Brain Imaging Data Structure (BIDS
) is a standard for
organizing neuroimaging and behavioral data (see https://bids.neuroimaging.io/index.html).
The goal of package bidsr
is to provide comprehensive
tools to query and manipulate ‘BIDS’ data files.
This vignette aims to demonstrate high-level tools to query a ‘BIDS’ project. The code requires executing a built-in command to download ‘BIDS’ example data-sets. Please copy-paste-run the following R commands:
BIDS
projectLet’s inspect the project ds000117
from the official
BIDS
example repository:
project_path <- file.path(example_root, "ds000117")
project <- bids_project(path = project_path)
print(project)
#> <ds000117>[BIDSProject] at:
#> /Users/dipterix/Library/Caches/org.R-project.R/R/bidsr/bids-examples/bids-examples-master/ds000117
#> - raw-data path: .
#> - source-data path: sourcedata
#> - derivative path: derivatives
#> +- Descriptions: ---------------------------------------------------------------
#> | This dataset was obtained from the OpenNeuro project
#> | (https://www.openneuro.org). Accession #: ds000117
#> |
#> | The same dataset is also available here:
#> | ftp://ftp.mrc-cbu.cam.ac.uk/personal/rik.henson/wakemandg_hensonrn/, but in
#> | a non-BIDS format (which may be easier to download by subject rather than
#> | by modality)
#> |
#> | Note that it is a subset of the data available on OpenfMRI
#> | (http://www.openfmri.org; Accession #: ds000117).
#> |
#> | Description: Multi-subject, multi-modal (sMRI+fMRI+MEG+EEG) neuroimaging
#> | dataset on face processing
#> |
#> | Please cite the following reference if you use these data:
#> |
#> | Wakeman, D.G. & Henson, R.N. (2015). A multi-subject, multi-modal human
#> | neuroimaging dataset. Sci. Data 2:150001 doi: 10.1038/sdata.2015.1
#> |
#> | The data have been used in several publications including, for example:
#> |
#> | Henson, R.N., Abdulrahman, H., Flandin, G. & Litvak, V. (2019). Multimodal
#> | integration of M/EEG and f/MRI data in SPM12. Frontiers in Neuroscience,
#> | Methods, 13, 300.
#> |
#> | Henson, R.N., Wakeman, D.G., Litvak, V. & Friston, K.J. (2011). A
#> | Parametric Empirical Bayesian framework for the EEG/MEG inverse problem:
#> | generative models for multisubject and multimodal integration. Frontiers in
#> | Human Neuroscience, 5, 76, 1-16.
#> |
#> | Chapter 42 of the SPM12 manual
#> | (http://www.fil.ion.ucl.ac.uk/spm/doc/manual.pdf)
#> |
#> | (see
#> | ftp://ftp.mrc-cbu.cam.ac.uk/personal/rik.henson/wakemandg_hensonrn/Publications
#> | for full list), as well as the BioMag2010 data competition and the Kaggle
#> | competition: https://www.kaggle.com/c/decoding-the-human-brain)
#> |
#> | ==================================================================================
#> |
#> | func/ ----- Unlike in v1-v3 of this dataset, the first two (dummy) volumes
#> | have now been removed (as stated in *.json), so event onset times correctly
#> | refer to t=0 at start of third volume
#> |
#> | Note that, owing to scanner error, Subject 10 only has 170 volumes in last
#> | run (Run 9) (hence the BIDS warning of some onsets in events.tsv file being
#> | later than the data)
#> |
#> | meg/ ---- Three anatomical fiducials were digitized for aligning the MEG
#> | with the MRI: the nasion (lowest depression between the eyes) and the left
#> | and right ears (lowest depression between the tragus and the helix, above
#> | the tragus). This procedure is illustrated here:
#> | http://neuroimage.usc.edu/brainstorm/CoordinateSystems#Subject_Coordinate_System_.28SCS_.2F_CTF.29
#> | and in task-facerecognition_fidinfo.pdf
#> |
#> | The following triggers are included in the .fif files and are also used in
#> | the “trigger” column of the meg and bold events files:
#> |
#> | Trigger Label Simplified Label
#> |
#> | 5 Initial Famous Face FAMOUS 6 Immediate Repeat Famous Face FAMOUS 7
#> | Delayed Repeat Famous Face FAMOUS 13 Initial Unfamiliar Face UNFAMILIAR 14
#> | Immediate Repeat Unfamiliar Face UNFAMILIAR 15 Delayed Repeat Unfamiliar
#> | Face UNFAMILIAR 17 Initial Scrambled Face SCRAMBLED 18 Immediate Repeat
#> | Scrambled Face SCRAMBLED 19 Delayed Repeat Scrambled Face SCRAMBLED
#> |
#> | stimuli/meg/ ------------ The .bmp files correspond to those described in
#> | the text. There are 6 additional images in this directory, which were used
#> | in the practice experiment to familiarize participants with the task (hence
#> | some more BIDS validator warnings)
#> |
#> | stimuli/mri/ ------------ The .bmp files correspond to those described in
#> | the text.
#> |
#> | Defacing -------- Defacing of MPRAGE T1 images was performed by the
#> | submitter. A subset of subjects have given consent for non-defaced versions
#> | to be shared - in which case, please contact rik.henson@mrc-cbu.cam.ac.uk.
#> |
#> | Quality Control --------------- Mriqc was run on the dataset. Results are
#> | located in derivatives/mriqc. Learn more about it here:
#> | https://mriqc.readthedocs.io/en/latest/
#> |
#> | Known Issues ------------ N/A
#> |
#> | Relationship of Subject Numbering relative to other versions of Dataset
#> | ------------
#> |
#> | There are multiple versions of the dataset available on the web (see notes
#> | above), and these entailed a renumbering of the subjects for various
#> | reasons. Here are all the versions and how to match subjects between them
#> | (plus some rationale and history for different versions):
#> |
#> | 1. Original Paper (N=19): Wakeman & Henson (2015): doi:10.1038/sdata.2015.1
#> | Number refers to order that tested (and some, eg 4, 7, 13 etc were excluded
#> | for not completing both MRI and MEG sessions)
#> |
#> | 2. openfMRI, renumbered from paper:
#> | http://openfmri.org/s3-browser/?prefix=ds000117/ds000117_R0.1.1/uncompressed/
#> | Numbers 1-19 just made contiguous
#> |
#> | 3. FTP subset of N=16: ftp:
#> | ftp://ftp.mrc-cbu.cam.ac.uk/personal/rik.henson/wakemandg_hensonrn/ This
#> | set was used for SPM Courses Designed to illustrate multimodal integration,
#> | so wanted good MRI+MEG+EEG data for all subjects Removed original
#> | subject_01 and subject_06 because bad EEG data; subject_19 because poor EEG
#> | and fMRI data (And renumbered subject_14 for some reason).
#> |
#> | 4. Current OpenNeuro subset N=16 used for (BIDS):
#> | https://openneuro.org/datasets/ds000117 OpenNeuro was rebranding of
#> | openfMRI, and enforced BIDS format Since this version designed to
#> | illustrate multi-modal BIDS, kept same numbering as FTP
#> |
#> | W&H2015 openfMRI FTP openNeuro ======== ====== === ======= subject_01
#> | sub001 subject_02 sub002 Sub01 sub-01 subject_03 sub003 Sub02 sub-02
#> | subject_05 sub004 Sub03 sub-03 subject_06 sub005 subject_08 sub006 Sub05
#> | sub-05 subject_09 sub007 Sub06 sub-06 subject_10 sub008 Sub07 sub-07
#> | subject_11 sub009 Sub08 sub-08 subject_12 sub010 Sub09 sub-09 subject_14
#> | sub011 Sub04 sub-04 subject_15 sub012 Sub10 sub-10 subject_16 sub013 Sub11
#> | sub-11 subject_17 sub014 Sub12 sub-12 subject_18 sub015 Sub13 sub-13
#> | subject_19 sub016 subject_23 sub017 Sub14 sub-14 subject_24 sub018 Sub15
#> | sub-15 subject_25 sub019 Sub16 sub-16
dataset_description.json
The top-level data description can be parsed via
To obtain the values, use $
or @
operator
(same as .
in Python
):
participants.tsv
File participants.tsv
is a top-level tabular that lists
all the subjects. This file can be queried via method
get_participants
:
Alternatively, we can read any tsv
file with
as_bids_tabular
participant_path <- file.path(project, "participants.tsv")
as_bids_tabular(participant_path, cls = BIDSTabularParticipants)
#> <BIDS Tabular>[BIDSTabular]
#> $meta:
#> {
#> "age": {
#> "LongName": "age",
#> "Units": "year",
#> "TermURL": "http://purl.obolibrary.org/obo/PATO_0000011"
#> },
#> "sex": {
#> "LongName": "sex",
#> "Description": "String value indicating phenotypical sex.",
#> "Levels": {
#> "F": {
#> "Description": "Female",
#> "TermURL": "http://purl.obolibrary.org/obo/PATO_0000383"
#> },
#> "M": {
#> "Description": "Male",
#> "TermURL": "http://purl.obolibrary.org/obo/PATO_0000384"
#> }
#> },
#> "TermURL": "http://purl.obolibrary.org/obo/PATO_0001894"
#> },
#> "first_ses": {
#> "LongName": "first session",
#> "Description": "Indicates which session was the first session for this subject.",
#> "Levels": {
#> "meg": {
#> "Description": "meg was the first session"
#> },
#> "mri": {
#> "Description": "mri was the first session"
#> }
#> }
#> }
#> }
#>
#> $content:
#> participant_id age sex first_ses
#> <char> <int> <char> <char>
#> 1: sub-01 31 M meg
#> 2: sub-02 25 M meg
#> 3: sub-03 30 M meg
#> 4: sub-04 26 F meg
#> 5: sub-05 23 F meg
#> ---
#> 13: sub-13 25 F meg
#> 14: sub-14 24 F mri
#> 15: sub-15 30 M mri
#> 16: sub-16 25 M mri
#> 17: sub-emptyroom NA <NA> <NA>
BIDS
subjectGiven a project path or instance, a BIDS
subject can be
instantiated via
subject <- bids_subject(
project = project,
subject_code = "sub-06"
)
print(subject)
#> <BIDSSubject> `sub-06` (project `ds000117`)
All BIDS
subjects have entity key sub-
that
marks the subject code, for example, sub-06
means subject
06
, hence the entity key sub-
can be omitted,
and bidsr
accepts input such as
subject_code = "06"
.
If project
is not instantiated, its path is also
acceptable, check this alternative:
BIDS
mainly focuses on regulating the raw data, however,
it also supports formatting source data and derivatives. The
corresponding paths can be queried via resolve_bids_path
method. To resolve the root path for raw/source data,
# resolve subject path (raw data by default)
resolve_bids_path(subject)
#> /Users/dipterix/Library/Caches/org.R-project.R/R/bidsr/bids-examples/bids-examples-master/ds000117/./sub-06
resolve_bids_path(subject, storage = "source")
#> /Users/dipterix/Library/Caches/org.R-project.R/R/bidsr/bids-examples/bids-examples-master/ds000117/sourcedata/sub-06
For derivatives, please specify the derivative names, for example:
The official BIDS
and its extensions support various of
data types, such as anat
, func
,
meg
, eeg
, ieeg
, etc.
To query the data files by type, use query_bids
method.
The following example shows all the anat
data path, and its
potential meta files
query_bids(subject, "anat")
#> parsed data_type suffix extension sub ses acq run echo
#> <AsIs> <char> <char> <char> <char> <char> <char> <int> <int>
#> 1: sub-06/s.... anat T1w nii.gz 06 mri mprage NA NA
#> 2: sub-06/s.... anat FLASH nii.gz 06 mri <NA> 1 1
#> 3: sub-06/s.... anat FLASH nii.gz 06 mri <NA> 1 2
#> 4: sub-06/s.... anat FLASH nii.gz 06 mri <NA> 1 3
#> 5: sub-06/s.... anat FLASH nii.gz 06 mri <NA> 1 4
#> 6: sub-06/s.... anat FLASH nii.gz 06 mri <NA> 1 5
#> 7: sub-06/s.... anat FLASH nii.gz 06 mri <NA> 1 6
#> 8: sub-06/s.... anat FLASH nii.gz 06 mri <NA> 1 7
#> 9: sub-06/s.... anat FLASH nii.gz 06 mri <NA> 2 1
#> 10: sub-06/s.... anat FLASH nii.gz 06 mri <NA> 2 2
#> 11: sub-06/s.... anat FLASH nii.gz 06 mri <NA> 2 3
#> 12: sub-06/s.... anat FLASH nii.gz 06 mri <NA> 2 4
#> 13: sub-06/s.... anat FLASH nii.gz 06 mri <NA> 2 5
#> 14: sub-06/s.... anat FLASH nii.gz 06 mri <NA> 2 6
#> 15: sub-06/s.... anat FLASH nii.gz 06 mri <NA> 2 7
To use fine-grained search parameters, replace 'anat'
with a list of search parameters.
query_bids(subject, list(
# dataset to filter, choices are raw, source, or derivative
storage = "raw",
# include JSON sidecars; default is `FALSE`
sidecars = FALSE,
# set to `NULL` to include all data types
data_types = "anat",
# filter all suffixes
suffixes = NULL
))
#> parsed data_type suffix extension sub ses acq run echo
#> <AsIs> <char> <char> <char> <char> <char> <char> <int> <int>
#> 1: sub-06/s.... anat T1w nii.gz 06 mri mprage NA NA
#> 2: sub-06/s.... anat FLASH nii.gz 06 mri <NA> 1 1
#> 3: sub-06/s.... anat FLASH nii.gz 06 mri <NA> 1 2
#> 4: sub-06/s.... anat FLASH nii.gz 06 mri <NA> 1 3
#> 5: sub-06/s.... anat FLASH nii.gz 06 mri <NA> 1 4
#> 6: sub-06/s.... anat FLASH nii.gz 06 mri <NA> 1 5
#> 7: sub-06/s.... anat FLASH nii.gz 06 mri <NA> 1 6
#> 8: sub-06/s.... anat FLASH nii.gz 06 mri <NA> 1 7
#> 9: sub-06/s.... anat FLASH nii.gz 06 mri <NA> 2 1
#> 10: sub-06/s.... anat FLASH nii.gz 06 mri <NA> 2 2
#> 11: sub-06/s.... anat FLASH nii.gz 06 mri <NA> 2 3
#> 12: sub-06/s.... anat FLASH nii.gz 06 mri <NA> 2 4
#> 13: sub-06/s.... anat FLASH nii.gz 06 mri <NA> 2 5
#> 14: sub-06/s.... anat FLASH nii.gz 06 mri <NA> 2 6
#> 15: sub-06/s.... anat FLASH nii.gz 06 mri <NA> 2 7
Here is another example that filters derivative files that are
BIDS
compliant.
query_bids(subject, list(
# filter derivatives
storage = "derivative",
# filter `derivatives/meg_derivatives` folder
prefix = "meg_derivatives",
# include JSON sidecars
sidecars = TRUE,
# set to `NULL` to include all data types
data_types = NULL,
# only keep files with *_meg/log.* suffixes
suffixes = c("meg", "log")
))
#> parsed data_type suffix extension sub ses task
#> <AsIs> <char> <char> <char> <char> <char> <char>
#> 1: derivati.... _root meg json 06 meg facerecognition
#> 2: derivati.... meg meg json 06 meg facerecognition
#> 3: derivati.... meg log txt 06 meg facerecognition
#> 4: derivati.... meg meg fif 06 meg facerecognition
#> 5: derivati.... meg log txt 06 meg facerecognition
#> 6: derivati.... meg meg fif 06 meg facerecognition
#> 7: derivati.... meg log txt 06 meg facerecognition
#> 8: derivati.... meg meg fif 06 meg facerecognition
#> 9: derivati.... meg log txt 06 meg facerecognition
#> 10: derivati.... meg meg fif 06 meg facerecognition
#> 11: derivati.... meg log txt 06 meg facerecognition
#> 12: derivati.... meg meg fif 06 meg facerecognition
#> 13: derivati.... meg log txt 06 meg facerecognition
#> 14: derivati.... meg meg fif 06 meg facerecognition
#> proc run
#> <char> <int>
#> 1: sss NA
#> 2: sss NA
#> 3: sss 1
#> 4: sss 1
#> 5: sss 2
#> 6: sss 2
#> 7: sss 3
#> 8: sss 3
#> 9: sss 4
#> 10: sss 4
#> 11: sss 5
#> 12: sss 5
#> 13: sss 6
#> 14: sss 6
BIDS
entityHere is an example of filtering func
event files with
BIDS
entity run=02
The first column contains a
list of file instances. Here’s an example to read the ACPC
electrode coordinates:
filter_result <- query_bids(subject, list(
storage = "raw",
sidecars = FALSE,
data_types = "func",
suffixes = "events",
# use R "formula" to filter entities
entity_filters = list(
# entity_key ~ expression returning TRUE/FALSE
# When filtering the entities, `entity_key` will be
# replaced with its value
run ~ as.integer(run) == 2
)
))
filter_result
#> parsed data_type suffix extension sub ses task run
#> <AsIs> <char> <char> <char> <char> <char> <char> <int>
#> 1: sub-06/s.... func events tsv 06 mri facerecognition 2
The first column "filter_result"
is the parsed file
object with entity information:
event_file <- filter_result$parsed[[1]]
event_file
#> sub-06/ses-mri/func/sub-06_ses-mri_task-facerecognition_run-02_events.tsv
To get entity values, use get_bids_entity
:
If supported by schema, the BIDS
entity rules for the
file can be queried via get_bids_entity_rules(event_file)
method
Object event_file
is relative to the project root, hence
can be read by joining the project root path
event_path <- file.path(project, event_file)
# or
event_path <- resolve_bids_path(project, format(event_file))
as_bids_tabular(event_path)
#> <BIDS Tabular>[BIDSTabular]
#> $meta:
#> {}
#>
#> $content:
#> onset duration circle_duration stim_type trigger button_pushed
#> <num> <num> <num> <char> <int> <int>
#> 1: 0.000 0.897 0.596 UNFAMILIAR 13 4
#> 2: 3.207 0.895 0.549 UNFAMILIAR 14 4
#> 3: 6.514 0.959 0.547 SCRAMBLED 17 7
#> 4: 9.738 0.850 0.495 SCRAMBLED 18 7
#> 5: 12.895 0.988 0.548 FAMOUS 5 4
#> ---
#> 96: 385.073 0.935 0.439 UNFAMILIAR 13 4
#> 97: 388.331 0.944 0.551 UNFAMILIAR 13 4
#> 98: 391.455 0.988 0.417 FAMOUS 5 7
#> 99: 394.711 0.912 0.498 FAMOUS 6 7
#> 100: 397.401 0.012 0.000 <NA> 999 0
#> response_time stim_file
#> <num> <char>
#> 1: 0.849 func/u020.bmp
#> 2: 0.729 func/u020.bmp
#> 3: 1.197 func/s030.bmp
#> 4: 0.695 func/s030.bmp
#> 5: 1.075 func/f027.bmp
#> ---
#> 96: 0.884 func/u031.bmp
#> 97: 1.183 func/u029.bmp
#> 98: 0.869 func/f021.bmp
#> 99: 1.200 func/f021.bmp
#> 100: 0.000 func/Circle.bmp