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coconots-package Concolution-closed Models for Time Series

Description

Functions to analyse time series consisting of low counts are provided. The focus in the current
version is on practical models that can capture first and higher-order dependence based on the work
of Joe (1996). Both equidispersed and overdispersed marginal distributions of data can be modelled.
Regression effects can be included. Fast and efficient procedures for likelihood based inference and
probabilistic forecasting are provided as well as useful tools for model validation and diagnostics.

Details

The package allows simulation of convolution-closed count time series models with the cocoSim
function. Model fitting is performed with the cocoReg routine. By passing a cocoReg-type object,
the S3 method predict computes the one-step ahead forecasting distribution. cocoBoot, cocoPit,
cocoScore, and cocoResid provide routines for model assessment. The main usage of the package
is illustrated within the cocoReg function chapter. For more details and examples of the functions
see the respective sections within this vignette.

By default, our functions make use of an RCPP implementation. However, users with a running
Julia installation can choose to call Julia in the background to run their functions by specifiying
it in the R function input. This option is particularly useful for the regression (cocoReg), where a
complex likelihood function must be numerically evaluated to obtain parameter estimates. By lever-
aging Julia’s automatic differentiation capabilities, our functions can take advantage of numerical
gradients, leading to increased numerical stability and faster convergence.

As we find both, the Julia and RCPP implementations produce qualitatively similar results in all our
tests, we have decided to use the RCPP implementation as the default option to make our package
accessible to non-Julia users.
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Author(s)

Maintainer: Manuel Huth <manuel.huth@yahoo.com>

References

Czado, C., Gneiting, T. and Held, L. (2009) Predictive model assessment for count data. Biometrics
65, 1254–61.

Gneiting, T. and Raftery, A. E. (2007) Strictly proper scoring rules, prediction, and estimation.
Journal of the American Statistical Association, 102:359-378.

R.C. Jung, A.R. Tremayne (2006) Coherent forecasting in integer time series models. International
Journal of Forecasting 22, 223–238

Jung, R. C. and Tremayne, A. R. (2011) Convolution-closed models for count time series with
applications. Journal of Time Series Analysis, 32, 3, 268–280.

Jung, Robert C., Brendan P. M. McCabe, and Andrew R. Tremayne. (2016). Model validation and
diagnostics. In Handbook of Discrete Valued Time Series. Edited by Richard A. Davis, Scott H.
Holan, Robert Lund and Nalini Ravishanker. Boca Raton: Chapman and Hall, pp. 189–218.

Joe, H. (1996) Time series models with univariate margins in the convolution-closed infinitely di-
visible class. Journal of Applied Probability, 664–677.

Tsay, R. S. (1992) Model checking via parametric bootstraps in time series analysis. Applied Statis-
tics 41, 1–15.

Westgren, A. (1916) Die Veraenderungsgeschwindigkeit der lokalen Teilchenkonzentration in kol-
lioden Systemen (Erste Mitteilung). Arkiv foer Matematik, Astronomi och Fysik, 11, 1–24.

cocoBoot Bootstrap Based Model Assessment Procedure

Description

Model checking procedure emphasizing reproducibility in fitted models to provide an overall eval-
uation of fit as proposed by Tsay (1992).

Usage

cocoBoot(
coco,
numb.lags = 21,
rep.Bootstrap = 1000,
conf.alpha = 0.05,
julia = FALSE,
julia_seed = NULL

)
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Arguments

coco An object of class coco

numb.lags Number of lags for which to compute autocorrelations

rep.Bootstrap Number of bootstrap replicates to use

conf.alpha Confidence level for the quantile intervals

julia if TRUE, the bootstrap is run with Julia.

julia_seed Seed for the julia implementation. Only used if julia equals TRUE.

Details

Computes bootstrap confidence intervals for the autocorrelations of a fitted model.

Value

an object of class cocoBoot. It contains the bootstraped confidence intervals of the autocorrelations
and information on the model specifications.

References

Tsay, R. S. (1992) Model checking via parametric bootstraps in time series analysis. Applied Statis-
tics 41, 1–15.

Examples

lambda <- 1
alpha <- 0.4
set.seed(12345)
data <- cocoSim(order = 1, type = "Poisson", par = c(lambda, alpha), length = 100)
fit <- cocoReg(order = 1, type = "Poisson", data = data)

#assessment using bootstrap - R implementation
boot_r <- cocoBoot(fit, rep.Bootstrap=400)

cocoPit Probability Integral Transform Based Model Assessment Procedure

Description

Computes the probability integral transform (PIT) and provides the non-randomized PIT histogram
for assessing absolute performance of a fitted model as proposed by Czado et al. (2009).

Usage

cocoPit(coco, J = 10, conf.alpha = 0.05, julia = FALSE)
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Arguments

coco An object of class coco

J Number of bins for the histogram (default: 10)

conf.alpha Confidence level for the confidence bands.

julia if TRUE, the PIT is computed with Julia.

Details

The adequacy of a distributional assumption for a model is checked by checking the cumulative
non-randomized PIT distribution for uniformity. A useful graphical device is the PIT histogram,
which displays this distribution to J equally spaced bins. We supplement the graph by incorporating
approximately 100(1−α)% confidence intervals obtained from a standard chi-square goodness-of-
fit test of the null hypothesis that the J bins of the histogram are drawn from a uniform distribution.
For details, see Jung, McCabe and Tremayne (2016).

Value

an object of class cocoPit. It contains the The probability integral transform values, its p-values and
information on the model specifications.

Author(s)

Manuel Huth

References

Czado, C., Gneiting, T. and Held, L. (2009) Predictive model assessment for count data. Biometrics
65, 1254–61.

Jung, Robert C., Brendan P. M. McCabe, and Andrew R. Tremayne. (2016). Model validation and
diagnostics. In Handbook of Discrete Valued Time Series. Edited by Richard A. Davis, Scott H.
Holan, Robert Lund and Nalini Ravishanker. Boca Raton: Chapman and Hall, pp. 189–218.

Jung, R. C. and Tremayne, A. R. (2011) Convolution-closed models for count time series with
applications. Journal of Time Series Analysis, 32, 3, 268–280.

Examples

lambda <- 1
alpha <- 0.4
set.seed(12345)
data <- cocoSim(order = 1, type = "Poisson", par = c(lambda, alpha), length = 100)
#julia_installed = TRUE ensures that the fit object
#is compatible with the julia cocoPit implementation
fit <- cocoReg(order = 1, type = "Poisson", data = data)

#PIT R implementation
pit_r <- cocoPit(fit)
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cocoReg cocoReg

Description

The function fits first and second order (Generalized) Poisson Autoregressive (G)PAR models pre-
sented in (Jung and Tremayne, 2010). Autoregressive dependence on past counts is modelled by a
special random operator that not only preserve integer status, but also, via the property of closure
under convolution, ensure that the marginal distribution of the observed counts is from the same
family as the innovations. The models can be thought of as stationary Markov chains of finite or-
der, where the distribution of the innovations can either be Poisson or Generalized Poisson, where
the latter can account for overdispersed data. Maximum likelihood is used for estimation and the
user can choose to include linear constraints or not. If linear constraints are not included, it can-
not be guaranteed that the parameters will lie in the theoretically feasible parameter space, but the
optimization process might be faster. The function uses method of moments estimators to obtain
starting values for the numerical optimization, but the user can also specify their own starting values
if desired.

If Julia is installed, the user can choose whether the optimization is run in Julia which might faster
yield results and increased numeric stability due to the use of automatic differentiation. See details
for more information on the Julia implementation.

Usage

cocoReg(
type,
order,
data,
xreg = NULL,
constrained.optim = TRUE,
b.beta = -10,
start = NULL,
start.val.adjust = TRUE,
method_optim = "Nelder-Mead",
replace.start.val = 1e-05,
iteration.start.val = 0.6,
method.hessian = "Richardson",
cores = 2,
julia = FALSE,
julia_installed = FALSE

)

Arguments

type character string indicating the type of model to be fitted

order integer vector indicating the order of the model

data time series data to be used in the analysis
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xreg optional matrix of explanatory variables for use in a regression model
constrained.optim

logical indicating whether optimization should be constrained, currently only
available in the R version

b.beta numeric value indicating the lower bound for the parameters of the explanatory
variables for the optimization, currently only available in the R version

start optional numeric vector of starting values for the optimization
start.val.adjust

logical indicating whether starting values should be adjusted, currently only
available in the R version

method_optim character string indicating the optimization method to be used, currently only
available in the R version. In the julia implementation this is by default the
LBFGS algorithm

replace.start.val

numeric value indicating the value to replace any invalid starting values, cur-
rently only available in the R version

iteration.start.val

numeric value indicating the proportion of the interval to use as the new starting
value, currently only available in the R version

method.hessian character string indicating the method to be used to approximate the Hessian
matrix, currently only available in the R version

cores numeric indicating the number of cores to use, currently only available in the R
version

julia if TRUE, the model is estimated with Julia. This can improve the speed sig-
nificantly since Julia makes use of derivatives using autodiff. In this case, only
type, order, data, xreg, and start are used as other inputs.

julia_installed

if TRUE, the model R output will contain a Julia compatible output element.

Details

Let a time series of counts be {Xt} and be R(·) a random operator that differs between model
specifications. For more details on the random operator, see Jung and Tremayne (2011) and Joe
(1996). The general first-order model is of the form

Xt = R(Xt−1) + It,

and the general second-order model of the form

Xt = R(Xt−1, Xt−2) + It,

where It are i.i.d Poisson (It ∼ Po(λt)) or Generalized Poisson (It ∼ GP (λt, η)) innovations.
Through closure under convolution the marginal distributions of {Xt} are therefore Poisson or
Generalized Poisson distributions, respectively.

If no covariates are used λt = λ and if covariates are used

λt = exp

β0 + k∑
j=1

βj · zt,j

,
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whereby zt,j is the j-th covariate at time t.

Standard errors are computed by the square root of the diagonal elements of the inverse Hessian.

This function is implemented in 2 versions. The default runs on RCPP. An alternative version uses
a Julia implementation which can be chosen by setting the argument julia to TRUE. In order to use
this feature, a running Julia installation is required on the system. The RCPP implementation uses
the derivative-free Nelder-Mead optimizer to obtain parameter estimates. The Julia implementation
makes use of Julia’s automatic differentiation in order to obtain gradients such that it can use the
LBFGS algorithm for optimization. This enhances the numeric stability of the optimization and
yields an internal validation if both methods yield qualitatively same parameter estimates. Further-
more, the Julia implementation can increase the computational speed significantly, especially for
large models.

The model assessment tools cocoBoot, cocoPit, and cocoScore will use a Julia implementation
as well, if the cocoReg was run with Julia. Additionally, one can make the RCPP output of cocoReg
compatible with the Julia model assessments by setting julia_installed to true. In this case, the user
can choose between the RCPP and the Julia implementation for model assessment.

Value

an object of class coco. It contains the parameter estimates, standard errors, the log-likelihood,
and information on the model specifications. If Julia is used for parameter estimation or the Julia
installation parameter is set to TRUE, the results contain an additional Julia element that is called
from the model Julia assessment tools if they are run with the Julia implementation.

Author(s)

Manuel Huth

References

Jung, R. C. and Tremayne, A. R. (2011) Convolution-closed models for count timeseries with ap-
plications. Journal of Time Series Analysis, 32, 3, 268–280.

Joe, H. (1996) Time series models with univariate margins in the convolution-closed infinitely di-
visible class. Journal of Applied Probability, 664–677.

Examples

## GP2 model without covariates
length <- 1000
par <- c(0.5,0.2,0.05,0.3,0.3)
data <- cocoSim(order = 2, type = "GP", par = par, length = length)
fit <- cocoReg(order = 2, type = "GP", data = data)

##Poisson1 model with covariates
length <- 1000
period <- 50
sin <- sin(2*pi/period*(1:length))
cos <- cos(2*pi/period*(1:length))
cov <- cbind(sin, cos)
par <- c(0.2, 0.2, -0.2)
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data <- cocoSim(order = 1, type = "Poisson", par = par, xreg = cov, length = length)
fit <- cocoReg(order = 1, type = "Poisson", data = data, xreg = cov)

cocoResid Residual Based Model Assessment Procedure

Description

Calculates the (Pearson) residuals of a fitted model for model evaluation purposes.

Usage

cocoResid(coco, val.num = 1e-11)

Arguments

coco An object of class "coco

val.num A non-negative real number which is used to stop the calculation of

Details

The Pearson residuals are computed as the scaled deviation of the observed count from its con-
ditional expectation given the relevant past history, including covariates, if applicable. If a fitted
model is correctly specified, the Pearson residuals should exhibit mean zero, variance one, and no
significant serial correlation.

Value

a list that includes the (Pearson) residuals, conditional expectations, conditional variances, and
information on the model specifications.

Author(s)

Manuel Huth
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cocoScore Scoring Rule Based Model Assessment Procedure

Description

The function calculates the log, quadratic and ranked probability scores for assessing relative per-
formance of a fitted model as proposed by Czado et al. (2009).

Usage

cocoScore(coco, val.num = 1e-10, julia = FALSE)

Arguments

coco An object of class coco

val.num A non-negative real number which is used to stop the calculation of the score in
case of GP models. The default value is 1e-10

julia if TRUE, the scores are computed with Julia.

Details

Scoring rules assign a numerical score based on the predictive distribution and the observed data to
measure the quality of probabilistic predictions. They are provided here as a model selection tool
and are computed as averages over the relevant set of (in-sample) predictions. Scoring rules are,
generally, negatively oriented penalties that one seeks to minimize. The literature has developed a
large number of scoring rules and, unless there is a unique and clearly defined underlying decision
problem, there is no automatic choice of a (proper) scoring rule to be used in any given situation.
Therefore, the use of a variety of scoring rules may be appropriate to take advantage of specific
emphases and strengths. Three proper scoring rules (for a definition of the concept of propriety see
Gneiting and Raftery, 2007) which Jung, McCabe and Tremayne (2016) found to be particularly
useful are implemented. For more information see the references listed below.

Value

a list containing the log score, quadratic score and ranked probability score.

Author(s)

Manuel Huth

References

Czado, C. and Gneitling, T. and Held, L. (2009) Predictive Model Assessment for Count Data.
Biometrics, 65, 4, 1254–1261.

Gneiting, T. and Raftery, A. E. (2007) Strictly proper scoring rules, prediction, and estimation.
Journal of the American Statistical Association, 102:359-378.
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Jung, Robert C., Brendan P. M. McCabe, and Andrew R. Tremayne. (2016). Model validation and
diagnostics. In Handbook of Discrete Valued Time Series. Edited by Richard A. Davis, Scott H.
Holan, Robert Lund and Nalini Ravishanker. Boca Raton: Chapman and Hall, pp. 189–218.

Jung, R. C. and Tremayne, A. R. (2011) Convolution-closed models for count timeseries with ap-
plications. Journal of Time Series Analysis, 32, 3, 268–280.

Examples

lambda <- 1
alpha <- 0.4
set.seed(12345)
data <- cocoSim(order = 1, type = "Poisson", par = c(lambda, alpha), length = 100)
#julia_installed = TRUE ensures that the fit object
#is compatible with the julia cocoScore implementation
fit <- cocoReg(order = 1, type = "Poisson", data = data)

#assessment using scoring rules - R implementation
score_r <- cocoScore(fit)

cocoSim Simulation of Count Time Series

Description

The function generates a time series of low counts from the (G)PAR model class for a specified
innovation distribution, sample size, lag order, and parameter values.

Usage

cocoSim(
type,
order,
par,
length,
xreg = NULL,
init = NULL,
julia = FALSE,
julia_seed = NULL

)

Arguments

type character, either "Poisson" or "GP" indicating the type of the innovation distri-
bution

order integer, either 1 or 2 indicating the order of the model

par numeric vector, the parameters of the model, the number of elements in the
vector depends on the type and order specified.
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length integer, the number of observations in the generated time series

xreg data.frame, data frame of control variables

init numeric vector, initial data to use, default is NULL. See details for more infor-
mation on the usage.

julia If TRUE, the Julia implementation is used. In this case, init is ignored but it
might be faster.

julia_seed Seed for the Julia implementation. Only used if Julia equals TRUE.

Details

The function checks for valid input of the type, order, parameters, and initial data before generating
the time series.

The init parameter allows users to set a custom burn-in period for the simulation. By default,
when simulating with covariates, no burn-in period is specified since there is no clear choice on the
covariates. However, the init argument gives users the flexibility to select an appropriate burn-in
period for the covariate case. One way to do this is to simulate a time series using cocoSim with
appropriate covariates and pass the resulting time series to the init argument of a new cocoSim run
so that the first time series is used as the burn-in period. If init is not specified for the covariate case,
a warning will be returned to prompt the user to specify a custom burn-in period. This helps ensure
that the simulation accurately captures the dynamics of the system being modeled.

Value

a vector of the simulated time series.

Author(s)

Manuel Huth

Examples

lambda <- 1
alpha <- 0.4
set.seed(12345)

# Simulate using the RCPP implementation
data_rcpp <- cocoSim(order = 1, type = "Poisson", par = c(lambda, alpha), length = 100)
# Simulate using the Julia implementation
data_julia <- cocoSim(order = 1, type = "Poisson", par = c(lambda, alpha), length = 100)
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cuts Time Series of Monthly Counts of Claimants Collecting Wage Loss
Benefit for Injuries in the Workplace

Description

Monthly counts of claimants collecting wage loss benefit for injuries in the workplace at one specific
service delivery location of the Workers Compensation Board of British Columbia, Canada in the
period January 1985 to December 1994. Only injuries due to cuts and lacerations are considered.
The data have been provided by Brendan McCabe.

downloads Time Series of Daily Downloads of a TeX-Editor

Description

The data represent the number of daily downloads of a TeX-editor between June 2006 and February
2007 and has a sample size of 267. The data have been provided by Christian Weiss.

goldparticle Time Series of Gold particles Counts in a well-efined Colloidal Solu-
tion

Description

A sample of 370 counts of gold particles in a well-defined colloidal solution at equidistant points in
time, originally published in Westgren (1916) and used in Jung and Tremanye (2006).

Source

R.C. Jung, A.R. Tremayne (2006) Coherent forecasting in integer time series models. International
Journal of Forecasting 22, 223–238

Westgren, A. (1916) Die Veraenderungsgeschwindigkeit der lokalen Teilchenkonzentration in kol-
lioden Systemen (Erste Mitteilung). Arkiv foer Matematik, Astronomi och Fysik, 11, 1–24.
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installJuliaPackages installJuliaPackages

Description

checks for needed Julia packages and installs them if not installed.

Usage

installJuliaPackages()

Value

no return value, called to install Julia packages in Julia.

predict.coco K-Step Ahead Forecast Bootstrapping

Description

Computes the k-step ahead forecast using the models in the coconots package.

Usage

## S3 method for class 'coco'
predict(
object,
k = 1,
number_simulations = 1000,
alpha = 0.05,
simulate_one_step_ahead = FALSE,
max = NULL,
epsilon = 1e-08,
xcast = NULL,
decimals = 4,
julia = FALSE,
...

)

Arguments

object An object that has been fitted previously, of class coco.

k The number of steps ahead for which the forecast should be computed. Defaults
to 3.
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number_simulations

The number of simulation runs to compute. Defaults to 500.

alpha Level of confidence that is used to construct the prediction intervals.
simulate_one_step_ahead

If FALSE, the one-step ahead prediciton is obtained using the analytical distri-
bution. If TRUE, bootstrapping is used.

max The maximum number of the forecast support for the plot. If NULL all values
for which the cumulative distribution function is below 1- epsilon are used for
the plot.

epsilon If max is NULL, epsilon determines the range of the support that is used by
subsequent automatic plotting using R’s plot() function.

xcast An optional matrix of covariate values for the forecasting. If ‘NULL‘, the func-
tion assumes no covariates.

decimals Number of decimal places for the forecast probabilities

julia if TRUE, the estimate is predicted with Julia.

... Optional arguments.

Details

Returns forecasts for each mass point of the k-step ahead distribution for the fitted model. The exact
predictive distributions for one-step ahead predicitons for the models included here are provided in
Jung and Tremayne (2011), maximum likelihood estimates replace the true model parameters. Out-
of-sample values for covariates can be provided, if necessary.

Value

A list of frequency tables. Each table represents a k-step ahead forecast frequency distribution based
on the simulation runs.

setJuliaSeed Set Seed for Julia’s Random Number Generator

Description

Sets the seed for Julia’s random number generator to ensure reproducibility.

Usage

setJuliaSeed(julia_seed)

Arguments

julia_seed An integer seed value to be passed to Julia’s random number generator.
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Details

This function initializes the necessary Julia functions and sets the random seed for Julia. If the
provided seed is NULL, the function does nothing.

Author(s)

Your Name (or the appropriate author’s name)
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