The residue theorem from a numerical perspective

Robin K. S. Hankin

Abstract

A short vignette illustrating Cauchy's integral theorem using numerical integration Keywords: Residue theorem, Cauchy formula, Cauchy's integral formula, contour integration, complex integration, Cauchy's theorem.

In this very short vignette, I will use contour integration to evaluate

$$
\begin{equation*}
\int_{x=-\infty}^{\infty} \frac{e^{i x}}{1+x^{2}} d x \tag{1}
\end{equation*}
$$

using numerical methods. This document is part of the elliptic package (Hankin 2006).
If f is meromorphic, the residue theorem tells us that the integral of f along any closed nonintersecting path, traversed anticlockwise, is equal to $2 \pi i$ times the sum of the residues inside it.
To evaluate the integral above, we define $f(z)=\frac{e^{i z}}{1+z^{2}}$. Then we take a semicircular path P from $-R$ to $+R$ along the real axis, then following a semicircle in the upper half plane, of radius R to close the loop (figure 1). Now we make R large. Then P encloses a pole at i [there is one at $-i$ also, but this is outside P, so irrelevent here] at which the residue is $-i / 2 e$. Thus

$$
\begin{equation*}
\oint_{P} f(z) d z=2 \pi i \cdot(-i / 2 e)=\pi / e \tag{2}
\end{equation*}
$$

along P; the contribution from the semicircle tends to zero as $R \longrightarrow \infty$; thus the integral along the real axis is the whole path integral, or π / e.
We can now reproduce this result analytically. First, choose R :

```
> R<-400
```

And now define a path P. First, the semicircle:

```
> u1 <- function(x){R*exp(pi*1i*x)}
> u1dash <- function(x){R*pi*1i*exp(pi*1i*x)}
```

and now the straight part along the real axis:

```
> u2 <- function(x){R*(2*x-1)}
> u2dash <- function(x){R*2}
```


Figure 1: Contour integration path from $(-R, 0)$ to $(R, 0)$ along the real axis, followed by a semicircular return path in the positive imaginary half-plane. Poles of $e^{i x} /(1+x+2)$ symbolised by explosions

And define the function:

```
> f <- function(z){exp(1i*z)/(1+z^2)}
```

Now carry out the path integral. I'll do it explicitly, but note that the contribution from the first integral should be small:

```
> answer.approximate <-
+ integrate.contour(f,u1,u1dash) +
+ integrate.contour(f,u2,u2dash)
```

And compare with the analytical value:

```
> answer.exact <- pi/exp(1)
> abs(answer.approximate - answer.exact)
[1] 6.244969e-07
```

Now try the same thing but integrating over a triangle instead of a semicircle, using integrate.segments(). Use a path P^{\prime} with base from $-R$ to $+R$ along the real axis, closed by two straight segments, one from $+R$ to $i R$, the other from $i R$ to $-R$:

```
> abs(integrate.segments(f,c(-R,R,1i*R))- answer.exact)
```

[1] $5.157772 \mathrm{e}-07$
Observe how much better one can do by integrating over a big square instead:

```
> abs(integrate.segments(f,c(-R,R,R+1i*R, -R+1i*R))- answer.exact)
```

[1] 2.319341e-08

The residue theorem for function evaluation

If $f(\cdot)$ is holomorphic within C, Cauchy's residue theorem states that

$$
\begin{equation*}
\oint_{C} \frac{f(z)}{z-z_{0}}=f\left(z_{0}\right) . \tag{3}
\end{equation*}
$$

Function residue() is a wrapper that takes a function $f(z)$ and integrates $f(z) /\left(z-z_{0}\right)$ around a closed loop which encloses z_{0}. We can test this numerically by evaluating $\sin (1)$:

```
> f <- function(z){sin(z)}
> numerical <- residue(f,z0=1,r=1)
> exact <- sin(1)
> abs(numerical-exact)
```

[1] 3.91766e-18
which is unreasonably accurate, IMO.

References

Hankin RKS (2006). "Introducing elliptic, an R package for elliptic and modular functions." Journal of Statistical Software, 15(7).

Affiliation:
Robin K. S. Hankin
Auckland University of Technology
2-14 Wakefield Street
Auckland
New Zealand
E-mail: hankin.robin@gmail.com

