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auc_score Area Under the Receiver Operating Characteristic

Description

Computes the AUC score of binary model predictions.

Usage

auc_score(observed = NULL, predicted = NULL)
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Arguments

observed (required, integer) Numeric vector with observations. Valid values are 1 and 0.
Must have the same length as predicted. Default: NULL

predicted (required, numeric) Numeric vector in the range 0-1 with binary model predic-
tions. Must have the same length as observed.

Value

AUC value.

Examples

out <- auc_score(
observed = c(0, 0, 1, 1),
predicted = c(0.1, 0.6, 0.4, 0.8)
)

collinear Automated multicollinearity management

Description

Automates multicollinearity management in data frames with numeric and categorical predictors by
combining four methods:

• Pairwise correlation filtering: Pearson, Spearman, and Cramer’s V statistics to identify pairs
of highly correlated predictors.

• Variance Inflation Factor (VIF) filtering: identifies predictors that are linear combinations of
other predictors.

• Target encoding: to transform categorical predictors to numeric using a numeric variable as
reference.

• Flexible prioritization method: to help the user select a meaningful set of non-correlated pre-
dictors.

The pairwise correlation filtering is implemented in cor_select(). This function applies a re-
cursive forward selection algorithm to keep predictors with a Pearson correlation with all other
selected predictors lower than the value of the argument max_cor. When two predictors are cor-
related above this threshold, the one with the lowest preference order is removed. At this stage, if
preference_order is NULL, predictors are ranked from lower to higher sum of absolute pairwise
correlation with the other predictors.

The VIF-based filtering is implemented in vif_select(), which removes variables and recomputes
VIF scores iteratively, until all variables in the resulting selection have a VIF below the value of
the argument max_vif. The VIF for a given variable y is computed as 1/(1-R2), where R2 is the
R-squared of a multiple regression model fitted using y as response against the other predictors. The
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equation can be interpreted as "the rate of perfect model’s R-squared to the unexplained variance
of this model". The possible range of VIF values is (1, Inf], but the recommended thresholds for
maximum VIF (argument max_vif) may vary, being 2.5, 5, and 10 the values most commonly
mentioned in the relevant bibliography. At this stage, if preference_order is NULL, predictors
are ranked from lower to higher Variance Inflation Factor.

When a ’response’ argument is provided, categorical predictors are converted to numeric via tar-
get encoding with the function target_encoding_lab(), and all predictors are then handled as
numeric during the multicollinearity filtering. When the ’response’ argument is not provided, cat-
egorical variables are ignored. However, in such case, the function cor_select() can handle
categorical variables, albeit with a lower computation speed.

The argument preference_order allows prioritizing variables that might be interesting or even
required for a given analysis. If preference_order is not provided, then the predictors are ranked
from lower to higher sum of their absolute correlations with the other predictors in cor_select(),
and by their VIF in vif_select(), and removed one by one until the maximum R-squared of the
correlation matrix is lower than max_cor and the maximum VIF is below max_vif.

Please note that near-zero variance columns are identified by identify_zero_variance_predictors(),
and ignored by collinear(), cor_select(), and vif_select().

Usage

collinear(
df = NULL,
response = NULL,
predictors = NULL,
preference_order = NULL,
cor_method = "pearson",
max_cor = 0.75,
max_vif = 5,
encoding_method = "mean"

)

Arguments

df (required; data frame) A data frame with numeric and/or character predictors
predictors, and optionally, a response variable. Default: NULL.

response (recommended, character string) Name of a numeric response variable. Charac-
ter response variables are ignored. Please, see ’Details’ to better understand how
providing this argument or not leads to different results when there are character
variables in ’predictors’. Default: NULL.

predictors (optional; character vector) character vector with predictor names in ’df’. If
omitted, all columns of ’df’ are used as predictors. Default: NULL

preference_order

(optional; character vector) vector with column names in ’predictors’ in the de-
sired preference order, or result of the function preference_order(). Allows
defining a priority order for selecting predictors, which can be particularly useful
when some predictors are more critical for the analysis than others. Predictors
not included in this argument are ranked by their Variance Inflation Factor. De-
fault: NULL.
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cor_method (optional; character string) Method used to compute pairwise correlations. Ac-
cepted methods are "pearson" (with a recommended minimum of 30 rows in
’df’) or "spearman" (with a recommended minimum of 10 rows in ’df’). De-
fault: "pearson".

max_cor (optional; numeric) Maximum correlation allowed between any pair of pre-
dictors. Higher values return larger number of predictors with higher multi-
collinearity. Default: 0.75

max_vif (optional, numeric) Numeric with recommended values between 2.5 and 10
defining the maximum VIF allowed for any given predictor in the output dataset.
Higher VIF thresholds should result in a higher number of selected variables.
Default: 5.

encoding_method

(optional; character string). Name of the target encoding method to convert char-
acter and factor predictors to numeric. One of "mean", "rank", "loo", "rnorm"
(see target_encoding_lab() for further details). Default: "mean"

Value

Character vector with the names of uncorrelated predictors.

Author(s)

Blas M. Benito

References

• David A. Belsley, D.A., Kuh, E., Welsch, R.E. (1980). Regression Diagnostics: Identifying
Influential Data and Sources of Collinearity. John Wiley & Sons. doi:10.1002/0471725153.

• Micci-Barreca, D. (2001) A Preprocessing Scheme for High-Cardinality Categorical Attributes
in Classification and Prediction Problems. SIGKDD Explor. Newsl. 3, 1, 27-32 doi:10.1145/
507533.507538

Examples

data(
vi,
vi_predictors

)

#subset to limit example run time
vi <- vi[1:1000, ]

#without response
#without preference_order
#permissive max_cor and max_vif
#only numeric variables in output
selected.predictors <- collinear(

df = vi,
predictors = vi_predictors,

https://doi.org/10.1002/0471725153
https://doi.org/10.1145/507533.507538
https://doi.org/10.1145/507533.507538
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max_cor = 0.8,
max_vif = 10
)

selected.predictors

#without response
#without preference_order
#restrictive max_cor and max_vif
#only numeric variables in output
selected.predictors <- collinear(

df = vi,
predictors = vi_predictors,
max_cor = 0.5,
max_vif = 2.5

)

selected.predictors

#with response
#without preference_order
#restrictive max_cor and max_vif
#numerics and categorical variables in output
selected.predictors <- collinear(

df = vi,
response = "vi_mean",
predictors = vi_predictors,
max_cor = 0.5,
max_vif = 2.5

)

selected.predictors

#with response
#with user-defined preference_order
#restrictive max_cor and max_vif
#numerics and categorical variables in output
selected.predictors <- collinear(

df = vi,
response = "vi_mean",
predictors = vi_predictors,
preference_order = c(

"soil_temperature_mean",
"swi_mean",
"rainfall_mean",
"evapotranspiration_mean"

),
max_cor = 0.5,
max_vif = 2.5

)

selected.predictors
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#with response
#with automated preference_order
#restrictive max_cor and max_vif
#numerics and categorical variables in output
preference.order <- preference_order(

df = vi,
response = "vi_mean",
predictors = vi_predictors,
f = f_rsquared, #cor(response, predictor)
workers = 1

)

selected.predictors <- collinear(
df = vi,
response = "vi_mean",
predictors = vi_predictors,
preference_order = preference.order,
max_cor = 0.5,
max_vif = 2.5

)

selected.predictors

cor_df Correlation data frame of numeric and character variables

Description

Returns a correlation data frame between all pairs of predictors in a training dataset. Non-numeric
predictors are transformed into numeric via target encoding, using the ’response’ variable as refer-
ence.

Usage

cor_df(
df = NULL,
response = NULL,
predictors = NULL,
cor_method = "pearson",
encoding_method = "mean"

)

Arguments

df (required; data frame) A data frame with numeric and/or character predictors,
and optionally, a response variable. Default: NULL.
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response (recommended, character string) Name of a numeric response variable. Charac-
ter response variables are ignored. Please, see ’Details’ to better understand how
providing this argument or not leads to different results when there are character
variables in ’predictors’. Default: NULL.

predictors (optional; character vector) character vector with predictor names in ’df’. If
omitted, all columns of ’df’ are used as predictors. Default:’NULL’

cor_method (optional; character string) Method used to compute pairwise correlations. Ac-
cepted methods are "pearson" (with a recommended minimum of 30 rows in
’df’) or "spearman" (with a recommended minimum of 10 rows in ’df’). De-
fault: "pearson".

encoding_method

(optional; character string). Name of the target encoding method to convert char-
acter and factor predictors to numeric. One of "mean", "rank", "loo", "rnorm"
(see target_encoding_lab() for further details). Default: "mean"

Details

This function attempts to handle correlations between pairs of variables that can be of different
types:

• numeric vs. numeric: computed with stats::cor() with the methods "pearson" or "spearman".

• numeric vs. character, two alternatives leading to different results:

– ’response’ is provided: the character variable is target-encoded as numeric using the val-
ues of the response as reference, and then its correlation with the numeric variable is
computed with stats::cor(). This option generates a response-specific result suitable for
training statistical and machine-learning models

– ’response’ is NULL (or the name of a non-numeric column): the character variable is
target-encoded as numeric using the values of the numeric predictor (instead of the re-
sponse) as reference, and then their correlation is computed with stats::cor(). This option
leads to a response-agnostic result suitable for clustering problems.

• character vs. character, two alternatives leading to different results:

– ’response’ is provided: the character variables are target-encoded as numeric using the
values of the response as reference, and then their correlation is computed with stats::cor().

– response’ is NULL (or the name of a non-numeric column): the association between
the character variables is computed using Cramer’s V. This option might be problematic,
because R-squared values and Cramer’s V, even when having the same range between 0
and 1, are not fully comparable.

Value

data frame with pairs of predictors and their correlation.

Author(s)

Blas M. Benito
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Examples

data(
vi,
vi_predictors

)

#reduce size of vi to speed-up example execution
vi <- vi[1:1000, ]
vi_predictors <- vi_predictors[1:10]

#without response
#categorical vs categorical compared with cramer_v()
#categorical vs numerical compared wit stats::cor() via target-encoding
#numerical vs numerical compared with stats::cor()
df <- cor_df(

df = vi,
predictors = vi_predictors

)

head(df)

#with response
#different solution than previous one
#because target encoding is done against the response
#rather than against the other numeric in the pair
df <- cor_df(

df = vi,
response = "vi_mean",
predictors = vi_predictors

)

head(df)

cor_matrix Correlation matrix of numeric and character variables

Description

Returns a correlation matrix between all pairs of predictors in a training dataset. Non-numeric pre-
dictors are transformed into numeric via target encoding, using the ’response’ variable as reference.

Usage

cor_matrix(
df = NULL,
response = NULL,
predictors = NULL,



10 cor_matrix

cor_method = "pearson",
encoding_method = "mean"

)

Arguments

df (required; data frame) A data frame with numeric and/or character predictors,
and optionally, a response variable. Default: NULL.

response (recommended, character string) Name of a numeric response variable. Charac-
ter response variables are ignored. Please, see ’Details’ to better understand how
providing this argument or not leads to different results when there are character
variables in ’predictors’. Default: NULL.

predictors (optional; character vector) character vector with predictor names in ’df’. If
omitted, all columns of ’df’ are used as predictors. Default:’NULL’

cor_method (optional; character string) Method used to compute pairwise correlations. Ac-
cepted methods are "pearson" (with a recommended minimum of 30 rows in
’df’) or "spearman" (with a recommended minimum of 10 rows in ’df’). De-
fault: "pearson".

encoding_method

(optional; character string). Name of the target encoding method to convert char-
acter and factor predictors to numeric. One of "mean", "rank", "loo", "rnorm"
(see target_encoding_lab() for further details). Default: "mean"

Details

This function attempts to handle correlations between pairs of variables that can be of different
types:

• numeric vs. numeric: computed with stats::cor() with the methods "pearson" or "spearman".

• numeric vs. character, two alternatives leading to different results:

– ’response’ is provided: the character variable is target-encoded as numeric using the val-
ues of the response as reference, and then its correlation with the numeric variable is
computed with stats::cor(). This option generates a response-specific result suitable for
training statistical and machine-learning models

– ’response’ is NULL (or the name of a non-numeric column): the character variable is
target-encoded as numeric using the values of the numeric predictor (instead of the re-
sponse) as reference, and then their correlation is computed with stats::cor(). This option
leads to a response-agnostic result suitable for clustering problems.

• character vs. character, two alternatives leading to different results:

– ’response’ is provided: the character variables are target-encoded as numeric using the
values of the response as reference, and then their correlation is computed with stats::cor().

– response’ is NULL (or the name of a non-numeric column): the association between
the character variables is computed using Cramer’s V. This option might be problematic,
because R-squared values and Cramer’s V, even when having the same range between 0
and 1, are not fully comparable.
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Value

correlation matrix

Author(s)

Blas M. Benito

Examples

data(
vi,
vi_predictors

)

#subset to limit example run time
vi <- vi[1:1000, ]
vi_predictors <- vi_predictors[1:5]

#convert correlation data frame to matrix
df <- cor_df(

df = vi,
predictors = vi_predictors

)

m <- cor_matrix(
df = df

)

#show first three columns and rows
m[1:5, 1:5]

#generate correlation matrix directly
m <- cor_matrix(

df = vi,
predictors = vi_predictors

)

m[1:5, 1:5]

#with response (much faster)
#different solution than previous one
#because target encoding is done against the response
#rather than against the other numeric in the pair
m <- cor_matrix(

df = vi,
response = "vi_mean",
predictors = vi_predictors

)

m[1:5, 1:5]
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cor_select Automated multicollinearity reduction via pairwise correlation

Description

Applies a recursive forward selection algorithm algorithm to select predictors with a bivariate cor-
relation with any other predictor lower than a threshold defined by the argument max_cor.

If the argument response is provided, all non-numeric variables in predictors are transformed
into numeric using target encoding (see target_encoding_lab()). Otherwise, non-numeric vari-
ables are ignored.

The argument preference_order allows defining a preference selection order to preserve (when
possible) variables that might be interesting or even required for a given analysis. If NULL, pre-
dictors are ordered from lower to higher sum of their absolute pairwise correlation with the other
predictors.

For example, if predictors is c("a", "b", "c") and preference_order is c("a", "b"), there
are two possibilities:

• If the correlation between "a" and "b" is below max_cor, both variables are selected.

• If their correlation is equal or above max_cor, then "a" is selected, no matter its correlation
with "c",

If preference_order is not provided, then the predictors are ranked by their variance inflation
factor as computed by vif_df().

Usage

cor_select(
df = NULL,
response = NULL,
predictors = NULL,
preference_order = NULL,
cor_method = "pearson",
max_cor = 0.75,
encoding_method = "mean"

)

Arguments

df (required; data frame) A data frame with numeric and/or character predictors
predictors, and optionally, a response variable. Default: NULL.

response (recommended, character string) Name of a numeric response variable. Charac-
ter response variables are ignored. Please, see ’Details’ to better understand how
providing this argument or not leads to different results when there are character
variables in ’predictors’. Default: NULL.

predictors (optional; character vector) Character vector with predictor names in ’df’. If
omitted, all columns of ’df’ are used as predictors. Default:’NULL’
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preference_order

(optional; character vector) vector with column names in ’predictors’ in the de-
sired preference order, or result of the function preference_order(). Allows
defining a priority order for selecting predictors, which can be particularly use-
ful when some predictors are more critical for the analysis than others. Default:
NULL (predictors ordered from lower to higher sum of absolute correlation with
the other predictors).

cor_method (optional; character string) Method used to compute pairwise correlations. Ac-
cepted methods are "pearson" (with a recommended minimum of 30 rows in
’df’) or "spearman" (with a recommended minimum of 10 rows in ’df’). De-
fault: "pearson".

max_cor (optional; numeric) Maximum correlation allowed between any pair of pre-
dictors. Higher values return larger number of predictors with higher multi-
collinearity. Default: 0.75

encoding_method

(optional; character string). Name of the target encoding method to convert char-
acter and factor predictors to numeric. One of "mean", "rank", "loo", "rnorm"
(see target_encoding_lab() for further details). Default: "mean"

Value

Character vector with the names of the selected predictors.

Author(s)

Blas M. Benito

Examples

data(
vi,
vi_predictors

)

#subset to limit example run time
vi <- vi[1:1000, ]
vi_predictors <- vi_predictors[1:10]

#without response
#without preference_order
#permissive max_cor
selected.predictors <- cor_select(

df = vi,
predictors = vi_predictors,
max_cor = 0.8

)

selected.predictors
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#without response
#without preference_order
#restrictive max_cor
selected.predictors <- cor_select(

df = vi,
predictors = vi_predictors,
max_cor = 0.5

)

selected.predictors

#with response
#without preference_order
#restrictive max_cor
#slightly different solution than previous one
#because here target encoding is done against the response
#while before was done pairwise against each numeric predictor
selected.predictors <- cor_select(

df = vi,
response = "vi_mean",
predictors = vi_predictors,
max_cor = 0.5

)

selected.predictors

#with response
#with user-defined preference_order
#restrictive max_cor
#numerics and categorical variables in output
selected.predictors <- cor_select(

df = vi,
response = "vi_mean",
predictors = vi_predictors,
preference_order = c(
"soil_type", #categorical variable
"soil_temperature_mean",
"swi_mean",
"rainfall_mean",
"evapotranspiration_mean"

),
max_cor = 0.5

)

selected.predictors

#with response
#with automated preference_order
#restrictive max_cor and max_vif
#numerics and categorical variables in output
preference.order <- preference_order(

df = vi,
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response = "vi_mean",
predictors = vi_predictors,
f = f_rsquared #cor(response, predictor)

)

head(preference.order)

selected.predictors <- cor_select(
df = vi,
response = "vi_mean",
predictors = vi_predictors,
preference_order = preference.order,
max_cor = 0.5

)

selected.predictors

cramer_v Bias Corrected Cramer’s V

Description

The cramer_v() function calculates bias-corrected Cramer’s V, a measure of association between
two categorical variables.

Cramer’s V is an extension of the chi-squared test to measure the strength of association between
two categorical variables. Provides values between 0 and 1, where 0 indicates no association, and 1
indicates a perfect association. In essence, Cramer’s V assesses the co-occurrence of the categories
of two variables to quantify how strongly these variables are related.

Even when its range is between 0 and 1, Cramer’s V values are not directly comparable to R-
squared values, and as such, a multicollinearity analysis containing both types of values must be
assessed with care. It is probably preferable to convert non-numeric variables to numeric using
target encoding rather before a multicollinearity analysis.

Usage

cramer_v(x = NULL, y = NULL, check_input = TRUE)

Arguments

x (required; character vector) character vector representing a categorical variable.
Default: NULL

y (required; character vector) character vector representing a categorical variable.
Must have the same length as ’x’. Default: NULL

check_input (required; logical) If FALSE, disables data checking for a slightly faster execu-
tion. Default: TRUE
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Value

Numeric, value of Cramer’s V

Author(s)

Blas M. Benito

References

• Cramér, H. (1946). Mathematical Methods of Statistics. Princeton: Princeton University
Press, page 282 (Chapter 21. The two-dimensional case). ISBN 0-691-08004-6

Examples

#loading example data
data(vi)

#subset to limit example run time
vi <- vi[1:1000, ]

#computing Cramer's V for two categorical predictors
v <- cramer_v(

x = vi$soil_type,
y = vi$koppen_zone
)

v

f_gam_auc_balanced AUC of Logistic GAM Model

Description

Fits a binomial logistic Generalized Additive Model (GAM) y ~ s(x, k = 3) between a binary re-
sponse and a numeric predictor and returns the Area Under the Curve of the observations versus the
predictions.

Usage

f_gam_auc_balanced(x, y, df)

Arguments

x (required, character string) name of the predictor variable.

y (required, character string) name of the binary response variable.

df (required, data frame) data frame with the columns ’x’ and ’y’.
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Value

Area Under the Curve

Examples

data(vi)

#subset to limit example run time
vi <- vi[1:1000, ]

#this example requires "mgcv" installed
if(requireNamespace(package = "mgcv", quietly = TRUE)){

f_gam_auc_balanced(
x = "growing_season_length", #predictor
y = "vi_binary", #response
df = vi

)

}

f_gam_auc_unbalanced AUC of Logistic GAM Model with Weighted Cases

Description

Fits a quasibinomial logistic Generalized Additive Model (GAM) y ~ s(x, k = 3) with weighted
cases between a binary response and a numeric predictor and returns the Area Under the Curve of
the observations versus the predictions.

Usage

f_gam_auc_unbalanced(x, y, df)

Arguments

x (required, character string) name of the predictor variable.

y (required, character string) name of the binary response variable

df (required, data frame) data frame with the columns ’x’ and ’y’.

Value

Area Under the Curve
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Examples

data(vi)

#subset to limit example run time
vi <- vi[1:1000, ]

#this example requires "mgcv" installed
if(requireNamespace(package = "mgcv", quietly = TRUE)){

f_gam_auc_unbalanced(
x = "growing_season_length", #predictor
y = "vi_binary", #response
df = vi

)

}

f_gam_deviance Explained Deviance from univariate GAM model

Description

Computes the explained deviance of a response against a predictor via Generalized Additive Model
(GAM). This option is slower than f_rsquared(), but suitable if you will be fitting GAMs with the
resulting preference order.

Usage

f_gam_deviance(x, y, df)

Arguments

x (required, character string) name of the predictor variable.

y (required, character string) name of the response variable

df (required, data frame) data frame with the columns ’x’ and ’y’.

Value

Explained deviance

Examples

data(vi)

#subset to limit example run time
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vi <- vi[1:1000, ]

#this example requires "mgcv" installed in the system
if(requireNamespace(package = "mgcv", quietly = TRUE)){

f_gam_deviance(
x = "growing_season_length", #predictor
y = "vi_mean", #response
df = vi

)

}

f_logistic_auc_balanced

AUC of Binomial GLM with Logit Link

Description

Fits a logistic GLM model y ~ x when y is a binary response with values 0 and 1 and x is numeric.
This function is suitable when the response variable is balanced. If the response is unbalanced, then
f_logistic_auc_unbalanced() should provide better results.

Usage

f_logistic_auc_balanced(x, y, df)

Arguments

x (required, character string) name of the predictor variable.

y (required, character string) name of the binary response variable

df (required, data frame) data frame with the columns ’x’ and ’y’.

Value

Area Under the Curve

Examples

data(vi)

#subset to limit example run time
vi <- vi[1:1000, ]

f_logistic_auc_balanced(
x = "growing_season_length", #predictor
y = "vi_binary", #binary response
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df = vi
)

f_logistic_auc_unbalanced

AUC of Binomial GLM with Logit Link and Case Weights

Description

Fits a quasibinomial GLM model y ~ x with case weights when y is an unbalanced binary response
with values 0 and 1 and x is numeric. It uses the function case_weights() to weight 0s and 1s
according to their frequency within y.

Usage

f_logistic_auc_unbalanced(x, y, df)

Arguments

x (required, character string) name of the predictor variable.

y (required, character string) name of the binary response variable.

df (required, data frame) data frame with the columns ’x’ and ’y’.

Value

Area Under the Curve

Examples

data(vi)

#subset to limit example run time
vi <- vi[1:1000, ]

f_logistic_auc_unbalanced(
x = "growing_season_length", #predictor
y = "vi_binary", #binary response
df = vi

)
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f_rf_auc_balanced AUC of Random Forest model of a balanced binary response

Description

Computes a univariate random forest model cases via \link[ranger]{ranger} and returns the
Area Under the Curve on the out-of-bag data.

Usage

f_rf_auc_balanced(x, y, df)

Arguments

x (required, character string) name of the predictor variable.

y (required, character string) name of the binary response variable

df (required, data frame) data frame with the columns ’x’ and ’y’.

Value

Area Under the Curve

Examples

data(vi)

#subset to limit example run time
vi <- vi[1:1000, ]

#this example requires "ranger" installed in the system
if(requireNamespace(package = "ranger", quietly = TRUE)){

f_rf_auc_balanced(
x = "growing_season_length", #predictor
y = "vi_binary", #response
df = vi

)

}
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f_rf_auc_unbalanced AUC of Random Forest model of an unbalanced binary response

Description

Computes a univariate random forest model with weighted cases via \link[ranger]{ranger} and
returns the Area Under the Curve on the out-of-bag data.

Usage

f_rf_auc_unbalanced(x, y, df)

Arguments

x (required, character string) name of the predictor variable.

y (required, character string) name of the binary response variable

df (required, data frame) data frame with the columns ’x’ and ’y’.

Value

Area Under the Curve

Examples

data(vi)

#subset to limit example run time
vi <- vi[1:1000, ]

#this example requires "ranger" installed in the system
if(requireNamespace(package = "ranger", quietly = TRUE)){

f_rf_auc_unbalanced(
x = "growing_season_length", #predictor
y = "vi_binary", #response
df = vi

)

}
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f_rf_rsquared R-squared of Random Forest model

Description

Computes a univariate random forest model with \link[ranger]{ranger} and returns the R-
squared on the out-of-bag data.

Usage

f_rf_rsquared(x, y, df)

f_rf_deviance(x, y, df)

Arguments

x (required, character string) name of the predictor variable.

y (required, character string) name of the response variable

df (required, data frame) data frame with the columns ’x’ and ’y’.

Details

f_rf_rsquared() and f_rf_deviance() are synonyms

Value

R-squared

Examples

data(vi)

#subset to limit example run time
vi <- vi[1:1000, ]

#this example requires "ranger" installed in the system
if(requireNamespace(package = "ranger", quietly = TRUE)){

f_rf_rsquared(
x = "growing_season_length", #predictor
y = "vi_mean", #response
df = vi

)

}
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f_rsquared R-squared between a response and a predictor

Description

Computes the R-squared between a response and a predictor. Fastest option to compute preference
order.

Usage

f_rsquared(x, y, df)

Arguments

x (required, character string) name of the predictor variable.

y (required, character string) name of the response variable

df (required, data frame) data frame with the columns ’x’ and ’y’.

Value

R-squared

Examples

data(vi)

#subset to limit example run time
vi <- vi[1:1000, ]

f_rsquared(
x = "growing_season_length", #predictor
y = "vi_mean", #response
df = vi

)

identify_non_numeric_predictors

Identify non-numeric predictors

Description

Given ’df’ and ’predictors’ arguments, this function subsets and returns the non-numeric (character,
factor, and logical) predictors.
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Usage

identify_non_numeric_predictors(df = NULL, predictors = NULL)

Arguments

df (required; data frame) A data frame with numeric and/or character predictors
predictors, and optionally, a response variable. Default: NULL.

predictors (optional; character vector) A vector with predictor names in ’df’. If omitted, all
columns of ’df’ are used as predictors. Default:’NULL’

Value

character vector with names of numeric predictors.

Author(s)

Blas M. Benito

Examples

data(
vi,
vi_predictors

)

non.numeric.predictors <- identify_non_numeric_predictors(
df = vi,
predictors = vi_predictors

)

non.numeric.predictors

identify_numeric_predictors

Identify numeric predictors

Description

Given ’df’ and ’predictors’ arguments, this function subsets and returns the numeric predictors.

Usage

identify_numeric_predictors(df = NULL, predictors = NULL)
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Arguments

df (required; data frame) A data frame with numeric and/or character predictors
predictors, and optionally, a response variable. Default: NULL.

predictors (optional; character vector) A vector with predictor names in ’df’. If omitted, all
columns of ’df’ are used as predictors. Default:’NULL’

Value

character vector with names of numeric predictors.

Author(s)

Blas M. Benito

Examples

if (interactive()) {

data(
vi,
vi_predictors

)

numeric.predictors <- identify_numeric_predictors(
df = vi,
predictors = vi_predictors

)

numeric.predictors

}

identify_zero_variance_predictors

Identify zero and near-zero-variance predictors

Description

Predictors a variance of zero or near zero are highly problematic for multicollinearity analysis and
modelling in general. This function identifies these predictors with a level of sensitivity defined by
the ’decimals’ argument. Smaller number of decimals increase the number of variables detected as
near zero variance. Recommended values will depend on the range of the numeric variables in ’df’.

Usage

identify_zero_variance_predictors(df = NULL, predictors = NULL, decimals = 4)
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Arguments

df (required; data frame) A data frame with numeric and/or character predictors
predictors, and optionally, a response variable. Default: NULL.

predictors (optional; character vector) A vector with predictor names in ’df’. If omitted, all
columns of ’df’ are used as predictors. Default:’NULL’

decimals (required, integer) number of decimal places for the zero variance test. Default:
4

Value

character vector with names of zero and near-zero variance columns.

Author(s)

Blas M. Benito

Examples

data(
vi,
vi_predictors

)

#create zero variance predictors
vi$zv_1 <- 1
vi$zv_2 <- runif(n = nrow(vi), min = 0, max = 0.0001)

#add to vi predictors
vi_predictors <- c(

vi_predictors,
"zv_1",
"zv_2"

)

#identify zero variance predictors
zero.variance.predictors <- identify_zero_variance_predictors(

df = vi,
predictors = vi_predictors

)

zero.variance.predictors
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preference_order Compute the preference order for predictors based on a user-defined
function.

Description

This function calculates the preference order of predictors based on a user-provided function that
takes a predictor, a response, and a data frame as arguments.

Usage

preference_order(
df = NULL,
response = NULL,
predictors = NULL,
f = f_rsquared,
encoding_method = "mean",
workers = 1

)

Arguments

df (required; data frame) A data frame with numeric and/or character predictors
predictors, and optionally, a response variable. Default: NULL.

response (required, character string) Name of a numeric response variable. Character
response variables are ignored. Please, see ’Details’ to better understand how
providing this argument or not leads to different results when there are character
variables in ’predictors’. Default: NULL.

predictors (optional; character vector) character vector with predictor names in ’df’. If
omitted, all columns of ’df’ are used as predictors. Default:’NULL’

f (optional: function) A function that returns a value representing the relationship
between a given predictor and the response. Higher values are ranked higher.
The available options are:

• f_rsquared() (default option): returns the R-squared of the correlation
between a numeric response and a numeric predictor.

• f_gam_deviance: fits a univariate GAM model between a numeric response
and a numeric predictor to return the explained deviance. Requires the
package mgcv.

• f_rf_rsquared() also named f_rf_deviance(): fits a univariate random
forest model with ranger::ranger() between a numeric response and a
numeric predictor to return the R-squared of the observations against the
out-of-bag predictions. Requires the package ranger.

• f_logistic_auc_balanced(): fits a logistic univariate GLM of a bal-
anced binary response (0s and 1s) against a numeric predictor to return
the Area Under the Curve of the observations against the predictors.
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• f_logistic_auc_unbalanced(): fits a quasibinomial univariate GLM with
weighted cases of an unbalanced binary response (0s and 1s) against a nu-
meric predictor to return the Area Under the Curve of the observations
against the predictors.

• f_gam_auc_balanced(): fits a logistic univariate GAM of a balanced bi-
nary response (0s and 1s) against a numeric predictor to return the Area
Under the Curve of the observations against the predictors.

• f_gam_auc_unbalanced(): fits a quasibinomial univariate GAM with weighted
cases of an unbalanced binary response (0s and 1s) against a numeric pre-
dictor to return the Area Under the Curve of the observations against the
predictors.

• f_rf_auc_balanced(): fits a random forest model of a balanced binary
response (0s and 1s) against a numeric predictor to return the Area Under
the Curve of the observations against the predictors.

• f_rf_auc_unbalanced(): fits a random forest model with weighted cases
of an unbalanced binary response (0s and 1s) against a numeric predictor to
return the Area Under the Curve of the observations against the predictors.

encoding_method

(optional; character string). Name of the target encoding method to convert char-
acter and factor predictors to numeric. One of "mean", "rank", "loo", "rnorm"
(see target_encoding_lab() for further details). Default: "mean"

workers (integer) number of workers for parallel execution. Default: 1

Value

A data frame with the columns "predictor" and "value". The former contains the predictors names in
order, ready for the argument preference_order in cor_select(), vif_select() and collinear().
The latter contains the result of the function f for each combination of predictor and response.

Author(s)

Blas M. Benito

Examples

data(
vi,
vi_predictors

)

#subset to limit example run time
vi <- vi[1:1000, ]

#computing preference order
#with response
#numeric and categorical predictors in the output
#as the R-squared between each predictor and the response
preference.order <- preference_order(
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df = vi,
response = "vi_mean",
predictors = vi_predictors,
f = f_rsquared,
workers = 1
)

preference.order

#using it in variable selection with collinear()
selected.predictors <- cor_select(

df = vi,
response = "vi_mean", #don't forget the response!
predictors = vi_predictors,
preference_order = preference.order,
max_cor = 0.75
)

selected.predictors

#check their correlations
selected.predictors.cor <- cor_df(

df = vi,
response = "vi_mean",
predictors = selected.predictors

)

#all correlations below max_cor
selected.predictors.cor

#USING A CUSTOM FUNCTION
#custom function to compute RMSE between a predictor and a response
#x is a predictor name
#y is a response name
#df is a data frame with multiple predictors and one response
#must return a single number, with higher number indicating higher preference
#notice we use "one minus RMSE" to give higher rank to variables with lower RMSE
f_rmse <- function(x, y, df){

xy <- df[, c(x, y)] |>
na.omit() |>
scale()

1 - sqrt(mean((xy[, 1] - xy[, 2])^2))

}

preference.order <- preference_order(
df = vi,
response = "vi_mean",
predictors = vi_predictors,
f = f_rmse,
workers = 1
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)

preference.order

target_encoding_lab Target encoding of non-numeric variables

Description

Target encoding involves replacing the values of categorical variables with numeric ones from a
"target variable", usually a model’s response. Target encoding can be useful for improving the
performance of machine learning models.

This function identifies categorical variables in the input data frame, and transforms them using a
set of target-encoding methods selected by the user, and returns the input data frame with the newly
encoded variables.

The target encoding methods implemented in this function are:

• "rank": Returns the rank of the group as a integer, starting with 1 as the rank of the group with
the lower mean of the response variable. The variables returned by this method are named with
the suffix "__encoded_rank". This method is implemented in the function target_encoding_rank().

• "mean": Replaces each value of the categorical variable with the mean of the response across
the category the given value belongs to. This option accepts the argument "white_noise" to
limit potential overfitting. The variables returned by this method are named with the suffix
"__encoded_mean". This method is implemented in the function target_encoding_mean().

• "rnorm": Computes the mean and standard deviation of the response for each group of the
categorical variable, and uses rnorm() to generate random values from a normal distribution
with these parameters. The argument rnorm_sd_multiplier is used as a multiplier of the
standard deviation to control the range of values produced by rnorm() for each group of the
categorical predictor. The variables returned by this method are named with the suffix "__en-
coded_rnorm". This method is implemented in the function target_encoding_rnorm().

• "loo": This is the leave-one-out method, that replaces each categorical value with the mean
of the response variable across the other cases within the same group. This method supports
the white_noise argument to increase limit potential overfitting. The variables returned by
this method are named with the suffix "__encoded_loo". This method is implemented in the
function target_encoding_loo().

The methods "mean" and "rank" support the white_noise argument, which is a fraction of the
range of the response variable, and the maximum possible value of white noise to be added. For
example, if response is within 0 and 1, a white_noise of 0.25 will add to every value of the
encoded variable a random number selected from a normal distribution between -0.25 and 0.25.
This argument helps control potential overfitting induced by the encoded variable.

The method "rnorm" has the argument rnorm_sd_multiplier, which multiplies the standard devi-
ation argument of the \link[stats]{rnorm} function to control the spread of the encoded values
between groups. Values smaller than 1 reduce the spread in the results, while values larger than 1
have the opposite effect.
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Usage

target_encoding_lab(
df = NULL,
response = NULL,
predictors = NULL,
encoding_methods = c("mean", "rank", "loo", "rnorm"),
smoothing = 0,
rnorm_sd_multiplier = 0,
seed = 1,
white_noise = 0,
replace = FALSE,
verbose = TRUE

)

Arguments

df (required; data frame, tibble, or sf) A training data frame. Default: NULL

response (required; character string) Name of the response. Must be a column name of
df. Default: NULL

predictors (required; character vector) Names of all the predictors in df. Only character
and factor predictors are processed, but all are returned in the "df" slot of the
function’s output. Default: NULL

encoding_methods

(optional; character string or vector). Name of the target encoding methods.
Default: c("mean", "mean_smoothing, "rank", "loo", "rnorm")

smoothing (optional; numeric) Argument of target_encoding_mean() (method "mean_smoothing").
Minimum group size that keeps the mean of the group. Groups smaller than this
have their means pulled towards the global mean of the response. Default: 0

rnorm_sd_multiplier

(optional; numeric) Numeric with multiplier of the standard deviation of each
group in the categorical variable, in the range 0-1. Controls the variability in the
encoded variables to mitigate potential overfitting. Default: 1

seed (optional; integer) Random seed to facilitate reproducibility when white_noise
is not 0. Default: 1

white_noise (optional; numeric) Numeric with white noise values in the range 0-1, represent-
ing a fraction of the range of the response to be added as noise to the encoded
variable. Controls the variability in the encoded variables to mitigate potential
overfitting. Default: 0.

replace (optional; logical) If TRUE, the function replaces each categorical variable with
its encoded version, and returns the input data frame with the encoded variables
instead of the original ones. Default: FALSE

verbose (optional; logical) If TRUE, messages generated during the execution of the
function are printed to the console Default: TRUE
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Value

The input data frame with newly encoded columns if replace is FALSE, or the input data frame
with encoded columns if TRUE

Author(s)

Blas M. Benito

References

• Micci-Barreca, D. (2001) A Preprocessing Scheme for High-Cardinality Categorical Attributes
in Classification and Prediction Problems. SIGKDD Explor. Newsl. 3, 1, 27-32 doi:10.1145/
507533.507538

Examples

data(
vi,
vi_predictors
)

#subset to limit example run time
vi <- vi[1:1000, ]

#applying all methods for a continuous response
df <- target_encoding_lab(

df = vi,
response = "vi_mean",
predictors = "koppen_zone",
encoding_methods = c(
"mean",
"rank",
"rnorm",
"loo"

),
rnorm_sd_multiplier = c(0, 0.1, 0.2),
white_noise = c(0, 0.1, 0.2)

)

#identify encoded predictors
predictors.encoded <- grep(

pattern = "*__encoded*",
x = colnames(df),
value = TRUE

)

#correlation between encoded predictors and the response
stats::cor(

x = df[["vi_mean"]],
y = df[, predictors.encoded],
use = "pairwise.complete.obs"

https://doi.org/10.1145/507533.507538
https://doi.org/10.1145/507533.507538
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target_encoding_mean Target-encoding methods

Description

Methods to apply target-encoding to individual categorical variables. The functions implemented
are:

• target_encoding_mean(): Each group is identified by the mean of the response over the
group cases. The argument smoothing controls pushes the mean of small groups towards
the global mean to avoid overfitting. White noise can be added via the white_noise argu-
ment. Columns encoded with this function are identified by the suffix "__encoded_mean". If
white_noise is used, then the amount of white noise is also added to the suffix.

• target_encoding_rank(): Each group is identified by the rank of the mean of the response
variable over the group cases. The group with the lower mean receives the rank 1. White
noise can be added via the white_noise argument. Columns encoded with this function are
identified by the suffix "__encoded_rank". If white_noise is used, then the amount of noise
is also added to the suffix.

• target_encoding_rnorm(): Each case in a group receives a value coming from a normal dis-
tribution with the mean and the standard deviation of the response over the cases of the group.
The argument rnorm_sd_multiplier multiplies the standard deviation to reduce the spread
of the obtained values. Columns encoded with this function are identified by the suffix "__en-
coded_rnorm_rnorm_sd_multiplier_X", where X is the amount of rnorm_sd_multiplier
used.

• target_encoding_loo(): The suffix "loo" stands for "leave-one-out". Each case in a group
is encoded as the average of the response over the other cases of the group. Columns encoded
with this function are identified by the suffix "__encoded_loo".

Usage

target_encoding_mean(
df,
response,
predictor,
smoothing = 0,
white_noise = 0,
seed = 1,
replace = FALSE,
verbose = TRUE

)

target_encoding_rnorm(



target_encoding_mean 35

df,
response,
predictor,
rnorm_sd_multiplier = 1,
seed = 1,
replace = FALSE,
verbose = TRUE

)

target_encoding_rank(
df,
response,
predictor,
white_noise = 0,
seed = 1,
replace = FALSE,
verbose = TRUE

)

target_encoding_loo(
df,
response,
predictor,
white_noise = 0,
seed = 1,
replace = FALSE,
verbose = TRUE

)

add_white_noise(df, response, predictor, white_noise = 0.1, seed = 1)

Arguments

df (required; data frame, tibble, or sf) A training data frame. Default: NULL

response (required; character string) Name of the response. Must be a column name of
df. Default: NULL

predictor (required; character) Name of the categorical variable to encode. Default: NULL

smoothing (optional; numeric) Argument of target_encoding_mean(). Minimum group
size that keeps the mean of the group. Groups smaller than this have their means
pulled towards the global mean of the response. Default: 0.

white_noise (optional; numeric) Numeric with white noise values in the range 0-1, represent-
ing a fraction of the range of the response to be added as noise to the encoded
variable. Controls the variability in the encoded variables to mitigate potential
overfitting. Default: 0.

seed (optional; integer) Random seed to facilitate reproducibility. Default: 1

replace (optional; logical) Advanced option that changes the behavior of the function.
Use only if you really know exactly what you need. If TRUE, it replaces each
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categorical variable with its encoded version, and returns the input data frame
with the replaced variables.

verbose (optional; logical) If TRUE, messages and plots generated during the execution
of the function are displayed. Default: TRUE

rnorm_sd_multiplier

(optional; numeric) Numeric with multiplier of the standard deviation of each
group in the categorical variable, in the range 0-1. Controls the variability in the
encoded variables to mitigate potential overfitting. Default: 1

Value

The input data frame with a target-encoded variable.

Author(s)

Blas M. Benito

References

• Micci-Barreca, D. (2001) A Preprocessing Scheme for High-Cardinality Categorical Attributes
in Classification and Prediction Problems. SIGKDD Explor. Newsl. 3, 1, 27-32 doi:10.1145/
507533.507538

Examples

data(vi)

#subset to limit example run time
vi <- vi[1:1000, ]

#mean encoding
#-------------

#without noise
df <- target_encoding_mean(

df = vi,
response = "vi_mean",
predictor = "soil_type",
replace = TRUE

)

plot(
x = df$soil_type,
y = df$vi_mean,
xlab = "encoded variable",
ylab = "response"

)

#with noise
df <- target_encoding_mean(

https://doi.org/10.1145/507533.507538
https://doi.org/10.1145/507533.507538
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df = vi,
response = "vi_mean",
predictor = "soil_type",
white_noise = 0.1,
replace = TRUE

)

plot(
x = df$soil_type,
y = df$vi_mean,
xlab = "encoded variable",
ylab = "response"

)

#group rank
#----------

df <- target_encoding_rank(
df = vi,
response = "vi_mean",
predictor = "soil_type",
replace = TRUE

)

plot(
x = df$soil_type,
y = df$vi_mean,
xlab = "encoded variable",
ylab = "response"

)

#leave-one-out
#-------------

#without noise
df <- target_encoding_loo(

df = vi,
response = "vi_mean",
predictor = "soil_type",
replace = TRUE

)

plot(
x = df$soil_type,
y = df$vi_mean,
xlab = "encoded variable",
ylab = "response"

)

#with noise
df <- target_encoding_loo(
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df = vi,
response = "vi_mean",
predictor = "soil_type",
white_noise = 0.1,
replace = TRUE

)

plot(
x = df$soil_type,
y = df$vi_mean,
xlab = "encoded variable",
ylab = "response"

)

#rnorm
#-----

#without sd multiplier
df <- target_encoding_rnorm(

df = vi,
response = "vi_mean",
predictor = "soil_type",
replace = TRUE

)

plot(
x = df$soil_type,
y = df$vi_mean,
xlab = "encoded variable",
ylab = "response"

)

#with sd multiplier
df <- target_encoding_rnorm(

df = vi,
response = "vi_mean",
predictor = "soil_type",
rnorm_sd_multiplier = 0.1,
replace = TRUE

)

plot(
x = df$soil_type,
y = df$vi_mean,
xlab = "encoded variable",
ylab = "response"

)
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toy One response and four predictors with varying levels of multi-
collinearity

Description

Data frame with known relationship between responses and predictors useful to illustrate multi-
collinearity concepts. Created from vi using the code shown in the example.

Usage

data(toy)

Format

Data frame with 2000 rows and 5 columns.

Details

Columns:

• y: response variable generated from a * 0.75 + b * 0.25 + noise.

• a: most important predictor of y, uncorrelated with b.

• b: second most important predictor of y, uncorrelated with a.

• c: generated from a + noise.

• d: generated from (a + b)/2 + noise.

These are variance inflation factors of the predictors in toy. variable vif b 4.062 d 6.804 c 13.263 a
16.161

Examples

library(collinear)
library(dplyr)
data(vi)
set.seed(1)
toy <- vi |>

dplyr::slice_sample(n = 2000) |>
dplyr::transmute(
a = soil_clay,
b = humidity_range

) |>
scale() |>
as.data.frame() |>
dplyr::mutate(

y = a * 0.75 + b * 0.25 + runif(n = dplyr::n(), min = -0.5, max = 0.5),
c = a + runif(n = dplyr::n(), min = -0.5, max = 0.5),
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d = (a + b) / 2 + runif(n = dplyr::n(), min = -0.5, max = 0.5)
) |>
dplyr::transmute(y, a, b, c, d)

validate_df Validate input data frame

Description

Internal function to validate and prepare the input data frame for a multicollinearity analysis.

Validates a data frame to ensure it complies with the requirements of the package functions. The
function performs the following actions:

• Stops if ’df’ is NULL.

• Stops if ’df’ cannot be coerced to data frame.

• Stops if ’df’ has zero rows.

• Removes geometry column if the input data frame is an "sf" object.

• Removes non-numeric columns with as many unique values as rows df has.

• Raise warning if number of rows of ’df’ is lower than ’min_rows’.

• Converts logical columns to numeric.

• Converts factor and ordered columns to character.

• Tags the data frame with the attribute validated = TRUE to let the package functions skip the
data validation.

Usage

validate_df(df = NULL, min_rows = 30)

Arguments

df (required; data frame or matrix) Input data frame. Default: NULL

min_rows (required; integer) Minimum number of rows required for a pairwise correlation
or a variance inflation factor analysis. Default: 30

Value

The input data frame modified to comply with the requirements of the functions in this package

Author(s)

Blas M. Benito
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Examples

data(vi)

#validating example data frame
vi <- validate_df(

df = vi
)

#tagged as validated
attributes(vi)$validated

validate_predictors Validate the ’predictors’ argument for analysis

Description

Requires the argument ’df’ to be validated with validate_df().

Validates the ’predictors’ argument to ensure it complies with the requirements of the package
functions. It performs the following actions:

• Stops if ’df’ is NULL.

• Stops if ’df’ is not validated.

• If ’predictors’ is NULL, uses column names of ’df’ as ’predictors’ in the ’df’ data frame.

• Raise a warning if there are names in ’predictors’ not in the column names of ’df’, and returns
only the ones in ’df’.

• Stop if the number of numeric columns in ’predictors’ is smaller than ’min_numerics’.

• Raise a warning if there are zero-variance columns in ’predictors’ and returns a new ’predic-
tors’ argument without them.

• Tags the vector with the attribute validated = TRUE to let the package functions skip the data
validation.

Usage

validate_predictors(
df = NULL,
response = NULL,
predictors = NULL,
min_numerics = 0,
decimals = 4

)
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Arguments

df (required; data frame) A validated data frame with numeric and/or character
predictors, and optionally, a response variable. Default: NULL.

response (optional, character string) Name of a numeric response variable. Used to re-
move the response from the predictors when predictors is NULL. Character re-
sponse variables are ignored. Default: NULL.

predictors (optional; character vector) character vector with predictor names in ’df’. If
omitted, all columns of ’df’ are used as predictors. Default:NULL

min_numerics (required, integer) Minimum number of numeric predictors required. Default: 1

decimals (required, integer) Number of decimal places for the zero variance test. Smaller
numbers will increase the number of variables detected as near-zero variance.
Recommended values will depend on the range of the numeric variables in ’df’.
Default: 4

Value

A character vector of validated predictor names

Author(s)

Blas M. Benito

Examples

data(
vi,
vi_predictors
)

#validating example data frame
vi <- validate_df(

df = vi
)

#validating example predictors
vi_predictors <- validate_predictors(

df = vi,
predictors = vi_predictors

)

#tagged as validated
attributes(vi_predictors)$validated
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validate_response Validate the ’response’ argument for target encoding of non-numeric
variables

Description

Requires the argument ’df’ to be validated with validate_df().

Usage

validate_response(df = NULL, response = NULL, decimals = 4)

Arguments

df (required; data frame) A validated data frame with numeric and/or character
predictors predictors, and optionally, a response variable. Default: NULL.

response (optional, character string) Name of a numeric response variable. Character
response variables are ignored. Default: NULL.

decimals (required, integer) number of decimal places for the zero variance test. Default:
4

Value

character string with name of the response

Author(s)

Blas M. Benito

Examples

data(
vi

)

#validating example data frame
vi <- validate_df(

df = vi
)

#validating example predictors
response <- validate_response(

df = vi,
response = "vi_mean"

)

#tagged as validated
attributes(response)$validated
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vi 30.000 records of responses and predictors all over the world

Description

30.000 records of responses and predictors all over the world

Usage

data(vi)

Format

Data frame with 30.000 rows and 68 columns.

See Also

vi_predictors

vif_df Variance Inflation Factor

Description

Computes the Variance Inflation Factor of all variables in a training data frame.

Warning: predictors with perfect correlation might cause errors, please use cor_select() to re-
move perfect correlations first.

The Variance Inflation Factor for a given variable y is computed as 1/(1-R2), where R2 is the
multiple R-squared of a multiple regression model fitted using y as response and all the remaining
variables of the input data set as predictors. The equation can be interpreted as "the rate of perfect
model’s R-squared to the unexplained variance of this model".

The possible range of VIF values is (1, Inf]. A VIF lower than 10 suggest that removing y from the
data set would reduce overall multicollinearity.

This function computes the Variance Inflation Factor (VIF) in two steps:

• Applies \link[base]{solve} to obtain the precision matrix, which is the inverse of the co-
variance matrix.

• Uses \link[base]{diag} to extract the diagonal of the precision matrix, which contains the
variance of the prediction of each predictor from all other predictors.

Usage

vif_df(df = NULL, response = NULL, predictors = NULL, encoding_method = "mean")
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Arguments

df (required; data frame) A data frame with numeric and/or character predictors
predictors, and optionally, a response variable. Default: NULL.

response (recommended, character string) Name of a numeric response variable. Charac-
ter response variables are ignored. Please, see ’Details’ to better understand how
providing this argument or not leads to different results when there are character
variables in ’predictors’. Default: NULL.

predictors (optional; character vector) character vector with predictor names in ’df’. If
omitted, all columns of ’df’ are used as predictors. Default:’NULL’

encoding_method

(optional; character string). Name of the target encoding method to convert char-
acter and factor predictors to numeric. One of "mean", "rank", "loo", "rnorm"
(see target_encoding_lab() for further details). Default: "mean"

Value

Data frame with predictor names and VIF values

Author(s)

Blas M. Benito

• David A. Belsley, D.A., Kuh, E., Welsch, R.E. (1980). Regression Diagnostics: Identifying
Influential Data and Sources of Collinearity. John Wiley & Sons. doi:10.1002/0471725153.

Examples

data(
vi,
vi_predictors

)

#subset to limit example run time
vi <- vi[1:1000, ]

#reduce correlation in predictors with cor_select()
vi_predictors <- cor_select(

df = vi,
response = "vi_mean",
predictors = vi_predictors,
max_cor = 0.75

)

#without response
#only numeric predictors are returned
df <- vif_df(

df = vi,
predictors = vi_predictors

)

https://doi.org/10.1002/0471725153
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df

#with response
#categorical and numeric predictors are returned
df <- vif_df(

df = vi,
response = "vi_mean",
predictors = vi_predictors

)

df

vif_select Automated multicollinearity reduction via Variance Inflation Factor

Description

Automates multicollinearity management by selecting variables based on their Variance Inflation
Factor (VIF).

Warning: predictors with perfect correlation might cause errors, please use cor_select() to re-
move perfect correlations first.

The vif_select() function is designed to automate the reduction of multicollinearity in a set of
predictors by using Variance Inflation Factors.

If the ’response’ argument is provided, categorical predictors are converted to numeric via target
encoding (see target_encoding_lab()). If the ’response’ argument is not provided, categorical
variables are ignored.

The Variance Inflation Factor for a given variable y is computed as 1/(1-R2), where R2 is the
multiple R-squared of a multiple regression model fitted using y as response and all other predictors
in the input data frame as predictors. The VIF equation can be interpreted as the "rate of perfect
model’s R-squared to the unexplained variance of this model".

The possible range of VIF values is (1, Inf]. A VIF lower than 10 suggest that removing y from the
data set would reduce overall multicollinearity. The recommended thresholds for maximum VIF
may vary depending on the source consulted, being the most common values, 2.5, 5, and 10.

The function vif_select() applies a recursive algorithm to remove variables with a VIF higher
than a given threshold (defined by the argument max_vif).

If the argument response is provided, all non-numeric variables in predictors are transformed
into numeric using target encoding (see target_encoding_lab()). Otherwise, non-numeric vari-
ables are ignored.

The argument preference_order allows defining a preference selection order to preserve (when
possible) variables that might be interesting or even required for a given analysis.

For example, if predictors is c("a", "b", "c") and preference_order is c("a", "b"), there
are two possibilities:
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• If the VIF of "a" is higher than the VIF of "b", and both VIF values are above max_vif, then
"a" is selected and "b" is removed.

• If their correlation is equal or above max_cor, then "a" is selected, no matter its correlation
with "c",

If preference_order is not provided, then the predictors are ranked by their variance inflation
factor as computed by vif_df().

Usage

vif_select(
df = NULL,
response = NULL,
predictors = NULL,
preference_order = NULL,
max_vif = 5,
encoding_method = "mean"

)

Arguments

df (required; data frame) A data frame with numeric and/or character predictors
predictors, and optionally, a response variable. Default: NULL.

response (recommended, character string) Name of a numeric response variable. Charac-
ter response variables are ignored. Please, see ’Details’ to better understand how
providing this argument or not leads to different results when there are character
variables in ’predictors’. Default: NULL.

predictors (optional; character vector) character vector with predictor names in ’df’. If
omitted, all columns of ’df’ are used as predictors. Default:’NULL’

preference_order

(optional; character vector) vector with column names in ’predictors’ in the de-
sired preference order, or result of the function preference_order(). Allows
defining a priority order for selecting predictors, which can be particularly useful
when some predictors are more critical for the analysis than others. Predictors
not included in this argument are ranked by their Variance Inflation Factor. De-
fault: NULL.

max_vif (optional, numeric) Numeric with recommended values between 2.5 and 10
defining the maximum VIF allowed for any given predictor in the output dataset.
Higher VIF thresholds should result in a higher number of selected variables.
Default: 5.

encoding_method

(optional; character string). Name of the target encoding method to convert char-
acter and factor predictors to numeric. One of "mean", "rank", "loo", "rnorm"
(see target_encoding_lab() for further details). Default: "mean"

Value

Character vector with the names of the selected predictors.
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Author(s)

Blas M. Benito

• David A. Belsley, D.A., Kuh, E., Welsch, R.E. (1980). Regression Diagnostics: Identifying
Influential Data and Sources of Collinearity. John Wiley & Sons. doi:10.1002/0471725153.

Examples

data(
vi,
vi_predictors

)

#subset to limit example run time
vi <- vi[1:1000, ]
vi_predictors <- vi_predictors[1:10]

#reduce correlation in predictors with cor_select()
vi_predictors <- cor_select(

df = vi,
response = "vi_mean",
predictors = vi_predictors,
max_cor = 0.75

)

#without response
#without preference_order
#permissive max_vif
#only numeric predictors are processed
selected.predictors <- vif_select(

df = vi,
predictors = vi_predictors,
max_vif = 10

)

selected.predictors

#without response
#without preference_order
#restrictive max_vif
#only numeric predictors are processed
selected.predictors <- vif_select(

df = vi,
predictors = vi_predictors,
max_vif = 2.5

)

selected.predictors

#with response
#without preference_order

https://doi.org/10.1002/0471725153
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#restrictive max_cor
#slightly different solution than previous one
#because categorical variables are target-enccoded
selected.predictors <- vif_select(

df = vi,
response = "vi_mean",
predictors = vi_predictors,
max_vif = 2.5

)

selected.predictors

#with response
#with user-defined preference_order
#restrictive max_cor
#numerics and categorical variables in output
selected.predictors <- vif_select(

df = vi,
response = "vi_mean",
predictors = vi_predictors,
preference_order = c(
"soil_type", #categorical variable
"soil_temperature_mean",
"swi_mean",
"rainfall_mean",
"evapotranspiration_mean"

),
max_vif = 2.5

)

selected.predictors

#with response
#with automated preference_order
#restrictive max_cor and max_vif
#numerics and categorical variables in output
preference.order <- preference_order(

df = vi,
response = "vi_mean",
predictors = vi_predictors,
f = f_rsquared #cor(response, predictor)

)

head(preference.order)

selected.predictors <- vif_select(
df = vi,
response = "vi_mean",
predictors = vi_predictors,
preference_order = preference.order,
max_vif = 2.5

)
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selected.predictors

vi_predictors Predictor names in data frame ’vi’

Description

Predictor names in data frame ’vi’

Usage

data(vi_predictors)

Format

Character vector with predictor names.

See Also

vi
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