
Package ‘iZID’
October 13, 2022

Title Identify Zero-Inflated Distributions

Version 0.0.1

Description
Computes bootstrapped Monte Carlo estimate of p value of Kolmogorov-Smirnov (KS) test and
likelihood ratio test for zero-inflated count data, based on the work of Aldirawi et al. (2019)
<doi:10.1109/BHI.2019.8834661>. With the package, user can also find tools to simulate
random deviates from zero inflated or hurdle models and obtain maximum likelihood estimate
of unknown parameters in these models.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 6.1.1

Imports extraDistr (>= 1.8.11), methods (>= 3.1.0), rootSolve (>=
1.7), foreach (>= 1.4.7), doParallel (>= 1.0.15), stats (>=
3.1.0)

Depends R (>= 3.1.0)

NeedsCompilation no

Author Lei Wang [aut, cre, cph],
Hani Aldirawi [aut, cph],
Jie Yang [aut, cph]

Maintainer Lei Wang <slimewanglei@163.com>

Repository CRAN

Date/Publication 2019-11-06 12:40:02 UTC

R topics documented:
bb.mle . 2
bb.zihmle . 4
dis.kstest . 7
model.lrt . 10
OTU . 11
sample.h . 12

1

https://doi.org/10.1109/BHI.2019.8834661

2 bb.mle

Index 14

bb.mle Maximum likelihood estimate for beta binomial distributions

Description

calculate maximum likelihood estimate and the corresponding log likelihood value for beta bino-
mial, beta negative binomial, negative binomial and Poisson distributions.

Usage

bb.mle(x, n, alpha1, alpha2, lowerbound = 0.01, upperbound = 10000)

bnb.mle(x, r, alpha1, alpha2, lowerbound = 0.01, upperbound = 10000)

nb.mle(x, r, p, lowerbound = 0.01, upperbound = 10000)

poisson.mle(x)

Arguments

x A vector of count data. Should be non-negative integers.

n An initial value of the number of trials. Must be a positive number, but not
required to be an integer.

alpha1 An initial value for the first shape parameter of beta distribution. Should be a
positive number.

alpha2 An initial value for the second shape parameter of beta distribution. Should be
a positive number.

lowerbound A lower searching bound used in the optimization of likelihood function. Should
be a small positive number. The default is 1e-2.

upperbound An upper searching bound used in the optimization of likelihood function. Should
be a large positive number. The default is 1e4.

r An initial value of the number of success before which m failures are observed,
where m is the element of x. Must be a positive number, but not required to be
an integer.

p An initial value of the probability of success, should be a positive value within
(0,1).

Details

bb.mle, bnb.mle, nb.mle and poisson.mle calculate the maximum likelihood estimate of beta
binomial, beta negative binomial, negative binomial and Poisson distributions, respectively.

Please NOTE that the arguments in the four functions are NOT CHECKED AT ALL! The user must
be aware of their inputs to avoid getting suspicious results.

bb.mle 3

Suppose that X is a random count variable that only takes non-negative values. If p has a prior
distribution beta(alpha1, alpha2) and X follows a binomial distribution b(n, p), then X follows
the beta binomial distribution with

P (X = k) = C(n, k)Beta(k + alpha1, n− k + alpha2)/Beta(alpha1, alpha2),

where C(,) is the combination function, Beta(,) is the beta function and beta(,) stands for the
beta distribution.

If X stands for the number of failures observed before the rth success, the probability of X taking
the value k under the negative binomial distribution equals

P (X = k) = C(k + r − 1, k)pr(1 − p)k,

As in beta binomial distribution, assume the prior distribution of p is beta(alpha1, alpha2). X
follows a beta negative binomial distribution if X follows a negative binomial distribution with
parameters r and p. The probability density function of a beta negative binomial distribution is
defined as:

P (X = k) = Γ(r + k)Beta(r + alpha1, k + alpha2)/Beta(alpha1, alpha2)/Γ(r)/k!,

where Γ represents the Gamma function.

With the only parameter lambda, the probability density function of a Poisson distribution is

P (X = k) = lambdakexp(−lambda)/k!

The maximum likelihood estimate of all four distributions can be derived by minimizing the corre-
sponding negative log likelihood function. It is easy to deduce the sample estimate of lambdawhich
is equal to the sample mean. However, it is not so straightforward to solve the optimization problems
of the other three distributions. Thus, we adopt the optimization algorithm "L-BFGS-B" by calling
R basic function optim. Lower and upper bounds on the unknown parameters are required for the
algorithm "L-BFGS-B", which are determined by the arguments lowerbound and upperbound. But
note that for the estimate of p, the upper bound for searching is essentially 1-lowerbound.

Value

A row vector containing the maximum likelihood estimate of unknown parameters and the corre-
sponding value of log likelihood.

With bb.mle, the following values are returned:

• n: the maximum likelihood estimate of n.

• alpha1: the maximum likelihood estimate of alpha1.

• alpha2: the maximum likelihood estimate of alpha2.

• loglik: the value of log likelihood with maximum likelihood estimates plugged-in.

With bnb.mle, the following values are returned:

• r: the maximum likelihood estimate of r.

• alpha1: the maximum likelihood estimate of alpha1.

• alpha2: the maximum likelihood estimate of alpha2.

• loglik: the value of log likelihood with maximum likelihood estimates plugged-in.

With nb.mle, the following values are returned:

4 bb.zihmle

• r: the maximum likelihood estimate of r.

• p: the maximum likelihood estimate of p.

• loglik: the value of log likelihood with maximum likelihood estimates plugged-in.

With poisson.mle, the following values are returned:

• lambda: the maximum likelihood estimate of lambda.

• loglik: the value of log likelihood with maximum likelihood estimate plugged-in.

Reference

• H. Aldirawi, J. Yang, A. A. Metwally (2019). Identifying Appropriate Probabilistic Models
for Sparse Discrete Omics Data, accepted for publication in 2019 IEEE EMBS International
Conference on Biomedical & Health Informatics (BHI).

Examples

x=extraDistr::rbbinom(2000,12,2,4)
bb.mle(x,3,1,1)
x=extraDistr::rbnbinom(2000,8,3,5)
bnb.mle(x, 3.3, 1, 1)
x=stats::rnbinom(2000,size=5,prob=0.3)
nb.mle(x, 7, 0.5)
x=stats::rpois(2000,7)
poisson.mle(x)

bb.zihmle Maximum likelihood estimate for zero-inflated or hurdle beta binomial
distributions.

Description

Calculate maximum likelihood estimate and the corresponding log likelihood value for zero-inflated
or hurdle beta binomial, beta negative binomial, negative binomial and Poisson distributions.

Usage

bb.zihmle(x, n, alpha1, alpha2, type = c("zi", "h"), lowerbound = 0.01,
upperbound = 10000)

bnb.zihmle(x, r, alpha1, alpha2, type = c("zi", "h"),
lowerbound = 0.01, upperbound = 10000)

nb.zihmle(x, r, p, type = c("zi", "h"), lowerbound = 0.01,
upperbound = 10000)

poisson.zihmle(x, type = c("zi", "h"), lowerbound = 0.01,
upperbound = 10000)

bb.zihmle 5

Arguments

x A vector of count data. Should be non-negative integers.

n An initial value of the number of trials. Must be a positive number, but not
required to be an integer.

alpha1 An initial value for the first shape parameter of beta distribution. Should be a
positive number.

alpha2 An initial value for the second shape parameter of beta distribution. Should be
a positive number.

type The type of distribution used to calculate the sample estimate, where ’zi’ and ’h’
stand for zero-inflated and hurdle distributions respectively.

lowerbound A lower searching bound used in the optimization of likelihood function. Should
be a small positive number. The default is 1e-2.

upperbound An upper searching bound used in the optimization of likelihood function. Should
be a large positive number. The default is 1e4.

r An initial value of the number of success before which m failures are observed,
where m is the element of x. Must be a positive number, but not required to be
an integer.

p An initial value of the probability of success, should be a positive value within
(0,1).

Details

By setting type='zi', bb.zihmle, bnb.zihmle, nb.zihmle and poisson.zihmle calculate the
maximum likelihood estimate of zero-inflated beta binomial, beta negative binomial, negative bino-
mial and Poisson distributions, respectively.

By setting type='h', bb.zihmle, bnb.zihmle, nb.zihmle and poisson.zihmle calculate the
maximum likelihood estimate of hurdle beta binomial, beta negative binomial, negative binomial
and Poisson distributions, respectively.

Please NOTE that the arguments in the four functions are NOT CHECKED AT ALL! The user must
be aware of their inputs to avoid getting suspicious results.

For zero-inflated models, zeros occurred by either sampling process or specific structure of data
with the structural parameter 0 < φ < 1. The density function for a zero-inflated model is

Pzi(X = k) = φ1k=0 + (1 − φ)P (X = k),

where P (X = k) is the probability under standard distributions.

Aldirawi et al. (2019) proposed an estimating procedure for zero-inflated models by optimizing
over a reparametrization of the likelihood function where φ and the rest unknown parameters are
separable. When X comes from a zero-inflated distribution, the maximum likelihood estimate of
parameters except for φ are obtained by minimizing the truncated version of negative log likelihood
function. However, in the zero-deflated case, φ = 0 and the sample estimate of other parameters are
identical to those for its corresponding standard distributions. Meanwhile, an warning message is
shown on the screen such that ’cannot obtain mle with the current model type, the output estimate
is derived from general ... distribution’.

For hurdle models, all zeros occurred purely by the structure of data with the structural parameter
0 < φ < 1. The density function for a hurdle model is

6 bb.zihmle

Ph(X = k) = φ1k=0 + (1 − φ)Ptr(X = k),

where Ptr(X = k) is the truncated probability under standard distributions, where Ptr(X = 0) = 0
and Ptr(X = k) = P (X = k)/(1 − P (X = 0)). Since φ and other unknown parameters are
separable in the joint likelihood function, φ can be estimated by a value with respect to the number
of positive samples. The sample estimate of other parameters can be obtained by the same procedure
for zero-inflated model.

A warning message may also occur when the algorithm of optim does not converge and the resulting
estimates are not valid. In this case, the results from the corresponding general distribution are
output instead.

Value

A row vector containing the maximum likelihood estimate of unknown parameters and the corre-
sponding value of log likelihood.

With bb.zihmle, the following values are returned:

• n: the maximum likelihood estimate of n.

• alpha1: the maximum likelihood estimate of alpha1.

• alpha2: the maximum likelihood estimate of alpha2.

• phi: the maximum likelihood estimate of φ.

• loglik: the value of log likelihood with maximum likelihood estimates plugged-in.

With bnb.zihmle, the following values are returned:

• r: the maximum likelihood estimate of r.

• alpha1: the maximum likelihood estimate of alpha1.

• alpha2: the maximum likelihood estimate of alpha2.

• phi: the maximum likelihood estimate of φ.

• loglik: the value of log likelihood with maximum likelihood estimates plugged-in.

With nb.zihmle, the following values are returned:

• r: the maximum likelihood estimate of r.

• p: the maximum likelihood estimate of p.

• phi: the maximum likelihood estimate of φ.

• loglik: the value of log likelihood with maximum likelihood estimates plugged-in.

With poisson.zihmle, the following values are returned:

• lambda: the maximum likelihood estimate of lambda.

• phi: the maximum likelihood estimate of φ.

• loglik: the value of log likelihood with maximum likelihood estimate plugged-in.

dis.kstest 7

Reference

• H. Aldirawi, J. Yang, A. A. Metwally (2019). Identifying Appropriate Probabilistic Models
for Sparse Discrete Omics Data, accepted for publication in 2019 IEEE EMBS International
Conference on Biomedical & Health Informatics (BHI).

• H. Aldirawi, J. Yang (2019). Model Selection and Regression Analysis for Zero-altered or
Zero-inflated Data, Statistical Laboratory Technical Report, no.2019-01, University of Illinois
at Chicago.

Examples

t1=sample.h(N=2000,phi=0.2,distri='Poisson',lambda=5) ##hurdle poisson random values
t2=sample.h(N=2000,phi=0.2,distri='nb',r=10,p=0.6) ##hurdle negative binomial
t3=sample.zi(N=2000,phi=0.2,distri='bb',alpha1=8,alpha2=9,n=10) ##zero-inflated beta binomial
##zero-inflated beta negative binomial.
t4=sample.zi(N=2000,phi=0.2,distri='bnb',r=10,alpha1=8,alpha2=9)
bb.zihmle(t3,3,1,1,type='h')
bnb.zihmle(t4, 3.3, 1, 1,type='h')
nb.zihmle(t2, 7, 0.5,type='zi')
poisson.zihmle(t1,type='zi')

dis.kstest The Monte Carlo estimate for the p-value of a discrete KS Test

Description

Computes the Monte Carlo estimate for the p-value of a discrete one-sample Kolmogorov-Smirnov
(KS) Test for Poisson, negative binomial, beta binomial, beta negative binomial distributions and
their zero-inflated as well as hurdle versions.

Usage

dis.kstest(x, nsim = 100, bootstrap = TRUE, distri = "Poisson",
r = NULL, p = NULL, alpha1 = NULL, alpha2 = NULL, n = NULL,
lowerbound = 0.01, upperbound = 10000, parallel = FALSE)

Arguments

x A vector of count data. Should be non-negative integers. If elements of x are
not integers, they will be automatically rounded up to the smallest integers that
are no less than themselves.

nsim The number of bootstrapped samples or simulated samples generated to compute
p-value. If it is not an integer, nsim will be automatically rounded up to the
smallest integer that is no less than nsim. Should be greater than 30. Default is
100.

bootstrap Whether to generate bootstrapped samples or not. See Details. ’TRUE’ or any
numeric non-zero value indicates the generation of bootstrapped samples. The
default is ’TRUE’.

8 dis.kstest

distri The distribution used as the null hypothesis. Can be one of {’poisson’,’nb’,’bb’,
’bnb’,’zip’,’zinb’,’zibb’, zibnb’,’ph’,’nbh’,’bbh’,’bnbh’}, which corresponds to
Poisson, negative binomial, beta binomial and beta negative binomial distribu-
tions and their zero-inflated as well as hurdle versions, respectively. Default is
’Poisson’.

r An initial value of the number of success before which m failures are observed,
where m is the element of x. Must be a positive number, but not required to be
an integer.

p An initial value of the probability of success, should be a positive value within
(0,1).

alpha1 An initial value for the first shape parameter of beta distribution. Should be a
positive number.

alpha2 An initial value for the second shape parameter of beta distribution. Should be
a positive number.

n An initial value of the number of trials. Must be a positive number, but not
required to be an integer.

lowerbound A lower searching bound used in the optimization of likelihood function. Should
be a small positive number. The default is 1e-2.

upperbound An upper searching bound used in the optimization of likelihood function. Should
be a large positive number. The default is 1e4.

parallel whether to use multiple threads to parallelize computation. Default is FALSE.
Please aware that it may take longer time to execute the program with parallel=FALSE.

Details

For arguments nsim, bootstrap, distri, if the length is larger than 1, only the first element will be
used. For other arguments except for x, the first valid value will be used if the input is not NULL, oth-
erwise some naive sample estimates will be fed into the algorithm. Note that only the initial values
that are occurred in the null distribution distri are needed. For example, with distri=poisson,
user may provide a value for lambda but not for r or p, though it won’t disturb the algorithm.

With an output p-value less than some user-specified significance level, x is very likely from a
distribution other than the distri, given the current data. If p-values of more than one distributions
are greater than the pre-specified significance level, user may consider a following likelihood ratio
test to select a ’better’ distribution.

The methodology of computing Monte Carlo p-value is taken from Aldirawi et al. (2019). With
bootstrap=TRUE, nsim bootstrapped samples will be generated by resampling x without replace-
ment. Otherwise, nsim samples are simulated from the null distribution with the maximum likeli-
hood estimate of original data x. Then compute the maximum likelihood estimates of nsim boot-
strapped or simulated samples, based on which nsim new samples are generated under the null
distribution. nsim KS statistics are calculated for the nsim new samples, then the Monte Carlo
p-value is resulted from comparing the nsim KS statistics and the statistic of original data x.

During the process of computing maximum likelihood estimates, the negative log likelihood func-
tion is minimized via basic R function optim with the searching interval decided by lowerbound
and upperbound, except that the optimization of p takes 1-lowerbound as the upper searching
bound.

dis.kstest 9

To accelerate the whole process, the algorithm uses the parallel strategy via the packages foreach
and doParallel.

Value

An object of class ’dis.kstest’ including the following elements:

• x: x used in computation.

• nsim: nsim used in computation.

• bootstrap: bootstrap used in computation.

• distri: distri used in computation..

• lowerbound: lowerbound used in computation.

• upperbound: upperboound used in computation.

• mle_new: A matrix of the maximum likelihood estimates of unknown parameters under the
null distribution, using nsim bootstrapped or simulated samples.

• mle_ori: A row vector of the maximum likelihood estimates of unknown parameters under the
null distribution, using the original data x.

• pvalue: Monte Carlo p-value of the one-sample KS test.

• N: length of x.

• r: initial value of r used in computation.

• p: initial value of p used in computation.

• alpha1: initial value of alpha1 used in computation.

• alpha2: initial value of alpha2 used in computation.

• n: initial value of n used in computation.

Reference

• H. Aldirawi, J. Yang, A. A. Metwally (2019). Identifying Appropriate Probabilistic Models
for Sparse Discrete Omics Data, accepted for publication in 2019 IEEE EMBS International
Conference on Biomedical & Health Informatics (BHI).

• T. Wolodzko (2019). extraDistr: Additional Univariate and Multivariate Distributions, R pack-
age version 1.8.11, https://CRAN.R-project.org/package=extraDistr.

• R. Calaway, Microsoft Corporation, S. Weston, D. Tenenbaum (2017). doParallel: Fore-
ach Parallel Adaptor for the ’parallel’ Package, R package version 1.0.11, https://CRAN.R-
project.org/package=doParallel.

• R. Calaway, Microsoft, S. Weston (2017). foreach: Provides Foreach Looping Construct for
R, R package version 1.4.4, https://CRAN.R-project.org/package=foreach.

See Also

model.lrt

10 model.lrt

Examples

set.seed(2001)
temp1=sample.zi(N=300,phi=0.3,distri='poisson',lambda=5)
dis.kstest(temp1,nsim=100,bootstrap=TRUE,distri='Poisson')$pvalue
dis.kstest(temp1,nsim=100,bootstrap=TRUE,distri='nb')$pvalue
dis.kstest(temp1,nsim=100,bootstrap=TRUE,distri='zip')$pvalue
dis.kstest(temp1,nsim=100,bootstrap=TRUE,distri='zinb')$pvalue

model.lrt likelihood ratio test for two models

Description

Conduct likelihood ratio test for comparing two different models.

Usage

model.lrt(d1, d2, parallel = FALSE)

Arguments

d1 An object of class ’dis.kstest’.

d2 An object of class ’dis.kstest’.

parallel Whether to use multiple threads to parallelize computation. Default is FALSE.
Please aware that it may take longer time to execute the program with parallel=FALSE.

Details

If the pvalue of d1 and d2 are greater than the user-specified significance level, which indicates
that the original data x may come from the two distributions in d1 and d2, a likelihood ratio test is
desired to choose a more ’possible’ distribution based on the current data. NOTE that the x in d1
and d2 must be IDENTICAL! Besides, NOTE that the distri in d1 and d2 must be DIFFERENT!

The distri inherited from d1 is the null distribution and that from d2 is used as the alternative
distribution. Following Aldirawi et al. (2019), nsim bootstrapped or simulated samples will be
generated according to bootstrap of d1, based on which nsim maximum likelihood estimates of
the parameters in null distribution will be calculated. Remember that we have obtained nsim such
maximum likelihood estimates while calling function dis.kstest. Thus, the algorithm just adopts
the mle_new from d1 to avoid repetitive work. Using the nsim maximum likelihood estimates to
generate nsim new samples and calculate nsim corresponding new likelihood ratio test statistics.
The output p-value is the proportion of new samples that have statistics greater than the test statistic
of the original data x.

As in dis.kstest, the computation is parallelized with the help of packages foreach and doParallel.

With the output p-value smaller than the user-specified significance level, the distri of d2 is more
appropriate for modelling x. Otherwise, There is no significant difference between distri of d1
and distri of d2, given the current data.

OTU 11

Value

The p-value of the likelihood ratio test.

Reference

• H. Aldirawi, J. Yang, A. A. Metwally (2019). Identifying Appropriate Probabilistic Models
for Sparse Discrete Omics Data, accepted for publication in 2019 IEEE EMBS International
Conference on Biomedical & Health Informatics (BHI).

• T. Wolodzko (2019). extraDistr: Additional Univariate and Multivariate Distributions, R pack-
age version 1.8.11, https://CRAN.R-project.org/package=extraDistr.

• R. Calaway, Microsoft Corporation, S. Weston, D. Tenenbaum (2017). doParallel: Fore-
ach Parallel Adaptor for the ’parallel’ Package, R package version 1.0.11, https://CRAN.R-
project.org/package=doParallel.

• R. Calaway, Microsoft, S. Weston (2017). foreach: Provides Foreach Looping Construct for
R, R package version 1.4.4, https://CRAN.R-project.org/package=foreach.

See Also

dis.kstest

Examples

set.seed(2001)
temp1=sample.zi(N=300,phi=0.3,distri='poisson',lambda=5)
d1=dis.kstest(temp1,nsim=100,bootstrap=TRUE,distri='zip')
d2=dis.kstest(temp1,nsim=100,bootstrap=TRUE,distri='zinb')
model.lrt(d1,d2)

OTU Bacterial OTUs.

Description

A dataset containing the OTUs (Operational Taxonomic Units) of 229 bacteria.

Usage

OTU

Format

The original data set is a skin microbiome from the National Human Genome Research Institute
[1,2], which contains 229 bacterial and fungal OTUs. The OTU data attached to this package is a
data frame with 229 rows and 354 columns, where each row means one kind of bacteria and each
column represents a feature. The first column x is the name of the bacteria. The rest of columns are
the total number of reads for different features. For example, the second column is the total number
of reads for feature ’Center.Back.01’, and so forth.

12 sample.h

Source

• 1. K. Findley, J. Oh, J. Yang, S. Conlan, C. Deming, J.A. Meyer, et al (2013). Human skin
fungal diversity, Nature, 498:367–70.

• 2. E.A. Grice, H.H. Kong, S. Conlan, C.B. Deming, J. Davis, A.C. Young, et al (2009).
Topographical and temporal diversity of the human skin microbiome, Science, 324:1190–2.

sample.h Generate random deviates from zero-inflated or hurdle models

Description

Generate random deviates from zero-inflated or hurdle Poisson, negative binomial, beta binomial
and beta negative binomial models.

Usage

sample.h(N, phi, distri = "poisson", lambda = NA, r = NA, p = NA,
alpha1 = NA, alpha2 = NA, n = NA)

sample.zi(N, phi, distri = "poisson", lambda = NA, r = NA, p = NA,
alpha1 = NA, alpha2 = NA, n = NA)

Arguments

N The sample size. Should be a positive number. If it is not an integer, N will be
automatically rounded up to the smallest integer that no less than N.

phi The structural parameter φ, should be a positive value within (0,1).

distri The corresponding standard distribution. Can be one of {’poisson’,’nb’,’bb’,
’bnb’}, which corresponds to Poisson, negative binomial, beta binomial and
beta negative binomial distributions respectively.

lambda A value for the parameter of Poisson distribution. Should be a positive number.

r the number of success before which m failures are observed, where m is a
random variable from negative binomial or beta negative binomial distribution.
Must be a positive number. If it is not an integer, r will be automatically rounded
up to the smallest integer that no less than r.

p The probability of success, should be a positive value within (0,1).

alpha1 The first shape parameter of beta distribution. Should be a positive number.

alpha2 The second shape parameter of beta distribution. Should be a positive number.

n The number of trials. Must be a positive number. If it is not an integer, n will be
automatically rounded up to the smallest integer that no less than n.

sample.h 13

Details

By setting distri=poisson, sample.h and sample.zi simulates N random deviates from hurdle
and zero-inflated Poisson distribution, respectively, and so on forth. For arguments with length
larger than 1, only the first element will be used.

Arguments r and p are for the use of zero-inflated and hurdle negative binomial distributions.
alpha1, alpha2 and n are for zero-inflated and hurdle beta binomial distributions. r, alpha1 and
alpha2 are used in zero-inflated and hurdle beta negative binomial distributions.

The procedure of generating random deviates follows the work of Aldirawi et al. (2019). The
algorithm calls functions for standard distributions to simulate the non-zero samples. Random
deviates from standard Poisson and negative binomial distributions can be generated by basic R
function rpois and rnbinom. Functions rbbinom and rbnbinom are available for standard beta
binomial and beta negative binomial distributions in R package extraDistr.

Value

A vector of length N containing non-negative integers from the zero-inflated or hurdle version of
distribution determined by distri.

Reference

• H. Aldirawi, J. Yang, A. A. Metwally, Identifying Appropriate Probabilistic Models for Sparse
Discrete Omics Data, accepted for publication in 2019 IEEE EMBS International Conference
on Biomedical & Health Informatics (BHI) (2019).

• T. Wolodzko, extraDistr: Additional Univariate and Multivariate Distributions, R package
version 1.8.11 (2019), https://CRAN.R-project.org/package=extraDistr.

Examples

t1=sample.h(N=2000,phi=0.2,distri='Poisson',lambda=5) ##hurdle poisson random values
t2=sample.h(N=2000,phi=0.2,distri='nb',r=10,p=0.6) ##hurdle negative binomial
t3=sample.h(N=2000,phi=0.2,distri='bb',alpha1=8,alpha2=9,n=10) ##hurdle beta binomial
##hurdle beta negative binomial.
t4=sample.h(N=2000,phi=0.2,distri='bnb',r=10,alpha1=8,alpha2=9)

t1=sample.zi(N=2000,phi=0.2,distri='Poisson',lambda=5) ##zero-inflated poisson random values
t2=sample.zi(N=2000,phi=0.2,distri='nb',r=10,p=0.6) ##zero-inflated negative binomial
t3=sample.zi(N=2000,phi=0.2,distri='bb',alpha1=8,alpha2=9,n=10) ##zero-inflated beta binomial
##zero-inflated beta negative binomial
t4=sample.zi(N=2000,phi=0.2,distri='bnb',r=10,alpha1=8,alpha2=9)

Index

∗ datasets
OTU, 11

bb.mle, 2
bb.zihmle, 4
bnb.mle (bb.mle), 2
bnb.zihmle (bb.zihmle), 4

dis.kstest, 7, 10, 11

model.lrt, 9, 10

nb.mle (bb.mle), 2
nb.zihmle (bb.zihmle), 4

OTU, 11

poisson.mle (bb.mle), 2
poisson.zihmle (bb.zihmle), 4

sample.h, 12
sample.zi (sample.h), 12

14

	bb.mle
	bb.zihmle
	dis.kstest
	model.lrt
	OTU
	sample.h
	Index

