Type: | Package |
Title: | Genome-Wide Identity-by-Descent |
Version: | 0.3.0 |
Maintainer: | Soroush Mahmoudiandehkordi <soroushmdg@gmail.com> |
Description: | Methods and tools for the analysis of Genome Wide Identity-by-Descent ('gwid') mapping data, focusing on testing whether there is a higher occurrence of Identity-By-Descent (IBD) segments around potential causal variants in cases compared to controls, which is crucial for identifying rare variants. To enhance its analytical power, 'gwid' incorporates a Sliding Window Approach, allowing for the detection and analysis of signals from multiple Single Nucleotide Polymorphisms (SNPs). |
License: | MIT + file LICENSE |
Encoding: | UTF-8 |
Imports: | data.table, gdsfmt, SNPRelate, Matrix, ggplot2, plotly, utils, stats, RcppRoll, methods, piggyback, shiny, lattice, grid |
RoxygenNote: | 7.3.1 |
Suggests: | knitr, magrittr, rmarkdown, testthat (≥ 3.0.0) |
Config/testthat/edition: | 3 |
URL: | https://github.com/soroushmdg/gwid, https://soroushmdg.github.io/gwid/ |
BugReports: | https://github.com/soroushmdg/gwid/issues |
NeedsCompilation: | no |
Packaged: | 2024-09-03 22:52:20 UTC; soroush |
Author: | Soroush Mahmoudiandehkordi [aut, cre], Steven J Schrodi [aut], Mehdi Maadooliat [aut] |
Repository: | CRAN |
Date/Publication: | 2024-09-03 23:10:02 UTC |
Open a SNP GDS file and extract information.
Description
Open a SNP GDS file and extract information.
Usage
build_gwas(gds_data = "name.gds", caco = "name.Rda", gwas_generator = TRUE)
Arguments
gds_data |
File name |
caco |
An object of class caco. Output of |
gwas_generator |
logical; if |
Value
a list of seven objects; including smp.id, snp.id, snp.pos, smp.indx, smp.snp (a matrix with samples in rows and snp in columns), caco, snps(column sum of smp.snp for each case control)
Open a ibd file and extract information.
Description
Open a ibd file and extract information.
Usage
build_gwid(
ibd_data = "name.ibd",
gwas = "object of class gwas",
gwid_generator = TRUE
)
Arguments
ibd_data |
a file name for output of Refined IBD |
gwas |
object of class gwas |
gwid_generator |
logical; if |
Value
the output will be a object(list) of class gwid contains profile object, IBD object and result_snps object.
Read .vcf structured text format files and reduce the size of file.
Description
Read .vcf structured text format files and reduce the size of file.
Usage
build_phase(phased_vcf = "name.vcf", caco)
Arguments
phased_vcf |
A file name for a variant call format (vcf) file. |
caco |
An object of class caco. Output of |
Value
the output will be a a list of class phase contains two sparse matrix for each haplotype.
Reload saved case-control list file
Description
Reload saved case-control list file
Usage
case_control(case_control_rda, ...)
Arguments
case_control_rda |
A character string giving the name of the case-control file to load. The file is a list of character vectors including subject names in each case-control groups or csv file including subject name for a disease. |
... |
name of a column (disease name) of csv file. |
Value
The output will be a list of character vectors include subject names and groups. The class of returned object is caco.
Extract information from SNP GDS file.
Description
Extract information from SNP GDS file.
Usage
extract(obj, ...)
Arguments
obj |
an object of class gwas |
... |
other arguments |
Value
extract object instants
Extract information from SNP GDS file.
Description
Extract information from SNP GDS file.
Usage
## S3 method for class 'gwas'
extract(obj, type = c("snps", "snp2", "nas"), snp_start, snp_end, ...)
Arguments
obj |
object of class gwas. |
type |
indicate type of aggregation on sample-snp data and must be one of snps, snp2, or nas |
snp_start |
select starting position of snp, which we want to aggregate. |
snp_end |
select ending position of snp, which we want to aggregate. |
... |
other arguments |
Value
the output will be a result_snps (data.table) object including 3 columns including, snp_pos, case_control, and value
Examples
piggyback::pb_download(repo = "soroushmdg/gwid",tag = "v0.0.1",dest = tempdir())
ibd_data_file <- paste0(tempdir(),"//chr3.ibd")
genome_data_file <- paste0(tempdir(),"//chr3.gds")
phase_data_file <- paste0(tempdir(),"//chr3.vcf")
case_control_data_file <- paste0(tempdir(),"//case-cont-RA.withmap.Rda")
# case-control data
case_control <- gwid::case_control(case_control_rda = case_control_data_file)
names(case_control) #cases and controls group
summary(case_control) # in here, we only consider cases,cont1,cont2,cont3 groups in the study
case_control$cases[1:3] # first three subject names of cases group
# read SNP data (use SNPRelate to convert it to gds) and count number of minor alleles
snp_data_gds <- gwid::build_gwas(gds_data = genome_data_file,
caco = case_control,gwas_generator = TRUE)
class(snp_data_gds)
names(snp_data_gds)
head(snp_data_gds$snps) # it has information about counts of minor alleles in each location.
# read haplotype data (output of beagle)
haplotype_data <- gwid::build_phase(phased_vcf = phase_data_file,caco = case_control)
class(haplotype_data)
names(haplotype_data)
dim(haplotype_data$Hap.1) #22302 SNP and 1911 subjects
# read IBD data (output of Refined-IBD)
ibd_data <- gwid::build_gwid(ibd_data = ibd_data_file,gwas = snp_data_gds)
class(ibd_data)
ibd_data$ibd # refined IBD output
ibd_data$res # count number of IBD for each SNP location
# plot count of IBD in chromosome 3
plot(ibd_data,y = c("cases","cont1"),ly = FALSE)
# Further investigate location between 117M and 122M
# significant number of IBD's in group cases, compare to cont1, cont2 and cont3.
plot(ibd_data,y = c("cases","cont1"),snp_start = 119026294,snp_end = 120613594,ly = FALSE)
model_fisher <- gwid::fisher_test(ibd_data,case_control,reference = "cases",
snp_start = 119026294,snp_end = 120613594)
class(model_fisher)
plot(model_fisher, y = c("cases","cont1"),ly = FALSE)
hap_str <- gwid::haplotype_structure(ibd_data,phase = haplotype_data,w = 10,
snp_start = 119026294,snp_end = 120613594)
haplo_freq <- gwid::haplotype_frequency(hap_str)
plot(haplo_freq,y = c("cases", "cont1"),plot_type = "haplotype_structure_frequency",
nwin = 1, type = "version1",ly = FALSE)
Extract information from ibd data.
Description
Extract information from ibd data.
Usage
## S3 method for class 'gwid'
extract(obj = "object of class gwid", snp_start, snp_end, ...)
Arguments
obj |
object of class gwid(output of function build_gwid) |
snp_start |
select starting position of snp, which we want to aggregate. |
snp_end |
select ending position of snp, which we want to aggregate. |
... |
other objects |
Value
the output will be a result_snps (data.table) object including 3 columns including, “snp_pos”, “case_control”, and “value”
Examples
piggyback::pb_download(repo = "soroushmdg/gwid",tag = "v0.0.1",dest = tempdir())
ibd_data_file <- paste0(tempdir(),"//chr3.ibd")
genome_data_file <- paste0(tempdir(),"//chr3.gds")
phase_data_file <- paste0(tempdir(),"//chr3.vcf")
case_control_data_file <- paste0(tempdir(),"//case-cont-RA.withmap.Rda")
# case-control data
case_control <- gwid::case_control(case_control_rda = case_control_data_file)
names(case_control) #cases and controls group
summary(case_control) # in here, we only consider cases,cont1,cont2,cont3 groups in the study
case_control$cases[1:3] # first three subject names of cases group
# read SNP data (use SNPRelate to convert it to gds) and count number of minor alleles
snp_data_gds <- gwid::build_gwas(gds_data = genome_data_file,
caco = case_control,gwas_generator = TRUE)
class(snp_data_gds)
names(snp_data_gds)
head(snp_data_gds$snps) # it has information about counts of minor alleles in each location.
# read haplotype data (output of beagle)
haplotype_data <- gwid::build_phase(phased_vcf = phase_data_file,caco = case_control)
class(haplotype_data)
names(haplotype_data)
dim(haplotype_data$Hap.1) #22302 SNP and 1911 subjects
# read IBD data (output of Refined-IBD)
ibd_data <- gwid::build_gwid(ibd_data = ibd_data_file,gwas = snp_data_gds)
class(ibd_data)
ibd_data$ibd # refined IBD output
ibd_data$res # count number of IBD for each SNP location
# plot count of IBD in chromosome 3
plot(ibd_data,y = c("cases","cont1"),ly = FALSE)
# Further investigate location between 117M and 122M
# significant number of IBD's in group cases, compare to cont1, cont2 and cont3.
plot(ibd_data,y = c("cases","cont1"),snp_start = 119026294,snp_end = 120613594,ly = FALSE)
model_fisher <- gwid::fisher_test(ibd_data,case_control,reference = "cases",
snp_start = 119026294,snp_end = 120613594)
class(model_fisher)
plot(model_fisher, y = c("cases","cont1"),ly = FALSE)
hap_str <- gwid::haplotype_structure(ibd_data,phase = haplotype_data,w = 10,
snp_start = 119026294,snp_end = 120613594)
haplo_freq <- gwid::haplotype_frequency(hap_str)
plot(haplo_freq,y = c("cases", "cont1"),plot_type = "haplotype_structure_frequency",
nwin = 1, type = "version1",ly = FALSE)
extract component of an object
Description
extract component of an object
Usage
extract_window(obj, ...)
Arguments
obj |
obj |
... |
other variables |
Value
the output will be a result_snps (data.table) object including 3 columns including, “snp_pos”, “case_control”, and “value”
Extract information from ibd data in a moving window
Description
Extract information from ibd data in a moving window
Usage
## S3 method for class 'gwid'
extract_window(obj, w = 10, snp_start, snp_end, ...)
Arguments
obj |
object of class gwid(output of function build_gwid) |
w |
window size |
snp_start |
select starting position of snp, which we want to aggregate. |
snp_end |
select ending position of snp, which we want to aggregate. |
... |
other variables |
Value
the output will be a result_snps (data.table) object including 3 columns including, “snp_pos”, “case_control”, and “value”
Examples
piggyback::pb_download(repo = "soroushmdg/gwid",tag = "v0.0.1",dest = tempdir())
ibd_data_file <- paste0(tempdir(),"//chr3.ibd")
genome_data_file <- paste0(tempdir(),"//chr3.gds")
phase_data_file <- paste0(tempdir(),"//chr3.vcf")
case_control_data_file <- paste0(tempdir(),"//case-cont-RA.withmap.Rda")
# case-control data
case_control <- gwid::case_control(case_control_rda = case_control_data_file)
names(case_control) #cases and controls group
summary(case_control) # in here, we only consider cases,cont1,cont2,cont3 groups in the study
case_control$cases[1:3] # first three subject names of cases group
# read SNP data (use SNPRelate to convert it to gds) and count number of minor alleles
snp_data_gds <- gwid::build_gwas(gds_data = genome_data_file,
caco = case_control,gwas_generator = TRUE)
class(snp_data_gds)
names(snp_data_gds)
head(snp_data_gds$snps) # it has information about counts of minor alleles in each location.
# read haplotype data (output of beagle)
haplotype_data <- gwid::build_phase(phased_vcf = phase_data_file,caco = case_control)
class(haplotype_data)
names(haplotype_data)
dim(haplotype_data$Hap.1) #22302 SNP and 1911 subjects
# read IBD data (output of Refined-IBD)
ibd_data <- gwid::build_gwid(ibd_data = ibd_data_file,gwas = snp_data_gds)
class(ibd_data)
ibd_data$ibd # refined IBD output
ibd_data$res # count number of IBD for each SNP location
# plot count of IBD in chromosome 3
plot(ibd_data,y = c("cases","cont1"),ly = FALSE)
# Further investigate location between 117M and 122M
# significant number of IBD's in group cases, compare to cont1, cont2 and cont3.
plot(ibd_data,y = c("cases","cont1"),snp_start = 119026294,snp_end = 120613594,ly = FALSE)
model_fisher <- gwid::fisher_test(ibd_data,case_control,reference = "cases",
snp_start = 119026294,snp_end = 120613594)
class(model_fisher)
plot(model_fisher, y = c("cases","cont1"),ly = FALSE)
hap_str <- gwid::haplotype_structure(ibd_data,phase = haplotype_data,w = 10,
snp_start = 119026294,snp_end = 120613594)
haplo_freq <- gwid::haplotype_frequency(hap_str)
plot(haplo_freq,y = c("cases", "cont1"),plot_type = "haplotype_structure_frequency",
nwin = 1, type = "version1",ly = FALSE)
Fisher test
Description
Fisher test
Usage
fisher_test(obj, ...)
Arguments
obj |
an object |
... |
other variables |
Value
the output will be a test_snps (data.table) object including 3 columns: “snp_pos”, “case_control”, and “value” which is a p-values.
Fisher's Exact Test for gwas count data
Description
Fisher's Exact Test for gwas count data
Usage
## S3 method for class 'gwas'
fisher_test(
obj,
reference,
snp_start,
snp_end,
alternative = c("two.sided", "greater", "less"),
...
)
Arguments
obj |
object of class gwas |
reference |
reference group of subjects in which we want to perform fisher test test |
snp_start |
select starting position of snps. |
snp_end |
select ending position of snp. |
alternative |
indicates the alternative hypothesis and must be one of "two.sided", "greater" or "less". You can specify just the initial letter. Only used in the 2 by 2 case |
... |
optional arguments to fisher.test |
Value
the output will be a test_snps (data.table) object including 3 columns: “snp_pos”, “case_control”, and “value” which is a p-values.
Examples
piggyback::pb_download(repo = "soroushmdg/gwid",tag = "v0.0.1",dest = tempdir())
ibd_data_file <- paste0(tempdir(),"//chr3.ibd")
genome_data_file <- paste0(tempdir(),"//chr3.gds")
phase_data_file <- paste0(tempdir(),"//chr3.vcf")
case_control_data_file <- paste0(tempdir(),"//case-cont-RA.withmap.Rda")
# case-control data
case_control <- gwid::case_control(case_control_rda = case_control_data_file)
names(case_control) #cases and controls group
summary(case_control) # in here, we only consider cases,cont1,cont2,cont3 groups in the study
case_control$cases[1:3] # first three subject names of cases group
# read SNP data (use SNPRelate to convert it to gds) and count number of minor alleles
snp_data_gds <- gwid::build_gwas(gds_data = genome_data_file,
caco = case_control,gwas_generator = TRUE)
class(snp_data_gds)
names(snp_data_gds)
head(snp_data_gds$snps) # it has information about counts of minor alleles in each location.
# read haplotype data (output of beagle)
haplotype_data <- gwid::build_phase(phased_vcf = phase_data_file,caco = case_control)
class(haplotype_data)
names(haplotype_data)
dim(haplotype_data$Hap.1) #22302 SNP and 1911 subjects
# read IBD data (output of Refined-IBD)
ibd_data <- gwid::build_gwid(ibd_data = ibd_data_file,gwas = snp_data_gds)
class(ibd_data)
ibd_data$ibd # refined IBD output
ibd_data$res # count number of IBD for each SNP location
# plot count of IBD in chromosome 3
plot(ibd_data,y = c("cases","cont1"),ly = FALSE)
# Further investigate location between 117M and 122M
# significant number of IBD's in group cases, compare to cont1, cont2 and cont3.
plot(ibd_data,y = c("cases","cont1"),snp_start = 119026294,snp_end = 120613594,ly = FALSE)
model_fisher <- gwid::fisher_test(ibd_data,case_control,reference = "cases",
snp_start = 119026294,snp_end = 120613594)
class(model_fisher)
plot(model_fisher, y = c("cases","cont1"),ly = FALSE)
hap_str <- gwid::haplotype_structure(ibd_data,phase = haplotype_data,w = 10,
snp_start = 119026294,snp_end = 120613594)
haplo_freq <- gwid::haplotype_frequency(hap_str)
plot(haplo_freq,y = c("cases", "cont1"),plot_type = "haplotype_structure_frequency",
nwin = 1, type = "version1",ly = FALSE)
Fisher's Exact Test for gwid count data
Description
Fisher's Exact Test for gwid count data
Usage
## S3 method for class 'gwid'
fisher_test(
obj,
caco,
snp_start,
snp_end,
reference,
alternative = c("two.sided", "greater", "less"),
...
)
Arguments
obj |
An object of class gwid. Output of |
caco |
An object of class caco. Output of |
snp_start |
select starting position of snps. |
snp_end |
select ending position of snp. |
reference |
reference group of subjects in which we want to perform fisher test |
alternative |
indicates the alternative hypothesis and must be one of "two.sided", "greater" or "less". You can specify just the initial letter. Only used in the 2 by 2 case |
... |
optional arguments to fisher.test |
Value
the output will be a test_snps (data.table) object including 3 columns: “snp_pos”, “case_control”, and “value” which is a p-values.
Examples
piggyback::pb_download(repo = "soroushmdg/gwid",tag = "v0.0.1",dest = tempdir())
ibd_data_file <- paste0(tempdir(),"//chr3.ibd")
genome_data_file <- paste0(tempdir(),"//chr3.gds")
phase_data_file <- paste0(tempdir(),"//chr3.vcf")
case_control_data_file <- paste0(tempdir(),"//case-cont-RA.withmap.Rda")
# case-control data
case_control <- gwid::case_control(case_control_rda = case_control_data_file)
names(case_control) #cases and controls group
summary(case_control) # in here, we only consider cases,cont1,cont2,cont3 groups in the study
case_control$cases[1:3] # first three subject names of cases group
# read SNP data (use SNPRelate to convert it to gds) and count number of minor alleles
snp_data_gds <- gwid::build_gwas(gds_data = genome_data_file,
caco = case_control,gwas_generator = TRUE)
class(snp_data_gds)
names(snp_data_gds)
head(snp_data_gds$snps) # it has information about counts of minor alleles in each location.
# read haplotype data (output of beagle)
haplotype_data <- gwid::build_phase(phased_vcf = phase_data_file,caco = case_control)
class(haplotype_data)
names(haplotype_data)
dim(haplotype_data$Hap.1) #22302 SNP and 1911 subjects
# read IBD data (output of Refined-IBD)
ibd_data <- gwid::build_gwid(ibd_data = ibd_data_file,gwas = snp_data_gds)
class(ibd_data)
ibd_data$ibd # refined IBD output
ibd_data$res # count number of IBD for each SNP location
# plot count of IBD in chromosome 3
plot(ibd_data,y = c("cases","cont1"),ly = FALSE)
# Further investigate location between 117M and 122M
# significant number of IBD's in group cases, compare to cont1, cont2 and cont3.
plot(ibd_data,y = c("cases","cont1"),snp_start = 119026294,snp_end = 120613594,ly = FALSE)
model_fisher <- gwid::fisher_test(ibd_data,case_control,reference = "cases",
snp_start = 119026294,snp_end = 120613594)
class(model_fisher)
plot(model_fisher, y = c("cases","cont1"),ly = FALSE)
hap_str <- gwid::haplotype_structure(ibd_data,phase = haplotype_data,w = 10,
snp_start = 119026294,snp_end = 120613594)
haplo_freq <- gwid::haplotype_frequency(hap_str)
plot(haplo_freq,y = c("cases", "cont1"),plot_type = "haplotype_structure_frequency",
nwin = 1, type = "version1",ly = FALSE)
fisher exact test for result_snps count data
Description
fisher exact test for result_snps count data
Usage
## S3 method for class 'result_snps'
fisher_test(
obj,
caco,
reference,
alternative = c("two.sided", "greater", "less"),
...
)
Arguments
obj |
An object of class result_snps |
caco |
An object of class caco. Output of |
reference |
reference group of subjects in which we want to perform fisher test. |
alternative |
indicates the alternative hypothesis and must be one of "two.sided", "greater" or "less". You can specify just the initial letter. Only used in the 2 by 2 case |
... |
optional arguments to fisher.test |
Value
the output will be a test_snps (data.table) object including 3 columns: “snp_pos”, “case_control”, and “value” which is a p-values.
Examples
piggyback::pb_download(repo = "soroushmdg/gwid",tag = "v0.0.1",dest = tempdir())
ibd_data_file <- paste0(tempdir(),"//chr3.ibd")
genome_data_file <- paste0(tempdir(),"//chr3.gds")
phase_data_file <- paste0(tempdir(),"//chr3.vcf")
case_control_data_file <- paste0(tempdir(),"//case-cont-RA.withmap.Rda")
# case-control data
case_control <- gwid::case_control(case_control_rda = case_control_data_file)
names(case_control) #cases and controls group
summary(case_control) # in here, we only consider cases,cont1,cont2,cont3 groups in the study
case_control$cases[1:3] # first three subject names of cases group
# read SNP data (use SNPRelate to convert it to gds) and count number of minor alleles
snp_data_gds <- gwid::build_gwas(gds_data = genome_data_file,
caco = case_control,gwas_generator = TRUE)
class(snp_data_gds)
names(snp_data_gds)
head(snp_data_gds$snps) # it has information about counts of minor alleles in each location.
# read haplotype data (output of beagle)
haplotype_data <- gwid::build_phase(phased_vcf = phase_data_file,caco = case_control)
class(haplotype_data)
names(haplotype_data)
dim(haplotype_data$Hap.1) #22302 SNP and 1911 subjects
# read IBD data (output of Refined-IBD)
ibd_data <- gwid::build_gwid(ibd_data = ibd_data_file,gwas = snp_data_gds)
class(ibd_data)
ibd_data$ibd # refined IBD output
ibd_data$res # count number of IBD for each SNP location
# plot count of IBD in chromosome 3
plot(ibd_data,y = c("cases","cont1"),ly = FALSE)
# Further investigate location between 117M and 122M
# significant number of IBD's in group cases, compare to cont1, cont2 and cont3.
plot(ibd_data,y = c("cases","cont1"),snp_start = 119026294,snp_end = 120613594,ly = FALSE)
model_fisher <- gwid::fisher_test(ibd_data,case_control,reference = "cases",
snp_start = 119026294,snp_end = 120613594)
model_permutation <- permutation_test(ibd_data,snp_data_gds,
snp_start = 119026294,snp_end = 120613594,nperm=20,reference = "cases")
class(model_fisher)
plot(model_fisher, y = c("cases","cont1"),ly = FALSE)
hap_str <- gwid::haplotype_structure(ibd_data,phase = haplotype_data,w = 10,
snp_start = 119026294,snp_end = 120613594)
haplo_freq <- gwid::haplotype_frequency(hap_str)
plot(haplo_freq,y = c("cases", "cont1"),plot_type = "haplotype_structure_frequency",
nwin = 1, type = "version1",ly = FALSE)
perform gtest
Description
perform gtest
Usage
gtest(haplotype_structure, ...)
Arguments
haplotype_structure |
object of a class |
... |
other variables |
Value
the output will be a test_snps (data.table) object including 3 columns: “snp_pos”, “case_control”, and “value” which is a p-values.
Perform G-test on haplotype structures extracted from haplotype_structure
function
Description
Perform G-test on haplotype structures extracted from haplotype_structure
function
Usage
## S3 method for class 'haplotype_structure'
gtest(haplotype_structure, reference, ...)
Arguments
haplotype_structure |
An object of class haplotype_structure. Output of
|
reference |
reference group of subjects in which we want to perform G-test |
... |
other variables |
Value
the output will be a test_snps (data.table) object including 3 columns: “snp_pos”, “case_control”, and “value” which is a p-values.
haplotype frequency
Description
haplotype frequency
Usage
haplotype_frequency(haplotype_structure, ...)
Arguments
haplotype_structure |
object of class haplotype structure |
... |
other variables |
Value
An object of class haplotype_frequency contains of two objects. first one is object of haplotype_structure_frequency (data.table) and second one is object of class result_snps(data.table)
Examples
piggyback::pb_download(repo = "soroushmdg/gwid",tag = "v0.0.1",dest = tempdir())
ibd_data_file <- paste0(tempdir(),"//chr3.ibd")
genome_data_file <- paste0(tempdir(),"//chr3.gds")
phase_data_file <- paste0(tempdir(),"//chr3.vcf")
case_control_data_file <- paste0(tempdir(),"//case-cont-RA.withmap.Rda")
# case-control data
case_control <- gwid::case_control(case_control_rda = case_control_data_file)
names(case_control) #cases and controls group
summary(case_control) # in here, we only consider cases,cont1,cont2,cont3 groups in the study
case_control$cases[1:3] # first three subject names of cases group
# read SNP data (use SNPRelate to convert it to gds) and count number of minor alleles
snp_data_gds <- gwid::build_gwas(gds_data = genome_data_file,
caco = case_control,gwas_generator = TRUE)
class(snp_data_gds)
names(snp_data_gds)
head(snp_data_gds$snps) # it has information about counts of minor alleles in each location.
# read haplotype data (output of beagle)
haplotype_data <- gwid::build_phase(phased_vcf = phase_data_file,caco = case_control)
class(haplotype_data)
names(haplotype_data)
dim(haplotype_data$Hap.1) #22302 SNP and 1911 subjects
# read IBD data (output of Refined-IBD)
ibd_data <- gwid::build_gwid(ibd_data = ibd_data_file,gwas = snp_data_gds)
class(ibd_data)
ibd_data$ibd # refined IBD output
ibd_data$res # count number of IBD for each SNP location
# plot count of IBD in chromosome 3
plot(ibd_data,y = c("cases","cont1"),ly = FALSE)
# Further investigate location between 117M and 122M
# significant number of IBD's in group cases, compare to cont1, cont2 and cont3.
plot(ibd_data,y = c("cases","cont1"),snp_start = 119026294,snp_end = 120613594,ly = FALSE)
model_fisher <- gwid::fisher_test(ibd_data,case_control,reference = "cases",
snp_start = 119026294,snp_end = 120613594)
class(model_fisher)
plot(model_fisher, y = c("cases","cont1"),ly = FALSE)
hap_str <- gwid::haplotype_structure(ibd_data,phase = haplotype_data,w = 10,
snp_start = 119026294,snp_end = 120613594)
haplo_freq <- gwid::haplotype_frequency(hap_str)
plot(haplo_freq,y = c("cases", "cont1"),plot_type = "haplotype_structure_frequency",
nwin = 1, type = "version1",ly = FALSE)
haplotype frequency in sliding windows
Description
haplotype frequency in sliding windows
Usage
## S3 method for class 'haplotype_structure'
haplotype_frequency(haplotype_structure, ...)
Arguments
haplotype_structure |
An object of class haplotype_structure. Output of
|
... |
other variables |
Value
An object of class haplotype_frequency contains of two objects. first one is object of haplotype_structure_frequency (data.table) and second one is object of class result_snps(data.table)
Examples
piggyback::pb_download(repo = "soroushmdg/gwid",tag = "v0.0.1",dest = tempdir())
ibd_data_file <- paste0(tempdir(),"//chr3.ibd")
genome_data_file <- paste0(tempdir(),"//chr3.gds")
phase_data_file <- paste0(tempdir(),"//chr3.vcf")
case_control_data_file <- paste0(tempdir(),"//case-cont-RA.withmap.Rda")
# case-control data
case_control <- gwid::case_control(case_control_rda = case_control_data_file)
names(case_control) #cases and controls group
summary(case_control) # in here, we only consider cases,cont1,cont2,cont3 groups in the study
case_control$cases[1:3] # first three subject names of cases group
# read SNP data (use SNPRelate to convert it to gds) and count number of minor alleles
snp_data_gds <- gwid::build_gwas(gds_data = genome_data_file,
caco = case_control,gwas_generator = TRUE)
class(snp_data_gds)
names(snp_data_gds)
head(snp_data_gds$snps) # it has information about counts of minor alleles in each location.
# read haplotype data (output of beagle)
haplotype_data <- gwid::build_phase(phased_vcf = phase_data_file,caco = case_control)
class(haplotype_data)
names(haplotype_data)
dim(haplotype_data$Hap.1) #22302 SNP and 1911 subjects
# read IBD data (output of Refined-IBD)
ibd_data <- gwid::build_gwid(ibd_data = ibd_data_file,gwas = snp_data_gds)
class(ibd_data)
ibd_data$ibd # refined IBD output
ibd_data$res # count number of IBD for each SNP location
# plot count of IBD in chromosome 3
plot(ibd_data,y = c("cases","cont1"),ly = FALSE)
# Further investigate location between 117M and 122M
# significant number of IBD's in group cases, compare to cont1, cont2 and cont3.
plot(ibd_data,y = c("cases","cont1"),snp_start = 119026294,snp_end = 120613594,ly = FALSE)
model_fisher <- gwid::fisher_test(ibd_data,case_control,reference = "cases",
snp_start = 119026294,snp_end = 120613594)
class(model_fisher)
plot(model_fisher, y = c("cases","cont1"),ly = FALSE)
hap_str <- gwid::haplotype_structure(ibd_data,phase = haplotype_data,w = 10,
snp_start = 119026294,snp_end = 120613594)
haplo_freq <- gwid::haplotype_frequency(hap_str)
plot(haplo_freq,y = c("cases", "cont1"),plot_type = "haplotype_structure_frequency",
nwin = 1, type = "version1",ly = FALSE)
haplotype structures in a window
Description
haplotype structures in a window
Usage
haplotype_structure(obj, ...)
Arguments
obj |
object |
... |
other variables |
Value
The output will be an object of class haplotype_structure (data.table) that has information about subjects haplotype structures in a a window.
extract haplotype structures of individuals in a window
Description
extract haplotype structures of individuals in a window
Usage
## S3 method for class 'gwas'
haplotype_structure(obj, phase, w = 10, snp_start, snp_end, ...)
Arguments
obj |
object of class gwas |
phase |
An object of class phase. Output of |
w |
window size |
snp_start |
select starting position of snps. |
snp_end |
select ending position of snps. |
... |
other variables |
Value
The output will be an object of class haplotype_structure (data.table) that has information about subjects haplotype structures in a a window.
Examples
piggyback::pb_download(repo = "soroushmdg/gwid",tag = "v0.0.1",dest = tempdir())
ibd_data_file <- paste0(tempdir(),"//chr3.ibd")
genome_data_file <- paste0(tempdir(),"//chr3.gds")
phase_data_file <- paste0(tempdir(),"//chr3.vcf")
case_control_data_file <- paste0(tempdir(),"//case-cont-RA.withmap.Rda")
# case-control data
case_control <- gwid::case_control(case_control_rda = case_control_data_file)
names(case_control) #cases and controls group
summary(case_control) # in here, we only consider cases,cont1,cont2,cont3 groups in the study
case_control$cases[1:3] # first three subject names of cases group
# read SNP data (use SNPRelate to convert it to gds) and count number of minor alleles
snp_data_gds <- gwid::build_gwas(gds_data = genome_data_file,
caco = case_control,gwas_generator = TRUE)
class(snp_data_gds)
names(snp_data_gds)
head(snp_data_gds$snps) # it has information about counts of minor alleles in each location.
# read haplotype data (output of beagle)
haplotype_data <- gwid::build_phase(phased_vcf = phase_data_file,caco = case_control)
class(haplotype_data)
names(haplotype_data)
dim(haplotype_data$Hap.1) #22302 SNP and 1911 subjects
# read IBD data (output of Refined-IBD)
ibd_data <- gwid::build_gwid(ibd_data = ibd_data_file,gwas = snp_data_gds)
class(ibd_data)
ibd_data$ibd # refined IBD output
ibd_data$res # count number of IBD for each SNP location
# plot count of IBD in chromosome 3
plot(ibd_data,y = c("cases","cont1"),ly = FALSE)
# Further investigate location between 117M and 122M
# significant number of IBD's in group cases, compare to cont1, cont2 and cont3.
plot(ibd_data,y = c("cases","cont1"),snp_start = 119026294,snp_end = 120613594,ly = FALSE)
model_fisher <- gwid::fisher_test(ibd_data,case_control,reference = "cases",
snp_start = 119026294,snp_end = 120613594)
class(model_fisher)
plot(model_fisher, y = c("cases","cont1"),ly = FALSE)
hap_str <- gwid::haplotype_structure(ibd_data,phase = haplotype_data,w = 10,
snp_start = 119026294,snp_end = 120613594)
haplo_freq <- gwid::haplotype_frequency(hap_str)
plot(haplo_freq,y = c("cases", "cont1"),plot_type = "haplotype_structure_frequency",
nwin = 1, type = "version1",ly = FALSE)
extract haplotype structures of pairwise ibd samples in a window
Description
extract haplotype structures of pairwise ibd samples in a window
Usage
## S3 method for class 'gwid'
haplotype_structure(obj, phase, w = 10, snp_start, snp_end, ...)
Arguments
obj |
An object of class gwid. Output of |
phase |
An object of class phase. Output of |
w |
window size |
snp_start |
select starting position of snps. |
snp_end |
select ending position of snps. |
... |
other variables |
Value
The output will be an object of class haplotype_structure (data.table) that has information about subjects haplotype structures in a a window.
Examples
piggyback::pb_download(repo = "soroushmdg/gwid",tag = "v0.0.1",dest = tempdir())
ibd_data_file <- paste0(tempdir(),"//chr3.ibd")
genome_data_file <- paste0(tempdir(),"//chr3.gds")
phase_data_file <- paste0(tempdir(),"//chr3.vcf")
case_control_data_file <- paste0(tempdir(),"//case-cont-RA.withmap.Rda")
# case-control data
case_control <- gwid::case_control(case_control_rda = case_control_data_file)
names(case_control) #cases and controls group
summary(case_control) # in here, we only consider cases,cont1,cont2,cont3 groups in the study
case_control$cases[1:3] # first three subject names of cases group
# read SNP data (use SNPRelate to convert it to gds) and count number of minor alleles
snp_data_gds <- gwid::build_gwas(gds_data = genome_data_file,
caco = case_control,gwas_generator = TRUE)
class(snp_data_gds)
names(snp_data_gds)
head(snp_data_gds$snps) # it has information about counts of minor alleles in each location.
# read haplotype data (output of beagle)
haplotype_data <- gwid::build_phase(phased_vcf = phase_data_file,caco = case_control)
class(haplotype_data)
names(haplotype_data)
dim(haplotype_data$Hap.1) #22302 SNP and 1911 subjects
# read IBD data (output of Refined-IBD)
ibd_data <- gwid::build_gwid(ibd_data = ibd_data_file,gwas = snp_data_gds)
class(ibd_data)
ibd_data$ibd # refined IBD output
ibd_data$res # count number of IBD for each SNP location
# plot count of IBD in chromosome 3
plot(ibd_data,y = c("cases","cont1"),ly = FALSE)
# Further investigate location between 117M and 122M
# significant number of IBD's in group cases, compare to cont1, cont2 and cont3.
plot(ibd_data,y = c("cases","cont1"),snp_start = 119026294,snp_end = 120613594,ly = FALSE)
model_fisher <- gwid::fisher_test(ibd_data,case_control,reference = "cases",
snp_start = 119026294,snp_end = 120613594)
class(model_fisher)
plot(model_fisher, y = c("cases","cont1"),ly = FALSE)
hap_str <- gwid::haplotype_structure(ibd_data,phase = haplotype_data,w = 10,
snp_start = 119026294,snp_end = 120613594)
haplo_freq <- gwid::haplotype_frequency(hap_str)
plot(haplo_freq,y = c("cases", "cont1"),plot_type = "haplotype_structure_frequency",
nwin = 1, type = "version1",ly = FALSE)
laucnh a shiny app
Description
laucnh a shiny app
Usage
launch_app(data_folder_address, ...)
Arguments
data_folder_address |
address of the folder that your data folders are. for example if you have two sets of data such as data1 and data2 and they are in mydata folder then your data_folder_address should be "./mydata" |
... |
other variables |
Value
open a shiny app
mcnemar test
Description
mcnemar test
Usage
mcnemar_test(roh, ...)
Arguments
roh |
roh as class result_snp |
... |
other variables |
Value
the output will be a test_snps (data.table) object including 3 columns: “snp_pos”, “case_control”, and “value” which is a p-values.
mcnemar test
Description
mcnemar test
Usage
## S3 method for class 'result_snps'
mcnemar_test(
roh = "object of class result_snps (output of function roh with fun=sum)",
reference,
w = 10,
...
)
Arguments
roh |
An object of class result_snps (output of function roh with fun=sum) |
reference |
reference group of subjects in which we want to perform fisher test. |
w |
window size |
... |
other variables |
Value
the output will be a test_snps (data.table) object including 3 columns: “snp_pos”, “case_control”, and “value” which is a p-values.
mcnemar permutation
Description
mcnemar permutation
Usage
mcnemar_test_permut(mcnemar, ...)
Arguments
mcnemar |
macnemar test output |
... |
other variables |
Value
the output will be a test_snps (data.table) object including 3 columns: “snp_pos”, “case_control”, and “value” which is a p-values.
mcnemar permutation test
Description
mcnemar permutation test
Usage
## S3 method for class 'result_snps'
mcnemar_test_permut(
mcnemar = "object of class result_snps (output of function mcnemar_test with fun=sum)",
roh_mat = "output of roh function when roh_mat = TRUE",
gwas = "object of class gwas",
nperm = 1000,
reference = "cases",
w,
...
)
Arguments
mcnemar |
macnemar test output |
roh_mat |
roh matrix |
gwas |
gwas |
nperm |
number of permutation |
reference |
reference group |
w |
window |
... |
other variables |
Value
the output will be a test_snps (data.table) object including 3 columns: “snp_pos”, “case_control”, and “value” which is a p-values.
permutation test
Description
permutation test
Usage
permutation_test(obj, ...)
Arguments
obj |
object |
... |
other variables |
Value
the output will be a test_snps (data.table) object including 3 columns: “snp_pos”, “case_control”, and “value” which is a p-values.
Permutation test for gwas object
Description
Permutation test for gwas object
Usage
## S3 method for class 'gwas'
permutation_test(
obj,
snp_start,
snp_end,
nperm = 1000,
reference = "cases",
...
)
Arguments
obj |
object of class gwas |
snp_start |
elect starting position of snps. |
snp_end |
select ending position of snp. |
nperm |
Number of permutations. |
reference |
reference group of subjects in which we want to perform fisher test |
... |
other variables |
Value
the output will be a test_snps (data.table) object including 3 columns: “snp_pos”, “case_control”, and “value” which is a p-values.
Examples
piggyback::pb_download(repo = "soroushmdg/gwid",tag = "v0.0.1",dest = tempdir())
ibd_data_file <- paste0(tempdir(),"//chr3.ibd")
genome_data_file <- paste0(tempdir(),"//chr3.gds")
phase_data_file <- paste0(tempdir(),"//chr3.vcf")
case_control_data_file <- paste0(tempdir(),"//case-cont-RA.withmap.Rda")
# case-control data
case_control <- gwid::case_control(case_control_rda = case_control_data_file)
names(case_control) #cases and controls group
summary(case_control) # in here, we only consider cases,cont1,cont2,cont3 groups in the study
case_control$cases[1:3] # first three subject names of cases group
# read SNP data (use SNPRelate to convert it to gds) and count number of minor alleles
snp_data_gds <- gwid::build_gwas(gds_data = genome_data_file,
caco = case_control,gwas_generator = TRUE)
class(snp_data_gds)
names(snp_data_gds)
head(snp_data_gds$snps) # it has information about counts of minor alleles in each location.
# read haplotype data (output of beagle)
haplotype_data <- gwid::build_phase(phased_vcf = phase_data_file,caco = case_control)
class(haplotype_data)
names(haplotype_data)
dim(haplotype_data$Hap.1) #22302 SNP and 1911 subjects
# read IBD data (output of Refined-IBD)
ibd_data <- gwid::build_gwid(ibd_data = ibd_data_file,gwas = snp_data_gds)
class(ibd_data)
ibd_data$ibd # refined IBD output
ibd_data$res # count number of IBD for each SNP location
# plot count of IBD in chromosome 3
plot(ibd_data,y = c("cases","cont1"),ly = FALSE)
# Further investigate location between 117M and 122M
# significant number of IBD's in group cases, compare to cont1, cont2 and cont3.
plot(ibd_data,y = c("cases","cont1"),snp_start = 119026294,snp_end = 120613594,ly = FALSE)
model_fisher <- gwid::fisher_test(ibd_data,case_control,reference = "cases",
snp_start = 119026294,snp_end = 120613594)
model_permutation <- permutation_test(ibd_data,snp_data_gds,
snp_start = 119026294,snp_end = 120613594,nperm=20,reference = "cases")
class(model_fisher)
plot(model_fisher, y = c("cases","cont1"),ly = FALSE)
hap_str <- gwid::haplotype_structure(ibd_data,phase = haplotype_data,w = 10,
snp_start = 119026294,snp_end = 120613594)
haplo_freq <- gwid::haplotype_frequency(hap_str)
plot(haplo_freq,y = c("cases", "cont1"),plot_type = "haplotype_structure_frequency",
nwin = 1, type = "version1",ly = FALSE)
permutation test for gwid count data
Description
permutation test for gwid count data
Usage
## S3 method for class 'gwid'
permutation_test(
obj,
gwas,
snp_start,
snp_end,
nperm = 100,
reference = "cases",
...
)
Arguments
obj |
An object of class gwid. Output of |
gwas |
object of class gwas |
snp_start |
select starting position of snps. |
snp_end |
select ending position of snp. |
nperm |
Number of permutations. |
reference |
reference group |
... |
other variables |
Value
the output will be a test_snps (data.table) object including 3 columns: “snp_pos”, “case_control”, and “value” which is a p-values.
Examples
piggyback::pb_download(repo = "soroushmdg/gwid",tag = "v0.0.1",dest = tempdir())
ibd_data_file <- paste0(tempdir(),"//chr3.ibd")
genome_data_file <- paste0(tempdir(),"//chr3.gds")
phase_data_file <- paste0(tempdir(),"//chr3.vcf")
case_control_data_file <- paste0(tempdir(),"//case-cont-RA.withmap.Rda")
# case-control data
case_control <- gwid::case_control(case_control_rda = case_control_data_file)
names(case_control) #cases and controls group
summary(case_control) # in here, we only consider cases,cont1,cont2,cont3 groups in the study
case_control$cases[1:3] # first three subject names of cases group
# read SNP data (use SNPRelate to convert it to gds) and count number of minor alleles
snp_data_gds <- gwid::build_gwas(gds_data = genome_data_file,
caco = case_control,gwas_generator = TRUE)
class(snp_data_gds)
names(snp_data_gds)
head(snp_data_gds$snps) # it has information about counts of minor alleles in each location.
# read haplotype data (output of beagle)
haplotype_data <- gwid::build_phase(phased_vcf = phase_data_file,caco = case_control)
class(haplotype_data)
names(haplotype_data)
dim(haplotype_data$Hap.1) #22302 SNP and 1911 subjects
# read IBD data (output of Refined-IBD)
ibd_data <- gwid::build_gwid(ibd_data = ibd_data_file,gwas = snp_data_gds)
class(ibd_data)
ibd_data$ibd # refined IBD output
ibd_data$res # count number of IBD for each SNP location
# plot count of IBD in chromosome 3
plot(ibd_data,y = c("cases","cont1"),ly = FALSE)
# Further investigate location between 117M and 122M
# significant number of IBD's in group cases, compare to cont1, cont2 and cont3.
plot(ibd_data,y = c("cases","cont1"),snp_start = 119026294,snp_end = 120613594,ly = FALSE)
model_fisher <- gwid::fisher_test(ibd_data,case_control,reference = "cases",
snp_start = 119026294,snp_end = 120613594)
model_permutation <- permutation_test(ibd_data,snp_data_gds,
snp_start = 119026294,snp_end = 120613594,nperm=20,reference = "cases")
class(model_fisher)
plot(model_fisher, y = c("cases","cont1"),ly = FALSE)
hap_str <- gwid::haplotype_structure(ibd_data,phase = haplotype_data,w = 10,
snp_start = 119026294,snp_end = 120613594)
haplo_freq <- gwid::haplotype_frequency(hap_str)
plot(haplo_freq,y = c("cases", "cont1"),plot_type = "haplotype_structure_frequency",
nwin = 1, type = "version1",ly = FALSE)
Permutation test for 'haplotype_structure' object
Description
Permutation test for 'haplotype_structure' object
Usage
## S3 method for class 'haplotype_structure'
permutation_test(obj, nperm, reference, ...)
Arguments
obj |
object of class 'haplotype_structure' |
nperm |
Number of permutations. |
reference |
reference group of subjects in which we want to perform 'gtest' |
... |
other variables |
Value
the output will be a test_snps (data.table) object including 3 columns: “snp_pos”, “case_control”, and “value” which is a p-values.
Examples
piggyback::pb_download(repo = "soroushmdg/gwid",tag = "v0.0.1",dest = tempdir())
ibd_data_file <- paste0(tempdir(),"//chr3.ibd")
genome_data_file <- paste0(tempdir(),"//chr3.gds")
phase_data_file <- paste0(tempdir(),"//chr3.vcf")
case_control_data_file <- paste0(tempdir(),"//case-cont-RA.withmap.Rda")
# case-control data
case_control <- gwid::case_control(case_control_rda = case_control_data_file)
names(case_control) #cases and controls group
summary(case_control) # in here, we only consider cases,cont1,cont2,cont3 groups in the study
case_control$cases[1:3] # first three subject names of cases group
# read SNP data (use SNPRelate to convert it to gds) and count number of minor alleles
snp_data_gds <- gwid::build_gwas(gds_data = genome_data_file,
caco = case_control,gwas_generator = TRUE)
class(snp_data_gds)
names(snp_data_gds)
head(snp_data_gds$snps) # it has information about counts of minor alleles in each location.
# read haplotype data (output of beagle)
haplotype_data <- gwid::build_phase(phased_vcf = phase_data_file,caco = case_control)
class(haplotype_data)
names(haplotype_data)
dim(haplotype_data$Hap.1) #22302 SNP and 1911 subjects
# read IBD data (output of Refined-IBD)
ibd_data <- gwid::build_gwid(ibd_data = ibd_data_file,gwas = snp_data_gds)
class(ibd_data)
ibd_data$ibd # refined IBD output
ibd_data$res # count number of IBD for each SNP location
# plot count of IBD in chromosome 3
plot(ibd_data,y = c("cases","cont1"),ly = FALSE)
# Further investigate location between 117M and 122M
# significant number of IBD's in group cases, compare to cont1, cont2 and cont3.
plot(ibd_data,y = c("cases","cont1"),snp_start = 119026294,snp_end = 120613594,ly = FALSE)
model_fisher <- gwid::fisher_test(ibd_data,case_control,reference = "cases",
snp_start = 119026294,snp_end = 120613594)
model_permutation <- permutation_test(ibd_data,snp_data_gds,
snp_start = 119026294,snp_end = 120613594,nperm=20,reference = "cases")
class(model_fisher)
plot(model_fisher, y = c("cases","cont1"),ly = FALSE)
hap_str <- gwid::haplotype_structure(ibd_data,phase = haplotype_data,w = 10,
snp_start = 119026294,snp_end = 120613594)
haplo_freq <- gwid::haplotype_frequency(hap_str)
plot(haplo_freq,y = c("cases", "cont1"),plot_type = "haplotype_structure_frequency",
nwin = 1, type = "version1",ly = FALSE)
Line plot of gwas objects
Description
Line plot of gwas objects
Usage
## S3 method for class 'gwas'
plot(x, y = NA, title = "number of snps", ...)
Arguments
x |
object of class gwas. |
y |
default value is NA, if specified it should be a vector of names of subject groups i.e. y = c("case","control") |
title |
title of the plot. |
... |
optional argument of |
Value
an interactive line plot of gwas objects for each case control subjects.
Examples
piggyback::pb_download(repo = "soroushmdg/gwid",tag = "v0.0.1",dest = tempdir())
ibd_data_file <- paste0(tempdir(),"//chr3.ibd")
genome_data_file <- paste0(tempdir(),"//chr3.gds")
phase_data_file <- paste0(tempdir(),"//chr3.vcf")
case_control_data_file <- paste0(tempdir(),"//case-cont-RA.withmap.Rda")
# case-control data
case_control <- gwid::case_control(case_control_rda = case_control_data_file)
names(case_control) #cases and controls group
summary(case_control) # in here, we only consider cases,cont1,cont2,cont3 groups in the study
case_control$cases[1:3] # first three subject names of cases group
# read SNP data (use SNPRelate to convert it to gds) and count number of minor alleles
snp_data_gds <- gwid::build_gwas(gds_data = genome_data_file,
caco = case_control,gwas_generator = TRUE)
class(snp_data_gds)
names(snp_data_gds)
head(snp_data_gds$snps) # it has information about counts of minor alleles in each location.
# read haplotype data (output of beagle)
haplotype_data <- gwid::build_phase(phased_vcf = phase_data_file,caco = case_control)
class(haplotype_data)
names(haplotype_data)
dim(haplotype_data$Hap.1) #22302 SNP and 1911 subjects
# read IBD data (output of Refined-IBD)
ibd_data <- gwid::build_gwid(ibd_data = ibd_data_file,gwas = snp_data_gds)
class(ibd_data)
ibd_data$ibd # refined IBD output
ibd_data$res # count number of IBD for each SNP location
# plot count of IBD in chromosome 3
plot(ibd_data,y = c("cases","cont1"),ly = FALSE)
# Further investigate location between 117M and 122M
# significant number of IBD's in group cases, compare to cont1, cont2 and cont3.
plot(ibd_data,y = c("cases","cont1"),snp_start = 119026294,snp_end = 120613594,ly = FALSE)
model_fisher <- gwid::fisher_test(ibd_data,case_control,reference = "cases",
snp_start = 119026294,snp_end = 120613594)
class(model_fisher)
plot(model_fisher, y = c("cases","cont1"),ly = FALSE)
hap_str <- gwid::haplotype_structure(ibd_data,phase = haplotype_data,w = 10,
snp_start = 119026294,snp_end = 120613594)
haplo_freq <- gwid::haplotype_frequency(hap_str)
plot(haplo_freq,y = c("cases", "cont1"),plot_type = "haplotype_structure_frequency",
nwin = 1, type = "version1",ly = FALSE)
Line plot of gwid objects
Description
Line plot of gwid objects
Usage
## S3 method for class 'gwid'
plot(
x,
y = NA,
title = "number of IBD in each snp",
plot_type = c("result_snps", "profile"),
reference,
...
)
Arguments
x |
An object of class gwid. Output of |
y |
default value is NA, if specified it should be a vector of names of subject groups i.e. y = c("case","control") |
title |
title of the plot. |
plot_type |
either “result_snps” or “profile”. |
reference |
reference group of subjects in which we want to have profile plot. |
... |
if plot_type is “result_snps” it is optional argument of |
Value
if plot_type is “result_snps” an interactive line plot of result_snps for each case control subjects. if plot_type is “profile” an interactive profile plot of identity by descent subjects in subset of locations.
Examples
piggyback::pb_download(repo = "soroushmdg/gwid",tag = "v0.0.1",dest = tempdir())
ibd_data_file <- paste0(tempdir(),"//chr3.ibd")
genome_data_file <- paste0(tempdir(),"//chr3.gds")
phase_data_file <- paste0(tempdir(),"//chr3.vcf")
case_control_data_file <- paste0(tempdir(),"//case-cont-RA.withmap.Rda")
# case-control data
case_control <- gwid::case_control(case_control_rda = case_control_data_file)
names(case_control) #cases and controls group
summary(case_control) # in here, we only consider cases,cont1,cont2,cont3 groups in the study
case_control$cases[1:3] # first three subject names of cases group
# read SNP data (use SNPRelate to convert it to gds) and count number of minor alleles
snp_data_gds <- gwid::build_gwas(gds_data = genome_data_file,
caco = case_control,gwas_generator = TRUE)
class(snp_data_gds)
names(snp_data_gds)
head(snp_data_gds$snps) # it has information about counts of minor alleles in each location.
# read haplotype data (output of beagle)
haplotype_data <- gwid::build_phase(phased_vcf = phase_data_file,caco = case_control)
class(haplotype_data)
names(haplotype_data)
dim(haplotype_data$Hap.1) #22302 SNP and 1911 subjects
# read IBD data (output of Refined-IBD)
ibd_data <- gwid::build_gwid(ibd_data = ibd_data_file,gwas = snp_data_gds)
class(ibd_data)
ibd_data$ibd # refined IBD output
ibd_data$res # count number of IBD for each SNP location
# plot count of IBD in chromosome 3
plot(ibd_data,y = c("cases","cont1"),ly = FALSE)
# Further investigate location between 117M and 122M
# significant number of IBD's in group cases, compare to cont1, cont2 and cont3.
plot(ibd_data,y = c("cases","cont1"),snp_start = 119026294,snp_end = 120613594,ly = FALSE)
model_fisher <- gwid::fisher_test(ibd_data,case_control,reference = "cases",
snp_start = 119026294,snp_end = 120613594)
class(model_fisher)
plot(model_fisher, y = c("cases","cont1"),ly = FALSE)
hap_str <- gwid::haplotype_structure(ibd_data,phase = haplotype_data,w = 10,
snp_start = 119026294,snp_end = 120613594)
haplo_freq <- gwid::haplotype_frequency(hap_str)
plot(haplo_freq,y = c("cases", "cont1"),plot_type = "haplotype_structure_frequency",
nwin = 1, type = "version1",ly = FALSE)
Line plot of haplotype_frequency object
Description
Line plot of haplotype_frequency object
Usage
## S3 method for class 'haplotype_frequency'
plot(
x,
y = NA,
plot_type = c("haplotype_structure_frequency", "result_snps"),
type = c("version1", "version2"),
ly = TRUE,
nwin,
title,
line_size = 0.6,
...
)
Arguments
x |
an object of class haplotype_frequency |
y |
default value is 'NA', if specified it should be a vector of names of subject groups i.e. 'y = c("case","control")' |
plot_type |
either “result_snps” or “"haplotype_structure_frequency"” |
type |
either “version1” or “version2” when plot_type is “"haplotype_structure_frequency"” |
ly |
if TRUE, we have a plotly object and if it is false plot is going to be a ggplot object. |
nwin |
window number |
title |
title of the plot. |
line_size |
geom_line size |
... |
optional argument of |
Value
an interactive line plot of haplotype_frequency objects for each case control subjects.
Examples
piggyback::pb_download(repo = "soroushmdg/gwid",tag = "v0.0.1",
dest = tempdir())
ibd_data_file <- paste0(tempdir(),"//chr3.ibd")
genome_data_file <- paste0(tempdir(),"//chr3.gds")
phase_data_file <- paste0(tempdir(),"//chr3.vcf")
case_control_data_file <- paste0(tempdir(),"//case-cont-RA.withmap.Rda")
# case-control data
case_control <- gwid::case_control(case_control_rda = case_control_data_file)
names(case_control) #cases and controls group
summary(case_control)
case_control$cases[1:3] # first three subject names of cases group
# read SNP data (use SNPRelate to convert it to gds) and count number of minor alleles
snp_data_gds <- gwid::build_gwas(gds_data = genome_data_file,
caco = case_control,gwas_generator = TRUE)
class(snp_data_gds)
names(snp_data_gds)
head(snp_data_gds$snps) # it has information about counts of minor alleles in each location.
# read haplotype data (output of beagle)
haplotype_data <- gwid::build_phase(phased_vcf = phase_data_file,caco = case_control)
class(haplotype_data)
names(haplotype_data)
dim(haplotype_data$Hap.1) #22302 SNP and 1911 subjects
# read IBD data (output of Refined-IBD)
ibd_data <- gwid::build_gwid(ibd_data = ibd_data_file,gwas = snp_data_gds)
class(ibd_data)
ibd_data$ibd # refined IBD output
ibd_data$res # count number of IBD for each SNP location
# plot count of IBD in chromosome 3
plot(ibd_data,y = c("cases","cont1"),ly = FALSE)
# Further investigate location between 117M and 122M
# significant number of IBD's in group cases, compare to cont1, cont2 and cont3.
plot(ibd_data,y = c("cases","cont1"),snp_start = 119026294,snp_end = 120613594,ly = FALSE)
model_fisher <- gwid::fisher_test(ibd_data,case_control,reference = "cases",
snp_start = 119026294,snp_end = 120613594)
class(model_fisher)
plot(model_fisher, y = c("cases","cont1"),ly = FALSE)
hap_str <- gwid::haplotype_structure(ibd_data,phase = haplotype_data,w = 10,
snp_start = 119026294,snp_end = 120613594)
haplo_freq <- gwid::haplotype_frequency(hap_str)
plot(haplo_freq,y = c("cases", "cont1"),plot_type = "haplotype_structure_frequency",
nwin = 1, type = "version1",ly = FALSE)
Two type of line plots for haplotype_structure_frequency objects .
Description
Two type of line plots for haplotype_structure_frequency objects .
Usage
## S3 method for class 'haplotype_structure_frequency'
plot(
x,
y = NA,
type = c("version1", "version2"),
nwin,
ly = TRUE,
line_size = 0.6,
...
)
Arguments
x |
an object of class haplotype_structure_frequency |
y |
default value is NA, if specified it should be a vector of names of subject groups i.e. y = c("case","control") |
type |
either “version1” or “version2” |
nwin |
window number |
ly |
if 'TRUE', we have a 'plotly' object and if it is 'FALSE' plot is going to be a 'ggplot' object. |
line_size |
geom_line size |
... |
other variables |
Value
an interactive line plot of haplotype_structure_frequency objects for each case control subjects.
Examples
piggyback::pb_download(repo = "soroushmdg/gwid",tag = "v0.0.1",dest = tempdir())
ibd_data_file <- paste0(tempdir(),"//chr3.ibd")
genome_data_file <- paste0(tempdir(),"//chr3.gds")
phase_data_file <- paste0(tempdir(),"//chr3.vcf")
case_control_data_file <- paste0(tempdir(),"//case-cont-RA.withmap.Rda")
# case-control data
case_control <- gwid::case_control(case_control_rda = case_control_data_file)
names(case_control) #cases and controls group
summary(case_control) # in here, we only consider cases,cont1,cont2,cont3 groups in the study
case_control$cases[1:3] # first three subject names of cases group
# read SNP data (use SNPRelate to convert it to gds) and count number of minor alleles
snp_data_gds <- gwid::build_gwas(gds_data = genome_data_file,
caco = case_control,gwas_generator = TRUE)
class(snp_data_gds)
names(snp_data_gds)
head(snp_data_gds$snps) # it has information about counts of minor alleles in each location.
# read haplotype data (output of beagle)
haplotype_data <- gwid::build_phase(phased_vcf = phase_data_file,caco = case_control)
class(haplotype_data)
names(haplotype_data)
dim(haplotype_data$Hap.1) #22302 SNP and 1911 subjects
# read IBD data (output of Refined-IBD)
ibd_data <- gwid::build_gwid(ibd_data = ibd_data_file,gwas = snp_data_gds)
class(ibd_data)
ibd_data$ibd # refined IBD output
ibd_data$res # count number of IBD for each SNP location
# plot count of IBD in chromosome 3
plot(ibd_data,y = c("cases","cont1"),ly = FALSE)
# Further investigate location between 117M and 122M
# significant number of IBD's in group cases, compare to cont1, cont2 and cont3.
plot(ibd_data,y = c("cases","cont1"),snp_start = 119026294,snp_end = 120613594,ly = FALSE)
model_fisher <- gwid::fisher_test(ibd_data,case_control,reference = "cases",
snp_start = 119026294,snp_end = 120613594)
class(model_fisher)
plot(model_fisher, y = c("cases","cont1"),ly = FALSE)
hap_str <- gwid::haplotype_structure(ibd_data,phase = haplotype_data,w = 10,
snp_start = 119026294,snp_end = 120613594)
haplo_freq <- gwid::haplotype_frequency(hap_str)
plot(haplo_freq,y = c("cases", "cont1"),plot_type = "haplotype_structure_frequency",
nwin = 1, type = "version1",ly = FALSE)
Line plot of result_snps objects
Description
Line plot of result_snps objects
Usage
## S3 method for class 'result_snps'
plot(x, y = NA, title, snp_start, snp_end, ly = TRUE, line_size = 0.6, ...)
Arguments
x |
An object of class result_snps. |
y |
default value is NA, if specified it should be a vector of names of subject groups i.e. y = c("case","control") |
title |
title of the plot. |
snp_start |
select starting position of snps. |
snp_end |
select ending position of snps. |
ly |
if TRUE, we have a plotly object and if it is false plot is going to be a ggplot object. |
line_size |
geom_line size |
... |
other variables |
Value
an interactive line plot of result_snps for each case control subjects.
Examples
piggyback::pb_download(repo = "soroushmdg/gwid",tag = "v0.0.1",dest = tempdir())
ibd_data_file <- paste0(tempdir(),"//chr3.ibd")
genome_data_file <- paste0(tempdir(),"//chr3.gds")
phase_data_file <- paste0(tempdir(),"//chr3.vcf")
case_control_data_file <- paste0(tempdir(),"//case-cont-RA.withmap.Rda")
# case-control data
case_control <- gwid::case_control(case_control_rda = case_control_data_file)
names(case_control) #cases and controls group
summary(case_control) # in here, we only consider cases,cont1,cont2,cont3 groups in the study
case_control$cases[1:3] # first three subject names of cases group
# read SNP data (use SNPRelate to convert it to gds) and count number of minor alleles
snp_data_gds <- gwid::build_gwas(gds_data = genome_data_file,
caco = case_control,gwas_generator = TRUE)
class(snp_data_gds)
names(snp_data_gds)
head(snp_data_gds$snps)
# read haplotype data (output of beagle)
haplotype_data <- gwid::build_phase(phased_vcf = phase_data_file,caco = case_control)
class(haplotype_data)
names(haplotype_data)
dim(haplotype_data$Hap.1) #22302 SNP and 1911 subjects
# read IBD data (output of Refined-IBD)
ibd_data <- gwid::build_gwid(ibd_data = ibd_data_file,gwas = snp_data_gds)
class(ibd_data)
ibd_data$ibd # refined IBD output
ibd_data$res # count number of IBD for each SNP location
# plot count of IBD in chromosome 3
plot(ibd_data,y = c("cases","cont1"),ly = FALSE)
# Further investigate location between 117M and 122M
# significant number of IBD's in group cases, compare to cont1, cont2 and cont3.
plot(ibd_data,y = c("cases","cont1"),snp_start = 119026294,snp_end = 120613594,ly = FALSE)
model_fisher <- gwid::fisher_test(ibd_data,case_control,reference = "cases",
snp_start = 119026294,snp_end = 120613594)
class(model_fisher)
plot(model_fisher, y = c("cases","cont1"),ly = FALSE)
hap_str <- gwid::haplotype_structure(ibd_data,phase = haplotype_data,w = 10,
snp_start = 119026294,snp_end = 120613594)
haplo_freq <- gwid::haplotype_frequency(hap_str)
plot(haplo_freq,y = c("cases", "cont1"),plot_type = "haplotype_structure_frequency",
nwin = 1, type = "version1",ly = FALSE)
Line plot of test_snps objects
Description
Line plot of test_snps objects
Usage
## S3 method for class 'test_snps'
plot(
x,
y = NA,
title,
snp_start,
snp_end,
ly = TRUE,
line_size = 0.6,
log_transformation = TRUE,
QQplot = FALSE,
...
)
Arguments
x |
an object of class test_snps. |
y |
default value is NA, if specified it should be a vector of names of subject groups i.e. y = c("case","control") |
title |
title of the plot. |
snp_start |
select starting position of snps. |
snp_end |
select ending position of snps. |
ly |
if 'TRUE', we have a 'plotly' object and if it is 'FALSE' plot is going to be a 'ggplot' object. |
line_size |
geom_line size |
log_transformation |
if 'TRUE' plot -log10 transformation of p_values. |
QQplot |
if TRUE, plot QQplot of P-values |
... |
other variables |
Value
an interactive line plot of test_snps objects for each case control subjects.
Examples
piggyback::pb_download(repo = "soroushmdg/gwid",tag = "v0.0.1",dest = tempdir())
ibd_data_file <- paste0(tempdir(),"//chr3.ibd")
genome_data_file <- paste0(tempdir(),"//chr3.gds")
phase_data_file <- paste0(tempdir(),"//chr3.vcf")
case_control_data_file <- paste0(tempdir(),"//case-cont-RA.withmap.Rda")
# case-control data
case_control <- gwid::case_control(case_control_rda = case_control_data_file)
names(case_control) #cases and controls group
summary(case_control) # in here, we only consider cases,cont1,cont2,cont3 groups in the study
case_control$cases[1:3] # first three subject names of cases group
# read SNP data (use SNPRelate to convert it to gds) and count number of minor alleles
snp_data_gds <- gwid::build_gwas(gds_data = genome_data_file,
caco = case_control,gwas_generator = TRUE)
class(snp_data_gds)
names(snp_data_gds)
head(snp_data_gds$snps) # it has information about counts of minor alleles in each location.
# read haplotype data (output of beagle)
haplotype_data <- gwid::build_phase(phased_vcf = phase_data_file,caco = case_control)
class(haplotype_data)
names(haplotype_data)
dim(haplotype_data$Hap.1) #22302 SNP and 1911 subjects
# read IBD data (output of Refined-IBD)
ibd_data <- gwid::build_gwid(ibd_data = ibd_data_file,gwas = snp_data_gds)
class(ibd_data)
ibd_data$ibd # refined IBD output
ibd_data$res # count number of IBD for each SNP location
# plot count of IBD in chromosome 3
plot(ibd_data,y = c("cases","cont1"),ly = FALSE)
# Further investigate location between 117M and 122M
# significant number of IBD's in group cases, compare to cont1, cont2 and cont3.
plot(ibd_data,y = c("cases","cont1"),snp_start = 119026294,snp_end = 120613594,ly = FALSE)
model_fisher <- gwid::fisher_test(ibd_data,case_control,reference = "cases",
snp_start = 119026294,snp_end = 120613594)
class(model_fisher)
plot(model_fisher, y = c("cases","cont1"),ly = FALSE)
hap_str <- gwid::haplotype_structure(ibd_data,phase = haplotype_data,w = 10,
snp_start = 119026294,snp_end = 120613594)
haplo_freq <- gwid::haplotype_frequency(hap_str)
plot(haplo_freq,y = c("cases", "cont1"),plot_type = "haplotype_structure_frequency",
nwin = 1, type = "version1",ly = FALSE)
Description
Usage
print(x, ...)
Arguments
x |
an object |
... |
other objects |
Value
print an object
print gwas instants
Description
print gwas instants
Usage
## S3 method for class 'gwas'
print(x, ...)
Arguments
x |
object gwas |
... |
other objects |
Value
print number of subjects and number of SNPs of a GWAS object
Examples
piggyback::pb_download(repo = "soroushmdg/gwid",tag = "v0.0.1",dest = tempdir())
ibd_data_file <- paste0(tempdir(),"//chr3.ibd")
genome_data_file <- paste0(tempdir(),"//chr3.gds")
phase_data_file <- paste0(tempdir(),"//chr3.vcf")
case_control_data_file <- paste0(tempdir(),"//case-cont-RA.withmap.Rda")
# case-control data
case_control <- gwid::case_control(case_control_rda = case_control_data_file)
names(case_control) #cases and controls group
summary(case_control) # in here, we only consider cases,cont1,cont2,cont3 groups in the study
case_control$cases[1:3] # first three subject names of cases group
# read SNP data (use SNPRelate to convert it to gds) and count number of minor alleles
snp_data_gds <- gwid::build_gwas(gds_data = genome_data_file,
caco = case_control,gwas_generator = TRUE)
print(snp_data_gds)
class(snp_data_gds)
names(snp_data_gds)
head(snp_data_gds$snps) # it has information about counts of minor alleles in each location.
# read haplotype data (output of beagle)
haplotype_data <- gwid::build_phase(phased_vcf = phase_data_file,caco = case_control)
class(haplotype_data)
names(haplotype_data)
dim(haplotype_data$Hap.1) #22302 SNP and 1911 subjects
# read IBD data (output of Refined-IBD)
ibd_data <- gwid::build_gwid(ibd_data = ibd_data_file,gwas = snp_data_gds)
class(ibd_data)
ibd_data$ibd # refined IBD output
ibd_data$res # count number of IBD for each SNP location
# plot count of IBD in chromosome 3
plot(ibd_data,y = c("cases","cont1"),ly = FALSE)
# Further investigate location between 117M and 122M
# significant number of IBD's in group cases, compare to cont1, cont2 and cont3.
plot(ibd_data,y = c("cases","cont1"),snp_start = 119026294,snp_end = 120613594,ly = FALSE)
model_fisher <- gwid::fisher_test(ibd_data,case_control,reference = "cases",
snp_start = 119026294,snp_end = 120613594)
class(model_fisher)
plot(model_fisher, y = c("cases","cont1"),ly = FALSE)
hap_str <- gwid::haplotype_structure(ibd_data,phase = haplotype_data,w = 10,
snp_start = 119026294,snp_end = 120613594)
haplo_freq <- gwid::haplotype_frequency(hap_str)
plot(haplo_freq,y = c("cases", "cont1"),plot_type = "haplotype_structure_frequency",
nwin = 1, type = "version1",ly = FALSE)
runs of homozygosity
Description
runs of homozygosity
Usage
roh(phase, ...)
Arguments
phase |
object of phase |
... |
other variables |
Value
runs of homozygosity data table or matrix
runs of homozygosity
Description
runs of homozygosity
Usage
## S3 method for class 'phase'
roh(
phase,
gwas,
w = 10,
fun = c("sum", "mean"),
snp_start,
snp_end,
roh_mat = FALSE,
...
)
Arguments
phase |
An object of class phase. Output of |
gwas |
object of class gwas |
w |
window size |
fun |
an aggregate function. either “sum” or “mean” |
snp_start |
select starting position of snps. |
snp_end |
select ending position of snps. |
roh_mat |
return roh as matrix |
... |
other variables |
Value
the output will be a result_snps (data.table) object including 3 columns including, “snp_pos”, “case_control”, and “value”
subset an object
Description
subset an object
Usage
subset(obj, ...)
Arguments
obj |
object |
... |
other variables |
Value
the output will be a object(list) of class gwid contains profile object and result_snps object.
subset gwid object based on snp position
Description
subset gwid object based on snp position
Usage
## S3 method for class 'gwid'
subset(obj, snp_start, snp_end, ...)
Arguments
obj |
object of class gwid(output of function build_gwid) |
snp_start |
select starting position of snp, which we want to aggregate. |
snp_end |
select ending position of snp, which we want to aggregate. |
... |
other variables |
Value
the output will be a object(list) of class gwid contains profile object and result_snps object.
Examples
piggyback::pb_download(repo = "soroushmdg/gwid",tag = "v0.0.1",dest = tempdir())
ibd_data_file <- paste0(tempdir(),"//chr3.ibd")
genome_data_file <- paste0(tempdir(),"//chr3.gds")
phase_data_file <- paste0(tempdir(),"//chr3.vcf")
case_control_data_file <- paste0(tempdir(),"//case-cont-RA.withmap.Rda")
# case-control data
case_control <- gwid::case_control(case_control_rda = case_control_data_file)
names(case_control) #cases and controls group
summary(case_control) # in here, we only consider cases,cont1,cont2,cont3 groups in the study
case_control$cases[1:3] # first three subject names of cases group
# read SNP data (use SNPRelate to convert it to gds) and count number of minor alleles
snp_data_gds <- gwid::build_gwas(gds_data = genome_data_file,
caco = case_control,gwas_generator = TRUE)
class(snp_data_gds)
names(snp_data_gds)
head(snp_data_gds$snps) # it has information about counts of minor alleles in each location.
# read haplotype data (output of beagle)
haplotype_data <- gwid::build_phase(phased_vcf = phase_data_file,caco = case_control)
class(haplotype_data)
names(haplotype_data)
dim(haplotype_data$Hap.1) #22302 SNP and 1911 subjects
# read IBD data (output of Refined-IBD)
ibd_data <- gwid::build_gwid(ibd_data = ibd_data_file,gwas = snp_data_gds)
class(ibd_data)
ibd_data$ibd # refined IBD output
ibd_data$res # count number of IBD for each SNP location
# plot count of IBD in chromosome 3
plot(ibd_data,y = c("cases","cont1"),ly = FALSE)
# Further investigate location between 117M and 122M
# significant number of IBD's in group cases, compare to cont1, cont2 and cont3.
plot(ibd_data,y = c("cases","cont1"),snp_start = 119026294,snp_end = 120613594,ly = FALSE)
model_fisher <- gwid::fisher_test(ibd_data,case_control,reference = "cases",
snp_start = 119026294,snp_end = 120613594)
class(model_fisher)
plot(model_fisher, y = c("cases","cont1"),ly = FALSE)
hap_str <- gwid::haplotype_structure(ibd_data,phase = haplotype_data,w = 10,
snp_start = 119026294,snp_end = 120613594)
haplo_freq <- gwid::haplotype_frequency(hap_str)
plot(haplo_freq,y = c("cases", "cont1"),plot_type = "haplotype_structure_frequency",
nwin = 1, type = "version1",ly = FALSE)