
Package ‘credentials’
September 6, 2023

Type Package

Title Tools for Managing SSH and Git Credentials

Version 2.0.1

Description Setup and retrieve HTTPS and SSH credentials for use with 'git' and
other services. For HTTPS remotes the package interfaces the 'git-credential'
utility which 'git' uses to store HTTP usernames and passwords. For SSH
remotes we provide convenient functions to find or generate appropriate SSH
keys. The package both helps the user to setup a local git installation, and
also provides a back-end for git/ssh client libraries to authenticate with
existing user credentials.

License MIT + file LICENSE

SystemRequirements git (optional)

Encoding UTF-8

Imports openssl (>= 1.3), sys (>= 2.1), curl, jsonlite, askpass

Suggests testthat, knitr, rmarkdown

RoxygenNote 7.2.1

VignetteBuilder knitr

Language en-US

URL https://docs.ropensci.org/credentials/

https://r-lib.r-universe.dev/credentials

BugReports https://github.com/r-lib/credentials/issues

NeedsCompilation no

Author Jeroen Ooms [aut, cre] (<https://orcid.org/0000-0002-4035-0289>)

Maintainer Jeroen Ooms <jeroen@berkeley.edu>

Repository CRAN

Date/Publication 2023-09-06 21:32:31 UTC

1

https://docs.ropensci.org/credentials/
https://r-lib.r-universe.dev/credentials
https://github.com/r-lib/credentials/issues
https://orcid.org/0000-0002-4035-0289

2 credential_api

R topics documented:
credential_api . 2
credential_helper . 3
http_credentials . 3
set_github_pat . 4
ssh_credentials . 5

Index 7

credential_api Retrieve and store git HTTPS credentials

Description

Low-level wrappers for the git-credential command line tool. Try the user-friendly git_credential_ask
and git_credential_update functions first.

Usage

credential_fill(cred, verbose = TRUE)

credential_approve(cred, verbose = TRUE)

credential_reject(cred, verbose = TRUE)

Arguments

cred named list with at least fields protocol and host and optionally also path,
username ,password.

verbose emit some useful output about what is happening

Details

The credential_fill function looks up credentials for a given host, and if none exists it will attempt
to prompt the user for new credentials. Upon success it returns a list with the same protocol and
host fields as the cred input, and additional username and password fields.

After you have tried to authenticate the provided credentials, you can report back if the credentials
were valid or not. Call credential_approve and credential_reject with the cred that was returned by
credential_fill in order to validate or invalidate a credential from the store.

Because git credential interacts with the system password manager, the appearance of the prompts
vary by OS and R frontend. Note that credential_fill should only be used interactively, because
it may require the user to enter credentials or unlock the system keychain. On the other hand
credential_approve and credential_reject are non-interactive and could be used to save or delete
credentials in a scripted program. However note that some credential helpers (e.g. on Windows)
have additional security restrictions that limit use of credential_approve and credential_reject to
credentials that were actually entered by the user via credential_fill. Here it is not possible at all to
update the credential store without user interaction.

https://git-scm.com/docs/git-credential

credential_helper 3

Examples

Insert example cred
example <- list(protocol = "https", host = "example.org",

username = "test", password = "secret")
credential_approve(example)

Retrieve it from the store
cred <- credential_fill(list(protocol = "https", host = "example.org", path = "/foo"))
print(cred)

Delete it
credential_reject(cred)

credential_helper Credential Helpers

Description

Git supports several back-end stores for HTTPS credentials called helpers. Default helpers include
cache and store, see the git-credentials manual page for details.

Usage

credential_helper_list()

credential_helper_get(global = FALSE)

credential_helper_set(helper, global = FALSE)

Arguments

global if FALSE the setting is done per git repository, if TRUE it is in your global user
git configuration.

helper string with one of the supported helpers from credential_helper_list

http_credentials Load and store git HTTPS credentials

Description

This requires you have the git command line program installed.The git_credential_ask function
looks up a suitable username/password from the git-credential store. If none are available it
will prompt the user for credentials which may be saved the store. On subsequent calls for the same
URL, the function will then return the stored credentials without prompting the user.

https://git-scm.com/docs/gitcredentials
https://git-scm.com/docs/gitcredentials

4 set_github_pat

Usage

git_credential_ask(url = "https://github.com", save = TRUE, verbose = TRUE)

git_credential_update(url = "https://github.com", verbose = TRUE)

git_credential_forget(url = "https://github.com", verbose = TRUE)

Arguments

url target url, possibly including username or path

save in case the user is prompted for credentials, attempt to remember them.

verbose print errors from git credential to stdout

Details

The appearance and security policy of the credential store depends on your version of git, your
operating system, your R frontend and which credential_helper is used. On Windows and MacOS
the credentials are stored in the system password manager by default.

It should be assumed that reading credentials always involves user interaction. The user may be
asked to unlock the system keychain or enter new credentials. In reality, user interaction is usually
only required on the first authentication attempt, but the security policy of most credential helpers
prevent you from programmatically testing if the credentials are already unlocked.

See Also

Other credentials: ssh_credentials

set_github_pat Set your Github Personal Access Token

Description

Populates the GITHUB_PAT environment variable using the git_credential manager, which git itself
uses for storing passwords. The credential manager returns stored credentials if available, and
securely prompt the user for credentials when needed.

Usage

set_github_pat(force_new = FALSE, validate = interactive(), verbose = validate)

Arguments

force_new forget existing pat, always ask for new one.

validate checks with the github API that this token works. Defaults to TRUE only in an
interactive R session (not when running e.g. CMD check).

verbose prints a message showing the credential helper and PAT owner.

ssh_credentials 5

Details

Packages that require a GITHUB_PAT can call this function to automatically set the GITHUB_PAT
when needed. Users may call this function in their .Rprofile script to automatically set GITHUB_PAT
for each R session without hardcoding any tokens on disk in plain-text.

Value

Returns TRUE if a valid GITHUB_PAT was set, and FALSE if not.

ssh_credentials Managing Your SSH Key

Description

Utility functions to find or generate your SSH key for use with git remotes or other ssh servers.

Usage

ssh_key_info(host = NULL, auto_keygen = NA)

ssh_keygen(file = ssh_home("id_ecdsa"))

ssh_setup_github()

ssh_home(file = NULL)

ssh_agent_add(file = NULL)

ssh_update_passphrase(file = ssh_home("id_rsa"))

ssh_read_key(file = ssh_home("id_rsa"), password = askpass)

Arguments

host target host (only matters if you have configured specific keys per host)

auto_keygen if TRUE automatically generates a key if none exists yet. Default NA is to prompt
the user what to.

file destination path of the private key. For the public key, .pub is appended to the
filename.

password a passphrase or callback function

6 ssh_credentials

Details

Use ssh_key_info() to find the appropriate key file on your system to connect with a given target
host. In most cases this will simply be ssh_home('id_rsa') unless you have configured ssh to use
specific keys for specific hosts.

To use your key to authenticate with GitHub, copy the pubkey from ssh_key_info() to your
profile: https://github.com/settings/ssh/new.

If this is the first time you use ssh, ssh_keygen can help generate a key and save it in the default
location. This will also automatically opens the above Github page in your browser where you can
add the key to your profile.

ssh_read_key reads a private key and caches the result (in memory) for the duration of the R
session. This prevents having to enter the key passphrase many times. Only use this if ssh-agent
is not available (i.e. Windows)

See Also

Other credentials: http_credentials

https://github.com/settings/ssh/new

Index

∗ credentials
http_credentials, 3
ssh_credentials, 5

.Rprofile, 5

credential_api, 2
credential_approve, 2
credential_approve (credential_api), 2
credential_fill, 2
credential_fill (credential_api), 2
credential_helper, 3, 4
credential_helper_get

(credential_helper), 3
credential_helper_list, 3
credential_helper_list

(credential_helper), 3
credential_helper_set

(credential_helper), 3
credential_reject, 2
credential_reject (credential_api), 2
credentials (http_credentials), 3

git_credential, 4
git_credential_ask, 2, 3
git_credential_ask (http_credentials), 3
git_credential_forget

(http_credentials), 3
git_credential_update, 2
git_credential_update

(http_credentials), 3

http_credentials, 3, 6

set_github_pat, 4
ssh_agent_add (ssh_credentials), 5
ssh_credentials, 4, 5
ssh_home (ssh_credentials), 5
ssh_key_info (ssh_credentials), 5
ssh_key_info(), 6
ssh_keygen, 6

ssh_keygen (ssh_credentials), 5
ssh_read_key (ssh_credentials), 5
ssh_setup_github (ssh_credentials), 5
ssh_update_passphrase

(ssh_credentials), 5

7

	credential_api
	credential_helper
	http_credentials
	set_github_pat
	ssh_credentials
	Index

