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epca-package Exploratory Principal Component Analysis

Description

epca is for comprehending any data matrix that contains low-rank and sparse underlying signals
of interest. The package currently features two key tools: (1) sca for sparse principal component
analysis and (2) sma for sparse matrix approximation, a two-way data analysis for simultaneously
row and column dimensionality reductions.

References

Chen, F. and Rohe K. (2020) "A New Basis for Sparse PCA".
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absmin Absmin Rotation

Description

Given a p x k matrix x, finds the orthogonal matrix (rotation) that minimizes the absmin.criteria.

Usage

absmin(x, r0 = diag(ncol(x)), normalize = FALSE, eps = 1e-05, maxit = 1000L)

Arguments

x a matrix or Matrix, initial factor loadings matrix for which the rotation criterian
is to be optimized.

r0 matrix, initial rotation matrix.

normalize logical. Should Kaiser normalization be performed? If so the rows of x are
re-scaled to unit length before rotation, and scaled back afterwards.

eps The tolerance for stopping: the relative change in the sum of singular values.

maxit integer, maximum number of iteration (default to 1,000).

Value

A list with three elements:

rotated the rotated matrix.

rotmat the (orthogonal) rotation matrix.

n.iter the number of iteration taken.

See Also

GPArotation::GPForth

absmin.criteria Absmin Criteria

Description

Calculate the absmin criteria. This is a helper function for absmin.

Usage

absmin.criteria(x)
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Arguments

x a matrix or Matrix, initial factor loadings matrix for which the rotation criterian
is to be optimized.

cpve Cumulative Proportion of Variance Explained (CPVE)

Description

Calculate the CPVE.

Usage

cpve(x, v, is.cov = FALSE)

Arguments

x matrix or Matrix, the original data matrix or the Gram matrix.

v matrix or Matrix, coefficients of linear transformation, e.g., loadings (in PCA).

is.cov logical, whether the input matrix is a covariance matrix (or a Gram matrix).

Value

a numeric vector of length ncol(v), the i-th value is the CPVE of the first i columns in v.

See Also

pve

Examples

## use the "swiss" data
## find two sparse PCs
s.sca <- sca(swiss, 2, gamma = sqrt(ncol(swiss)))
ld <- loadings(s.sca)
cpve(as.matrix(swiss), ld)
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dist.matrix Matrix Column Distance

Description

Compute the distance between two matrices. The distance between two matrices is defined as the
sum of distances between column pairs. This function matches the columns of two matrices, such
that the matrix distance (i.e., the sum of paired column distances) is minimized. This is accom-
plished by solving an optimization over column permutation. Given two matrices, x and y, find
permutation p() that minimizes sum_i similarity(x[,p(i)], y[,i]), where the similarity() can
be "euclidean" distance, 1 - "cosine", or "maximum" difference (manhattan distance). The solution
is computed by clue::solve_LSAP().

Usage

dist.matrix(x, y, method = "euclidean")

Arguments

x, y matrix or Matrix, of the same number of rows. The columns of x and y will be
scaled to unit length.

method distance measure, "maximum", "cosine", or "euclidean" are implemented.

Value

a list of four components:

dist dist, the distance matrix.

match solve_LSAP, the column matches.

value numeric vector, the distance between pairs of columns.

method character, the distance measure used.

nrow integer, the dimension of the input matrices, i.e., nrow(x).

See Also

clue::solve_LSAP

Examples

x <- diag(4)
y <- x + rnorm(16, sd = 0.05) # add some noise
y = t(t(y) / sqrt(colSums(y ^ 2))) ## normalize the columns
## euclidian distance between column pairs, with minimal matches
dist.matrix(x, y, "euclidean")
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distance Matrix Distance

Description

Matrix Distance

Usage

distance(x, y, method = "euclidean")

Arguments

x, y matrix or Matrix, of the same number of rows. The columns of x and y will be
scaled to unit length.

method distance measure, "maximum", "cosine", or "euclidean" are implemented.

Value

numeric, the distance between two matrices.

exp.frac Calculate fractional exponent/power

Description

Calculate fractional exponent/power, a^(num/den), where a could be negative.

Usage

## S3 method for class 'frac'
exp(a, num, den)

Arguments

a numeric(1), base (could be negative).

num a positive integer, numerator of the exponent.

den a positive integer, denominator of the exponent.

Value

numeric, the evaluated a^(num/den)
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hard Hard-thresholding

Description

Perform hard-thresholding given the cut-off value.

Usage

hard(x, t)

Arguments

x any numerical matrix or vector.

t numeric, the amount to hard-threshold, i.e., sgn(xij)(|xij − t|)+.

inner Matrix Inner Product

Description

Calculate the custom matrix inner product z of two matrices, x and y, where z[i,j] = FUN(x[,i],
y[,j]).

Usage

inner(x, y, FUN = "crossprod", ...)

Arguments

x, y matrix or Matrix.

FUN function or a character(1) name of base function. The function should take
in two vectors as input and output a numeric(1) result.

... additional parameters for FUN.

Value

matrix, inner product of x and y.
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Examples

x <- matrix(1:6, 2, 3)
y <- matrix(7:12, 2, 3)
## The default is equivalent to `crossprod(x, y)`
inner(x, y)
## We can compute the pair-wise Euclidean distance of columns.
EuclideanDistance = function(x, y) crossprod(x, y)^2
inner(x, y, EuclideanDistance)

labelCluster Label Cluster

Description

Assign cluster labels to each row from the membership matrix.

Usage

labelCluster(x, ties.method = "random")

Arguments

x matrix with non-negative entries, where x[i,j] is the estimated likelihood (or
any equivalent measure) of node i belongs to block j. The higher the more likely.

ties.method character, how should ties be handled, "random", "first", "last" are allowed.
See base::rank() for details.

Value

integer vector of the same length as x. Each entry is one of 1, 2, ..., ncol(x).

misClustRate Mis-Classification Rate (MCR)

Description

Compute the empirical MCR, assuming that #cluster = #block, This calculation allows a permuta-
tion on clusters.

Usage

misClustRate(cluster, truth)
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Arguments

cluster vector of integer or factor, estimated cluster membership.

truth a vector of the same length as clusters, the true cluster labels.

Value

numeric, the MCR.

Examples

truth = rep(1:3, each = 30)
cluster = rep(3:1, times = c(25, 32, 33))
misClustRate(cluster, truth)

norm.Lp Element-wise Matrix Norm

Description

Compute element-wise matrix Lp-norm. This is a helper function to shrinkage().

Usage

norm.Lp(x, p = 1)

Arguments

x a matrix or Matrix.

p numeric(1), the p for defining the Lp norm.

Value

numeric(1), the absolute sum of all elements.
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permColumn Permute columns of a block membership matrix

Description

Perform column permutation of block membership matrix for aesthetic visualization. That is, the
k-th column gives k-th cluster. This is done by ranking the column sums of squares (by default).

Usage

permColumn(x, s = 2)

Arguments

x a non-negative matrix, nNode x nBlock,

s integer, order of non-linear

pitprops Pitprops correlation data

Description

The pitprops data is a correlation matrix that was calculated from 180 observations. There are 13
explanatory variables. Jeffers (1967) tried to interpret the first six PCs. This is a classical example
showing the difficulty of interpreting principal components.

References

Jeffers, J. (1967) "Two case studies in the application of principal component", Applied Statistics,
16, 225-236.

Examples

## NOT TEST
data(pitprops)
ggcorrplot::ggcorrplot(pitprops)
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polar Polar Decomposition

Description

Perform the polar decomposition of an n x p (n > p) matrix x into two parts: u and h, where u is an
n x p unitary matrix with orthogonal columns (i.e. crossprod(u) is the identity matrix), and h is
a p x p positive-semidefinite Hermitian matrix. The function returns the u matrix. This is a helper
function of prs().

Usage

polar(x)

Arguments

x a matrix or Matrix, which is presumed full-rank.

Value

a matrix of the unitary part of the polar decomposition.

References

Chen, F. and Rohe, K. (2020) "A New Basis for Sparse Principal Component Analysis."

Examples

x <- matrix(1:6, nrow = 3)
polar_x <- polar(x)

print.sca Print SCA

Description

Print SCA

Usage

## S3 method for class 'sca'
print(x, verbose = FALSE, ...)



12 prs

Arguments

x an sca object.

verbose logical(1), whether to print out loadings.

... additional input to generic print.

Value

Print an sca object interactively.

print.sma Print SMA

Description

Print SMA

Usage

## S3 method for class 'sma'
print(x, verbose = FALSE, ...)

Arguments

x an sma object.

verbose logical(1), whether to print out loadings.

... additional input to generic print.

Value

Print an sma object interactively.

prs Polar-Rotate-Shrink

Description

This function is a helper function of sma(). It performs polar docomposition, orthogonal rotation,
and soft-thresholding shrinkage in order. The three steps together enable sparse estimates of the
SMA and SCA.

Usage

prs(x, z.hat, gamma, rotate, shrink, normalize, order, flip, epsilon)
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Arguments

x, z.hat the matrix product crossprod(x, z.hat) is the actual Polar-Rotate-Shrink ob-
ject. x and z.hat are input separatedly because the former is additionally used to
compute the proportion of variance explained, in the case when order = TRUE.

gamma numeric, the sparsity parameter.

rotate character(1), rotation method. Two options are currently available: "varimax"
(default) or "absmin" (see details).

shrink character(1), shrinkage method, either "soft"- (default) or "hard"-thresholding
(see details).

normalize logical, whether to rows normalization should be done before and undone af-
terward the rotation (see details).

order logical, whether to re-order the columns of the estimates (see Details below).

flip logical, whether to flip the signs of the columns of estimates such that all
columns are positive-skewed (see details).

epsilon numeric, tolerance of convergence precision (default to 0.00001).

Details

rotate: The rotate option specifies the rotation technique to use. Currently, there are two build-in
options—“varimax” and “absmin”. The “varimax” rotation maximizes the element-wise L4 norm
of the rotated matrix. It is faster and computationally more stable. The “absmin” rotation minimizes
the absolute sum of the rotated matrix. It is sharper (as it directly minimizes the L1 norm) but slower
and computationally less stable.

shrink: The shrink option specifies the shrinkage operator to use. Currently, there are two build-in
options—“soft”- and “hard”-thresholding. The “soft”-thresholding universally reduce all elements
and sets the small elements to zeros. The “hard”-thresholding only sets the small elements to zeros.

normalize: The argument normalize gives an indication of if and how any normalization should
be done before rotation, and then undone after rotation. If normalize is FALSE (the default) no nor-
malization is done. If normalize is TRUE then Kaiser normalization is done. (So squared row entries
of normalized x sum to 1.0. This is sometimes called Horst normalization.) For rotate="absmin",
if normalize is a vector of length equal to the number of indicators (i.e., the number of rows of
x), then the columns are divided by normalize before rotation and multiplied by normalize after
rotation. Also, If normalize is a function then it should take x as an argument and return a vector
which is used like the vector above.

order: In PCA (and SVD), the principal components (and the singular vectors) are ordered. For
this, we order the sparse components (i.e., the columns of z or y) by their explained variance in the
data, which is defined as sum((x %*% y)^2), where y is a column of the sparse component. Note:
not to be confused with the cumulative proportion of variance explained by y (and z), particularly
when y (and z) is may not be strictly orthogonal.

flip: The argument flip gives an indication of if and the columns of estimated sparse component
should be flipped. Note that the estimated (sparse) loadings, i.e., the weights on original variables,
are column-wise invariant to a sign flipping. This is because flipping of a principal direction does
not influence the amount of the explained variance by the component. If flip=TRUE, then the
columns of loadings will be flip accordingly, such that each column is positive-skewed. This means
that for each column, the sum of cubic elements (i.e., sum(x^3)) are non-negative.
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Value

a matrix of the sparse estimate, of the same dimension as crossprod(x, z.hat).

References

Chen, F. and Rohe, K. (2020) "A New Basis for Sparse Principal Component Analysis."

See Also

sma, sca, polar, rotation, shrinkage

pve Proportion of Variance Explained (PVE)

Description

Calculate the Proportion of variance explained by a set of linear transformation, (e.g. eigenvectors).

Usage

pve(x, v, is.cov = FALSE)

Arguments

x matrix or Matrix, the original data matrix or the Gram matrix.

v matrix or Matrix, coefficients of linear transformation, e.g., loadings (in PCA).

is.cov logical, whether the input matrix is a covariance matrix (or a Gram matrix).

Value

a numeric value between 0 and 1, the proportion of total variance in x explained by the PCs whose
loadings are in v.

References

Shen, H., & Huang, J. Z. (2008). "Sparse principal component analysis via regularized low rank
matrix approximation." Journal of multivariate analysis, 99(6), 1015-1034.

Examples

## use the "swiss" data
## find two sparse PCs
s.sca <- sca(swiss, 2, gamma = sqrt(ncol(swiss)))
ld <- loadings(s.sca)
pve(as.matrix(swiss), ld)
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rootmatrix Find root matrix

Description

Find the root matrix (x) from the Gram matrix (i.e., crossprod(x)). This is also useful when the
input is a covariance matrix, up to a scaling factor of n-1, where n is the sample size.

Usage

rootmatrix(x)

Arguments

x a symmetric matrix (will trigger error if not symmetric).

rotation Varimax Rotation

Description

Perform varimax rotation. Flip the signs of columns so that the resulting matrix is positive-skewed.

Usage

rotation(
x,
rotate = c("varimax", "absmin"),
normalize = FALSE,
flip = TRUE,
eps = 1e-06

)

Arguments

x a matrix or Matrix.

rotate character(1), rotation method. Two options are currently available: "varimax"
(default) or "absmin" (see details).

normalize logical, whether to rows normalization should be done before and undone af-
terward the rotation (see details).

flip logical, whether to flip the signs of the columns of estimates such that all
columns are positive-skewed (see details).

eps numeric precision tolerance.
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Details

rotate: The rotate option specifies the rotation technique to use. Currently, there are two build-in
options—“varimax” and “absmin”. The “varimax” rotation maximizes the element-wise L4 norm
of the rotated matrix. It is faster and computationally more stable. The “absmin” rotation minimizes
the absolute sum of the rotated matrix. It is sharper (as it directly minimizes the L1 norm) but slower
and computationally less stable.

normalize: The argument normalize gives an indication of if and how any normalization should
be done before rotation, and then undone after rotation. If normalize is FALSE (the default) no nor-
malization is done. If normalize is TRUE then Kaiser normalization is done. (So squared row entries
of normalized x sum to 1.0. This is sometimes called Horst normalization.) For rotate="absmin",
if normalize is a vector of length equal to the number of indicators (i.e., the number of rows of
x), then the columns are divided by normalize before rotation and multiplied by normalize after
rotation. Also, If normalize is a function then it should take x as an argument and return a vector
which is used like the vector above.

flip: The argument flip gives an indication of if and the columns of estimated sparse component
should be flipped. Note that the estimated (sparse) loadings, i.e., the weights on original variables,
are column-wise invariant to a sign flipping. This is because flipping of a principal direction does
not influence the amount of the explained variance by the component. If flip=TRUE, then the
columns of loadings will be flip accordingly, such that each column is positive-skewed. This means
that for each column, the sum of cubic elements (i.e., sum(x^3)) are non-negative.

Value

the rotated matrix of the same dimension as x.

References

Chen, F. and Rohe, K. (2020) "A New Basis for Sparse Principal Component Analysis."

See Also

prs, varimax

Examples

## use the "swiss" data
fa <- factanal( ~., 2, data = swiss, rotation = "none")
rotation(loadings(fa))

sca Sparse Component Analysis

Description

sca performs sparse principal components analysis on the given numeric data matrix. Choices of
rotation techniques and shrinkage operators are available.
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Usage

sca(
x,
k = min(5, dim(x)),
gamma = NULL,
is.cov = FALSE,
rotate = c("varimax", "absmin"),
shrink = c("soft", "hard"),
center = TRUE,
scale = FALSE,
normalize = FALSE,
order = TRUE,
flip = TRUE,
max.iter = 1000,
epsilon = 1e-05,
quiet = TRUE

)

Arguments

x matrix or Matrix to be analyzed.

k integer, rank of approximation.

gamma numeric(1), sparsity parameter, default to sqrt(pk), where n x p is the dimen-
sion of x.

is.cov logical, default to FALSE, whether the x is a covariance matrix (or Gram matrix,
i.e., crossprod() of some design matrix). If TRUE, both center and scale will
be ignored/skipped.

rotate character(1), rotation method. Two options are currently available: "varimax"
(default) or "absmin" (see details).

shrink character(1), shrinkage method, either "soft"- (default) or "hard"-thresholding
(see details).

center logical, whether to center columns of x (see scale()).

scale logical, whether to scale columns of x (see scale()).

normalize logical, whether to rows normalization should be done before and undone af-
terward the rotation (see details).

order logical, whether to re-order the columns of the estimates (see Details below).

flip logical, whether to flip the signs of the columns of estimates such that all
columns are positive-skewed (see details).

max.iter integer, maximum number of iteration (default to 1,000).

epsilon numeric, tolerance of convergence precision (default to 0.00001).

quiet logical, whether to mute the process report (default to TRUE)
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Details

rotate: The rotate option specifies the rotation technique to use. Currently, there are two build-in
options—“varimax” and “absmin”. The “varimax” rotation maximizes the element-wise L4 norm
of the rotated matrix. It is faster and computationally more stable. The “absmin” rotation minimizes
the absolute sum of the rotated matrix. It is sharper (as it directly minimizes the L1 norm) but slower
and computationally less stable.

shrink: The shrink option specifies the shrinkage operator to use. Currently, there are two build-in
options—“soft”- and “hard”-thresholding. The “soft”-thresholding universally reduce all elements
and sets the small elements to zeros. The “hard”-thresholding only sets the small elements to zeros.

normalize: The argument normalize gives an indication of if and how any normalization should
be done before rotation, and then undone after rotation. If normalize is FALSE (the default) no nor-
malization is done. If normalize is TRUE then Kaiser normalization is done. (So squared row entries
of normalized x sum to 1.0. This is sometimes called Horst normalization.) For rotate="absmin",
if normalize is a vector of length equal to the number of indicators (i.e., the number of rows of
x), then the columns are divided by normalize before rotation and multiplied by normalize after
rotation. Also, If normalize is a function then it should take x as an argument and return a vector
which is used like the vector above.

order: In PCA (and SVD), the principal components (and the singular vectors) are ordered. For
this, we order the sparse components (i.e., the columns of z or y) by their explained variance in the
data, which is defined as sum((x %*% y)^2), where y is a column of the sparse component. Note:
not to be confused with the cumulative proportion of variance explained by y (and z), particularly
when y (and z) is may not be strictly orthogonal.

flip: The argument flip gives an indication of if and the columns of estimated sparse component
should be flipped. Note that the estimated (sparse) loadings, i.e., the weights on original variables,
are column-wise invariant to a sign flipping. This is because flipping of a principal direction does
not influence the amount of the explained variance by the component. If flip=TRUE, then the
columns of loadings will be flip accordingly, such that each column is positive-skewed. This means
that for each column, the sum of cubic elements (i.e., sum(x^3)) are non-negative.

Value

an sca object that contains:

loadings matrix, sparse loadings of PCs.

scores an n x k matrix, the component scores, calculated using centered (and/or scaled)
x. This will only be available when is.cov = FALSE.

cpve a numeric vector of length k, cumulative proportion of variance in x explained
by the top PCs (after center and/or scale).

center logical, this records the center parameter.

scale logical, this records the scale parameter.

n.iter integer, number of iteration taken.

n.obs integer, sample size, that is, nrow(x).

References

Chen, F. and Rohe, K. (2020) "A New Basis for Sparse Principal Component Analysis."
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See Also

sma, prs

Examples

## ------ example 1 ------
## simulate a low-rank data matrix with some additive Gaussian noise
n <- 300
p <- 50
k <- 5 ## rank
z <- shrinkage(polar(matrix(runif(n * k), n, k)), sqrt(n))
b <- diag(5) * 3
y <- shrinkage(polar(matrix(runif(p * k), p, k)), sqrt(p))
e <- matrix(rnorm(n * p, sd = .01), n, p)
x <- scale(z %*% b %*% t(y) + e)

## perform sparse PCA
s.sca <- sca(x, k)
s.sca

## ------ example 2 ------
## use the `pitprops` data from the `elasticnet` package
data(pitprops)

## find 6 sparse PCs
s.sca <- sca(pitprops, 6, gamma = 6, is.cov = TRUE)
print(s.sca, verbose = TRUE)

shrinkage Shrinkage

Description

Shrink a matrix using soft-thresholding or hard-thresholding.

Usage

shrinkage(x, gamma, shrink = c("soft", "hard"), epsilon = 1e-11)

Arguments

x matrix or Matrix, to be threshold.

gamma numeric, the constraint of Lp norm, i.e. ‖x‖ ≤ γ.

shrink character(1), shrinkage method, either "soft"- (default) or "hard"-thresholding
(see details).

epsilon numeric, precision tolerance. This should be greater than .Machine$double.eps.
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Details

A binary search to find the cut-off value.

shrink: The shrink option specifies the shrinkage operator to use. Currently, there are two build-in
options—“soft”- and “hard”-thresholding. The “soft”-thresholding universally reduce all elements
and sets the small elements to zeros. The “hard”-thresholding only sets the small elements to zeros.

Value

a list with two components:

matrix matrix, the matrix that results from soft-thresholding

norm numeric, the norm of the matrix after soft-thresholding. This value is close to
constraint if using the second option.

References

Chen, F. and Rohe, K. (2020) "A New Basis for Sparse Principal Component Analysis."

See Also

prs

Examples

x <- matrix(1:6, nrow = 3)
shrink_x <- shrinkage(x, 1)

sma Sparse Matrix Approximation

Description

Perform the sparse matrix approximation (SMA) of a data matrix x as three multiplicative compo-
nents: z, b, and t(y), where z and y are sparse, and b is low-rank but not necessarily diagonal.

Usage

sma(
x,
k = min(5, dim(x)),
gamma = NULL,
rotate = c("varimax", "absmin"),
shrink = c("soft", "hard"),
center = FALSE,
scale = FALSE,
normalize = FALSE,
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order = FALSE,
flip = FALSE,
max.iter = 1000,
epsilon = 1e-05,
quiet = TRUE

)

Arguments

x matrix or Matrix to be analyzed.

k integer, rank of approximation.

gamma numeric(2), sparsity parameters. If gamma is numeric(1), it is used for both
left and right sparsity component (i.e, z and y). If absent, the two parameters
are set as (default): sqrt(nk) and sqrt(pk) for z and y respectively, where n x
p is the dimension of x.

rotate character(1), rotation method. Two options are currently available: "varimax"
(default) or "absmin" (see details).

shrink character(1), shrinkage method, either "soft"- (default) or "hard"-thresholding
(see details).

center logical, whether to center columns of x (see scale()).

scale logical, whether to scale columns of x (see scale()).

normalize logical, whether to rows normalization should be done before and undone af-
terward the rotation (see details).

order logical, whether to re-order the columns of the estimates (see Details below).

flip logical, whether to flip the signs of the columns of estimates such that all
columns are positive-skewed (see details).

max.iter integer, maximum number of iteration (default to 1,000).

epsilon numeric, tolerance of convergence precision (default to 0.00001).

quiet logical, whether to mute the process report (default to TRUE)

Details

rotate: The rotate option specifies the rotation technique to use. Currently, there are two build-in
options—“varimax” and “absmin”. The “varimax” rotation maximizes the element-wise L4 norm
of the rotated matrix. It is faster and computationally more stable. The “absmin” rotation minimizes
the absolute sum of the rotated matrix. It is sharper (as it directly minimizes the L1 norm) but slower
and computationally less stable.

shrink: The shrink option specifies the shrinkage operator to use. Currently, there are two build-in
options—“soft”- and “hard”-thresholding. The “soft”-thresholding universally reduce all elements
and sets the small elements to zeros. The “hard”-thresholding only sets the small elements to zeros.

normalize: The argument normalize gives an indication of if and how any normalization should
be done before rotation, and then undone after rotation. If normalize is FALSE (the default) no nor-
malization is done. If normalize is TRUE then Kaiser normalization is done. (So squared row entries
of normalized x sum to 1.0. This is sometimes called Horst normalization.) For rotate="absmin",
if normalize is a vector of length equal to the number of indicators (i.e., the number of rows of
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x), then the columns are divided by normalize before rotation and multiplied by normalize after
rotation. Also, If normalize is a function then it should take x as an argument and return a vector
which is used like the vector above.

order: In PCA (and SVD), the principal components (and the singular vectors) are ordered. For
this, we order the sparse components (i.e., the columns of z or y) by their explained variance in the
data, which is defined as sum((x %*% y)^2), where y is a column of the sparse component. Note:
not to be confused with the cumulative proportion of variance explained by y (and z), particularly
when y (and z) is may not be strictly orthogonal.

flip: The argument flip gives an indication of if and the columns of estimated sparse component
should be flipped. Note that the estimated (sparse) loadings, i.e., the weights on original variables,
are column-wise invariant to a sign flipping. This is because flipping of a principal direction does
not influence the amount of the explained variance by the component. If flip=TRUE, then the
columns of loadings will be flip accordingly, such that each column is positive-skewed. This means
that for each column, the sum of cubic elements (i.e., sum(x^3)) are non-negative.

Value

an sma object that contains:

z, b, t(y) the three parts in the SMA. z is a sparse n x k matrix that contains the row
components (loadings). The row names of z inherit the row names of x. b is a k
x k matrix that contains the scores of SMA; the Frobenius norm of b equals to
the total variance explained by the SMA. y is a sparse n x k matrixthat contains
the column components (loadings).

The row names of y inherit the column names of x.

score the total variance explained by the SMA. This is the optimal objective value
obtained.

n.iter integer, the number of iteration taken.

References

Chen, F. and Rohe, K. (2020) "A New Basis for Sparse Principal Component Analysis."

See Also

sca, prs

Examples

## simulate a rank-5 data matrix with some additive Gaussian noise
n <- 300
p <- 50
k <- 5 ## rank
z <- shrinkage(polar(matrix(runif(n * k), n, k)), sqrt(n))
b <- diag(5) * 3
y <- shrinkage(polar(matrix(runif(p * k), p, k)), sqrt(p))
e <- matrix(rnorm(n * p, sd = .01), n, p)
x <- scale(z %*% b %*% t(y) + e)
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## perform sparse matrix approximation
s.sma <- sma(x, k)
s.sma

soft Soft-thresholding

Description

Perform soft-thresholding given the cut-off value.

Usage

soft(x, t)

Arguments

x any numerical matrix or vector.

t numeric, the amount to soft-threshold, i.e., sgn(xij)(|xij − t|)+.

varimax Varimax Rotation

Description

This is a re-implementation of stats::varimax, which (1) adds a parameter for the maximum number
of iterations, (2) sets the default normalize parameter to FALSE, (3) outputs the number of iteration
taken, and (4) returns regular matrix rather than in loadings class.

Usage

varimax(x, normalize = FALSE, eps = 1e-05, maxit = 1000L)

Arguments

x A loadings matrix, with p rows and k < p columns

normalize logical. Should Kaiser normalization be performed? If so the rows of x are
re-scaled to unit length before rotation, and scaled back afterwards.

eps The tolerance for stopping: the relative change in the sum of singular values.

maxit integer, maximum number of iteration (default to 1,000).
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Value

A list with three elements:

rotated the rotated matrix.

rotmat the (orthogonal) rotation matrix.

n.iter the number of iterations taken.

See Also

stats::varimax

varimax.criteria The varimax criterion

Description

Calculate the varimax criterion

Usage

varimax.criteria(x)

Arguments

x a matrix or Matrix.

Value

a numeric of evaluated varimax criterion.

References

Varimax rotation (Wikipedia)

Examples

## use the "swiss" data
fa <- factanal( ~., 2, data = swiss, rotation = "none")
lds <- loadings(fa)

## compute varimax criterion:
varimax.criteria(lds)

## compute varimax criterion (after the varimax rotation):
rlds <- rotation(lds, rotate = "varimax")
varimax.criteria(rlds)

https://en.wikipedia.org/wiki/Varimax_rotation
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vgQ.absmin Gradient of Absmin Criterion

Description

This is a helper function for absmin and is not to be used directly by users.

Usage

vgQ.absmin(x)

Arguments

x a matrix or Matrix, initial factor loadings matrix for which the rotation criterian
is to be optimized.

Value

a list required by GPArotation::GPForth for the absmin rotation.

Examples

## Not run:
## NOT RUN
## NOT for users to call.

## End(Not run)
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