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booami_predict Predict with booami models

Description

Minimal, dependency-free predictor for models fitted by cv_boost_raw, cv_boost_imputed, or a
pooled impu_boost fit. Supports Gaussian (identity) and logistic (logit) models, returning either
the linear predictor or, for logistic, predicted probabilities.

Usage

booami_predict(
object,
X_new,
family = NULL,
type = c("response", "link"),
center_means = NULL

)

Arguments

object A fit returned by cv_boost_raw(), cv_boost_imputed(), or a pooled impu_boost()
(i.e., pool = TRUE so that $BETA is a length-p vector and $INT is a scalar).

X_new New data (matrix or data.frame) with the same p predictors the model was
trained on. If column names are present in the model, X_new will be aligned
by name; otherwise it must be in the same order.

family Model family; one of c("gaussian","logistic"). If NULL, the function tries
to infer from object$type or attributes; otherwise defaults to "gaussian".
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type Prediction type; one of c("response","link"). For "gaussian", both are
identical. For "logistic", "response" returns probabilities via the inverse-
logit.

center_means Optional numeric vector of length p with training means used to center predic-
tors during fitting. If provided, X_new is centered as X_new - center_means
before prediction. If the model stores means by name, pass a named vector
whose names match predictor names.

Details

This function is deterministic and involves no random number generation. Coefficients are ex-
tracted from either $final_model (intercept first, then coefficients) or from $INT+$BETA (pooled
impu_boost). If X_new has column names and the model has named coefficients, columns are
aligned by name; otherwise they are used in order.

If your training pipeline centered covariates (e.g., center = "auto"), providing the same center_means
here yields numerically consistent predictions. If not supplied but object$center_means exists, it
will be used automatically. If both are supplied, the explicit center_means argument takes prece-
dence.

Value

A numeric vector of predictions (length nrow(X_new)). If X_new has row names, they are propa-
gated to the returned vector.

See Also

cv_boost_raw, cv_boost_imputed, impu_boost

Examples

# 1) Fit on data WITH missing values
set.seed(123)
sim_tr <- simulate_booami_data(

n = 120, p = 12, p_inf = 3,
type = "gaussian",
miss = "MAR", miss_prop = 0.20

)
X_tr <- sim_tr$data[, 1:12]
y_tr <- sim_tr$data$y

fit <- cv_boost_raw(
X_tr, y_tr,
k = 2, mstop = 50, seed = 123,
impute_args = list(m = 2, maxit = 1, printFlag = FALSE, seed = 1),
quickpred_args = list(method = "spearman", mincor = 0.30, minpuc = 0.60),
show_progress = FALSE

)

# 2) Predict on a separate data set WITHOUT missing values (same p)
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sim_new <- simulate_booami_data(
n = 5, p = 12, p_inf = 3,
type = "gaussian",
miss = "MCAR", miss_prop = 0 # <- complete data with existing API

)
X_new <- sim_new$data[, 1:12, drop = FALSE]

preds <- booami_predict(fit, X_new = X_new, family = "gaussian", type = "response")
round(preds, 3)

booami_sim Example dataset for ’booami’ (Gaussian, MAR)

Description

A simulated dataset with predictors X1...X25 and a continuous outcome y, with missing values
generated under a MAR mechanism. The object is a data.frame and carries attributes describing
the data-generating process (true coefficients, informative indices, etc.).

Format

A data frame with 300 rows and 26 variables:

X1 numeric

X2 numeric

X3 numeric

X4 numeric

X5 numeric

X6 numeric

X7 numeric

X8 numeric

X9 numeric

X10 numeric

X11 numeric

X12 numeric

X13 numeric

X14 numeric

X15 numeric

X16 numeric

X17 numeric

X18 numeric
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X19 numeric

X20 numeric

X21 numeric

X22 numeric

X23 numeric

X24 numeric

X25 numeric

y numeric outcome

Details

Generated by simulate_booami_data with typical settings (see ?simulate_booami_data). The
following attributes are attached to booami_sim:

• "true_beta": numeric length-25 vector of true coefficients (non-zeros in positions 1-5).

• "informative": integer vector 1:5.

• "type": "gaussian".

• "corr_structure": "all_ar1"; "rho": 0.3.

• "intercept": 1; "noise_sd": 1 (Gaussian; NA otherwise).

• "mar_scale": TRUE; "keep_mar_drivers": TRUE.

See Also

simulate_booami_data, impu_boost, cv_boost_raw, cv_boost_imputed

Examples

## \donttest{
utils::data(booami_sim)
dim(booami_sim)
mean(colSums(is.na(booami_sim)) > 0) # fraction of columns with any NAs
head(attr(booami_sim, "true_beta"))
attr(booami_sim, "informative")
## }

cv_boost_imputed Cross-validated boosting on already-imputed data

Description

Performs k-fold cross-validation for impu_boost to determine the optimal value of mstop before
fitting the final model on the full dataset. This function should only be used when data have already
been imputed. In most cases, it is preferable to provide unimputed data and use cv_boost_raw
instead.
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Usage

cv_boost_imputed(
X_train_list,
y_train_list,
X_val_list,
y_val_list,
X_full,
y_full,
ny = 0.1,
mstop = 250,
type = c("gaussian", "logistic"),
MIBoost = TRUE,
pool = TRUE,
pool_threshold = 0,
show_progress = TRUE,
center = c("auto", "off", "force")

)

Arguments

X_train_list A list of length k. Element i is itself a list of length M containing the ntrain×p
numeric design matrices for each imputed dataset in CV fold i.

y_train_list A list of length k. Element i is a list of length M , where each element is a
length-ntrain numeric response vector aligned with X_train_list[[i]][[m]].

X_val_list A list of length k. Element i is a list of length M containing the nval×p numeric
validation matrices matched to the corresponding imputed training dataset in
fold i.

y_val_list A list of length k. Element i is a list of length M , where each element is a
length-nval continuous response vector aligned with X_val_list[[i]][[m]].

X_full A list of length M with the n × p numeric full-data design matrices (one per
imputed dataset) used to fit the final model.

y_full A list of length M , where each element is a length-n continuous response vector
corresponding to the imputed dataset in X_full.

ny Learning rate. Defaults to 0.1.

mstop Maximum number of boosting iterations to evaluate during cross-validation.
The selected mstop is the value that minimizes the mean CV error over 1:mstop.
Default is 250.

type Type of loss function. One of: "gaussian" (mean squared error) for continuous
responses, or "logistic" (binomial deviance) for binary responses.

MIBoost Logical. If TRUE, applies the MIBoost algorithm, which enforces uniform vari-
able selection across all imputed datasets. If FALSE, variables are selected inde-
pendently within each imputed dataset, and pooling is governed by pool_threshold.

pool Logical. If TRUE, models across the M imputed datasets are aggregated into a
single final model. If FALSE, M separate models are returned.
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pool_threshold Only used when MIBoost = FALSE and pool = TRUE. Controls the pooling rule
when aggregating the M models obtained from the imputed datasets into a sin-
gle final model. A candidate variable is included only if it is selected in at
least pool_threshold (a value in (0, 1]) proportion of the imputed datasets;
coefficients of all other variables are set to zero. A value of 0 corresponds to
estimate-averaging, while values > 0 correspond to selection-frequency thresh-
olding.

show_progress Logical; print fold-level progress and summary timings. Default TRUE.

center One of c("auto", "off", "force"). Controls centering of X within each im-
puted dataset. With "auto" (recommended), centering is applied only if the
training matrix is not already centered. With "force", centering is always ap-
plied. With "off", centering is skipped. If X_val_list is provided, validation
sets are centered using the means from the corresponding training set.

Details

To avoid data leakage, each CV fold should first be split into training and validation subsets, after
which imputation is performed. For the final model, all data should be imputed independently.

The recommended workflow is illustrated in the examples.

Centering affects only X; y is left unchanged. For type = "logistic", responses are treated as
numeric 0/1 via the logistic link. Validation loss is averaged over imputations and then over folds.

Value

A list with:

• CV_error: numeric vector of length mstop with the mean cross-validated loss across folds
(and imputations).

• best_mstop: integer index of the minimizing entry in CV_error.

• final_model: numeric vector of length 1 + p containing the intercept followed by p coeffi-
cients of the final pooled model fitted at best_mstop on X_full/y_full.

References

Kuchen, R. (2025). MIBoost: A Gradient Boosting Algorithm for Variable Selection After Multiple
Imputation. arXiv:2507.21807. doi:10.48550/arXiv.2507.21807 https://arxiv.org/abs/2507.
21807.

See Also

impu_boost, cv_boost_raw

Examples

set.seed(123)
utils::data(booami_sim)
k <- 2; M <- 2

https://doi.org/10.48550/arXiv.2507.21807
https://arxiv.org/abs/2507.21807
https://arxiv.org/abs/2507.21807
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n <- nrow(booami_sim); p <- ncol(booami_sim) - 1
folds <- sample(rep(seq_len(k), length.out = n))

X_train_list <- vector("list", k)
y_train_list <- vector("list", k)
X_val_list <- vector("list", k)
y_val_list <- vector("list", k)

for (cv in seq_len(k)) {
tr <- folds != cv
va <- !tr
dat_tr <- booami_sim[tr, , drop = FALSE]
dat_va <- booami_sim[va, , drop = FALSE]
pm_tr <- mice::quickpred(dat_tr, method = "spearman", mincor = 0.30, minpuc = 0.60)

imp_tr <- mice::mice(dat_tr, m = M, predictorMatrix = pm_tr, maxit = 1, printFlag = FALSE)
imp_va <- mice::mice.mids(imp_tr, newdata = dat_va, maxit = 1, printFlag = FALSE)
X_train_list[[cv]] <- vector("list", M)
y_train_list[[cv]] <- vector("list", M)

X_val_list[[cv]] <- vector("list", M)
y_val_list[[cv]] <- vector("list", M)
for (m in seq_len(M)) {

tr_m <- mice::complete(imp_tr, m)
va_m <- mice::complete(imp_va, m)
X_train_list[[cv]][[m]] <- data.matrix(tr_m[, 1:p, drop = FALSE])
y_train_list[[cv]][[m]] <- tr_m$y
X_val_list[[cv]][[m]] <- data.matrix(va_m[, 1:p, drop = FALSE])
y_val_list[[cv]][[m]] <- va_m$y

}
}

pm_full <- mice::quickpred(booami_sim, method = "spearman", mincor = 0.30, minpuc = 0.60)
imp_full <- mice::mice(booami_sim, m = M, predictorMatrix = pm_full, maxit = 1, printFlag = FALSE)
X_full <- lapply(seq_len(M),
function(m) data.matrix(
mice::complete(imp_full, m)[, 1:p, drop = FALSE]))
y_full <- lapply(seq_len(M), function(m) mice::complete(imp_full, m)$y)

res <- cv_boost_imputed(
X_train_list, y_train_list,
X_val_list, y_val_list,
X_full, y_full,
ny = 0.1, mstop = 50, type = "gaussian",
MIBoost = TRUE, pool = TRUE, center = "auto",
show_progress = FALSE

)

set.seed(2025)
utils::data(booami_sim)
k <- 5; M <- 10
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n <- nrow(booami_sim); p <- ncol(booami_sim) - 1
folds <- sample(rep(seq_len(k), length.out = n))

X_train_list <- vector("list", k)
y_train_list <- vector("list", k)
X_val_list <- vector("list", k)
y_val_list <- vector("list", k)
for (cv in seq_len(k)) {

tr <- folds != cv; va <- !tr
dat_tr <- booami_sim[tr, , drop = FALSE]
dat_va <- booami_sim[va, , drop = FALSE]
pm_tr <- mice::quickpred(dat_tr, method = "spearman", mincor = 0.20, minpuc = 0.40)

imp_tr <- mice::mice(dat_tr, m = M, predictorMatrix = pm_tr, maxit = 5, printFlag = TRUE)
imp_va <- mice::mice.mids(imp_tr, newdata = dat_va, maxit = 1, printFlag = FALSE)
X_train_list[[cv]] <- vector("list", M)
y_train_list[[cv]] <- vector("list", M)
X_val_list[[cv]] <- vector("list", M)
y_val_list[[cv]] <- vector("list", M)
for (m in seq_len(M)) {

tr_m <- mice::complete(imp_tr, m); va_m <- mice::complete(imp_va, m)
X_train_list[[cv]][[m]] <- data.matrix(tr_m[, 1:p, drop = FALSE])
y_train_list[[cv]][[m]] <- tr_m$y
X_val_list[[cv]][[m]] <- data.matrix(va_m[, 1:p, drop = FALSE])
y_val_list[[cv]][[m]] <- va_m$y

}
}
pm_full <- mice::quickpred(booami_sim, method = "spearman", mincor = 0.20, minpuc = 0.40)
imp_full <- mice::mice(booami_sim, m = M, predictorMatrix = pm_full, maxit = 5, printFlag = TRUE)
X_full <- lapply(seq_len(M),
function(m) data.matrix(mice::complete(imp_full, m)[, 1:p, drop = FALSE]))
y_full <- lapply(seq_len(M),
function(m) mice::complete(imp_full, m)$y)

res_heavy <- cv_boost_imputed(
X_train_list, y_train_list,
X_val_list, y_val_list,
X_full, y_full,
ny = 0.1, mstop = 250, type = "gaussian",
MIBoost = TRUE, pool = TRUE, center = "auto",
show_progress = TRUE

)
str(res_heavy)

cv_boost_raw Cross-Validated Component-Wise Gradient Boosting with Multiple
Imputation Performed Inside Each Fold
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Description

Performs k-fold cross-validation for impu_boost on data with missing values. Within each fold,
multiple imputation, centering, model fitting, and validation are performed in a leakage-avoiding
manner to select the optimal number of boosting iterations (mstop). The final model is then fitted
on multiple imputations of the full dataset at the selected stopping iteration.

Usage

cv_boost_raw(
X,
y,
k = 5,
ny = 0.1,
mstop = 250,
type = c("gaussian", "logistic"),
MIBoost = TRUE,
pool = TRUE,
pool_threshold = 0,
impute_args = list(m = 10, maxit = 5, printFlag = FALSE),
impute_method = NULL,
use_quickpred = TRUE,
quickpred_args = list(mincor = 0.1, minpuc = 0.5, method = NULL, include = NULL,

exclude = NULL),
seed = 123,
show_progress = TRUE,
return_full_imputations = FALSE,
center = "auto"

)

Arguments

X A data.frame or matrix of predictors of size n × p containing missing values.
Column names are preserved. If no missing values are present in X or y, use
cv_boost_imputed instead.

y A vector of length n with the outcome (numeric for type = "gaussian"; nu-
meric 0/1 or a 2-level factor for type = "logistic"). Must align with X rows.

k Number of cross-validation folds. Default is 5.

ny Learning rate. Defaults to 0.1.

mstop Maximum number of boosting iterations to evaluate during cross-validation.
The selected mstop is the value minimizing the mean CV error over 1:mstop.
Default is 250.

type Type of loss function. One of: "gaussian" (mean squared error) for continuous
responses, or "logistic" (binomial deviance) for binary responses.

MIBoost Logical. If TRUE, applies the MIBoost algorithm, which enforces uniform vari-
able selection across all imputed datasets. If FALSE, variables are selected inde-
pendently within each imputed dataset, and pooling is governed by pool_threshold.
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pool Logical. If TRUE, models across the M imputed datasets are aggregated into a
single final model. If FALSE, M separate models are returned.

pool_threshold Only used when MIBoost = FALSE and pool = TRUE. Controls the pooling rule
when aggregating the M models obtained from the imputed datasets into a sin-
gle final model. A candidate variable is included only if it is selected in at least
pool_threshold (a value in (0, 1) proportion of the imputed datasets; coeffi-
cients of all other variables are set to zero. A value of 0 corresponds to estimate-
averaging, while values > 0 correspond to selection-frequency thresholding.

impute_args A named list of arguments forwarded to mice::mice() both inside CV and
on the full dataset (e.g., m, maxit, seed, printFlag, etc.). Internally, data,
predictorMatrix, and ignore are set by the function and will override any
values supplied here. If m is missing, a default of 10 is used.

impute_method Optional named character vector passed to mice::mice(method = ...) to con-
trol per-variable methods (e.g., "pmm", "logreg"). This may be a partial vector:
entries are merged by name into a full default method vector derived from the
data; unmatched names are ignored with a warning. If NULL (default), numeric
columns use "pmm"; for type = "logistic", the outcome uses "logreg" (co-
erced to a 2-level factor if needed).

use_quickpred Logical. If TRUE (default), build the predictorMatrix via mice::quickpred()
on the training data within each fold; otherwise use mice::make.predictorMatrix().

quickpred_args A named list of arguments forwarded to mice::quickpred() (e.g., mincor,
minpuc, method, include, exclude). Ignored when use_quickpred = FALSE.

seed Base random seed for fold assignment. If impute_args$seed is not supplied,
this value also seeds imputation; otherwise the user-specified impute_args$seed
is respected and deterministically offset per fold. RNG state is restored on exit.
Default 123.

show_progress Logical. If TRUE (default), print progress for the imputation and boosting phases,
plus a summary at completion.

return_full_imputations

Logical. If TRUE, attach the list of full-data imputations used for the final fit as
$full_imputations = list(X = <list length m>, y = <list length m>). De-
fault is FALSE.

center One of c("auto", "off", "force"). Controls centering of X within each im-
puted dataset. With "auto" (recommended), centering is applied only if the
training matrix is not already centered. With "force", centering is always ap-
plied. With "off", centering is skipped. Validation sets are always centered
using the means from the corresponding training set.

Details

Within each CV fold, the data are first split into a training subset and a validation subset. The train-
ing subset is multiply imputed M times using mice, producing M imputed training datasets. Co-
variates in each training dataset are centered. The corresponding validation subset is then imputed
M times using the imputation models learned from the training imputations, ensuring consistency
between training and validation. These validation datasets are centered using the variable means
from their associated training datasets.
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impu_boost is run on the imputed training datasets for up to mstop boosting iterations. At each
iteration, prediction errors are computed on the corresponding validation datasets and averaged
across imputations. This yields an aggregated error curve per fold, which is then averaged across
folds. The optimal stopping iteration is chosen as the mstop value minimizing the mean CV error.

Finally, the full dataset is multiply imputed M times and centered independently within each im-
puted dataset. impu_boost is applied to these datasets for the selected number of boosting iterations
to obtain the final model.

Imputation control. All key mice settings can be passed via impute_args (a named list forwarded
to mice::mice()) and/or impute_method (a named character vector of per-variable methods). In-
ternally, the function builds a full default method vector from the actual data given to mice(), then
merges any user-supplied entries by name. The names in impute_method must exactly match the
column names in data.frame(y = y, X) (i.e., the data passed to mice()). Partial vectors are al-
lowed; variables not listed fall back to defaults; unknown names are ignored with a warning. The
function sets and may override data, method (after merging overrides), predictorMatrix, and
ignore (to enforce train-only learning). Predictor matrices can be built with mice::quickpred()
(see use_quickpred, quickpred_args) or with mice::make.predictorMatrix().

Value

A list with:

• CV_error: numeric vector (length mstop) of mean CV loss.

• best_mstop: integer index minimizing CV_error.

• final_model: numeric vector of length 1 + p with the intercept and pooled coefficients of the
final fit on full-data imputations at best_mstop.

• full_imputations: (optional) when return_full_imputations=TRUE, a list list(X = <list
length m>, y = <list length m>) containing the full-data imputations used for the final model.

• folds: integer vector of length n giving the CV fold id for each observation (1..k).

References

Kuchen, R. (2025). MIBoost: A Gradient Boosting Algorithm for Variable Selection After Multiple
Imputation. arXiv:2507.21807. doi:10.48550/arXiv.2507.21807 https://arxiv.org/abs/2507.
21807.

See Also

impu_boost, cv_boost_imputed, mice

Examples

utils::data(booami_sim)
X <- booami_sim[, 1:25]
y <- booami_sim[, 26]

res <- cv_boost_raw(
X = X, y = y,

https://doi.org/10.48550/arXiv.2507.21807
https://arxiv.org/abs/2507.21807
https://arxiv.org/abs/2507.21807
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k = 2, seed = 123,
impute_args = list(m = 2, maxit = 1, printFlag = FALSE, seed = 1),
quickpred_args = list(mincor = 0.30, minpuc = 0.60),
mstop = 50,
show_progress = FALSE

)

# Partial custom imputation method override
meth <- c(y = "pmm", X1 = "pmm")
res2 <- cv_boost_raw(

X = X, y = y,
k = 2, seed = 123,
impute_args = list(m = 2, maxit = 1, printFlag = FALSE, seed = 456),
quickpred_args = list(mincor = 0.30, minpuc = 0.60),
mstop = 50,
impute_method = meth,
show_progress = FALSE

)

impu_boost Component-Wise Gradient Boosting Across Multiply Imputed
Datasets

Description

Applies component-wise gradient boosting to multiply imputed datasets. Depending on the settings,
either a separate model is reported for each imputed dataset, or the M models are pooled to yield
a single final model. For pooling, one can choose the algorithm MIBoost (Boosting after Multiple
Imputation), which enforces a uniform variable-selection scheme across all imputations, or the more
conventional approaches of estimate-averaging and selection-frequency thresholding.

Usage

impu_boost(
X_list,
y_list,
X_list_val = NULL,
y_list_val = NULL,
ny = 0.1,
mstop = 250,
type = c("gaussian", "logistic"),
MIBoost = TRUE,
pool = TRUE,
pool_threshold = 0,
center = "auto"

)
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Arguments

X_list List of length M; each element is an n × p numeric predictor matrix from one
imputed dataset.

y_list List of length M; each element is a length-n numeric response vector from one
imputed dataset.

X_list_val Optional validation list (same structure as X_list).

y_list_val Optional validation list (same structure as y_list).

ny Learning rate. Defaults to 0.1.

mstop Number of boosting iterations (default 250).

type Type of loss function. One of: "gaussian" (mean squared error) for continuous
responses, or "logistic" (binomial deviance) for binary responses.

MIBoost Logical. If TRUE, applies the MIBoost algorithm, which enforces uniform vari-
able selection across all imputed datasets. If FALSE, variables are selected inde-
pendently within each imputed dataset, and pooling is governed by pool_threshold.

pool Logical. If TRUE, models across the M imputed datasets are aggregated into a
single final model. If FALSE, M separate models are returned.

pool_threshold Only used when MIBoost = FALSE and pool = TRUE. Controls the pooling rule
when aggregating the M models obtained from the imputed datasets into a sin-
gle final model. A candidate variable is included only if it is selected in at
least pool_threshold (a value in (0, 1)) proportion of the imputed datasets;
coefficients of all other variables are set to zero. A value of 0 corresponds to
estimate-averaging, while values > 0 correspond to selection-frequency thresh-
olding.

center One of c("auto", "off", "force"). Controls centering of X within each im-
puted dataset. With "auto" (recommended), centering is applied only if the
training matrix is not already centered. With "force", centering is always ap-
plied. With "off", centering is skipped. If X_list_val is provided, validation
sets are centered using the means from the corresponding training set.

Details

This function supports MIBoost, which enforces uniform variable selection across multiply imputed
datasets. For full methodology, see the references below.

Value

A list with elements:

• INT: intercept(s). A scalar if pool = TRUE, otherwise a length-M vector.

• BETA: coefficient estimates. A length-p vector if pool = TRUE, otherwise an M × p matrix.

• CV_error: vector of validation errors (if validation data were provided), otherwise NULL.
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See Also

simulate_booami_data, cv_boost_raw, cv_boost_imputed

Examples

set.seed(123)
utils::data(booami_sim)

M <- 2
n <- nrow(booami_sim)
x_cols <- grepl("^X\\d+$", names(booami_sim))

tr_idx <- sample(seq_len(n), floor(0.8 * n))
dat_tr <- booami_sim[tr_idx, , drop = FALSE]
dat_va <- booami_sim[-tr_idx, , drop = FALSE]

pm_tr <- mice::quickpred(dat_tr, method = "spearman",
mincor = 0.30, minpuc = 0.60)

imp_tr <- mice::mice(dat_tr, m = M, predictorMatrix = pm_tr,
maxit = 1, printFlag = FALSE)

imp_va <- mice::mice.mids(imp_tr, newdata = dat_va, maxit = 1, printFlag = FALSE)

X_list <- vector("list", M)
y_list <- vector("list", M)
X_list_val <- vector("list", M)
y_list_val <- vector("list", M)
for (m in seq_len(M)) {

tr_m <- mice::complete(imp_tr, m)
va_m <- mice::complete(imp_va, m)
X_list[[m]] <- data.matrix(tr_m[, x_cols, drop = FALSE])
y_list[[m]] <- tr_m$y
X_list_val[[m]] <- data.matrix(va_m[, x_cols, drop = FALSE])
y_list_val[[m]] <- va_m$y

}

fit <- impu_boost(
X_list, y_list,
X_list_val = X_list_val, y_list_val = y_list_val,

https://doi.org/10.1214/07-STS242
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.18637/jss.v045.i03
https://doi.org/10.48550/arXiv.2507.21807
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ny = 0.1, mstop = 50, type = "gaussian",
MIBoost = TRUE, pool = TRUE, center = "auto"

)

which.min(fit$CV_error)
head(fit$BETA)
fit$INT

predict.booami Predict from booami objects

Description

Predict responses (link or response scale) from fitted booami models.

Usage

## S3 method for class 'booami_cv'
predict(object, newdata, type = c("link", "response"), ...)

## S3 method for class 'booami_pooled'
predict(object, newdata, type = c("link", "response"), ...)

## S3 method for class 'booami_multi'
predict(object, newdata, type = c("link", "response"), ...)

Arguments

object A fitted booami object. One of:
• "booami_cv" — cross-validated model object.
• "booami_pooled" — pooled fit from impu_boost(..., pool = TRUE).
• "booami_multi" — unpooled fit from impu_boost(..., pool = FALSE).

newdata A data.frame or matrix of predictors (same columns/order as training).
type Either "link" for the linear predictor, or "response" for mean/probability (Gaus-

sian/logistic respectively).
... Passed to booami_predict. For "booami_multi", you may use aggregate =

"mean"|"median"|NULL and/or which_m = <index> to control how predictions
are aggregated across imputations.

Value

A numeric vector of predictions.

See Also

booami_predict
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simulate_booami_data Simulate a Booami Example Dataset with Missing Values

Description

Generates a dataset with p predictors, of which the first p_inf are informative. Predictors are drawn
from a multivariate normal with a chosen correlation structure, and the outcome can be continuous
(type = "gaussian") or binary (type = "logistic"). Missing values are introduced via MAR or
MCAR.

Usage

simulate_booami_data(
n = 300,
p = 25,
p_inf = 5,
rho = 0.3,
type = c("gaussian", "logistic"),
beta_range = c(1, 2),
intercept = 1,
corr_structure = c("all_ar1", "informative_cs", "blockdiag", "none"),
rho_noise = NULL,
noise_sd = 1,
miss = c("MAR", "MCAR"),
miss_prop = 0.25,
mar_drivers = c(1, 2, 3),
gamma_vec = NULL,
calibrate_mar = FALSE,
mar_scale = TRUE,
keep_observed = integer(0),
jitter_sd = 0.25,
keep_mar_drivers = TRUE

)

Arguments

n Number of observations (default 300).

p Total number of predictors (default 25).

p_inf Number of informative predictors (default 5); must satisfy p_inf <= p.

rho Correlation parameter (interpretation depends on corr_structure).

type Either "gaussian" or "logistic" (default "gaussian").

beta_range Length-2 numeric; coefficients for the first p_inf informative predictors are
drawn i.i.d. Uniform(beta_range[1], beta_range[2]).

intercept Intercept added to the linear predictor (default 1).

corr_structure One of "all_ar1", "informative_cs", "blockdiag", "none".
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rho_noise Optional correlation for the noise block when corr_structure = "blockdiag"
(defaults to rho).

noise_sd Std. dev. of Gaussian noise added to y when type = "gaussian" (default 1);
ignored for type = "logistic".

miss Missingness mechanism: "MAR" or "MCAR" (default "MAR").

miss_prop Target marginal missingness proportion (default 0.25).

mar_drivers Indices of predictors that drive MAR (default c(1, 2, 3)). Must lie within 1..p.
(Out-of-range indices are ignored; an empty set is not allowed.)

gamma_vec Coefficients for MAR drivers; length must equal the number of MAR drivers
actually used (i.e., length(mar_drivers) after restricting to 1..p). If NULL,
heuristic defaults are used (starting from c(0.5, -0.35, 0.15) as available).

calibrate_mar If TRUE, calibrates the MAR intercept by root-finding so that the average miss-
ingness matches miss_prop. If FALSE, uses qlogis(miss_prop).

mar_scale If TRUE (default), standardize MAR drivers before applying gamma_vec.

keep_observed Indices of predictors kept fully observed (values outside 1..p are ignored).

jitter_sd Standard deviation of the per-row jitter added to the MAR logit to induce het-
erogeneity (default 0.25).

keep_mar_drivers

Logical; if TRUE (default), predictors in mar_drivers are kept fully observed
under MAR so that missingness depends only on observed covariates (MAR). If
FALSE, those drivers may be masked as well, making the mechanism effectively
non-ignorable (MNAR) for variables whose missingness depends on them.

Details

Correlation structures:

• "all_ar1": AR(1) correlation with parameter rho across all p predictors.

• "informative_cs": compound symmetry (exchangeable) within the first p_inf predictors
with parameter rho; others independent.

• "blockdiag": block-diagonal AR(1): the informative block (size p_inf) has AR(1) with rho;
the noise block (size p - p_inf) has AR(1) with rho_noise (defaults to rho).

• "none": independent predictors.

Missingness:

• "MAR": for each row, a logit missingness score is computed from the selected MAR drivers
(see mar_drivers, gamma_vec, mar_scale); an intercept is set via calibrate_mar to target
the proportion miss_prop (otherwise qlogis(miss_prop)), and per-row jitter N(0, jittersd)
adds heterogeneity. The resulting probability is used to mask predictors (except those in
keep_observed and—if keep_mar_drivers = TRUE—the drivers themselves). For type =
"gaussian" only, y is also subject to the same missingness mechanism.

• "MCAR": each predictor (except those in keep_observed) is masked independently with prob-
ability miss_prop. For type = "gaussian" only, y is also masked MCAR with probability
miss_prop.
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Note: In the simulation, missingness probabilities are computed using the fully observed latent
covariates before masking. From an analyst’s perspective after masking, allowing the MAR drivers
themselves to be missing makes missingness depend on unobserved values—i.e., effectively non-
ignorable (MNAR). Setting keep_mar_drivers = TRUE keeps those drivers observed and yields a
MAR mechanism.

Value

A list with elements:

• data: data.frame with columns X1..Xp and y, containing NAs per the missingness mecha-
nism.

• beta: numeric length-p vector of true coefficients (non-zeros in the first p_inf positions).

• informative: integer vector 1:p_inf.

• type: character, outcome type ("gaussian" or "logistic").

• intercept: numeric intercept used.

The data element additionally carries attributes: "true_beta", "informative", "type", "corr_structure",
"rho", "rho_noise" (if set), "intercept", "noise_sd" (Gaussian; NA otherwise), "mar_scale",
and "keep_mar_drivers".

Reproducing the shipped dataset booami_sim

set.seed(123)
sim <- simulate_booami_data(

n = 300, p = 25, p_inf = 5, rho = 0.3,
type = "gaussian", beta_range = c(1, 2), intercept = 1,
corr_structure = "all_ar1", rho_noise = NULL, noise_sd = 1,
miss = "MAR", miss_prop = 0.25,
mar_drivers = c(1, 2, 3), gamma_vec = NULL,
calibrate_mar = FALSE, mar_scale = TRUE,
keep_observed = integer(0), jitter_sd = 0.25,
keep_mar_drivers = TRUE

)
booami_sim <- sim$data

See Also

booami_sim, cv_boost_raw, cv_boost_imputed, impu_boost

Examples

set.seed(42)
sim <- simulate_booami_data(

n = 200, p = 15, p_inf = 4, rho = 0.25,
type = "gaussian", miss = "MAR", miss_prop = 0.20

)
d <- sim$data
dim(d)
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mean(colSums(is.na(d)) > 0) # fraction of columns with any NAs
head(attr(d, "true_beta"))
attr(d, "informative")

# Example with block-diagonal correlation and protected MAR drivers
sim2 <- simulate_booami_data(

n = 150, p = 12, p_inf = 3, rho = 0.40, rho_noise = 0.10,
corr_structure = "blockdiag", miss = "MAR", miss_prop = 0.30,
mar_drivers = c(1, 2), keep_mar_drivers = TRUE

)
colSums(is.na(sim2$data))[1:4]

# Binary outcome example
sim3 <- simulate_booami_data(

n = 100, p = 10, p_inf = 2, rho = 0.2,
type = "logistic", miss = "MCAR", miss_prop = 0.15

)
table(sim3$data$y, useNA = "ifany")

utils::data(booami_sim)
dim(booami_sim)
head(attr(booami_sim, "true_beta"))
attr(booami_sim, "informative")
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