Package ‘elasdics’

January 25, 2024
Type PackageTitle Elastic Analysis of Sparse, Dense and Irregular Curves
Version 1.1.3
Author Lisa Steyer lisa.steyer@hu-berlin.de
Maintainer Lisa Steyer lisa.steyer@hu-berlin.de
Description Provides functions to align curves and to compute mean curves based on theelastic distance defined in the square-root-velocity framework. For more details onthis framework see Srivastava and Klassen (2016, doi:10.1007/978-1-4939-4020-2).
For more theoretical details on our methods and algorithms seeSteyer et al. (2023, doi:10.1111/biom.13706) and Steyer et al. (2023, arXiv:2305.02075).
License GPL-3
Encoding UTF-8
Imports splines, stats, numDeriv
RoxygenNote 7.3.1
Suggests testthat, covr
NeedsCompilation no
Repository CRAN
Date/Publication 2024-01-25 13:50:02 UTC
R topics documented:
align_curves 2
center_curve 3
compute_elastic_mean 3
elasdics 5
find_optimal_t 5
find_optimal_t_discrete 6
find_optimal_t_discrete_closed 7
fit_elastic_regression 7
fit_mean 9
fit_mean_closed 9
get_evals 10
get_srv_from_points 11
optimise_one_coord_analytic 12
optimise_one_coord_analytic_closed 13
plot.aligned_curves 13
plot.elastic_mean 14
plot.elastic_reg_model 15
predict.elastic_reg_model 15
project_curve_on_closed 16
srvf_to_curve 17
Index 18
align_curves Align two curves measured at discrete points

Description

Finds the optimal reparametrization of the second curve (stored in data_curve2) to the first one (stored in data_curve1) with respect to the elastic distance. Constructor function for class aligned_curves.

Usage

align_curves(data_curve1, data_curve2, closed = FALSE, eps = 0.01)

Arguments

data_curve1 data.frame with observed points in each row. Each variable is one coordinate direction. If there is a variable t, it is treated as the time parametrization, not as an additional coordinate.
data_curve2 same as data_curve1
closed TRUE if the curves should be treated as closed.
eps convergence tolerance

Value

an object of class aligned_curves, which is a list with entries
data_curve1 data_curve1 with parametrization variable t
data_curve2_aligned
data_curve 2 with initial parametrization variable t and optimal parametrization t_optim
elastic_dist elastic distance between curve1 and curve2
closed TRUE if the curves should have been treated as closed.

Examples

```
#open curves
data_curve1 <- data.frame(x1 = c(1, 0.5, -1, -1), x2 = c(1, -0.5, -1, 1))
data_curve2 <- data.frame(x1 = c(0.1,0.7)*sin(1:6), x2 = cos(1:6))
aligned_curves <- align_curves(data_curve1, data_curve2)
plot(aligned_curves)
#different parametrization of the first curve
data_curve1$t <- 0:3/3
align_curves(data_curve1, data_curve2)
#closed curves
data_curve1 <- data.frame(x1 = sin(0:12/5), x2 = cos(0:12/5))
data_curve2 <- data.frame(x1 = c(1, 0.5, -1, -1), x2 = c(1, -0.5, -1, 1))
aligned_curves_closed <- align_curves(data_curve1, data_curve2, closed = TRUE)
plot(aligned_curves_closed, asp = 1)
```

center_curve Centers curves for plotting

Description

Centers curves for plotting

Usage

center_curve(data_curve)

Arguments

data_curve curve data

Value

a data.frame with evaluations of the curve centered at the origin

Description

Computes a Fréchet mean for the curves stored in data_curves) with respect to the elastic distance. Constructor function for class elastic_mean.

Usage

```
    compute_elastic_mean(
        data_curves,
        knots = seq(0, 1, len = 5),
        type = c("smooth", "polygon"),
        closed = FALSE,
        eps = 0.01,
        pen_factor = 100,
        max_iter = 50
    )
```


Arguments

data_curves list of data.frames with observed points in each row. Each variable is one coordinate direction. If there is a variable t, it is treated as the time parametrization, not as an additional coordinate.
knots set of knots for the mean spline curve
type if "smooth" linear srv-splines are used which results in a differentiable mean curve if "polygon" the mean will be piecewise linear.
closed TRUE if the curves should be treated as closed.
eps the algorithm stops if L2 norm of coefficients changes less
pen_factor penalty factor forcing the mean to be closed
max_iter maximal number of iterations

Value

an object of class elastic_mean, which is a list with entries
type \quad "smooth" if mean was modeled using linear srv-splines or "polygon" if constant srv-splines are used
coefs spline coeffiecients
knots spline knots
data_curves list of data.frames with observed points in each row. First variable t gives the initial parametrization, second variable t_optim the optimal parametrization when the curve is aligned to the mean.
closed TRUE if the mean is supposed to be a closed curve.

Examples

```
curve <- function(t){
    rbind(t*\operatorname{cos}(13*t),t*\operatorname{sin}(13*t))
}
set.seed(18)
data_curves <- lapply(1:4, function(i){
    m <- sample(10:15, 1)
    delta <- abs(rnorm(m, mean = 1, sd = 0.05))
```

```
    t <- cumsum(delta)/sum(delta)
    data.frame(t(curve(t)) + 0.07*t*matrix(cumsum(rnorm(2*length(delta))),
        ncol = 2))
})
#compute elastic means
knots <- seq(0,1, length = 11)
smooth_elastic_mean <- compute_elastic_mean(data_curves, knots = knots)
plot(smooth_elastic_mean)
knots <- seq(0,1, length = 15)
polygon_elastic_mean <- compute_elastic_mean(data_curves, knots = knots, type = "poly")
lines(get_evals(polygon_elastic_mean), col = "blue", lwd = 2)
#compute closed smooth mean, takes a little longer
knots <- seq(0,1, length = 11)
closed_elastic_mean <- compute_elastic_mean(data_curves, knots = knots, closed = TRUE)
plot(closed_elastic_mean)
```

elasdics
elasdics: elastic analysis of sparse, dense and irregular curves.

Description

The elasdics package provides functions to align observed curves and to compute elastic means for collections of curves.

Main functions

Align two observed curves: align_curves
Compute a mean for a set of observed curves: compute_elastic_mean

Description

Finds optimal alignment for a discrete open srv curve to a smooth curve

Usage

find_optimal_t(srv_curve, s, q, initial_t = s, eps = 10 * .Machine\$double.eps)

Arguments

srv_curve srv transformation of the smooth curve, needs to be vectorized
s time points for q, first has to be 0 , last has to be 1
q square root velocity vectors, one less than time points in s
initial_t starting value for the optimization algorithm
eps convergence tolerance

Value

optimal time points for q , without first value 0 and last value 1 , optimal time points have the distance of the observation to the srv_curve as an attribute

```
find_optimal_t_discrete
```

Finds optimal alignment for discrete open curves

Description

Finds optimal aligned time points for srv curve q to srv curve p using coordinate wise optimization.

Usage

find_optimal_t_discrete(r, p, s, q, initial_t = s, eps = 10^-3)

Arguments

r
$p \quad$ square root velocity vectors, one less than time points in r
$\mathrm{s} \quad$ time points for q , first has to be 0 , last has to be 1
q square root velocity vectors, one less than time points in s
initial_t starting value for the optimization algorithm
eps
time points for p , first has to be 0 , last has to be 1 convergence tolerance

Value

optimal time points for q , without first value 0 and last value 1 optimal time points have the distance of the observation to the srv_curve as an attribute

find_optimal_t_discrete_closed

Finds optimal alignment for discrete closed curves

Description

Finds optimal aligned time points for srv curve q to srv curve p using coordinate wise optimization.

Usage

find_optimal_t_discrete_closed(r, p, s, q, initial_t, eps = 10^-3)

Arguments

r
$p \quad$ square root velocity vectors, one less than time points in r
s time points for q, first is last - 1
q square root velocity vectors, one less than time points in s
initial_t starting value for the optimization algorithm
eps convergence tolerance

Value

optimal time points for q , first is last -1

```
fit_elastic_regression
```

 Compute a elastic mean for a collection of curves

Description

Computes a Fréchet mean for the curves stored in data_curves with respect to the elastic distance. Constructor function for class elastic_reg_model.

Usage

fit_elastic_regression(formula, data_curves, x_data,
knots $=\operatorname{seq}(0,1,0.2)$,
type = "smooth",
closed = FALSE,
max_iter = 10,
eps = 0.001,
pre_align = FALSE
)

Arguments

formula	an object of class "formula" of the form data_curves ~ ...".
data_curves	list of data.frames with observed points in each row. Each variable is one coor- dinate direction. If there is a variable t, it is treated as the time parametrization, not as an additional coordinate.
x_data	a data.frame with covariates.
knots	set of knots for the parameter curves of the regression model
type	if "smooth" linear srv-splines are used which results in a differentiable mean curve if "polygon" the mean will be piecewise linear.
closed	TRUE if the curves should be treated as closed.
max_iter	maximal number of iterations
eps	the algorithm stops if L2 norm of coefficients changes less
pre_align	TRUE if curves should be pre aligned to the mean

Value

an object of class elastic_reg_model, which is a list with entries
type \quad smooth" if linear srv-splines or "polygon" if constant srv-splines were used
coefs spline coeffiecients
knots spline knots
data_curves list of data.frames with observed points in each row. First variable t gives the initial parametrization, second variable t_optim the optimal parametrization when the curve is aligned to the model prediction.
closed TRUE if the regression model fitted closed curves.

Examples

```
curve <- function(x_1, x_2, t){
    rbind(2*t*\operatorname{cos}(6*t) - x_1*t , x_2*t*sin(6*t))
}
set.seed(18)
x_data <- data.frame(x_1 = runif(10,-1,1), x_2 = runif(10,-1,1))
data_curves <- apply(x_data, 1, function(x){
    m <- sample(10:15, 1)
    delta <- abs(rnorm(m, mean = 1, sd = 0.05))
    t <- cumsum(delta)/sum(delta)
    data.frame(t(curve((x[1] + 1), (x[2] + 2), t))
        + 0.07*t*matrix(cumsum(rnorm(2*length(delta))), ncol = 2))
    })
    reg_model <- fit_elastic_regression(data_curves ~ x_1 + x_2,
                                    data_curves = data_curves, x_data = x_data)
    plot(reg_model)
```


Description

Fits an elastic mean for open curves. Is usually called from compute_elastic_mean.

Usage

fit_mean(srv_data_curves, knots, max_iter, type, eps)

Arguments

```
srv_data_curves
```

list of data.frames with srv vectors in each row. Usually a result of a call to get_srv_from_points
knots set of knots for the mean spline curve
max_iter maximal number of iterations
type if "smooth" linear srv-splines are used which results in a differentiable mean curve if "polygon" the mean will be piecewise linear.
eps the algorithm stops if L2 norm of coefficients changes less

Value

a list with entries

type	"smooth" or "polygon"
coefs	coefs srv spline coefficients of the estimated mean
knots	spline knots
t_optims	optimal parametrization

fit_mean_closed Fitting function for open curves

Description

Fits an elastic mean for open curves. Is usually called from compute_elastic_mean.

Usage

fit_mean_closed(srv_data_curves, knots, max_iter, type, eps, pen_factor)

Arguments

```
    srv_data_curves
```

 list of data.frames with srv vectors in each row. Usually a result of a call to
 get_srv_from_points
 knots set of knots for the mean spline curve
max_iter maximal number of iterations
type if "smooth" linear srv-splines are used which results in a differentiable mean
curve
eps the algorithm stops if L2 norm of coefficients changes less
pen_factor penalty factor forcing the mean to be closed if "polygon" the mean will be piece-
wise linear.

Value
a list with entries
type "smooth" or "polygon"
coefs coefs srv spline coefficients of the estimated mean
knots spline knots
t_optims optimal parametrization
shift_idxs index of the starting point of the closed curve after alignment

```
get_evals
Evaluate a curve on a grid
```


Description

Evaluate a curve on a grid

Usage

```
get_evals(curve, t_grid = NULL, ...)
## S3 method for class 'data.frame'
get_evals(curve, t_grid = NULL, ...)
## S3 method for class 'elastic_mean'
get_evals(curve, t_grid = NULL, centering = TRUE, ...)
```


Arguments

curve a one parameter function which is to be evaluated on a grid
t_grid the curve is evaluated at the values in t_grid, first value needs to be 0 , last value needs to be 1 . If $\mathrm{t} _$grid $=$NULL, a default regular grid with grid length 0.01 is chosen
... other arguments
centering TRUE if curves shall be centered

Value

a data.frame with evaluations of the curve at the values in t_grid in its rows.

Examples

curve <- function(t) $\{c(t * \sin (10 * t), t * \cos (10 * t))\}$
plot(get_evals(curve), type = "b")

```
get_srv_from_points Helper functions for curve data measured at discrete points
```


Description

Compute the square-root-velocity transformation or the parametrization with respect to arc length for a curve observed at discrete points.

Usage

get_srv_from_points(data_curve)
get_points_from_srv(srv_data)
get_arc_length_param(data_curve)

Arguments

data_curve A data.frame with observed points on a curve. Each row is one point, each variable one coordinate direction. If there is a variable t, it is treated as the time parametrization, not as an additional coordinate.
srv_data A data.frame with first column t corresponding to the parametrization and square-root-velocity vectors in the remaining columns.

Value

get_srv_from_points returns a data. frame with first column t corresponding to the parametrization and square-root-velocity vectors in the remaining columns. If no parametrization is given, the curve will be parametrized with respect to arc length. This parametrization will be computed by a call to get_arc_length_param as well.

Functions

- get_srv_from_points(): Compute square-root-velocity transformation for curve data measured at discrete points. The inverse transformation can be computed with get_points_from_s
- get_points_from_srv(): The inverse transformation to get_srv_from_points. Transforms square-root-velocity data to points representing a curve (with no parametrization).
- get_arc_length_param(): Compute arc length parametrization.

Examples

```
data_curve1 <- data.frame(x1 = 1:6*sin(1:6), x2 = cos(1:6))
get_arc_length_param(data_curve1) #same parametrization as in
get_srv_from_points(data_curve1)
data_curve2 <- data.frame(t = seq(0,1, length = 6), data_curve1)
plot(data_curve2[,2:3], type = "l", xlim = c(-6, 2), ylim = c(-2, 1))
srv_data <- get_srv_from_points(data_curve2)
#back transformed curve starts at (0,0)
lines(get_points_from_srv(srv_data), col = "red")
```

optimise_one_coord_analytic

Does optimization in one parameter direction

Description

Does optimization in one parameter direction

Usage

optimise_one_coord_analytic(t, i, r, p, s, q)

Arguments

t
i index of t that should be updated
$r \quad$ time points for p , first has to be 0 , last has to be 1
$p \quad$ square root velocity vectors, one less than time points in r
s time points for q , first has to be 0 , last has to be 1
$\mathrm{q} \quad$ square root velocity vectors, one less than time points in s

Value

optimal time points for q with respect to optimization only in the i -th coordinate direction

```
optimise_one_coord_analytic_closed
```


Description

Does optimization in one parameter direction

Usage

optimise_one_coord_analytic_closed(t, i, r, p, s, q)

Arguments

$\mathrm{t} \quad$ current time points, first has to be 0 , last has to be 1
i index of t that should be updated
$r \quad$ time points for p , first is last - 1
$p \quad$ square root velocity vectors, one less than time points in r
$\mathrm{s} \quad$ time points for q , first is last -1
$\mathrm{q} \quad$ square root velocity vectors, one less than time points in s

Value

optimal time points for q with respect to optimization only in the i-th coordinate direction

```
plot.aligned_curves Plot method for aligned curves
```


Description

Plots objects of class aligned_curves. Points of same color correspond after the second curve is optimally aligned to the first curve.

Usage

\#\# S3 method for class 'aligned_curves'
plot(x, points_col = rainbow, ...)

Arguments

x
points_col which color palette is used for points on the curves, default is rainbow, see rainbow for further options.
... further plotting parameters.

Value

No value

See Also

For examples see documentation of align_curves.
plot.elastic_mean Plot method for planar elastic mean curves

Description

Plots objects of class elastic_mean.

Usage

\#\# S3 method for class 'elastic_mean'
plot(x, asp = 1, col = "red", ...)

Arguments

x
asp numeric, giving the aspect ratio of the two coordinates, see plot.window for details.
col color of the mean curve.
... further plotting parameters.

Value

No value

See Also

For examples see documentation of compute_elastic_mean.

```
plot.elastic_reg_model
```


Description

Plots objects of class elastic_reg_model.

Usage

```
## S3 method for class 'elastic_reg_model'
plot(x, asp = 1, col = "red", ...)
```


Arguments

x	object of class elastic_reg_model, usually a result of a call to fit_elastic_regression
asp	numeric, giving the aspect ratio of the two coordinates, see plot.window for details.
col	color of the predicted curves.
\ldots	further plotting parameters.

Value

No value

See Also

For examples see documentation of fit_elastic_regression.

```
predict.elastic_reg_model
Predict method for elastic regression models
```


Description

predicted curves for elastic regression model objects.

Usage

\#\# S3 method for class 'elastic_reg_model'
predict (object, newdata $=$ NULL, t_grid $=\operatorname{seq}(0,1,0.01), \ldots$)

Arguments

object	object of class elastic_reg_model, usually a result of a call to fit_elastic_regression
newdata	an optional data.frame in which to look for variables with which to predict. If not given, the fitted values are used.
t_grid	grid on which the predicted curves are evaluated.
\ldots	further arguments passed to or from other methods.

Value

a list of data.frames with predicted curves

See Also

For examples see documentation of fit_elastic_regression.

```
project_curve_on_closed
```

Close open curve via projection on derivative level.

Description

Close open curve via projection on derivative level.

Usage

project_curve_on_closed(data_curve)

Arguments

data_curve data.frame with values of the curve.

Value

a data. frame with closed curve.

```
    srvf_to_curve Re-transform srv curve back to curve
```


Description

Re-transform srv curve back to curve

Usage

srvf_to_curve(t, srv_curve)

Arguments

$\mathrm{t} \quad$ time points at which the resulting curve shall be evaluated.
srv_curve srv curve as a function of one parameter, needs to be vectorized.

Value

a matrix with curve evaluations at time points t in its columns, rows correspond to coordinate directions

Index

```
align_curves, 2, 5, 13, 14
center_curve, 3
compute_elastic_mean, 3, 5, 9, 14
elasdics,5
find_optimal_t,5
find_optimal_t_discrete, 6
find_optimal_t_discrete_closed, 7
fit_elastic_regression, 7, 15, 16
fit_mean,9
fit_mean_closed,9
get_arc_length_param
    (get_srv_from_points), 11
get_evals, 10
get_points_from_srv
    (get_srv_from_points), 11
get_srv_from_points, 9, 10,11
optimise_one_coord_analytic, 12
optimise_one_coord_analytic_closed,13
plot.aligned_curves, 13
plot.elastic_mean, 14
plot.elastic_reg_model, 15
plot.window, 14, 15
predict.elastic_reg_model, 15
project_curve_on_closed, 16
rainbow, 13
srvf_to_curve,17
```

