Package 'ibd'

January 23, 2024
Version 1.6
Date 2024-01-23
Title Incomplete Block Designs
Author B N Mandal [aut, cre]
Maintainer B N Mandal mandal.stat@gmail.com
Depends R (>= 3.1.1)
Imports lpSolve, car, emmeans, multcomp
Suggests multcompView
Description A collection of several utility functions related to binary incomplete block designs. Contains function to generate A- and D-efficient binary incomplete block designs with given numbers of treatments, number of blocks and block size. Contains function to generate an incomplete block design with specified concurrence matrix. There are functions to generate balanced treatment incomplete block designs and incomplete block designs for test versus control treatments comparisons with specified concurrence matrix. Allows performing analysis of variance of data and computing estimated marginal means of factors from experiments using a connected incomplete block design. Tests of hypothesis of treatment contrasts in incomplete block design set up is supported.

License GPL (>= 2)

NeedsCompilation no
Repository CRAN
Date/Publication 2024-01-23 09:50:02 UTC

R topics documented:

aov.ibd 2
A_eff 3
bibd 4
btib 6
btib1 7
Cmatrix 8
design_to_N 9
D_eff 10
ibd 10
ibddata 12
ibdtvc 12
is.connected 14
is.equir 14
is.orthogonal 15
is.proper 16
is.vb 16
N_to_design 17
randomize 18
Index 19

Analysis of Variance, Estimated Marginal Means and Contrast Analysis of Data from An Incomplete Block Design

Description

Performs intrablock analysis of variance of data from experiments using a block design. It also computes estimated marginal means of the factor variables (e.g. treatments) and optionally estimates and tests the contrasts of factor variables (e.g treatments).

Usage

aov.ibd(formula, specs, data, contrast, joint=FALSE, details=FALSE, sort=TRUE, by=NULL, alpha=0.05,Letters = "ABCDEFGHIJ", ...)

Arguments

formula	A formula specifying the model of the form response~treatment+block or re- sponse~block+treatment. Make sure the treatment and blocks are factor vari- ables.
specs	A character vector specifying the names of the factors over which estimated marginal means are desired
data	A data frame in which the variables specified in the formula will be found. If missing, the variables are searched for in the standard way.
contrast	A matrix whose rows are contrasts of factors (e.g. treatments)
joint	If contrast argument has more than one row, then whether a joint test of the con- trasts will be performed. Default is FALSE. If joint=TRUE, a check is performed whether the contrasts are pairwise orthogonal or not and then if orthoghonal, joint test is performed.
details	Logical, if details=TRUE then all objects including lm object from lm(), emm- Grid object from emmeans() are returned. Default is FALSE.
sort	Logical value determining whether the least square means are sorted before the comparisons are produced. Default is TRUE.

by \quad Character value giving the name or names of variables by which separate families of comparisons are tested. If NULL, all means are compared.
alpha Numeric value giving the significance level for the comparisons
Letters Characters to be used for compact letter display of groups of factor variables over which least square means are computed. Default is english alphabet capital letters "ABCDEFGHIJ"
... Not used

Details

The function makes use of $\operatorname{lm}()$ function in R and Anova() function in car package with specification of Type III sum of squares and emmeans(), contrast() functions in emmeans() package, cld() function in multcomp package and combines the results in a single place.

Value

Returns a list with following components

lm.obj	An object of class lm if details=TRUE
ANOVA.table	ANOVA table from the fitted lm object
EMMEANS	Estimated marginal means means with compact letter display
contrast.analysis	
	Contrast analysis result if contrast matrix was supplied

Author(s)

Baidya Nath Mandal mandal.stat@gmail.com

Examples

```
data(ibddata)
aov.ibd(y~factor(trt)+factor(blk),data=ibddata)
contrast=matrix(c(1,-1,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0),nrow=2,byrow=TRUE)
aov.ibd(y~factor(trt)+factor(blk),specs="trt",data=ibddata,contrast=contrast)
```

A_eff A-efficiency of A Binary Incomplete Block Design

Description

Computes lower bound to A-efficiency of a binary incomplete block design. Treatment by block incidence matrix of the design is to be supplied as input to the function.

Usage

A_eff(N)

Arguments

$N \quad$ Treatment by block incidence matrix

Value

Aeff A-efficiency

Author(s)

Baidya Nath Mandal mandal.stat@gmail.com

Examples

```
N=matrix(c(1,0,0,0,1,0,1,0,0,0,1,0,1,1,0,0,1,0,1,1,0,1,0,1,1,0,0,0,0,1,1,0,0,0,1,1,1,0,0,0,1,0,0,
1,0,1,1,0,0),nrow=7, byrow=TRUE)
A_eff(N)
```


bibd

Balanced Incomplete Block Design for Given Parameters

Description

Generates a balanced incomplete block design with given number of treaments (v), number of blocks (b), number of replications (r), block size (k) and number of concurrences (lambda).

Usage

bibd(v,b,r,k,lambda,ntrial=5, pbar=FALSE)

Arguments

v
number of treatments
b
number of blocks
r number of replications
k block size
lambda number of concurrences
ntrial number of trials. Default value is 5.
pbar logical value indicating whether progress bar will be displayed or not. Default is FALSE

Value

v
number of treatments
b number of blocks number of replications
k
block size
lambda number of concurrences
design block contents in a b by k matrix
$\mathrm{N} \quad$ treatments by blocks incidence matrix of the generated design
NNP concurrence matrix of the generated design
Aeff Lower bound to the A-efficiency of the generated design
Deff Lower bound to the D-efficiency of the generated design

Note

The function works best for values of number of treatments (v) up to 30 and block size (k) up to 10 . However, for block size (k) up to 3, much larger values of number of treatments (v) may be used.

Author(s)

Baidya Nath Mandal mandal.stat@gmail.com

References

Mandal, B. N., Gupta, V. K. and Parsad, R. (2013). Application of optimization techniques for construction of incomplete block designs. Project report, IASRI, New Delhi.

Mandal, B. N., Gupta, V. K., \& Parsad, R. (2014). Efficient Incomplete Block Designs Through Linear Integer Programming. American Journal of Mathematical and Management Sciences, 33(2), 110-124.

Mandal, B. N. (2015). Linear integer programming approach to construction of balanced incomplete block designs. Communications in Statistics-Simulation and Computation, 44:6, 1405-1411.

Examples

$$
\begin{aligned}
& \operatorname{bibd}(7,7,3,3,1) \\
& \operatorname{bibd}(9,12,4,3,1)
\end{aligned}
$$

```
btib Balanced Treatment Incomplete Block Designs
```


Description

Generates a balanced treatment incomplete block design for specified parameters.

Usage

btib(v,b,r,r0,k,lambda,lambda0,ntrial=5, pbar=FALSE)

Arguments

v number of test treatments
b number of blocks
$r \quad$ number of replications of test treatments
r0 number of replications of the control treatment
k block size
lambda number of concurrences among test treatments
lambda0 number of concurrences between test treatments and the control treatment
ntrial number of trials. Default is 5.
pbar logical value indicating whether progress bar will be displayed or not. Default is FALSE.

Value

v number of test treatments
b number of blocks
r number of replications of test treatments
r0 number of replications of the control treatment
k block size
lambda number of concurrences among test treatments
lambda0 number of concurrences between test treatments and the control treatment
design generated block design
$\mathrm{N} \quad$ treatment by block incidence matrix of the generated block design
NNP concurrence matrix of the generated design
Aeff A-efficiency of the generated design

Note

The function works best for values of number of treatments (v) up to 30 and block size (k) up to 10 . However, for block size (k) up to 3, much larger values of number of treatments (v) may be used.

Author(s)

Baidya Nath Mandal mandal.stat@gmail.com

References

Mandal, B. N., Gupta, V. K. and Parsad, R. (2013). Application of optimization techniques for construction of incomplete block designs. Project report, IASRI, New Delhi.
Mandal, B. N., Gupta, V. K., \& Parsad, R. (2014). Balanced treatment incomplete block designs through integer programming, Communications in Statistics - Theory and Methods, 46:8, 37283737.

Examples

$\operatorname{btib}(4,6,3,6,3,1,3,10)$

btib1 Balanced Treatment Incomplete Block Designs

Description

Generates a balanced treatment incomplete block design for specified parameters by searching all possible combinations.

Usage

btib1(v, b, r, r0, k, lambda, lambda0)

Arguments

v	number of test treatments
b	number of blocks
r	number of replications of test treatments
r 0	number of replications of the control treatment
k	block size
lambda	number of concurrences among test treatments
lambda0	number of concurrences between test treatments and control treatment

Value	
v	number of test treatments
b	number of blocks
r	number of replications of test treatments
r0	number of replications of control treatment
k	block size

lambda	number of concurrences among test treatments
lambda0	number of concurrences between test treatments and control treatment
design	generated block design
N	treatment by block incidence matrix of the generated block design
NNP	concurrence matrix of the generated design
Aeff	A-efficiency of the generated design

Note

The function works best for values of number of treatments (v) up to 30 and block size (k) up to 10 . However, for block size (k) up to 3, much larger values of number of treatments (v) may be used.

Author(s)

Baidya Nath Mandal mandal.stat@gmail.com

References

Mandal, B. N., Gupta, V. K. and Parsad, R. (2013). Application of optimization techniques for construction of incomplete block designs. Project report, IASRI, New Delhi.

MANDAL, B. N., GUPTA, V. K. and PARSAD, R. (2012). Generation of Binary Incomplete Block Design with a Specified Concurrence Matrix. Journal of Statistics \& Applications, 7.

Examples

btib $(4,6,3,6,3,1,3)$
Cmatrix Information Matrix of a Block Design

Description

Gives the information matrix from a given treatment by block incidence matrix of a block design

Usage

Cmatrix(N)

Arguments

N
treatment by block incidence matrix

Value

Cmatrix $\quad v$ by v information matrix where v is number of treatments

Author(s)

Baidya Nath Mandal mandal.stat@gmail.com

Examples

```
N = matrix(c(1,0,0,0,1,0,1,0,0,0,1,0,1,1,0,0,1,0,1,1,0,1,0,1,1,0,0,0,0,1,1,0,0,0,1,1,1,0,0,0,1,0,0
,1,0,1,1,0,0),nrow=7,byrow=TRUE)
Cmatrix(N)
Information.Matrix(N)
```

design_to_N Block Design to Treatment by Block Incidence Matrix

Description

Generates treatment by block incidence matrix from a given block design

Usage

design_to_N(design)
N (design)

Arguments

```
    design design
```


Value

$\mathrm{N} \quad$ A treatment by block incidence matrix of order v by b with elements as 0 and 1 where v is the number of treatments and b is the number of blocks

Author(s)

Baidya Nath Mandal mandal.stat@gmail.com

Examples

```
design = matrix(c(1,4,6,5,6,7,3,4,5,2,4,7,1,3,7,2,3,6,1,2,5),nrow=7,byrow=TRUE)
design_to_N(design)
# or alternatively
N(design)
```

D_eff D-efficiency of a Binary Incomplete Block Design

Description

Computes lower bound to D-efficiency of a binary incomplete block design

Usage

D_eff(N)

Arguments

$\mathrm{N} \quad$ treatment by block incidence matrix

Value

Deff lower bound to D-efficiency

Author(s)

Baidya Nath Mandal mandal.stat@gmail.com

Examples

```
N=matrix(c(1,0,0,0,1,0,1,0,0,0,1,0,1,1,0,0,1,0,1,1,0,1,0,1,1,0,0,0,0,1,1,0,0,0,1,1,1,0,0,0,1,0,0
    ,1,0,1,1,0,0),nrow=7,byrow=TRUE)
    D_eff(N)
```

Binary Incomplete Block Design for Given v, b and k and Optionally, with a Specified Concurrence Matrix

Description

Generates an A- and D- efficient binary incomplete block design with given number of treaments(v), number of blocks(b) and block size(k) and optionally with a specified concurrence matrix(NNP).

Usage

ibd(v,b,k,NNPo,ntrial=5, pbar=FALSE)

Arguments

v	number of treatments
b	number of blocks
k	block size
NNPo	optionally, desired concurrence matrix. If not specified, a nearly balanced con- currence matrix is obtained automatically.
ntrial	number of trials. Default is 5.
pbar	progress bar. Default is FALSE.

Value

v number of treatments
b number of blocks
k block size
NNP specified concurrence matrix
$\mathrm{N} \quad$ incidence matrix of the generated design
design block contents in ab by k matrix
conc.mat concurrence matrix of the generated design
A.efficiency lower bound to A-efficiency of the generated design
D.efficiency lower bound to D-efficiency of the generated design
time.taken time taken to generate the design

Note

This function works best for values of number of treatments (v) up to 30 and block size (k) up to 10 . However, for block size (k) up to 3, much larger values of number of treatments (v) may be used.

Author(s)

Baidya Nath Mandal mandal.stat@gmail.com

References

Mandal, B. N., Gupta, V. K. and Parsad, R. (2013). Application of optimization techniques for construction of incomplete block designs. Project report, IASRI, New Delhi.
Mandal, B. N., Gupta, V. K., \& Parsad, R. (2014). Efficient Incomplete Block Designs Through Linear Integer Programming. American Journal of Mathematical and Management Sciences, 33(2), 110-124.

Examples

```
ibd(v = 7,b = 7,k = 4, pbar=FALSE)
```


Description

Data from an experiment using incomplete block design

Usage

data("ibddata")

Format

A data frame with 36 observations on the following 3 variables.
trt Treatments
blk Blocks
y The response variable

Details

The experiment used a balanced incomplete block design.

References

Dey,A. (1986). Theory of block designs. Wiley Eastern Limited, New Delhi.

Examples

```
    data(ibddata)
```

 ibdtvc
 Incomplete Block Design for Test vs Control(s) Comparions

Description

Generates an incomplete block design for test vs control(s) comparisons with specified parameters and concurrence matrix.

Usage

ibdtvc(v1, v2, b, k,NNPo, ntrial=5, pbar=FALSE)

Arguments

v1	number of test treatments
v2	number of control treatments
b	number of blocks
k	block size
NNPo	desired concurrence matrix
ntrial	number of trials, default is 5
pbar	logical value indicating whether progress bar will be displayed. Default is

Value

$\mathrm{v} 1=\mathrm{v} 1, \mathrm{v} 2=\mathrm{v} 2, \mathrm{~b}=\mathrm{b}, \mathrm{k}=\mathrm{k}$, design=design, $\mathrm{N}=\mathrm{N}, \mathrm{NNP}=\mathrm{NNP}$, Aeff=Aeff)
v1 number of test treatments
v2 number of control treatments
b number of blocks
k block size
design generated block design
$\mathrm{N} \quad$ treatment by block incidence matrix of the generated block design
NNP concurrence matrix of the generated design

Author(s)

Baidya Nath Mandal mandal.stat@gmail.com

References

Mandal, B. N., Gupta, V.K. and Parsad, R. (2013). Binary Incomplete Block Designs with a Specified Concurrence Matrix through Integer Programming, to be submitted for publication

Examples

```
NNPo=matrix(c(7, 3, 3, 3, 3, 3, 3, 3, 3,7,3,3,3,3,3,3,3,3,7,3,3,3,3, 3, 3, 3, 3,7, 3, 3, 3, 3, 3, 3, 3, 3,7,
3,3,3,3,3,3,3,3,7,3,3,3,3,3,3,3,3,9,9,3,3,3,3,3,3,9,9),nrow=8, byrow=TRUE)
ibdtvc(6, 2, 15,4,NNPo)
```


Description

Checks whether an incomplete block design is connected or not. Treatment by block incidence matrix of the design is to be supplied as input to the function. If the design is connected, it returns a value of 1 else it returns 0 .

Usage

is.connected(N)

Arguments

$\mathrm{N} \quad$ incidence matrix

Value

connected connctedness

Author(s)

Baidya Nath Mandal mandal.stat@gmail.com

Examples

$\mathrm{N}=$ matrix $(\mathrm{c}(1,0,0,0,1,0,1,0,0,0,1,0,1,1,0,0,1,0,1,1,0,1,0,1,1,0,0,0,0,1,1,0,0,0,1,1,1,0$, $0,0,1,0,0,1,0,1,1,0,0)$, nrow=7, byrow=TRUE)
is.connected(N)
is.equir Equi-replicateness a Binary Incomplete Block Design

Description

Checks whether an incomplete block design is equi-replicated or not. Treatment by block incidence matrix of the design is to be supplied as input to the function. If the design is equir-eplicated, it returns a value of 1 else it returns 0 .

Usage

is.equir (N)

Arguments

N
incidence matrix

Value

equir equi-replicated

Author(s)

Baidya Nath Mandal mandal.stat@gmail.com

Examples

```
N=matrix(c(1,0,0,0,1,0,1,0,0,0,1,0,1,1,0,0,1,0,1,1,0,1,0,1,1,0,0,0,0,1,1,0,0,0,1,1,1,0,
0,0,1,0,0,1,0,1,1,0,0),nrow=7, byrow=TRUE)
is.equir(N)
```

is.orthogonal Orthogonality a Block Design

Description

Checks whether an incomplete block design is orthogonal or not. Treatment by block incidence matrix of the design is to be supplied as input to the function. If the design is orthogonal, it returns a value of 1 else it returns 0 .

Usage

is.orthogonal(N)

Arguments

$\mathrm{N} \quad$ incidence matrix

Value

orthogonal orthogonal

Author(s)

Baidya Nath Mandal mandal.stat@gmail.com

Examples

```
N=matrix(c(1,0,0,0,1,0,1,0,0,0,1,0,1,1,0,0,1,0,1,1,0,1,0,1,1,0,0,0,0,1,1,0,0,0,1,1,1,0,
0,0,1,0,0,1,0,1,1,0,0),nrow=7, byrow=TRUE)
is.orthogonal(N)
```


Description

Checks whether an incomplete block design is proper or not. Treatment by block incidence matrix of the design is to be supplied as input to the function. If the design is proper, it returns a value of 1 else it returns 0 .

Usage

is. $\operatorname{proper}(\mathrm{N})$

Arguments

$\mathrm{N} \quad$ incidence matrix

Value

proper proper

Author(s)

Baidya Nath Mandal mandal.stat@gmail.com

Examples

$\mathrm{N}=$ matrix $(\mathrm{c}(1,0,0,0,1,0,1,0,0,0,1,0,1,1,0,0,1,0,1,1,0,1,0,1,1,0,0,0,0,1,1,0,0,0,1,1,1,0$, $0,0,1,0,0,1,0,1,1,0,0)$, nrow=7, byrow=TRUE)
is.proper (N)
is.vb Variance Balancedness of a Binary Incomplete Block Design

Description

Checks whether an incomplete block design is variance balanced or not. Treatment by block incidence matrix of the design is to be supplied as input to the function. If the design is variance balanced, it returns a value of 1 else it returns 0 .

Usage

is. $\mathrm{vb}(\mathrm{N})$

Arguments

N
incidence matrix

Value

$\mathrm{vb} \quad$ variance balanced

Author(s)

Baidya Nath Mandal mandal.stat@gmail.com

Examples

$\mathrm{N}=$ matrix $(\mathrm{c}(1,0,0,0,1,0,1,0,0,0,1,0,1,1,0,0,1,0,1,1,0,1,0,1,1,0,0,0,0,1,1,0,0,0,1,1,1,0$, $0,0,1,0,0,1,0,1,1,0,0)$, nrow=7, byrow=TRUE)
is. $\mathrm{vb}(\mathrm{N})$

Description

Generates the block contents from a given treatment by block incidence matrix

Usage

N_to_design(N)
design(N)

Arguments

$\mathrm{N} \quad$ treatment by block incidence matrix

Value

design a matrix with number of rows equal to number of blocks and number of columns equal to block size. Constant block size is assumed. Treatments are labelled as $1,2, \ldots, \mathrm{v}$.

Author(s)

Baidya Nath Mandal mandal.stat@gmail.com

Examples

```
N=matrix(c(1,0,0,0,1,0,1,0,0,0,1,0,1,1,0,0,1,0,1,1,0,1,0,1,1,0,0,0,0,1,1,0,0,0,1,
1,1,0,0,0,1,0,0,1,0,1,1,0,0),nrow=7,byrow=TRUE)
N_to_design(N)
design(N)
```

randomize Randomize a block design

Description

Randomize a given block design

Usage

randomize(design)

Arguments

design design

Value

design \quad Block design with a constant block size

Author(s)

Baidya Nath Mandal mandal.stat@gmail.com

Examples

design $=$ matrix $(c(1,4,6,5,6,7,3,4,5,2,4,7,1,3,7,2,3,6,1,2,5)$, nrow=7, byrow=TRUE $)$
randomize(design)

Index

```
* A-efficiency
    A_eff, 3
    bibd,4
    btib,6
    btib1,7
    ibd,10
* Connectedness
    is.connected,14
* D-efficiency
    bibd,4
    D_eff,10
    ibd,10
* EMMEANS
    aov.ibd, }
* Estimated marginal means
        aov.ibd, }
* Type III sum of squares
    aov.ibd, }
* analysis of variance
    aov.ibd, }
* balanced incomplete block design
    aov.ibd, }
    bibd, 4
* block design
    is.orthogonal, 15
* concurrence matrix
        bibd,4
        ibd, }1
* contrast analysis
        aov.ibd, 2
* datasets
        ibddata, 12
* equi-replicated
    is.equir, 14
* incidence matrix
        bibd, 4
        Cmatrix, }
        design_to_N, 9
        ibd, }1
```

 randomize, 18
 * incomplete block design
A_eff, 3
aov.ibd, 2
btib, 6
btib1, 7
Cmatrix, 8
D_eff, 10
design_to_N, 9
ibd, 10
ibdtvc, 12
is.connected, 14
is.equir, 14
is.proper, 16
is.vb, 16
N_to_design, 17
randomize, 18
* information matrix
Cmatrix, 8
* orthogonal
is.orthogonal, 15
* proper
is.proper, 16
* test vs control(s) comparison
btib, 6
btib1, 7
ibdtvc, 12
* variance balanced
is.vb, 16
A_eff, 3
aov.ibd, 2
bibd, 4
btib, 6
btib1, 7
Cmatrix, 8
D_eff, 10
design (N_to_design), 17
design_to_N, 9
ibd, 10
ibddata, 12
ibdtvc, 12
Information.Matrix (Cmatrix), 8
is.connected, 14
is.equir, 14
is.orthogonal, 15
is.proper, 16
is.vb, 16
N (design_to_N), 9
N_to_design, 17
randomize, 18

