131 0.55704673	
## [10,] 0 0 2.14268805 2.11336517	

we	see	x1	and	x2	appear	to	be	binomial	predictors,	and	x3	and	x4	to	the	quantitative.	This	is	
indeed	the	case	and	is	explained	in	detail	in	the	meerva	“Reference	manual”	(at	https://cran.r-
project.org/web/packages/meerva/index.html)	for	the	meerva.sim.brn().	The	outcome	is	
binomial	and	so	y_val	is	a	vector	with	length	400.	Inspecting	the	first	10	elements	we	see	(same	as	
in	the	section	“An	example	dataset”)	

# Print the first 10 elements of the y validation vector	
y_val[1:10]	

meerva	R-package	 26	October	2021	8	

## [1] 1 1 1 1 1 0 1 1 1 1	

xs_val	and	ys_val	are	similar	to	x_val	and	y_val	but	include	the	surrogate	mearues	instead	of	the	
reference	variables	(thus	the	s	in	xs_val	and	ys_val).	The	matrix	xs_non	and	vector	ys_non	contain	
the	surrogate	variable	data	for	the	sample	units	not	included	in	the	validation	subsample.	For	this	
example	there	are	4000	–	400	=	3600	non-validation	units	in	this	set.	

				In	this	example,	after	specifying	sample	and	validation	subsample	size,	we	specified	alpha1	
which	describes	the	misclassification	error	probabilities	for	the	surrogate	binomial	outcome	
variable	ys	in	a	differential	manner,	that	is	with	different	misclassification	probabilities	dependent	
on	the	predictors.	Specifically,	

				P(ys	=	y	|	y	=	1,	x1=1)	=	alpha1[1]	
				P(ys	=	y	|	y	=	0,	x1=1)	=	alpha1[2]	
				P(ys	=	y	|	y	=	1,	x1=0)	=	alpha1[3]	
				P(ys	=	y	|	y	=	0,	x1=0)	=	alpha1[4]	

We	then	specified	alpha2	which	describes	the	differential	misclassification	probabilities	for	x1s,	
the	surrogate	for	x1	predictor.	That	is	the	misclassification	probabilities	for	the	surrogate	X1	are	
dependent	on	the	true	outcome	Y.	Specifically,	

				P(x1s	=	x1	|	x1	=	1,	y=1)	=	alpha2[1]	
				P(x1s	=	x1	|	x1	=	0,	y=1)	=	alpha2[2]	
				P(x1s	=	x1	|	x1	=	1,	y=0)	=	alpha2[3]	
				P(x1s	=	x1	|	x1	=	0,	y=0)	=	alpha2[4]	

We	then	specified	bx3s1	and	bx3s2	which	describe	the	probabilistic	relation	between	x3	and	the	
surrogates	x3s	and	potentially	x3s2.	Here	we	specified	bx3s1[1]=0.5	with	which	a	normal	random	
error	with	SD	0.5	is	added	to	x3	to	obtain	x3s.	All	other	elements	of	bx3x1	and	bx3s2	are	either	0	
or	NA	and	thus	no	other	error	structure	is	imposed	by	measurement	error.	Terms	can	be	given	so	
that	the	mean	of	x3s	has	mean	non	linear	in	X3	and	so	that	x3s2	is	generated,	a	second	surrogate	
variable	for	x3.	As	described	in	the	meerva	Reference	manual,	more	possibilities	are	possible	when	
generating	surrogate	markers	for	x3.	

More example data
				Similar	to	the	meerva.sim.brn()	the	meerva.sim.cox()	and	meerva.sim.nrm()	functions	generate	
simulated	data	with	measurement	error	for	analysis	with	the	Cox	and	linear	regression	model	
framework.	For	Cox	model	framework,	measurement	error	may	occur	in	the	time	to	event	
variable	and	the	event	indicator	variable	too	may	be	misclassified.	As	with	all	model	families	
analyzed	by	meerva,	any	or	all	predictors	may	be	measured	with	error.	(Here	we	consider	
misclassification	as	a	type	of	measurement	error.)	For	the	Cox	regression	framework	we	include	
the	time	to	event	or	censoring	variable	in	the	vectors	y_val,	ys_val,	ys_non	and	the	event	vs.	censor	
indicator	variable	in	e_val,	es_val	and	es_non.	If	e_val,	es_val	and	es_non	are	specified	then	
meerva.fit()	will	default	to	analysis	using	the	Cox	regression	framework.	The	user	can	override	
this	by	specifying	the	familyr	or	familys	to	be	either	binomial	or	gaussian.	Example	code	
generating	simulated	time	to	event	data	with	measurement	error	and	anlzying	these	data	is	

meerva	R-package	 26	October	2021	9	

#==	
# Simulate Cox regression data with measurement error	
simd = meerva.sim.cox(n=4000, m=400,	
 beta = c(-0.5, 0.5, 0.2, 1, 0.5) ,	
 alpha1 = c(0.95,0.90,0.90,0.95) ,	
 alpha2 = c(0.98,0.94,0.94,0.98) ,	
 bx3s1 = c(0.05,0,0,NA,NA) ,	
 bx3s2 = c(1.1, NA, NA) ,	
 sd=0.1)	
	
# Read the simulated data to input data format	
x_val = simd$x_val	
y_val = simd$y_val	
xs_val = simd$xs_val	
ys_val = simd$ys_val	
xs_non = simd$xs_non	
ys_non = simd$ys_non	
e_val = simd$e_val	
es_val = simd$es_val	
es_non = simd$es_non	
	
# Analyze the data and print 	
cox.me = meerva.fit(x_val, y_val, xs_val, ys_val, xs_non, ys_non,	
 e_val, es_val, es_non)	
cox.me	

## 	
## meerva.fit(x_val = x_val, y_val = y_val, xs_val = xs_val, ys_val = ys_val, 	
## xs_non = xs_non, ys_non = ys_non, e_val = e_val, es_val = es_val, 	
## es_non = es_non)	
## 	
## familyr familys compare comparec vmethod vmethodc vmethodr vmethods	
## [1,] "Cox" "Cox" "1" "ful" NA "ijk (alt)" "1" "1" 	
## n_val n_ful dim_beta dim_gamma	
## [1,] "400" "4000" "4" "4" 	
## 	
## Confidence intervals are for alpha = 0.05	
## 	
## Estimates for Beta using beta_aug 	
## estimate se lcl ucl z 	
## x1 0.4576975 0.07831787 0.3041973 0.6111977 5.844101 5.09e-09	
## x2 0.2596587 0.07494578 0.1127677 0.4065497 3.464621 5.31e-04	
## x3 0.9784529 0.04291347 0.8943440 1.0625617 22.800602 4.52e-115	
## x4 0.4597069 0.03433951 0.3924027 0.5270111 13.387113 7.19e-41	

Example	code	generating	normal	data	with	measurement	error	and	analyzing	these	data	is	

# Simulate linear regression data with measurement error	
simd = meerva.sim.nrm(n=4000, m=400,	
 beta=c(-0.5,0.5,0.2,1,0.5),	

meerva	R-package	 26	October	2021	10	

 alpha1=c(-0.05,0.1,0.05,0.1), 	
 alpha2=c(0.95,0.91,0.9,0.9),	
 bx3s1= c(0.05, 0, 0, NA, NA), 	
 bx3s2=c(1.1,0.9,0.05),	
 sd=5)	
	
# Read the simulated data to input data format	
x_val = simd$x_val	
y_val = simd$y_val	
xs_val = simd$xs_val	
ys_val = simd$ys_val	
xs_non = simd$xs_non	
ys_non = simd$ys_non	
	
# Analyze the data and print	
nrm.me = meerva.fit(x_val, y_val, xs_val, ys_val, xs_non, ys_non)	
nrm.me	

## 	
## meerva.fit(x_val = x_val, y_val = y_val, xs_val = xs_val, ys_val = ys_val, 	
## xs_non = xs_non, ys_non = ys_non)	
## 	
## familyr familys compare comparec vmethod vmethodc vmethodr	
## [1,] "gaussian" "gaussian" "1" "ful" NA "ijk (alt)" "1" 	
## vmethods n_val n_ful dim_beta dim_gamma	
## [1,] "1" "400" "4000" "5" "6" 	
## 	
## Confidence intervals are for alpha = 0.05	
## 	
## Estimates for Beta using beta_aug 	
## estimate se lcl ucl z 	
## (Intercept) -0.5160102 0.13585249 -0.7822762 -0.2497442 -3.798312 1.46e-04	
## x1 0.6415720 0.41625605 -0.1742748 1.4574189 1.541292 1.23e-01	
## x2 0.8126396 0.22195328 0.3776191 1.2476600 3.661309 2.51e-04	
## x3 1.0497514 0.07691983 0.8989913 1.2005115 13.647344 2.09e-42	
## x4 0.5894433 0.08055363 0.4315611 0.7473255 7.317402 2.53e-13	

Use	of	meerva.sim.cox()	and	meerva.sim.nrm()	is	further	described	in	the	meerva	Reference	
manual.	

Simulation studies
				Simulation	studies	can	be	helpful	in	understanding	how	different	statistical	methods	may	
perform	for	different	scenario.	A	number	of	simulations	are	provided	in	the	paper	describing	
augmented	estimates	in	(arXiv:2106.14063,	https://arxiv.org/abs/2106.14063).	We	provide	with	
the	meerva	package	the	program	used	to	perform	the	simulation	studies	in	that	paper.	With	this	
program	the	user	can	for	themselves	investigate	the	properties	of	the	augmented	estimators	for	
various	scenario.	The	programs	simulate	data	with	measurement	error	in	both	predictors	and	

meerva	R-package	 26	October	2021	11	

outcomes	for	the	logistic,	Cox	and	linear	regression	models.	Very	simplistically	the	user	may	first	
try	this	program,	meerva.sim.block(),	without	specifying	any	of	the	input	variables	and	a	default	
simulation	setting	will	be	run.	Because	the	default	is	provided	more	as	a	starting	point	than	for	
inference,	by	default	only	100	data	sets	are	simulated	and	analyzed.	To	draw	stronger	conclusions	
one	should	probably	simulate	1000	data	sets	or	more	by	specifying	the	input	variable	nsim	(for	
number	of	simulations)	as	in	meerva.sim.block(nsim=1000).	Simulating	1000	datasets,	as	
determined	by	the	parameter	nsim,	suppressing	a	log	of	time	as	the	program	runs	through	the	
simulations,	as	determined	by	teh	paramter	simtime,	and	viewing	the	summary	information	we	
have,	for	example,	

simex = meerva.sim.block(nsims=1000, simtime=0)	
summary(simex)	

## 	
## ======================= Simulation parameters ==================================	
## 	
## list name = simex 	
## 	
## R glm family = gaussian	
## 	
## VCOV method vmethod = 1 , dfbeta	
## 	
## Comparison group = 1 , ful	
## 	
## Number of simulations = 1000	
## 	
## seed = 633677224	
## 	
## Full and val sample sizes of 4000 and 400	
## 	
## [,1] [,2] [,3] [,4] [,5]	
## beta -0.5 0.5 0.2 1 0.5	
## 	
## [,1] [,2] [,3] [,4]	
## alpha1 -0.05 0.1 0.05 0.1	
## 	
## [,1] [,2] [,3] [,4]	
## alpha2 0.98 0.98 0.95 0.95	
## 	
## [,1] [,2] [,3] [,4] [,5]	
## bx3s1 0.05 0 0 NA NA	
## 	
## [,1] [,2] [,3]	
## bx3s2 0.95 NA NA	
## 	
## [,1] [,2]	
## bx12 0.25 0.15	
## 	
## SD = 1	
## 	

meerva	R-package	 26	October	2021	12	

## mncor = 0	
## 	
## ==	
## ======================= Estimate averages ======================================	
## 	
## (Intercept) x_valx1 x_valx2 x_valx3 x_valx4	
## beta -0.5000000 0.5000000 0.2000000 1.0000000 0.5000000	
## beta_val -0.5022569 0.5036400 0.2009553 0.9993991 0.4983573	
## beta_aug -0.5008796 0.5015795 0.2013922 0.9998795 0.4995057	
## 	
## (Intercept) xs_fulx1s xs_fulx2 xs_fulx3s xs_fulx4	
## gamma_ful -0.4372526 0.3251148 0.2007229 1.049886 0.4997596	
## gamma_val -0.4385054 0.3271122 0.2004235 1.049366 0.4986172	
## 	
## ======================= Bias ===	
## 	
## (Intercept) x_valx1 x_valx2 x_valx3	
## beta_val_bias -0.0022569178 0.003640022 0.0009553472 -0.0006009482	
## beta_aug_bias -0.0008795792 0.001579478 0.0013922206 -0.0001205343	
## x_valx4	
## beta_val_bias -0.0016427232	
## beta_aug_bias -0.0004942831	
## 	
## (Intercept) xs_fulx1s xs_fulx2 xs_fulx3s xs_fulx4	
## gamma_ful_bias 0.06274740 -0.1748852 0.0007229432 0.04988557 -0.0002403569	
## gamma_val_bias 0.06149457 -0.1728878 0.0004234665 0.04936587 -0.0013827686	
## 	
## ======================= Standard Deviations ====================================	
## 	
## (Intercept) x_valx1 x_valx2 x_valx3 x_valx4	
## beta_val_sd 0.06107792 0.11972736 0.14012782 0.05080355 0.05080432	
## beta_aug_sd 0.02305151 0.06164541 0.05003283 0.01696226 0.01706642	
## 	
## (Intercept) xs_fulx1s xs_fulx2 xs_fulx3s xs_fulx4	
## gamma_ful_sd 0.01920507 0.03517745 0.04587256 0.01696276 0.01617495	
## gamma_val_sd 0.06246692 0.12213634 0.14114124 0.05415981 0.05181284	
## 	
## ======================= Average Standard Errors ===============================	
## 	
## (Intercept) x_valx1 x_valx2 x_valx3 x_valx4	
## beta_val_sd 0.06174022 0.11696770 0.14193863 0.05076439 0.05048094	
## beta_aug_sd 0.02331342 0.06150785 0.04793484 0.01732204 0.01712690	
## 	
## (Intercept) xs_fulx1s xs_fulx2 xs_fulx3s xs_fulx4	
## gamma_ful_sdj 0.01977944 0.03645767 0.04481982 0.01681767 0.01598942	
## gamma_val_sd 0.06289383 0.11481727 0.14268464 0.05355446 0.05086724	
## gamma_ful_sd 0.01985192 0.03611491 0.04481597 0.01681043 0.01598961	
## 	
## ==	
## ======================= Square Root MSEs =======================================	

meerva	R-package	 26	October	2021	13	

## 	
## (Intercept) x_valx1 x_valx2 x_valx3 x_valx4	
## beta_val_rmse 0.06108908 0.11972283 0.14006100 0.05078169 0.05080548	
## beta_aug_rmse 0.02305676 0.06163482 0.05002718 0.01695420 0.01706505	
## 	
## (Intercept) xs_fulx1s xs_fulx2 xs_fulx3s xs_fulx4	
## gamma_ful_rmse 0.06561785 0.1783845 0.04585532 0.05268793 0.01616864	
## gamma_val_rmse 0.08763445 0.2116426 0.14107129 0.07326214 0.05180539	
## 	
## ==	
## ======================= Compare means and squared errors =======================	
## 	
## Compare MSE beta_aug minus MSE bata_val (Paired t-test) 	
## n mean beta0 sd lcl ucl	
## (Intercept) 1000 -0.003200261 0 0.005364371 -0.003533145 -0.002867377	
## x_valx1 1000 -0.010534704 0 0.019680734 -0.011755986 -0.009313422	
## x_valx2 1000 -0.017114365 0 0.029658093 -0.018954788 -0.015273941	
## x_valx3 1000 -0.002291335 0 0.003656269 -0.002518224 -0.002064447	
## x_valx4 1000 -0.002289980 0 0.003479157 -0.002505878 -0.002074082	
## t p	
## (Intercept) -18.86542 3.852487e-68	
## x_valx1 -16.92704 1.056313e-56	
## x_valx2 -18.24810 1.977107e-64	
## x_valx3 -19.81758 5.648511e-74	
## x_valx4 -20.81411 3.279030e-80	
## 	
## Bias in beta_val 	
## n mean beta0 sd lcl ucl	
## (Intercept) 1000 -0.0022569178 0 0.06107792 -0.006047089 0.001533253	
## x_valx1 1000 0.0036400221 0 0.11972736 -0.003789621 0.011069666	
## x_valx2 1000 0.0009553472 0 0.14012782 -0.007740241 0.009650935	
## x_valx3 1000 -0.0006009482 0 0.05080355 -0.003753546 0.002551650	
## x_valx4 1000 -0.0016427232 0 0.05080432 -0.004795369 0.001509923	
## t p	
## (Intercept) -1.1685075 0.2428809	
## x_valx1 0.9614144 0.3365765	
## x_valx2 0.2155941 0.8293482	
## x_valx3 -0.3740615 0.7084379	
## x_valx4 -1.0225010 0.3067914	
## 	
## Bias in beta_aug 	
## n mean beta0 sd lcl ucl	
## (Intercept) 1000 -0.0008795792 0 0.02305151 -0.002310033 0.0005508748	
## x_valx1 1000 0.0015794779 0 0.06164541 -0.002245909 0.0054048644	
## x_valx2 1000 0.0013922206 0 0.05003283 -0.001712551 0.0044969921	
## x_valx3 1000 -0.0001205343 0 0.01696226 -0.001173122 0.0009320532	
## x_valx4 1000 -0.0004942831 0 0.01706642 -0.001553335 0.0005647685	
## t p	
## (Intercept) -1.2066342 0.2278587	
## x_valx1 0.8102384 0.4179962	

meerva	R-package	 26	October	2021	14	

## x_valx2 0.8799398 0.3791035	
## x_valx3 -0.2247123 0.8222490	
## x_valx4 -0.9158688 0.3599567	
## 	
## Bias in gamma_ful	
## n mean beta0 sd lcl ucl	
## (Intercept) 1000 0.0627473966 0 0.01920507 0.061555632 0.0639391612	
## xs_fulx1s 1000 -0.1748851522 0 0.03517745 -0.177068077 -0.1727022268	
## xs_fulx2 1000 0.0007229432 0 0.04587256 -0.002123664 0.0035695506	
## xs_fulx3s 1000 0.0498855728 0 0.01696276 0.048832954 0.0509381913	
## xs_fulx4 1000 -0.0002403569 0 0.01617495 -0.001244088 0.0007633743	
## t p	
## (Intercept) 103.3189077 0.0000000	
## xs_fulx1s -157.2130670 0.0000000	
## xs_fulx2 0.4983691 0.6183336	
## xs_fulx3s 92.9990604 0.0000000	
## xs_fulx4 -0.4699090 0.6385226	
## 	
## ==	
## ======== beta and gamma 95% Confidence Interval coverage probabilities =========	
## 	
## Coverage for beta_aug 95% CI 	
## n_ coverage coverage_lcl coverage_ucl	
## (Intercept) 1000 0.956 0.943 0.969	
## x_valx1 1000 0.950 0.936 0.964	
## x_valx2 1000 0.932 0.916 0.948	
## x_valx3 1000 0.963 0.951 0.975	
## x_valx4 1000 0.953 0.940 0.966	
## 	
## Coverage for beta_val 95% CI 	
## n_ coverage coverage_lcl coverage_ucl	
## (Intercept) 1000 0.953 0.940 0.966	
## x_valx1 1000 0.942 0.928 0.956	
## x_valx2 1000 0.947 0.933 0.961	
## x_valx3 1000 0.941 0.926 0.956	
## x_valx4 1000 0.946 0.932 0.960	
## 	
## Coverage for gamma_ful 95% CI 	
## n_ coverage coverage_lcl coverage_ucl	
## (Intercept) 1000 0.116 0.096 0.136	
## xs_fulx1s 1000 0.003 0.000 0.006	
## xs_fulx2 1000 0.940 0.925 0.955	
## xs_fulx3s 1000 0.151 0.129 0.173	
## xs_fulx4 1000 0.947 0.933 0.961	
## 	
## ==	

The	first	few	elements	of	the	simulation	parameter	summary	include	

meerva	R-package	 26	October	2021	15	

• list	name	–	name	of	the	list	object	in	which	results	were	stored.	I	found	this	helpful	when	
reading	summaries	from	multiple	simulations.	

• R	glm	family	–	the	family	of	model	for	simulating	datasets	and	analyzing	data,	here	
gaussian.	

• VCOV	method	–	the	method	used	for	estimating	the	variance	covariance	matrices	needed	
for	calculation	of	the	augmented	estimates,	here	by	default	using	the	dfbeta’s	(infinitesimal	
jackknife)	from	existing	R	functions	or	from	Tong	et	al.	doi:10.1093/jamia/ocz180	for	
logistic	regression.	The	jackknife	will	provide	more	accurate	variance	estimates,	
e.g.	meerva.sim.block(n=1000,	vmethod=0),	but	will	take	longer	to	compute.	

• Comparison	group	–	In	the	standard	formulation	the	augmented	estimates	involve	the	
difference	(gamma_ful	–	gamma_val)	but	the	formulation	involving	(gamma_non	–	
gamma_val)	can	also	be	used.	Thus,	either	gamma_ful	or	gamma_val	can	serve	as	a	
comparison	group.	By	default	the	programs	uses	gamma_ful	as	the	comparison	group	but	
can	use	gamma_non	as	the	comparison	group	(compare	=	0).	This	will	generally	not	have	a	
large	impact	on	the	analysis	and	is	discussed	in	our	methods	paper.	

• seed	–	By	default	the	program	first	generates	a	seed	and	stores	this	seed.	One	can	give	this	
seed	value	as	input	when	running	the	simulation	program	again	to	replicate	findings,	
e.g.	meerva.sim.block(n=1000,	seed	=	648284311).	

The	other	simulation	parameters	are	as	in	the	meerva.sim.brn(),	meerva.sim.cox()	and	
meerva.sim.nrm()	functions	for	which	we	refer	to	the	meerva	Reference	manual.	

				Summary	statistics	include	various	descriptions	like	averages,	biases,	standard	deviations	and	
mean	square	errors	as	well	as	average	standard	errors	calculated	form	the	individual	simulations.	
We	provide	these	summaries	for	the	augmented	estimates	(based	upon	all	reference	and	
surrogate	data)	as	well	as	estimates	based	upon	either	the	reference	or	surrogate	data	alone	using	
either	the	subsample	or	full	sample.	Because	the	models	based	upon	surrogate	data	(alone)	indeed	
estimate	quantities	different	than	estimates	based	upon	the	reference	variables	(alone)	we	use	
beta	to	denote	estimates	for	reference	variable	models	and	gamma	to	denote	estimates	based	
upon	surrogate	variables.	Additionally,	we	compare	MSE’s	between	augmented	estimates	and	
estimates	based	upon	reference	variables	in	the	validation	subsample,	as	well	as	test	for	bias	of	
the	various	estimates.	Finally,	we	calculate	coverage	probabilities	for	the	different	estimates.	
Though	not	shown	in	this	example,	for	coverage	probabilities	of	the	augmented	estimates	one	can	
compare	using	the	jackknife	with	using	the	infinitesimal	jackknife	(using	vmethod=3),	typically	
finding	better	coverage	probabilities	with	the	jackknife.	Fitting	the	data	multiple	times	for	the	
different	methods	and	also	estimating	variances	using	the	jackknife,	this	may	require	a	bit	of	
computing	time.	

				Simulation	results	may	be	inspected	visually	by	plotting	as	in	

plot(simex)	

meerva	R-package	 26	October	2021	16	

	

Whereas	the	summary()	and	plot()	functions	provide	numerous	insights	to	the	simulations	the	
user	may	want	to	further	inspect	the	estimator	properties.	Since	meerva.sim.block()	actually	
stores	estimates	from	the	individual	simulated	datasets,	the	user	can	extract	these	elements	to	
inspect	them.	One	can	see	the	elements	of	the	output	list	using	the	names()	function,	e.g.		

# see the elements of the simulaiton output list	
names(simex)	

## [1] "simfam" "mncor" "vmethod" "jksize" 	
## [5] "compare" "nsims" "seed" "nm" 	
## [9] "beta" "alpha1" "alpha2" "bx3s1" 	
## [13] "bx3s2" "bx12" "sd" "mncor" 	
## [17] "sigma" "beta_augs" "beta_vals" "beta_aug_vars" 	
## [21] "beta_val_vars" "gamma_bigs" "gamma_vals" "gamma_big_varjs"	
## [25] "gamma_val_vars" "gamma_big_vars"	

This	includes	the	regression	parameter	estimates	from	each	simulated	dataset.	Because	when	
deriving	the	augmented	estimates	one	can	compare	either	gamma_ful	(regression	parameter	
estimate	derived	from	the	full	sample)	or	gamma_non	(derived	from	the	non-validation	
subsample)	with	gamma_val	we	denote	the	respective	comparator	by	gamma_big.	The	s	in	
beta_augs	and	similar	terms	simply	signifies	that	the	individual	dataset	estimates	are	stored,	not	
just	a	summary.	I	may	have	used	this	convention	as	well	out	of	programming	convenience.	
Importantly	the	s	here	does	not	relate	to	surrogate.	

