
Package ‘cvwrapr’
October 12, 2022

Type Package

Title Tools for Cross Validation

Version 1.0

Description Tools for performing cross-validation (CV). The main function is a
general purpose wrapper that performs k-fold CV for any tuning parameter in
any supervised learning method. The package also has a function that
computes the loss incurred by a set of predictions for a variety of loss
functions and model families.

License GPL (>= 3)

Encoding UTF-8

RoxygenNote 7.1.1

Suggests doParallel, gbm, glmnet, knitr, Matrix, parallel, pls,
rmarkdown, testthat

Imports survival, foreach

VignetteBuilder knitr

NeedsCompilation no

Author Kenneth Tay [aut, cre]

Maintainer Kenneth Tay <kjytay@gmail.com>

Repository CRAN

Date/Publication 2021-06-11 10:10:02 UTC

R topics documented:
availableTypeMeasures . 2
buildPredMat . 2
checkValidTypeMeasure . 4
computeError . 4
computeRawError . 6
computeStats . 7
coxnet.deviance . 8
getCindex . 9

1

2 buildPredMat

getOptLambda . 9
getTypeMeasureName . 10
kfoldcv . 10
plot.cvobj . 13
print.cvobj . 14

Index 15

availableTypeMeasures Display the names of the measures used in CV for different families

Description

Produces a list of names of measures that can be used in CV for different families. Note, however,
that the package does not check if the measure the user specifies is appropriate for the family.

Usage

availableTypeMeasures(
family = c("all", "gaussian", "binomial", "poisson", "multinomial", "cox",
"mgaussian", "GLM")

)

Arguments

family If a family is supplied, a list of the names of measures available for that family
are produced. Default is "all", in which case the names of measures for all
families are produced.

Value

If ‘family = "all"‘, a list of names of measures that can be used in CV for each family; otherwise, a
vector of names of measures that can be used for the family passed as the parameter.

buildPredMat Build a prediction matrix from CV model fits

Description

Build a matrix of predictions from CV model fits.

buildPredMat 3

Usage

buildPredMat(
cvfitlist,
y,
lambda,
family,
foldid,
predict_fun,
predict_params,
predict_row_params = c(),
type.measure = NULL,
weights = NULL,
grouped = NULL

)

Arguments

cvfitlist A list of length ‘nfolds‘, with each element being the model fit for each fold.

y Response. It is only used to determine what dimensions the prediction array
needs to have.

lambda Lambda values for which we want predictions.

family Model family; one of "gaussian", "binomial", "poisson", "cox", "multinomial",
"mgaussian", or a class "family" object.

foldid Vector of values identifying which fold each observation is in.

predict_fun The prediction function; see ‘kfoldcv()‘ documentation for details.

predict_params Any other parameters that should be passed tp ‘predict_fun‘ to get predictions
(other than ‘object‘ and ‘newx‘); see ‘kfoldcv()‘ documentation for details.

predict_row_params

A vector which is a subset of ‘names(predict_params)‘, indicating which param-
eters have to be subsetted in the CV loop (other than ‘newx‘); see ‘kfoldcv()‘
documentation for details.

type.measure Loss function to use for cross-validation. Only required for ‘family = "cox"‘.

weights Observation weights. Only required for ‘family = "cox"‘.

grouped Experimental argument; see ‘kfoldcv()‘ documentation for details. Only re-
quired for ‘family = "cox"‘.

Value

A matrix of predictions.

4 computeError

checkValidTypeMeasure Check if loss function is valid for a given family

Description

Also throws error if family is invalid.

Usage

checkValidTypeMeasure(type.measure, family)

Arguments

type.measure Loss function to use for cross-validation.

family Model family.

Value

No return value; called for side effects. (If the function returns instead of throwing an error, it means
the loss function is valid for that family.)

computeError Compute CV statistics from a prediction matrix

Description

Compute CV statistics from a matrix of predictions.

Usage

computeError(
predmat,
y,
lambda,
foldid,
type.measure,
family,
weights = rep(1, dim(predmat)[1]),
grouped = TRUE

)

computeError 5

Arguments

predmat Array of predictions. If ‘y‘ is univariate, this has dimensions ‘c(nobs, nlambda)‘.
If ‘y‘ is multivariate with ‘nc‘ levels/columns (e.g. for ‘family = "multionmial"‘
or ‘family = "mgaussian"‘), this has dimensions ‘c(nobs, nc, nlambda)‘. Note
that these should be on the same scale as ‘y‘ (unlike in the glmnet package where
it is the linear predictor).

y Response variable. Either a vector or a matrix, depending on the type of model.

lambda Lambda values associated with the errors in ‘predmat‘.

foldid Vector of values identifying which fold each observation is in.

type.measure Loss function to use for cross-validation. See ‘availableTypeMeasures()‘ for
possible values for ‘type.measure‘. Note that the package does not check if the
user-specified measure is appropriate for the family.

family Model family; used to determine the correct loss function.

weights Observation weights.

grouped This is an experimental argument, with default ‘TRUE‘, and can be ignored
by most users. For all models except ‘family = "cox"‘, this refers to comput-
ing ‘nfolds‘ separate statistics, and then using their mean and estimated stan-
dard error to describe the CV curve. If ‘FALSE‘, an error matrix is built up
at the observation level from the predictions from the ‘nfolds‘ fits, and then
summarized (does not apply to ‘type.measure="auc"‘). For the "cox" family,
‘grouped=TRUE‘ obtains the CV partial likelihood for the Kth fold by subtrac-
tion; by subtracting the log partial likelihood evaluated on the full dataset from
that evaluated on the on the (K-1)/K dataset. This makes more efficient use of
risk sets. With ‘grouped=FALSE‘ the log partial likelihood is computed only on
the Kth fold.

Details

Note that for the setting where ‘family = "cox"‘ and ‘type.measure = "deviance"‘ and ‘grouped
= TRUE‘, ‘predmat‘ needs to have a ‘cvraw‘ attribute as computed by ‘buildPredMat()‘. This is
because the usual matrix of pre-validated fits does not contain all the information needed to compute
the model deviance for this setting.

Value

An object of class "cvobj".

lambda The values of lambda used in the fits.

cvm The mean cross-validated error: a vector of length ‘length(lambda)‘.

cvsd Estimate of standard error of ‘cvm‘.

cvup Upper curve = ‘cvm + cvsd‘.

cvlo Lower curve = ‘cvm - cvsd‘.

lambda.min Value of ‘lambda‘ that gives minimum ‘cvm‘.

lambda.1se Largest value of ‘lambda‘ such that the error is within 1 standard error of the
minimum.

6 computeRawError

index A one-column matrix with the indices of ‘lambda.min‘ and ‘lambda.1se‘ in the
sequence of coefficients, fits etc.

name A text string indicating the loss function used (for plotting purposes).

Examples

set.seed(1)
x <- matrix(rnorm(500), nrow = 50)
y <- rnorm(50)
cv_fit <- kfoldcv(x, y, train_fun = glmnet::glmnet,

predict_fun = predict, keep = TRUE)
mae_err <- computeError(cv_fit$fit.preval, y, cv_fit$lambda,

cv_fit$foldid, type.measure = "mae",
family = "gaussian")

computeRawError Compute the nobs by nlambda matrix of errors

Description

Computes the nobs by nlambda matrix of errors corresponding to the error measure provided. Only
works for "gaussian" and "poisson" families right now.

Usage

computeRawError(predmat, y, type.measure, family, weights, foldid, grouped)

Arguments

predmat Array of predictions. If ‘y‘ is univariate, this has dimensions ‘c(nobs, nlambda)‘.
If ‘y‘ is multivariate with ‘nc‘ levels/columns (e.g. for ‘family = "multionmial"‘
or ‘family = "mgaussian"‘), this has dimensions ‘c(nobs, nc, nlambda)‘. Note
that these should be on the same scale as ‘y‘ (unlike in the glmnet package where
it is the linear predictor).

y Response variable.

type.measure Loss function to use for cross-validation. See ‘availableTypeMeasures()‘ for
possible values for ‘type.measure‘. Note that the package does not check if the
user-specified measure is appropriate for the family.

family Model family; used to determine the correct loss function.

weights Observation weights.

foldid Vector of values identifying which fold each observation is in.

grouped Experimental argument; see ‘kfoldcv()‘ documentation for details.

computeStats 7

Value

A list with the following elements:

cvraw An nobs by nlambda matrix of raw error values.

weights Observation weights.

N A vector of length nlambda representing the number of non-NA predictions as-
sociated with each lambda value.

type.measure Loss function used for CV.

computeStats Compute CV statistics

Description

Use the returned output from ‘computeRawError()‘ to compute CV statistics.

Usage

computeStats(cvstuff, foldid, lambda, grouped)

Arguments

cvstuff Output from a call to ‘computeRawError()‘.

foldid Vector of values identifying which fold each observation is in.

lambda Lambda values associated with the errors in ‘cvstuff‘.

grouped Experimental argument; see ‘kfoldcv()‘ documentation for details.

Value

A list with the following elements:

lambda The values of lambda used in the fits.

cvm The mean cross-validated error: a vector of length ‘length(lambda)‘.

cvsd Estimate of standard error of ‘cvm‘.

cvup Upper curve = ‘cvm + cvsd‘.

cvlo Lower curve = ‘cvm - cvsd‘.

8 coxnet.deviance

coxnet.deviance Compute deviance for Cox model

Description

Compute the deviance (-2 log partial likelihood) for Cox model. This is a pared down version of
‘glmnet‘’s ‘coxnet.deviance‘ with one big difference: here, ‘pred‘ is on the scale of ‘y‘ (‘mu‘) while
in ‘glmnet‘, ‘pred‘ is the linear predictor (‘eta‘).

Usage

coxnet.deviance(pred = NULL, y, weights = NULL, std.weights = TRUE)

Arguments

pred Fit vector or matrix. If ‘NULL‘, it is set to all ones.

y Survival response variable, must be a Surv or stratifySurv object.

weights Observation weights (default is all equal to 1).

std.weights If TRUE (default), observation weights are standardized to sum to 1.

Details

Computes the deviance for a single set of predictions, or for a matrix of predictions. Uses the
Breslow approach to ties.

coxnet.deviance() is a wrapper: it calls the appropriate internal routine based on whether the
response is right-censored data or (start, stop] survival data.

Value

A vector of deviances, one for each column of predictions.

Examples

set.seed(1)
eta <- rnorm(10)
time <- runif(10, min = 1, max = 10)
d <- ifelse(rnorm(10) > 0, 1, 0)
y <- survival::Surv(time, d)
coxnet.deviance(pred = exp(eta), y = y)

if pred not provided, it is set to ones vector
coxnet.deviance(y = y)

example with (start, stop] data
y2 <- survival::Surv(time, time + runif(10), d)
coxnet.deviance(pred = exp(eta), y = y2)

getCindex 9

getCindex Compute C index for a Cox model

Description

Computes Harrel’s C (concordance) index for predictions, taking censoring into account.

Usage

getCindex(pred, y, weights = rep(1, nrow(y)))

Arguments

pred A vector of predictions.

y Survival response variable, must be a Surv or stratifySurv object.

weights Observation weights (default is all equal to 1).

Value

The C index for the predictions (a single numeric value).

Examples

set.seed(1)
pred <- rep(1:2, length.out = 10)
y <- survival::Surv(exp(rnorm(10)), rbinom(10, 1, 0.5))
getCindex(pred, y)

getOptLambda Get lambda.min and lambda.1se values

Description

Get lambda.min and lambda.1se values and indices.

Usage

getOptLambda(lambda, cvm, cvsd, type.measure)

Arguments

lambda The values of lambda used in the fits.

cvm The mean cross-validated error: a vector of length ‘length(lambda)‘.

cvsd Estimate of standard error of ‘cvm‘.

type.measure Loss function used for CV.

10 kfoldcv

Value

A list with the following elements:

lambda.min Value of ‘lambda‘ that gives minimum ‘cvm‘.

lambda.1se Largest value of ‘lambda‘ such that the error is within 1 standard error of the
minimum.

index A one-column matrix with the indices of ‘lambda.min‘ and ‘lambda.1se‘ in the
sequence of coefficients, fits etc.

getTypeMeasureName Get full name of loss function

Description

Get the full name of the loss function from ‘type.measure‘ and ‘family‘.

Usage

getTypeMeasureName(type.measure, family)

Arguments

type.measure Loss function to use for cross-validation.

family Model family.

Value

A named vector of length 1. The vector’s value is the full name of the loss function, while the name
of that element is the short name of the loss function.

kfoldcv K-fold cross-validation wrapper

Description

Does k-fold cross-validation for a given model training function and prediction function. The hy-
perparameter to be cross-validated is assumed to be ‘lambda‘. The training and prediction functions
are assumed to be able to fit/predict for multiple ‘lambda‘ values at the same time.

kfoldcv 11

Usage

kfoldcv(
x,
y,
train_fun,
predict_fun,
type.measure = "deviance",
family = "gaussian",
lambda = NULL,
train_params = list(),
predict_params = list(),
train_row_params = c(),
predict_row_params = c(),
nfolds = 10,
foldid = NULL,
parallel = FALSE,
grouped = TRUE,
keep = FALSE,
save_cvfits = FALSE

)

Arguments

x Input matrix of dimension ‘nobs‘ by ‘nvars‘; each row is an observation vector.

y Response variable. Either a vector or a matrix, depending on the type of model.

train_fun The model training function. This needs to take in an input matrix as ‘x‘ and a
response variable as ‘y‘.

predict_fun The prediction function. This needs to take in the output of ‘train_fun‘ as ‘ob-
ject‘ and new input matrix as ‘newx‘.

type.measure Loss function to use for cross-validation. See ‘availableTypeMeasures()‘ for
possible values for ‘type.measure‘. Note that the package does not check if the
user-specified measure is appropriate for the family.

family Model family; used to determine the correct loss function. One of "gaussian",
"binomial", "poisson", "cox", "multinomial", "mgaussian", or a class "family"
object.

lambda Option user-supplied sequence representing the values of the hyperparameter to
be cross-validated.

train_params Any parameters that should be passed to ‘train_fun‘ to fit the model (other than
‘x‘ and ‘y‘). Default is the empty list.

predict_params Any other parameters that should be passed tp ‘predict_fun‘ to get predictions
(other than ‘object‘ and ‘newx‘). Default is the empty list.

train_row_params

A vector which is a subset of ‘names(train_params)‘, indicating which param-
eters have to be subsetted in the CV loop (other than ‘x‘ and ‘y‘. Default is
‘c()‘. Other parameters which should probably be included here are "weights"
(for observation weights) and "offset".

12 kfoldcv

predict_row_params

A vector which is a subset of ‘names(predict_params)‘, indicating which param-
eters have to be subsetted in the CV loop (other than ‘newx‘). Default is ‘c()‘.
Other parameters which should probably be included here are "newoffset".

nfolds Number of folds (default is 10). Smallest allowable value is 3.

foldid An optional vector of values between ‘1‘ and ‘nfolds‘ (inclusive) identifying
which fold each observation is in. If supplied, ‘nfolds‘ can be missing.

parallel If ‘TRUE‘, use parallel ‘foreach‘ to fit each fold. Must register parallel backend
before hand. Default is ‘FALSE‘.

grouped This is an experimental argument, with default ‘TRUE‘, and can be ignored
by most users. For all models except ‘family = "cox"‘, this refers to comput-
ing ‘nfolds‘ separate statistics, and then using their mean and estimated stan-
dard error to describe the CV curve. If ‘FALSE‘, an error matrix is built up
at the observation level from the predictions from the ‘nfolds‘ fits, and then
summarized (does not apply to ‘type.measure="auc"‘). For the "cox" family,
‘grouped=TRUE‘ obtains the CV partial likelihood for the Kth fold by subtrac-
tion; by subtracting the log partial likelihood evaluated on the full dataset from
that evaluated on the on the (K-1)/K dataset. This makes more efficient use of
risk sets. With ‘grouped=FALSE‘ the log partial likelihood is computed only on
the Kth fold.

keep If ‘keep = TRUE‘, a prevalidated array is returned containing fitted values for
each observation and each value of lambda. This means these fits are computed
with this observation and the rest of its fold omitted. The ‘foldid‘ vector is also
returned. Default is ‘keep = FALSE‘.

save_cvfits If ‘TRUE‘, the model fits for each CV fold are returned as a list. Default is
‘FALSE‘.

Details

The model training function is assumed to take in the data matrix as ‘x‘, the response as ‘y‘, and
the hyperparameter to be cross-validated as ‘lambda‘. It is assumed that in its returned output, the
hyperparameter values actually used are stored as ‘lambda‘. The prediction function is assumed to
take in the new data matrix as ‘newx‘, and a ‘lambda‘ sequence as ‘s‘.

Value

An object of class "cvobj".

lambda The values of lambda used in the fits.

cvm The mean cross-validated error: a vector of length ‘length(lambda)‘.

cvsd Estimate of standard error of ‘cvm‘.

cvup Upper curve = ‘cvm + cvsd‘.

cvlo Lower curve = ‘cvm - cvsd‘.

lambda.min Value of ‘lambda‘ that gives minimum ‘cvm‘.

lambda.1se Largest value of ‘lambda‘ such that the error is within 1 standard error of the
minimum.

plot.cvobj 13

index A one-column matrix with the indices of ‘lambda.min‘ and ‘lambda.1se‘ in the
sequence of coefficients, fits etc.

name A text string indicating the loss function used (for plotting purposes).

fit.preval If ‘keep=TRUE‘, this is the array of prevalidated fits. Some entries can be ‘NA‘,
if that and subsequent values of ‘lambda‘ are not reached for that fold.

foldid If ‘keep=TRUE‘, the fold assignments used.

overallfit Model fit for the entire dataset.

cvfitlist If ‘save_cvfits=TRUE‘, a list containing the model fits for each CV fold.

Examples

set.seed(1)
x <- matrix(rnorm(500), nrow = 50)
y <- rnorm(50)
cv_fit <- kfoldcv(x, y, train_fun = glmnet::glmnet,

predict_fun = predict)

plot.cvobj Plot the cross-validation curve from a class ‘cvobj‘ object

Description

Plots the cross-validation curve, and upper and lower standard deviation curves, as a function of the
‘lambda‘ values used.

Usage

S3 method for class 'cvobj'
plot(x, sign.lambda = 1, log.lambda = TRUE, ...)

Arguments

x A ‘"cvobj"‘ object.

sign.lambda Either plot against ‘log(lambda)‘ (default) or its negative if ‘sign.lambda = -1‘.

log.lambda If ‘TRUE‘ (default), x-axis is ‘log(lambda)‘ instead of ‘lambda‘ (‘log.lambda =
FALSE‘).

... Other graphical parameters to plot.

Value

A plot is produced, and nothing is returned.

14 print.cvobj

print.cvobj Print a class ‘cvobj‘ object

Description

Print a summary of results of cross-validation for a class ‘cvobj‘ object.

Usage

S3 method for class 'cvobj'
print(x, digits = max(3, getOption("digits") - 3), ...)

Arguments

x A ‘"cvobj"‘ object.

digits Significant digits in printout.

... Other print arguments.

Value

A summary is printed, and nothing is returned.

Index

availableTypeMeasures, 2

buildPredMat, 2

checkValidTypeMeasure, 4
computeError, 4
computeRawError, 6
computeStats, 7
coxnet.deviance, 8

getCindex, 9
getOptLambda, 9
getTypeMeasureName, 10

kfoldcv, 10

plot.cvobj, 13
print.cvobj, 14

15

	availableTypeMeasures
	buildPredMat
	checkValidTypeMeasure
	computeError
	computeRawError
	computeStats
	coxnet.deviance
	getCindex
	getOptLambda
	getTypeMeasureName
	kfoldcv
	plot.cvobj
	print.cvobj
	Index

