library(earthtide)
library(bench)
eval_chunks <- TRUE # may not want to run on CRAN because of threads and running time
This vignette describes a few ways to speed up the computation of Earth tides and in some cases reduce memory consumption. The examples below are kept small to minimize computation time for CRAN, but the methods can scale to larger problems.
The following techniques are presented below: - Irregular time steps - Change wave catalog - Change wave amplitude cutoff - Change how often astronomical parameters are updated - Use parallel computation - Interpolations
Some times you may not need to predict at regular time steps. Irregular time steps are allowed, however, the parameter should be set to 1L if you are not using a regular time series.
set.seed(123)
tms <- as.POSIXct("1990-01-01", tz = "UTC") + 0:(900)
indices <- sort(sample(0:900, 100, replace = FALSE))
wave_groups <- data.frame(start = 0, end = 8)
check_fun <- function(target, current) (all.equal(target, current, check.attributes = FALSE))
bench::mark(
et <- calc_earthtide(
utc = tms,
do_predict = TRUE,
method = c("tidal_potential", "lod_tide", "pole_tide"),
latitude = 52.3868,
longitude = 9.7144,
elevation = 110,
gravity = 9.8127,
cutoff = 1.0e-10,
catalog = "ksm04",
wave_groups = wave_groups
)[indices, ],
et_irregular <- calc_earthtide(
utc = tms[indices],
do_predict = TRUE,
method = c("tidal_potential", "lod_tide", "pole_tide"),
latitude = 52.3868,
longitude = 9.7144,
elevation = 110,
gravity = 9.8127,
cutoff = 1.0e-10,
catalog = "ksm04",
wave_groups = wave_groups
), check = check_fun, iterations = 1
)
#> Warning: Some expressions had a GC in every iteration; so filtering is
#> disabled.
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch> <bch:> <dbl> <bch:byt> <dbl>
#> 1 "et <- calc_earthtide(utc = tms, do… 997ms 997ms 1.00 127MB 8.02
#> 2 "et_irregular <- calc_earthtide(utc… 277ms 277ms 3.61 108MB 25.3
Using a catalog with fewer waves will be faster. Here we compare ksm04 and hw95s.
tms <- as.POSIXct("1990-01-01", tz = "UTC") + 0:(900)
wave_groups <- data.frame(start = 0, end = 8)
bench::mark(
et <- calc_earthtide(
utc = tms,
do_predict = TRUE,
method = c("tidal_potential", "lod_tide", "pole_tide"),
latitude = 52.3868,
longitude = 9.7144,
elevation = 110,
gravity = 9.8127,
cutoff = 1.0e-10,
catalog = "ksm04",
wave_groups = wave_groups
),
et_catalog <- calc_earthtide(
utc = tms,
do_predict = TRUE,
method = c("tidal_potential", "lod_tide", "pole_tide"),
latitude = 52.3868,
longitude = 9.7144,
elevation = 110,
gravity = 9.8127,
cutoff = 1.0e-10,
catalog = "hw95s",
wave_groups = wave_groups
), check = FALSE, iterations = 1
)
#> Warning: Some expressions had a GC in every iteration; so filtering is
#> disabled.
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch> <bch:> <dbl> <bch:byt> <dbl>
#> 1 "et <- calc_earthtide(utc = tms, do… 989ms 989ms 1.01 108.2MB 7.08
#> 2 "et_catalog <- calc_earthtide(utc =… 420ms 420ms 2.38 60.9MB 4.76
Increasing the cutoff will decrease the number of waves and thus the speed increases. Results will not be the same.
tms <- as.POSIXct("1990-01-01", tz = "UTC") + 0:(1800)
wave_groups <- data.frame(start = 0, end = 8)
bench::mark(
et <- calc_earthtide(
utc = tms,
do_predict = TRUE,
method = c("tidal_potential", "lod_tide", "pole_tide"),
latitude = 52.3868,
longitude = 9.7144,
elevation = 110,
gravity = 9.8127,
cutoff = 1.0e-10,
catalog = "ksm04",
wave_groups = wave_groups
),
et_cutoff <- calc_earthtide(
utc = tms,
do_predict = TRUE,
method = c("tidal_potential", "lod_tide", "pole_tide"),
latitude = 52.3868,
longitude = 9.7144,
elevation = 110,
gravity = 9.8127,
cutoff = 1.0e-5,
catalog = "ksm04",
wave_groups = wave_groups
), check = FALSE, iterations = 1
)
#> Warning: Some expressions had a GC in every iteration; so filtering is
#> disabled.
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:t> <bch:t> <dbl> <bch:byt> <dbl>
#> 1 "et <- calc_earthtide(utc = tms,… 1.76s 1.76s 0.567 108.7MB 3.40
#> 2 "et_cutoff <- calc_earthtide(utc… 82.83ms 82.83ms 12.1 17.4MB 12.1
Increasing the parameter leads to an approximation that may speed up computation. Results will not be exactly the same but can be very close as in the following example. The default is that parameters are updated for every time-step.
tms <- as.POSIXct("1990-01-01", tz = "UTC") + 0:(900)
wave_groups <- data.frame(start = 0, end = 8)
bench::mark(
et <- calc_earthtide(
utc = tms,
do_predict = TRUE,
method = c("tidal_potential", "lod_tide", "pole_tide"),
latitude = 52.3868,
longitude = 9.7144,
elevation = 110,
gravity = 9.8127,
cutoff = 1.0e-10,
catalog = "ksm04",
wave_groups = wave_groups
),
et_astro <- calc_earthtide(
utc = tms,
do_predict = TRUE,
method = c("tidal_potential", "lod_tide", "pole_tide"),
latitude = 52.3868,
longitude = 9.7144,
elevation = 110,
gravity = 9.8127,
cutoff = 1.0e-10,
catalog = "ksm04",
wave_groups = wave_groups,
astro_update = 30L
), iterations = 1
)
#> Warning: Some expressions had a GC in every iteration; so filtering is
#> disabled.
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 "et <- calc_earthtide(utc = tm… 1.01s 1.01s 0.989 108MB 7.91
#> 2 "et_astro <- calc_earthtide(ut… 333.06ms 333.06ms 3.00 108MB 21.0
Adjust the number of threads used for parallel computation. This should result in equivalent values.
tms <- as.POSIXct("1990-01-01", tz = "UTC") + 0:(900)
wave_groups <- data.frame(start = 0, end = 8)
bench::mark(
et <- calc_earthtide(
utc = tms,
do_predict = TRUE,
method = c("tidal_potential", "lod_tide", "pole_tide"),
latitude = 52.3868,
longitude = 9.7144,
elevation = 110,
gravity = 9.8127,
cutoff = 1.0e-10,
catalog = "ksm04",
wave_groups = wave_groups
),
et_threads <- calc_earthtide(
utc = tms,
do_predict = TRUE,
method = c("tidal_potential", "lod_tide", "pole_tide"),
latitude = 52.3868,
longitude = 9.7144,
elevation = 110,
gravity = 9.8127,
cutoff = 1.0e-10,
catalog = "ksm04",
wave_groups = wave_groups,
n_thread = 10L
), iterations = 1
)
#> Warning: Some expressions had a GC in every iteration; so filtering is
#> disabled.
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch> <bch:> <dbl> <bch:byt> <dbl>
#> 1 "et <- calc_earthtide(utc = tms, do… 992ms 992ms 1.01 108MB 6.05
#> 2 "et_threads <- calc_earthtide(utc =… 297ms 297ms 3.37 108MB 23.6
For one second output you can predict every minute and
interpolate.
Interpolation is done via which achieves good accuracy with larger
approximations. The number of samples skipped may need to be adjusted
depending on the size of your time step. Results will not be the exactly
the same but can be very close as in the following example.
tms <- as.POSIXct("1990-01-01", tz = "UTC") + 0:(900)
tms_interp <- as.POSIXct("1990-01-01", tz = "UTC") + seq(0, 900, 180)
wave_groups <- data.frame(start = 0, end = 8)
bench::mark(
et <- calc_earthtide(
utc = tms,
do_predict = TRUE,
method = c("tidal_potential", "lod_tide", "pole_tide"),
latitude = 52.3868,
longitude = 9.7144,
elevation = 110,
gravity = 9.8127,
cutoff = 1.0e-10,
catalog = "ksm04",
wave_groups = wave_groups
),
et_interp <- calc_earthtide(
utc = tms_interp,
do_predict = TRUE,
method = c("tidal_potential", "lod_tide", "pole_tide"),
latitude = 52.3868,
longitude = 9.7144,
elevation = 110,
gravity = 9.8127,
cutoff = 1.0e-10,
catalog = "ksm04",
wave_groups = wave_groups,
utc_interp = tms
), iterations = 1
)
#> Warning: Some expressions had a GC in every iteration; so filtering is
#> disabled.
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch> <bch:> <dbl> <bch:byt> <dbl>
#> 1 "et <- calc_earthtide(utc = tms, do… 984ms 984ms 1.02 108MB 8.13
#> 2 "et_interp <- calc_earthtide(utc = … 224ms 224ms 4.47 108MB 31.3
We will use a larger dataset to compare approximation methods. In general, interpolation will give the best speed-up to accuracy if your time-steps are small (seconds).
tms <- as.POSIXct("1990-01-01", tz = "UTC") + 0:(86400)
tms_interp <- as.POSIXct("1990-01-01", tz = "UTC") + seq(0, 86400, 180)
wave_groups <- data.frame(start = 0, end = 8)
bench::mark(
et_astro_threads <- calc_earthtide(
utc = tms,
do_predict = TRUE,
method = c("tidal_potential", "lod_tide", "pole_tide"),
latitude = 52.3868,
longitude = 9.7144,
elevation = 110,
gravity = 9.8127,
cutoff = 1.0e-10,
catalog = "ksm04",
wave_groups = wave_groups,
astro_update = 60L,
n_thread = 10L
),
et_interp_threads <- calc_earthtide(
utc = tms_interp,
do_predict = TRUE,
method = c("tidal_potential", "lod_tide", "pole_tide"),
latitude = 52.3868,
longitude = 9.7144,
elevation = 110,
gravity = 9.8127,
cutoff = 1.0e-10,
catalog = "ksm04",
wave_groups = wave_groups,
utc_interp = tms,
n_thread = 10L
), iterations = 1
)
#> Warning: Some expressions had a GC in every iteration; so filtering is
#> disabled.
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 "et_astro_threads <- calc_eart… 1.84s 1.84s 0.544 153MB 4.35
#> 2 "et_interp_threads <- calc_ear… 277.44ms 277.44ms 3.60 112MB 25.2