jointseg
packagejointseg
package to
partition bivariate DNA copy number signals from SNP array data into
segments of constant parent-specific copy number. We demonstrate the use
of the PSSeg
function of this package for applying two
different strategies. Both strategies consist in first identifying a
list of candidate change points through a fast (greedy) segmentation
method, and then to prune this list is using dynamic programming [1].
The segmentation method presented here is Recursive Binary Segmentation
(RBS, [2]). We refer to [3] for a more comprehensive performance
assessment of this method and other segmentation methods.
segmentation, change point model, binary segmentation, dynamic programming, DNA copy number, parent-specific copy number.
Please see Appendix \(\ref{citation}\) for citing
jointseg
.
HERE
This vignette illustrates how the jointseg
package may
be used to generate a variety of copy-number profiles from the same
biological ``truth’’. Such profiles have been used to compare the
performance of segmentation methods in [3].
jointseg
##
## To cite package 'jointseg' in publications, please use the following
## references:
##
## Morgane Pierre-Jean, Guillem Rigaill and Pierre Neuvial (). jointseg:
## Joint segmentation of multivariate (copy number) signals.R package
## version 1.0.3.
##
## Morgane Pierre-Jean, Guillem Rigaill and Pierre Neuvial. Performance
## evaluation of DNA copy number segmentation methods. Briefings in
## Bioinformatics (2015) 16 (4): 600-615.
##
## To see these entries in BibTeX format, use 'print(<citation>,
## bibtex=TRUE)', 'toBibtex(.)', or set
## 'options(citation.bibtex.max=999)'.
The parameters are defined as follows:
n <- 1e4 ## signal length
bkp <- c(2334, 6121) ## breakpoint positions
regions <- c("(1,1)", "(1,2)", "(0,2)") ## copy number regions
For convenience we define a custom plot function for this vignette:
plotFUN <- function(dataSet, tumorFraction) {
regDat <- acnr::loadCnRegionData(dataSet=dataSet, tumorFraction=tumorFraction)
sim <- getCopyNumberDataByResampling(n, bkp=bkp,
regions=regions, regData=regDat)
dat <- sim$profile
wHet <- which(dat$genotype==1/2)
colGG <- colG
colGG[wHet] <- hetCol
plotSeg(dat, sim$bkp, col=colGG)
}
## R version 4.0.2 (2020-06-22)
## Platform: x86_64-apple-darwin17.0 (64-bit)
## Running under: macOS 10.16
##
## Matrix products: default
## BLAS: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRblas.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib
##
## locale:
## [1] C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] jointseg_1.0.3 knitr_1.45
##
## loaded via a namespace (and not attached):
## [1] matrixStats_0.57.0 digest_0.6.36 acnr_1.0.0 R6_2.5.1
## [5] lifecycle_1.0.3 jsonlite_1.8.8 evaluate_0.23 highr_0.8
## [9] cachem_1.0.6 rlang_1.1.1 cli_3.6.1 rstudioapi_0.11
## [13] jquerylib_0.1.4 bslib_0.6.1 rmarkdown_2.25 tools_4.0.2
## [17] xfun_0.41 yaml_2.3.8 fastmap_1.1.1 compiler_4.0.2
## [21] htmltools_0.5.7 DNAcopy_1.62.0 sass_0.4.8
[1] Bellman, Richard. 1961. “On the Approximation of Curves by Line Segments Using Dynamic Programming.” Communications of the ACM 4 (6). ACM: 284.
[2] Gey, Servane, et al. 2008. “Using CART to Detect Multiple Change Points in the Mean for Large Sample.” https://hal.science/hal-00327146.
[3] Pierre-Jean, Morgane, et al. 2015. “Performance Evaluation of DNA Copy Number Segmentation Methods.” Briefings in Bioinformatics, no. 4: 600-615.