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anticlust anticlust: Subset Partitioning via Anticlustering

Description

The method of anticlustering partitions a pool of elements into groups (i.e., anticlusters) in such
a way that the between-group similarity is maximized and – at the same time – the within-group
heterogeneity is maximized. This reverses the logic of cluster analysis that strives for high within-
group homogeneity and low similarity of the different groups. Computationally, anticlustering is
accomplished by maximizing instead of minimizing a clustering objective function, such as the
intra-cluster variance (used in k-means clustering) or the sum of pairwise distances within clusters.
The function anticlustering() implements exact and heuristic anticlustering algorithms as described
in Papenberg and Klau (2020; <doi:10.1037/met0000301>). The exact approach requires that the
GNU linear programming kit (<https://www.gnu.org/software/glpk/glpk.html>) is available and the
R package ’Rglpk’ (<https://cran.R-project.org/package=Rglpk>) is installed. Some other functions
are available to solve classical clustering problems. The function balanced_clustering() applies a
cluster analysis under size constraints, i.e., creates equal-sized clusters. The function matching()
can be used for (unrestricted, bipartite, or K-partite) matching. The function wce() can be used
optimally solve the (weighted) cluster editing problem, also known as correlation clustering, clique
partitioning problem or transitivity clustering.

Primary functions

anticlustering balanced_clustering matching categorical_sampling wce

anticlustering Anticlustering

Description

Partition a pool of elements into groups (i.e., anticlusters) with the aim of creating high within-
group heterogeneity and high between-group similarity. Anticlustering is accomplished by max-
imizing instead of minimizing a clustering objective function. Implements anticlustering meth-
ods as described in Papenberg and Klau (2021; <doi:10.1037/met0000301>), Brusco et al. (2020;
<doi:10.1111/bmsp.12186>), and Papenberg (2023; <doi:10.1111/bmsp.12315>).
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Usage

anticlustering(
x,
K,
objective = "diversity",
method = "exchange",
preclustering = FALSE,
categories = NULL,
repetitions = NULL,
standardize = FALSE

)

Arguments

x The data input. Can be one of two structures: (1) A feature matrix where rows
correspond to elements and columns correspond to variables (a single numeric
variable can be passed as a vector). (2) An N x N matrix dissimilarity matrix;
can be an object of class dist (e.g., returned by dist or as.dist) or a matrix
where the entries of the upper and lower triangular matrix represent pairwise
dissimilarities.

K How many anticlusters should be created. Alternatively: (a) A vector describ-
ing the size of each group, or (b) a vector of length nrow(x) describing how
elements are assigned to anticlusters before the optimization starts.

objective The objective to be maximized. The options "diversity" (default; previously
called "distance", which is still supported), "variance", "kplus" and "dispersion"
are natively supported. May also be a user-defined function. See Details.

method One of "exchange" (default) , "local-maximum", "brusco", or "ilp". See Details.

preclustering Boolean. Should a preclustering be conducted before anticlusters are created?
Defaults to FALSE. See Details.

categories A vector, data.frame or matrix representing one or several categorical variables
whose distribution should be similar between groups. See Details.

repetitions The number of times a search heuristic is initiated when using method = "exchange",
method = "local-maximum", or method = "brusco". In the end, the best objec-
tive found across the repetitions is returned.

standardize Boolean. If TRUE and x is a feature matrix, the data is standardized through a
call to scale before the optimization starts. This argument is silently ignored if
x is a distance matrix.

Details

This function is used to solve anticlustering. That is, the data input is divided into K groups in such
a way that elements within groups are heterogeneous and the different groups are similar. Anticlus-
tering is accomplished by maximizing instead of minimizing a clustering objective function. The
maximization of four clustering objective functions is natively supported (other functions can also
defined by the user as described below):

• the ‘diversity‘, setting objective = "diversity" (this is the default objective)
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• k-means ‘variance‘ objective, setting objective = "variance"

• ‘k-plus‘ objective, an extension of the k-means variance criterion, setting objective = "kplus"

• the ‘dispersion‘ objective is the minimum distance between any two elements within the same
cluster (setting objective = "dispersion")

The k-means objective is the within-group variance—that is, the sum of the squared distances be-
tween each element and its cluster center (see variance_objective). K-means anticlustering fo-
cuses on minimizing differences with regard to the means of the input variables (that is, the columns
in x), but it ignores any other distribution characterstics such as the variance / standard deviation.
K-plus anticlustering (using objective = "kplus") is an extension of the k-means criterion that
also minimizes differences with regard to the standard deviations between groups (for details see
kplus_anticlustering). K-plus anticlustering can also be extended towards higher order mo-
ments such as skew and kurtosis; to consider these additional distribution characteristics, use the
function kplus_anticlustering. Setting objective = "kplus" in anticlustering function will
only consider means and standard deviations (in my experience, this is what users usually want). It
is strongly recommended to set the argument standardize = TRUE when using the k-plus objective.

The "diversity" objective is the sum of pairwise distances of elements within the same groups (see
diversity_objective). Hence, anticlustering using the diversity criterion maximizes between-
group similarity by maximizing within-group heterogeneity (represented as the sum of all pairwise
distances). The diversity is an all rounder objective that tends to equalize all distribution char-
acteristics between groups (such as means, variances, ...). Note that the equivalence of within-
group heterogeneity and between-group similarity only holds for equal-sized groups. For unequal-
sized groups, it is recommended to use a different objective when striving for overall between-
group similarity (e.g., the k-plus objective). In previous versions of this package, objective =
"distance" was used (and is still supported) to refer to the diversity objective, but now objective
= "diversity" is preferred because there are several clustering objectives based on pairwise dis-
tances (e.g., see dispersion_objective). In the publication that introduces the anticlust pack-
age (Papenberg & Klau, 2021), we used the term "anticluster editing" to refer to the maximization
of the diversity, because the reversed procedure - minimizing the diversity - is also known as "cluster
editing".

The "dispersion" is the minimum distance between any two elements that are part of the same
cluster; maximization of this objective ensures that any two elements within the same group are
as dissimilar from each other as possible. Applications that require high within-group heterogene-
ity often require to maximize the dispersion. Oftentimes, it is useful to also consider the diver-
sity and not only the dispersion; to optimize both objectives at the same time, see the function
bicriterion_anticlustering.

If the data input x is a feature matrix (that is: each row is a "case" and each column is a "variable")
and the option objective = "diversity" is used, the Euclidean distance is computed as the basic
unit of the diversity and dispersion objectives. If a different measure of dissimilarity is preferred,
you may pass a self-generated dissimiliarity matrix via the argument x.

In the standard case, groups of equal size are generated. Adjust the argument K to create groups of
different size (see Examples).

Algorithms for anticlustering

By default, a heuristic method is employed for anticlustering: the exchange method (method =
"exchange"). First, elements are randomly assigned to anticlusters (It is also possible to explicitly
specify the initial assignment using the argument K; in this case, K has length nrow(x).) Based on
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the initial assignment, elements are systematically swapped between anticlusters in such a way that
each swap improves the objective value. For an element, each possible swap with elements in other
clusters is simulated; then, the one swap is performed that improves the objective the most, but a
swap is only conducted if there is an improvement at all. This swapping procedure is repeated for
each element. When using method = "local-maximum", the exchange method does not terminate
after the first iteration over all elements; instead, the swapping continues until a local maximum is
reached. This means that after the exchange process has been conducted once for each data point,
the algorithm restarts with the first element and proceeds to conduct exchanges until the objective
cannot be improved.

When setting preclustering = TRUE, only the K - 1 most similar elements serve as exchange part-
ners for each element, which can speed up the optimization (more information on the preclustering
heuristic follows below). If the categories argument is used, only elements having the same value
in categories serve as exchange partners.

Using method = "brusco" implements the local bicriterion iterated local search (BILS) heuristic
by Brusco et al. (2020) and returns the partition that best optimized either the diversity or the
dispersion during the optimization process. The function bicriterion_anticlustering can also
be used to run the algorithm by Brusco et al., but it returns multiple partitions that approximate the
optimal pareto efficient set according to both objectives (diversity and dispersion). Thus, to fully
utilize the BILS algorithm, use the function bicriterion_anticlustering.

Optimal anticlustering

Usually, heuristics are employed to tackle anticlustering problems, and their performance is gen-
erally very satisfying. However, heuristics do not investigate all possible group assignments and
therefore do not (necessarily) find the "globally optimal solution", i.e., a partitioning that has the
best possible value with regard to the objective that is optimized. Enumerating all possible parti-
tions in order to find the best solution, however, quickly becomes impossible with increasing N, and
therefore it is not possible to find a global optimum this way. Because all anticlustering problems
considered here are also NP-hard, there is also no (known) clever algorithm that might identify the
best solution without considering all possibilities - at least in the worst case. Integer linear program-
ming (ILP) is an approach for tackling NP hard problems that nevertheless tries to be clever when
finding optimal solutions: It does not necessarily enumerate all possibilities but is still guaranteed
to return the optimal solution. Still, for NP hard problems such as anticlustering, ILP methods will
also fail at some point (i.e., when N increases).

For the objectives diversity and dispersion, anticlust implements optimal solution algorithms
via integer linear programming. In order to use the ILP methods, set method = "ilp". The integer
linear program optimizing the diversity was described in Papenberg & Klau, (2021; (8) - (12)).
The documentation of the function optimal_dispersion has more information on the optimal
maximization of the dispersion (this is the function that is called internally by anticlustering() when
using objective = "dispersion" and method = "ilp"). The ILP methods either require the R
package Rglpk and the GNU linear programming kit (<http://www.gnu.org/software/glpk/>), or the
R package Rsymphony and the COIN-OR SYMPHONY solver libraries (<https://github.com/coin-
or/SYMPHONY>). The function will try to find the GLPK or SYMPHONY solver and throw an
error if none is available (it prioritizes using SYMPHONY if both are available).

Optimally maximizing the diversity only works for rather small N and K; N = 20 and K = 2 is
usually solved within some seconds, but the run time quickly increases with increasing N (or K).
The maximum dispersion problem can be solved for much larger instances, especially for K = 2
(which in theory is not even NP hard; note that for the diversity, K = 2 is already NP hard). For
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K = 3, and K = 4, several 100 elements can usually be processed, especially when installing the
SYMPHONY solver.

Preclustering

A useful heuristic for anticlustering is to form small groups of very similar elements and assign
these to different groups. This logic is used as a preprocessing when setting preclustering =
TRUE. That is, before the anticlustering objective is optimized, a cluster analysis identifies small
groups of similar elements (pairs if K = 2, triplets if K = 3, and so forth). The optimization of the
anticlustering objective is then conducted under the constraint that these matched elements cannot
be assigned to the same group. When using the exchange algorithm, preclustering is conducted
using a call to matching. When using method = "ilp", the preclustering optimally finds groups of
minimum pairwise distance by solving the integer linear program described in Papenberg and Klau
(2021; (8) - (10), (12) - (13)). Note that when combining preclustering restrictions with method
= "ilp", the anticlustering result is no longer guaranteed to be globally optimal, but only optimal
given the preclustering restrictions.

Categorical variables

The argument categories may induce categorical constraints, i.e., can be used to distribute cat-
egorical variables evenly between sets. The grouping variables indicated by categories will be
balanced out across anticlusters. This functionality is only available for the classical exchange pro-
cedures, that is, for method = "exchange" and method = "local-maximum". When categories
has multiple columns (i.e., there are multiple categorical variables), each combination of categories
is treated as a distinct category by the exchange method (i.e., the multiple columns are "merged"
into a single column). This behaviour may lead to less than optimal results on the level of each
single categorical variable.

Optimize a custom objective function

It is possible to pass a function to the argument objective. See dispersion_objective for
an example. If objective is a function, the exchange method assigns elements to anticlusters in
such a way that the return value of the custom function is maximized (hence, the function should
return larger values when the between-group similarity is higher). The custom function has to take
two arguments: the first is the data argument, the second is the clustering assignment. That is, the
argument x will be passed down to the user-defined function as first argument. However, only after
as.matrix has been called on x. This implies that in the function body, columns of the data set
cannot be accessed using data.frame operations such as $. Objects of class dist will be converted
to matrix as well.

Value

A vector of length N that assigns a group (i.e, a number between 1 and K) to each input element.

Author(s)

Martin Papenberg <martin.papenberg@hhu.de>

References

Brusco, M. J., Cradit, J. D., & Steinley, D. (2020). Combining diversity and dispersion criteria for
anticlustering: A bicriterion approach. British Journal of Mathematical and Statistical Psychology,
73, 275-396. https://doi.org/10.1111/bmsp.12186
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Papenberg, M., & Klau, G. W. (2021). Using anticlustering to partition data sets into equivalent
parts. Psychological Methods, 26(2), 161–174. https://doi.org/10.1037/met0000301.

Papenberg, M. (2023). K-plus Anticlustering: An Improved k-means Criterion for Maximizing
Between-Group Similarity. British Journal of Mathematical and Statistical Psychology. Advance
online publication. https://doi.org/10.1111/bmsp.12315

Späth, H. (1986). Anticlustering: Maximizing the variance criterion. Control and Cybernetics, 15,
213-218.

Examples

# Optimize the default diversity criterion
anticlusters <- anticlustering(

schaper2019[, 3:6],
K = 3,
categories = schaper2019$room

)
# Compare feature means by anticluster
by(schaper2019[, 3:6], anticlusters, function(x) round(colMeans(x), 2))
# Compare standard deviations by anticluster
by(schaper2019[, 3:6], anticlusters, function(x) round(apply(x, 2, sd), 2))
# check that the "room" is balanced across anticlusters:
table(anticlusters, schaper2019$room)

# Use multiple starts of the algorithm to improve the objective and
# optimize the k-means criterion ("variance")
anticlusters <- anticlustering(

schaper2019[, 3:6],
objective = "variance",
K = 3,
categories = schaper2019$room,
method = "local-maximum",
repetitions = 2

)
# Compare means and standard deviations by anticluster
by(schaper2019[, 3:6], anticlusters, function(x) round(colMeans(x), 2))
by(schaper2019[, 3:6], anticlusters, function(x) round(apply(x, 2, sd), 2))

# Use different group sizes and optimize the extended k-means
# criterion ("kplus")
anticlusters <- anticlustering(

schaper2019[, 3:6],
objective = "kplus",
K = c(24, 24, 48),
categories = schaper2019$room,
repetitions = 10,
method = "local-maximum",
standardize = TRUE

)

table(anticlusters, schaper2019$room)
# Compare means and standard deviations by anticluster
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by(schaper2019[, 3:6], anticlusters, function(x) round(colMeans(x), 2))
by(schaper2019[, 3:6], anticlusters, function(x) round(apply(x, 2, sd), 2))

balanced_clustering Create balanced clusters of equal size

Description

Create balanced clusters of equal size

Usage

balanced_clustering(x, K, method = "centroid")

Arguments

x The data input. Can be one of two structures: (1) A feature matrix where rows
correspond to elements and columns correspond to variables (a single numeric
variable can be passed as a vector). (2) An N x N matrix dissimilarity matrix;
can be an object of class dist (e.g., returned by dist or as.dist) or a matrix
where the entries of the upper and lower triangular matrix represent pairwise
dissimilarities.

K How many clusters should be created.
method One of "centroid" or "ilp". See Details.

Details

This function partitions a set of elements into K equal-sized clusters. The function offers two meth-
ods: a heuristic and an exact method. The heuristic (method = "centroid") first computes the
centroid of all data points. If the input is a feature matrix, the centroid is defined as the mean vector
of all columns. If the input is a dissimilarity matrix, the most central element acts as the centroid;
the most central element is defined as the element having the minimum maximal distance to all
other elements. After identifying the centroid, the algorithm proceeds as follows: The element
having the highest distance from the centroid is clustered with its (N/K) - 1 nearest neighbours
(neighbourhood is defined according to the Euclidean distance if the data input is a feature matrix).
From the remaining elements, again the element farthest to the centroid is selected and clustered
with its (N/K) - 1 neighbours; the procedure is repeated until all elements are part of a cluster.

An exact method (method = "ilp") can be used to solve equal-sized weighted cluster editing op-
timally (implements the integer linear program described in Papenberg and Klau, 2020; (8) -
(10), (12) - (13)). The cluster editing objective is the sum of pairwise distances within clus-
ters; clustering is accomplished by minimizing this objective. If the argument x is a features
matrix, the Euclidean distance is computed as the basic unit of the cluster editing objective. If
another distance measure is preferred, users may pass a self-computed dissimiliarity matrix via
the argument x. The optimal cluster editing objective can be found via integer linear program-
ming. To obtain an optimal solution, the open source GNU linear programming kit (available from
https://www.gnu.org/software/glpk/glpk.html) and the R package Rglpk must be installed.
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Value

An integer vector representing the cluster affiliation of each data point

Author(s)

Martin Papenberg <martin.papenberg@hhu.de>

Meik Michalke <meik.michalke@hhu.de>

Source

The centroid method was originally developed and contributed by Meik Michalke. It was later
rewritten by Martin Papenberg, who also implemented the integer linear programming method.

References

Grötschel, M., & Wakabayashi, Y. (1989). A cutting plane algorithm for a clustering problem.
Mathematical Programming, 45, 59–96.

Papenberg, M., & Klau, G. W. (2021). Using anticlustering to partition data sets into equivalent
parts. Psychological Methods, 26(2), 161–174. https://doi.org/10.1037/met0000301.

Examples

# Cluster a data set and visualize results
N <- 1000
lds <- data.frame(f1 = rnorm(N), f2 = rnorm(N))
cl <- balanced_clustering(lds, K = 10)
plot_clusters(lds, clusters = cl)

# Repeat using a distance matrix as input
cl2 <- balanced_clustering(dist(lds), K = 10)
plot_clusters(lds, clusters = cl2)

bicriterion_anticlustering

Bicriterion iterated local search heuristic

Description

This function implements the bicriterion for anticlustering by Brusco, Cradit, and Steinley (2020;
<doi:10.1111/bmsp.12186>). The description of the algorithm is given in Section 3 of their paper
(in particular, see the pseudocode in their Figure 2).
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Usage

bicriterion_anticlustering(
x,
K,
R = NULL,
W = c(1e-06, 1e-05, 1e-04, 0.001, 0.01, 0.1, 0.5, 0.99, 0.999, 0.999999),
Xi = c(0.05, 0.1)

)

Arguments

x The data input. Can be one of two structures: (1) A feature matrix where rows
correspond to elements and columns correspond to variables (a single numeric
variable can be passed as a vector). (2) An N x N matrix dissimilarity matrix;
can be an object of class dist (e.g., returned by dist or as.dist) or a matrix
where the entries of the upper and lower triangular matrix represent pairwise
dissimilarities.

K How many anticlusters should be created. Alternatively: (a) A vector describ-
ing the size of each group, or (b) a vector of length nrow(x) describing how
elements are assigned to anticlusters before the optimization starts.

R The desired number of restarts for the algorithm. By default, both phases (MBPI
+ BILS) of the algorithm are performed once.

W Optional argument, a vector of weights defining the relative importance of dis-
persion and diversity (0 <= W <= 1). See details.

Xi Optional argument, specifies probability of swapping elements during the iter-
ated local search. See examples.

Details

The bicriterion algorithm by Brusco, Cradit, and Steinley (2020) aims to simultaneously optimize
two anticlustering criteria: the diversity_objective and the dispersion_objective. It returns
a list of partitions that approximate the pareto set of efficient solutions across both criteria. By
considering both the diversity and dispersion, this algorithm is well-suited for maximizing overall
within-group heterogeneity. To select a partition among the approximated pareto set, it is reasonable
to plot the objectives for each partition (see Examples).

The arguments R, W and Xi are named for consistency with Brusco et al. (2020). The argument K is
used for consistency with other functions in anticlust; Brusco et al. used ‘G‘ to denote the number
of groups. However, note that K can not only be used to denote the number of equal-sized groups,
but also to specify group sizes, as in anticlustering.

This function implements the combined bicriterion algorithm MBPI + BILS. The argument R de-
notes the number of restarts of the search heuristic. Half of the repetitions perform MBPI and the
other half perform BILS, as suggested by Brusco et al. The argument W denotes the possible weights
given to the diversity criterion in a given run of the search heuristic. In each run, the a weight is
randomly selected from the vector W. As default values, we use the weights that Brusco et al. used
in their analyses. All values in w have to be in [0, 1]; larger values indicate that diversity is more
important, whereas smaller values indicate that dispersion is more important; w = .5 implies the
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same weight for both criteria. The argument Xi is the probability that an element is swapped dur-
ing the iterated local search (specifically, Xi has to be a vector of length 2, denoting the range of
a uniform distribution from which the probability of swapping is selected). For Xi, the default is
selected consistent with the analyses by Brusco et al.

If the data input x is a feature matrix (that is: each row is a "case" and each column is a "variable"),
a matrix of the Euclidean distances is computed as input to the algorithm. If a different measure of
dissimilarity is preferred, you may pass a self-generated dissimilarity matrix via the argument x.

Value

A matrix of anticlustering partitions (i.e., the approximated pareto set). Each row corresponds to a
partition, each column corresponds to an input element.

Note

For technical reasons, the pareto set returned by this function has a limit of 500 partitions. Usually
however, the algorithm usually finds much fewer partitions. There is one following exception: We
do not recommend to use this method when the input data is one-dimensional where the algorithm
may identify too many equivalent partitions causing it to run very slowly (see section 5.6 in Breuer,
2020).

Author(s)

Martin Breuer <M.Breuer@hhu.de>, Martin Papenberg <martin.papenberg@hhu.de>

References

Brusco, M. J., Cradit, J. D., & Steinley, D. (2020). Combining diversity and dispersion criteria for
anticlustering: A bicriterion approach. British Journal of Mathematical and Statistical Psychology,
73, 275-396. https://doi.org/10.1111/bmsp.12186

Breuer (2020). Using anticlustering to maximize diversity and dispersion: Comparing exact and
heuristic approaches. Bachelor thesis.

Examples

# Generate some random data
M <- 3
N <- 80
K <- 4
data <- matrix(rnorm(N * M), ncol = M)

# Perform bicriterion algorithm, use 200 repetitions
pareto_set <- bicriterion_anticlustering(data, K = K, R = 200)

# Compute objectives for all solutions
diversities_pareto <- apply(pareto_set, 1, diversity_objective, x = data)
dispersions_pareto <- apply(pareto_set, 1, dispersion_objective, x = data)

# Plot the pareto set
plot(
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diversities_pareto,
dispersions_pareto,
col = "blue",
cex = 2,
pch = as.character(1:NROW(pareto_set))

)

# Get some random solutions for comparison
rnd_solutions <- t(replicate(n = 200, sample(pareto_set[1, ])))

# Compute objectives for all random solutions
diversities_rnd <- apply(rnd_solutions, 1, diversity_objective, x = data)
dispersions_rnd <- apply(rnd_solutions, 1, dispersion_objective, x = data)

# Plot random solutions and pareto set. Random solutions are far away
# from the good solutions in pareto set
plot(

diversities_rnd, dispersions_rnd,
col = "red",
xlab = "Diversity",
ylab = "Dispersion",
ylim = c(

min(dispersions_rnd, dispersions_pareto),
max(dispersions_rnd, dispersions_pareto)

),
xlim = c(

min(diversities_rnd, diversities_pareto),
max(diversities_rnd, diversities_pareto)

)
)

# Add approximated pareto set from bicriterion algorithm:
points(diversities_pareto, dispersions_pareto, col = "blue", cex = 2, pch = 19)

categorical_sampling Random sampling employing a categorical constraint

Description

This function can be used to obtain a stratified split of a data set.

Usage

categorical_sampling(categories, K)

Arguments

categories A matrix or vector of one or more categorical variables.

K The number of groups that are returned.



14 categories_to_binary

Details

This function can be used to obtain a stratified split of a data set. Using this function is like calling
anticlustering with argument ‘categories‘, but without optimizing a clustering objective. The
categories are just evenly split between samples. Apart from the restriction that categories are
balanced between samples, the split is random.

Value

A vector representing the sample each element was assigned to.

Examples

data(schaper2019)
categories <- schaper2019$room
groups <- categorical_sampling(categories, K = 6)
table(groups, categories)

# Unequal sized groups
groups <- categorical_sampling(categories, K = c(24, 24, 48))
table(groups, categories)

# Heavily unequal sized groups, is harder to balance the groups
groups <- categorical_sampling(categories, K = c(51, 19, 26))
table(groups, categories)

categories_to_binary Get binary representation of categorical variables

Description

Get binary representation of categorical variables

Usage

categories_to_binary(categories, use_combinations = FALSE)

Arguments

categories A vector, data.frame or matrix representing one or several categorical variables

use_combinations

Logical, should the output also include columns representing the combination /
interaction of the categories (defaults to FALSE).
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Details

The conversion of categorical variable to binary variables is done via model.matrix. This function
can be used to include categorical variables as part of the optimization criterion in k-means / k-plus
anticlustering, rather than including them as hard constraints as done in anticlustering. This can
be useful when there are several categorical variables or when the group sizes are unequal (or both).
See examples.

Value

A matrix representing the categorical variables in binary form ("dummy coding")

Author(s)

Martin Papenberg <martin.papenberg@hhu.de>

References

Papenberg, M. (2023). K-plus Anticlustering: An Improved k-means Criterion for Maximizing
Between-Group Similarity. British Journal of Mathematical and Statistical Psychology. Advance
online publication. https://doi.org/10.1111/bmsp.12315

Examples

# Use Schaper data set for example
data(schaper2019)
features <- schaper2019[, 3:6]
K <- 3
N <- nrow(features)

# - Generate data input for k-means anticlustering -
# We conduct k-plus anticlustering by first generating k-plus variables,
# and also include the categorical variable as "numeric" input for the
# k-means optimization (rather than as input for the argument `categories`)

input_data <- cbind(
kplus_moment_variables(features, T = 2),
categories_to_binary(schaper2019$room)

)

kplus_groups <- anticlustering(
input_data,
K = K,
objective = "variance",
method = "local-maximum",
repetitions = 10

)
mean_sd_tab(features, kplus_groups)
table(kplus_groups, schaper2019$room) # argument categories was not used!
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dispersion_objective Cluster dispersion

Description

Compute the dispersion objective for a given clustering (i.e., the minimum distance between two
elements within the same cluster).

Usage

dispersion_objective(x, clusters)

Arguments

x The data input. Can be one of two structures: (1) A feature matrix where rows
correspond to elements and columns correspond to variables (a single numeric
variable can be passed as a vector). (2) An N x N matrix dissimilarity matrix;
can be an object of class dist (e.g., returned by dist or as.dist) or a matrix
where the entries of the upper and lower triangular matrix represent pairwise
dissimilarities.

clusters A vector representing (anti)clusters (e.g., returned by anticlustering).

Details

The dispersion is the minimum distance between two elements within the same cluster. When the
input x is a feature matrix, the Euclidean distance is used as the distance unit. Maximizing the
dispersion maximizes the minimum heterogeneity within clusters and is an anticlustering task.

References

Brusco, M. J., Cradit, J. D., & Steinley, D. (2020). Combining diversity and dispersion criteria for
anticlustering: A bicriterion approach. British Journal of Mathematical and Statistical Psychology,
73, 275-396. https://doi.org/10.1111/bmsp.12186

Examples

N <- 50 # number of elements
M <- 2 # number of variables per element
K <- 5 # number of clusters
random_data <- matrix(rnorm(N * M), ncol = M)
random_clusters <- sample(rep_len(1:K, N))
dispersion_objective(random_data, random_clusters)

# Maximize the dispersion
optimized_clusters <- anticlustering(

random_data,
K = random_clusters,
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objective = dispersion_objective
)
dispersion_objective(random_data, optimized_clusters)

diversity_objective (Anti)cluster editing "diversity" objective

Description

Compute the diversity for a given clustering.

Usage

diversity_objective(x, clusters)

Arguments

x The data input. Can be one of two structures: (1) A data matrix where rows
correspond to elements and columns correspond to features (a single numeric
feature can be passed as a vector). (2) An N x N matrix dissimilarity matrix;
can be an object of class dist (e.g., returned by dist or as.dist) or a matrix
where the entries of the upper and lower triangular matrix represent the pairwise
dissimilarities.

clusters A vector representing (anti)clusters (e.g., returned by anticlustering).

Details

The objective function used in (anti)cluster editing is the diversity, i.e., the sum of the pairwise
distances between elements within the same groups. When the input x is a feature matrix, the
Euclidean distance is computed as the basic distance unit of this objective.

Value

The cluster editing objective

Author(s)

Martin Papenberg <martin.papenberg@hhu.de>

References

Brusco, M. J., Cradit, J. D., & Steinley, D. (2020). Combining diversity and dispersion criteria for
anticlustering: A bicriterion approach. British Journal of Mathematical and Statistical Psychology,
73, 275-396. https://doi.org/10.1111/bmsp.12186

Papenberg, M., & Klau, G. W. (2021). Using anticlustering to partition data sets into equivalent
parts. Psychological Methods, 26(2), 161–174. https://doi.org/10.1037/met0000301.
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Examples

data(iris)
distances <- dist(iris[1:60, -5])
## Clustering
clusters <- balanced_clustering(distances, K = 3)
# This is low:
diversity_objective(distances, clusters)
## Anticlustering
anticlusters <- anticlustering(distances, K = 3)
# This is higher:
diversity_objective(distances, anticlusters)

fast_anticlustering Fast anticlustering

Description

Anticlustering via optimizing the k-means variance criterion with an adjusted exchange method
where the number of exchange partners can be specified. Note that this function is no longer the
fastest way to solve anticlustering, because the exchange method used in anticlustering and
kplus_anticlustering has been reimplemented in C, while fast_anticlustering still uses a
plain R implementation.

Usage

fast_anticlustering(x, K, k_neighbours = Inf, categories = NULL)

Arguments

x A numeric vector, matrix or data.frame of data points. Rows correspond to ele-
ments and columns correspond to features. A vector represents a single numeric
feature.

K How many anticlusters should be created.

k_neighbours The number of neighbours that serve as exchange partner for each element. De-
faults to Inf, i.e., each element is exchanged with each element in other groups.

categories A vector, data.frame or matrix representing one or several categorical constraints.

Details

This function was created to make anticlustering applicable to large data sets (e.g., 100,000 el-
ements). It optimizes the k-means variance objective because computing all pairwise as is done
when optimizing the diversity is not feasible for very large data sets (like for about N > 30000).
Additionally, this function employs a speed-optimized exchange method. For each element, the po-
tential exchange partners are generated using a nearest neighbor search with the function nn2 from
the RANN package. The nearest neighbors then serve as exchange partners. This approach is inspired
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by the preclustering heuristic according to which good solutions are found when similar elements
are in different sets—by swapping nearest neighbors, this will often be the case. The number of
exchange partners per element has to be set using the argument k_neighbours; by default, it is set
to Inf, meaning that all possible swaps are tested. This default must be changed by the user for
large data sets. More exchange partners generally improve the output, but also increase run time.

When setting the categories argument, exchange partners will be generated from the same cate-
gory. Note that when categories has multiple columns (i.e., each element is assigned to multiple
columns), each combination of categories is treated as a distinct category by the exchange method.

Note that in the recent versions of anticlust, the function anticlustering is actually faster than
fast_anticlustering because the exchange method there has been implemented in C instead of
plain R. In most cases it is therefore not recommended to call fast_anticlustering, instead use
anticlustering or kplus_anticlustering.

Author(s)

Martin Papenberg <martin.papenberg@hhu.de>

See Also

anticlustering

variance_objective

Examples

features <- iris[, - 5]

start <- Sys.time()
ac_exchange <- fast_anticlustering(features, K = 3)
Sys.time() - start

## The following call is equivalent to the call above:
start <- Sys.time()
ac_exchange <- anticlustering(features, K = 3, objective = "variance")
Sys.time() - start

## Improve run time by using fewer exchange partners:
start <- Sys.time()
ac_fast <- fast_anticlustering(features, K = 3, k_neighbours = 10)
Sys.time() - start

by(features, ac_exchange, function(x) round(colMeans(x), 2))
by(features, ac_fast, function(x) round(colMeans(x), 2))
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generate_partitions Generate all partitions of same cardinality

Description

Generate all partitions of same cardinality

Usage

generate_partitions(N, K, generate_permutations = FALSE)

Arguments

N The total N. K has to be dividble by N.

K How many partitions

generate_permutations

If TRUE, all permutations are returned, resulting in duplicate partitions.

Details

In principle, anticlustering can be solved to optimality by generating all possible partitions of N
items into K groups. The example code below illustrates how to do this. However, this approach
only works for small N because the number of partitions grows exponentially with N.

The partition c(1, 2, 2, 1) is the same as the partition c(2, 1, 1, 2) but they correspond to different
permutations of the elements [1, 1, 2, 2]. If the argument generate_permutations is TRUE, all
permutations are returned. To solve balanced anticlustering exactly, it is sufficient to inspect all
partitions while ignoring duplicated permutations.

Value

A list of all partitions (or permutations if generate_permutations is TRUE).

Author(s)

Martin Papenberg <martin.papenberg@hhu.de>

References

Papenberg, M., & Klau, G. W. (2021). Using anticlustering to partition data sets into equivalent
parts. Psychological Methods, 26(2), 161–174. https://doi.org/10.1037/met0000301.
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Examples

## Generate all partitions to solve k-means anticlustering
## to optimality.

N <- 14
K <- 2
features <- matrix(sample(N * 2, replace = TRUE), ncol = 2)
partitions <- generate_partitions(N, K)
length(partitions) # number of possible partitions

## Create an objective function that takes the partition
## as first argument (then, we can use sapply to compute
## the objective for each partition)
var_obj <- function(clusters, features) {

variance_objective(features, clusters)
}

all_objectives <- sapply(
partitions,
FUN = var_obj,
features = features

)

## Check out distribution of the objective over all partitions:
hist(all_objectives) # many large, few low objectives
## Get best k-means anticlustering objective:
best_obj <- max(all_objectives)
## It is possible that there are multiple best solutions:
sum(all_objectives == best_obj)
## Select one best partition:
best_anticlustering <- partitions[all_objectives == best_obj][[1]]
## Look at mean for each partition:
by(features, best_anticlustering, function(x) round(colMeans(x), 2))

## Get best k-means clustering objective:
min_obj <- min(all_objectives)
sum(all_objectives == min_obj)
## Select one best partition:
best_clustering <- partitions[all_objectives == min_obj][[1]]

## Plot minimum and maximum objectives:
user_par <- par("mfrow")
par(mfrow = c(1, 2))
plot_clusters(

features,
best_anticlustering,
illustrate_variance = TRUE,
main = "Maximum variance"

)
plot_clusters(



22 kplus_anticlustering

features,
best_clustering,
illustrate_variance = TRUE,
main = "Minimum variance"

)
par(mfrow = user_par)

kplus_anticlustering K-plus anticlustering

Description

Perform anticlustering using the k-plus objective to maximize between-group similarity. This func-
tion implements the k-plus anticlustering method described in Papenberg (2023; <doi:10.1111/bmsp.12315>).

Usage

kplus_anticlustering(
x,
K,
variance = TRUE,
skew = FALSE,
kurtosis = FALSE,
covariances = FALSE,
T = NULL,
standardize = TRUE,
...

)

Arguments

x A feature matrix where rows correspond to elements and columns correspond to
variables (a single numeric variable can be passed as a vector).

K How many anticlusters should be created. Alternatively: (a) A vector describ-
ing the size of each group, or (b) a vector of length nrow(x) describing how
elements are assigned to anticlusters before the optimization starts.

variance Boolean: Should the k-plus objective include a term to maximize between-group
similarity with regard to the variance? (Default = TRUE)

skew Boolean: Should the k-plus objective include a term to maximize between-group
similarity with regard to skewness? (Default = FALSE)

kurtosis Boolean: Should the k-plus objective include a term to maximize between-group
similarity with regard to kurtosis? (Default = FALSE)

covariances Boolean: Should the k-plus objective include a term to maximize between-group
similarity with regard to covariance structure? (Default = FALSE)
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T Optional argument: An integer specifying how many distribution moments should
be equalized between groups.

standardize Boolean. If TRUE, the data is standardized through a call to scale before the
optimization starts. Defaults to TRUE. See details.

... Arguments passed down to anticlustering. All of the arguments are sup-
ported except for objective.

Details

This function implements the unweighted sum approach for k-plus anticlustering. Details are given
in Papenberg (2023).

The optional argument T denotes the number of distribution moments that are considered in the
anticlustering process. For example, T = 4 will lead to similar means, variances, skew and kurtosis.
For the first four moments, it is also possible to use the boolean convenience arguments variance,
skew and kurtosis; the mean (the first moment) is always included and cannot be "turned off". If
the argument T is used, it overrides the arguments variance, skew and kurtosis (corresponding
to the second, third and fourth moment), ignoring their values.

The standardization is applied to all original features and the additional k-plus features that are
appended to the data set in order to optimize the k-plus criterion. When using standardization, all
criteria such as means, variances and skewness receive a comparable weight during the optimiza-
tion. It is usually recommended not to change the default setting standardization = TRUE.

This function can use any arguments that are also possible in anticlustering (except for ‘objec-
tive‘ because the objective optimized here is the k-plus objective; to use a different objective, call
anticlustering directly). Any arguments that are not explicitly changed here (i.e., standardize
= TRUE) receive the default given in anticlustering (e.g., method = "exchange".)

References

Papenberg, M. (2023). K-plus Anticlustering: An Improved k-means Criterion for Maximizing
Between-Group Similarity. British Journal of Mathematical and Statistical Psychology. Advance
online publication. https://doi.org/10.1111/bmsp.12315

Examples

# Generate some data
N <- 180
M <- 4
features <- matrix(rnorm(N * M), ncol = M)
# standard k-plus anticlustering: optimize similarity with regard to mean and variance:
cl <- kplus_anticlustering(features, K = 3, method = "local-maximum")
mean_sd_tab(features, cl)
# Visualize an anticlustering solution:
plot(features, col = palette()[2:4][cl], pch = c(16:18)[cl])

# Also optimize with regard to skewness and kurtosis
cl2 <- kplus_anticlustering(

features,
K = 3,



24 kplus_moment_variables

method = "local-maximum",
skew = TRUE,
kurtosis = TRUE

)

# The following two calls are equivalent:
init_clusters <- sample(rep_len(1:3, nrow(features)))
# 1.
x1 <- kplus_anticlustering(

features,
K = init_clusters,
variance = TRUE,
skew = TRUE

)
# 2.
x2 <- kplus_anticlustering(

features,
K = init_clusters,
T = 3

)
# Verify:
all(x1 == x2)

kplus_moment_variables

Compute k-plus variables

Description

Compute k-plus variables

Usage

kplus_moment_variables(x, T, standardize = TRUE)

Arguments

x A vector, matrix or data.frame of data points. Rows correspond to elements and
columns correspond to features. A vector represents a single feature.

T The number of distribution moments for which variables are generated.

standardize Logical, should all columns of the output be standardized (defaults to TRUE).

Details

The k-plus criterion is an extension of the k-means criterion (i.e., the "variance", see variance_objective).
In kplus_anticlustering, equalizing means and variances simultaneously (and possibly addi-
tional distribution moments) is accomplished by internally appending new variables to the data in-
put x. When using only the variance as additional criterion, the new variables represent the squared
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difference of each data point to the mean of the respective column. All columns are then included—
in addition to the original data—in standard k-means anticlustering. The logic is readily extended
towards higher order moments, see Papenberg (2023). This function gives users the possibility
to generate k-plus variables themselves, which offers some additional flexibility when conducting
k-plus anticlustering.

Value

A matrix containing all columns of x and all additional columns of k-plus variables. If x has M
columns, the output matrix has M * T columns.

Author(s)

Martin Papenberg <martin.papenberg@hhu.de>

References

Papenberg, M. (2023). K-plus Anticlustering: An Improved k-means Criterion for Maximizing
Between-Group Similarity. British Journal of Mathematical and Statistical Psychology. Advance
online publication. https://doi.org/10.1111/bmsp.12315

Examples

# Use Schaper data set for example
data(schaper2019)
features <- schaper2019[, 3:6]
K <- 3
N <- nrow(features)

# Some equivalent ways of doing k-plus anticlustering:

init_groups <- sample(rep_len(1:3, N))
table(init_groups)

kplus_groups1 <- anticlustering(
features,
K = init_groups,
objective = "kplus",
standardize = TRUE,
method = "local-maximum"

)

kplus_groups2 <- anticlustering(
kplus_moment_variables(features, T = 2), # standardization included by default
K = init_groups,
objective = "variance", # (!)
method = "local-maximum"

)

# this function uses standardization by default unlike anticlustering():
kplus_groups3 <- kplus_anticlustering(
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features,
K = init_groups,
method = "local-maximum"

)

all(kplus_groups1 == kplus_groups2)
all(kplus_groups1 == kplus_groups3)
all(kplus_groups2 == kplus_groups3)

matching Matching

Description

Conduct K-partite or unrestricted (minimum distance) matching to find pairs or groups of similar
elements. By default, finding matches is based on the Euclidean distance between data points, but
a custom dissimilarity measure can also be employed.

Usage

matching(
x,
p = 2,
match_between = NULL,
match_within = NULL,
match_extreme_first = TRUE,
target_group = NULL,
sort_output = TRUE

)

Arguments

x The data input. Can be one of two structures: (1) A feature matrix where rows
correspond to elements and columns correspond to variables (a single numeric
variable can be passed as a vector). (2) An N x N matrix dissimilarity matrix;
can be an object of class dist (e.g., returned by dist or as.dist) or a matrix
where the entries of the upper and lower triangular matrix represent pairwise
dissimilarities.

p The size of the groups; the default is 2, in which case the function returns pairs.

match_between An optional vector, data.frame or matrix representing one or several categor-
ical constraints. If passed, the argument p is ignored and matches are sought
between elements of different categories.

match_within An optional vector, data.frame or matrix representing one or several categor-
ical constraints. If passed, matches are sought between elements of the same
category.
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match_extreme_first

Logical: Determines if matches are first sought for extreme elements first or for
central elements. Defaults to TRUE.

target_group Currently, the options "none", smallest" and "diverse" are supported. See De-
tails.

sort_output Boolean. If TRUE (default), the output clusters are sorted by similarity. See
Details.

Details

If the data input x is a feature matrix, matching is based on the Euclidean distance between data
points. If the argument x is a dissimilarity matrix, matching is based on the user-specified dissim-
ilarities. To find matches, the algorithm proceeds by selecting a target element and then searching
its nearest neighbours. Critical to the behaviour or the algorithm is the order in which target ele-
ments are selected. By default, the most extreme elements are selected first, i.e., elements with the
highest distance to the centroid of the data set (see balanced_clustering that relies on the same
algorithm). Set the argument match_extreme_first to FALSE, to enforce that elements close to
the centroid are first selected as targets.

If the argument match_between is passed and the groups specified via this argument are of differ-
ent size, target elements are selected from the smallest group by default (because in this group, all
elements can be matched). However, it is also possible to specify how matches are selected through
the option target_group. When specifying "none", matches are always selected from extreme
elements, irregardless of the group sizes (or from central elements first if match_extreme_first
= FALSE). With option "smallest", matches are selected from the smallest group. With option
"diverse", matches are selected from the most heterogenous group according to the sum of pair-
wise distances within groups.

The output is an integer vector encoding which elements have been matched. The grouping numbers
are sorted by similarity. That is, elements with the grouping number »1« have the highest intra-
group similarity, followed by 2 etc (groups having the same similarity index are still assigned a
different grouping number, though). Similarity is measured as the sum of pairwise (Euclidean)
distances within groups (see diversity_objective). To prevent sorting by similarity (this is some
extra computational burden), set sort_output = FALSE. Some unmatched elements may be NA.
This happens if it is not possible to evenly split the item pool evenly into groups of size p or if the
categories described by the argument match_between are of different size.

Value

An integer vector encoding the matches. See Details for more information.

Note

It is possible to specify grouping restrictions via match_between and match_within at the same
time.

Author(s)

Martin Papenberg <martin.papenberg@hhu.de>
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Examples

# Find triplets
N <- 120
lds <- data.frame(f1 = rnorm(N), f2 = rnorm(N))
triplets <- matching(lds, p = 3)
plot_clusters(

lds,
clusters = triplets,
within_connection = TRUE

)

# Bipartite matching with unequal-sized groups:
# Only selects matches for some elements
N <- 100
data <- matrix(rnorm(N), ncol = 1)
groups <- sample(1:2, size = N, replace = TRUE, prob = c(0.8, 0.2))
matched <- matching(data[, 1], match_between = groups)
plot_clusters(

cbind(groups, data),
clusters = matched,
within_connection = TRUE

)

# Match objects from the same category only
matched <- matching(

schaper2019[, 3:6],
p = 3,
match_within = schaper2019$room

)
head(table(matched, schaper2019$room))

# Match between different plant species in the »iris« data set
species <- iris$Species != "versicolor"
matched <- matching(

iris[species, 1],
match_between = iris[species, 5]

)
# Adjust `match_extreme_first` argument
matched2 <- matching(

iris[species, 1],
match_between = iris[species, 5],
match_extreme_first = FALSE

)
# Plot the matching results
user_par <- par("mfrow")
par(mfrow = c(1, 2))
data <- data.frame(

Species = as.numeric(iris[species, 5]),
Sepal.Length = iris[species, 1]

)
plot_clusters(
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data,
clusters = matched,
within_connection = TRUE,
main = "Extreme elements matched first"

)
plot_clusters(

data,
clusters = matched2,
within_connection = TRUE,
main = "Central elements matched first"

)
par(mfrow = user_par)

mean_sd_tab Means and standard deviations by group variable formatted in table

Description

Means and standard deviations by group variable formatted in table

Usage

mean_sd_tab(features, groups, decimals = 2, na.rm = FALSE, return_diff = FALSE)

Arguments

features A data frame of features
groups A grouping vector
decimals The number of decimals
na.rm Should NAs be removed prior to computing stats (Default = FALSE)
return_diff Boolean. Should an additional row be printed that contains the difference be-

tween minimum and maximum

Value

A table that illustrates means and standard deviations (in brackets)

Author(s)

Martin Papenberg <martin.papenberg@hhu.de>

Examples

data(iris)
mean_sd_tab(iris[, -5], iris[, 5])



30 optimal_dispersion

n_partitions Number of equal sized partitions

Description

Number of equal sized partitions

Usage

n_partitions(N, K)

Arguments

N How many elements

K How many partitions

Value

The number of partitions

Examples

n_partitions(20, 2)

optimal_dispersion Maximize dispersion for K groups

Description

Maximize dispersion for K groups

Usage

optimal_dispersion(x, K, solver = NULL, max_dispersion_considered = NULL)

Arguments

x The data input. Can be one of two structures: (1) A feature matrix where rows
correspond to elements and columns correspond to variables (a single numeric
variable can be passed as a vector). (2) An N x N matrix dissimilarity matrix;
can be an object of class dist (e.g., returned by dist or as.dist) or a matrix
where the entries of the upper and lower triangular matrix represent pairwise
dissimilarities.

K The number of groups or a vector describing the size of each group.
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solver Optional argument; if passed, has to be either "glpk" or "symphony". See details.

max_dispersion_considered

Optional argument used for early stopping. If the dispersion found is equal to or
exceeds this value, a solution having the previous best dispersion is returned.

Details

The dispersion is the minimum distance between two elements within the same group. This function
implements an optimal method to maximize the dispersion. If the data input x is a feature matrix and
not a dissimilarity matrix, the pairwise Euclidean distance is used. It uses the algorithm presented
in Max Diekhoff’s Bachelor thesis at the Computer Science Department at the Heinrich Heine
University Düsseldorf.

To find out which items are not allowed to be grouped in the same cluster for maximum dispersion,
the algorithm sequentially builds instances of a graph coloring problem, using an integer linear
programming (ILP) representation (also see Fernandez et al., 2013). It is possible to specify the
ILP solver via the argument solver. This function either requires the R package Rglpk and the
GNU linear programming kit (<http://www.gnu.org/software/glpk/>) or the R package Rsymphony
and the COIN-OR SYMPHONY solver libraries (<https://github.com/coin-or/SYMPHONY>). If
the argument solver is not specified, the function will try to find the GLPK or SYMPHONY solver
by itself (it prioritizes using SYMPHONY if both are available). The GNU linear programming
kit (solver = "glpk") seems to be considerably slower for K >= 3 than the SYMPHPONY solver
(solver = "symphony").

Optimally solving the maximum dispersion problem is NP-hard for K > 2 and therefore computa-
tionally infeasible for larger data sets. For K = 3 and K = 4, it seems that this approach scales up to
several 100 elements, or even > 1000 for K = 3 (at least when using the Symphony solver). For larger
data sets, use the heuristic approaches in anticlustering or bicriterion_anticlustering.
However, note that for K = 2, the optimal approach is usually much faster than the heuristics.

In the output, the element edges defines which elements must be in separate clusters in order to
achieve maximum dispersion. All elements not listed here can be changed arbitrarily between
clusters without reducing the dispersion. If the maximum possible dispersion corresponds to the
minimum dispersion in the data set, the output elements edges and groups are set to NULL be-
cause all possible groupings have the same value of dispersion. In this case the output element
dispersions_considered has length 1.

Value

A list with four elements:

dispersion The optimal dispersion

groups An assignment of elements to groups (vector)

edges A matrix of 2 columns. Each row contains the indices of elements that had to be
investigated to find the dispersion (i.e., each pair of elements cannot be part of
the same group in order to achieve maximum dispersion).

dispersions_considered

All distances that were tested until the dispersion was found.
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Note

If the SYMPHONY solver is used, an unfortunate "message" is printed to the console when this
function terminates:

sym_get_col_solution(): No solution has been stored!

This message is no reason to worry and instead is a direct result of the algorithm finding the optimal
value for the dispersion. Unfortunately, this message is generated in the C code underlying the
SYMPHONY library (via the printing function printf), which cannot be prevented in R.

Author(s)

Max Diekhoff

Martin Papenberg <martin.papenberg@hhu.de>

References

Diekhoff (2023). Maximizing dispersion for anticlustering. Retrieved from https://www.cs.hhu.de/fileadmin/redaktion/Fakultaeten/Mathematisch-
Naturwissenschaftliche_Fakultaet/Informatik/Algorithmische_Bioinformatik/Bachelor-_Masterarbeiten/2831963_ba_ifo_AbschlArbeit_klau_mapap102_madie120_20230203_1815.pdf

Fernández, E., Kalcsics, J., & Nickel, S. (2013). The maximum dispersion problem. Omega, 41(4),
721–730. https://doi.org/10.1016/j.omega.2012.09.005

See Also

dispersion_objective anticlustering

Examples

N <- 30
M <- 5
K <- 3
data <- matrix(rnorm(N*M), ncol = M)
distances <- dist(data)

opt <- optimal_dispersion(distances, K = K)
opt

# Compare to bicriterion heuristic:
groups_heuristic <- anticlustering(

distances,
K = K,
method = "brusco",
objective = "dispersion",
repetitions = 100

)
c(

OPT = dispersion_objective(distances, opt$groups),
HEURISTIC = dispersion_objective(distances, groups_heuristic)

)
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# Different group sizes are possible:
table(optimal_dispersion(distances, K = c(15, 10, 5))$groups)

# Induce cannot-link constraints by maximizing the dispersion:
solvable <- matrix(1, ncol = 6, nrow = 6)
solvable[2, 1] <- -1
solvable[3, 1] <- -1
solvable[4, 1] <- -1
solvable <- as.dist(solvable)
solvable

# An optimal solution has to put item 1 in a different group than
# items 2, 3 and 4 -> this is possible for K = 2
optimal_dispersion(solvable, K = 2)$groups

# It no longer works when item 1 can also not be linked with item 5:
# (check out output!)
unsolvable <- as.matrix(solvable)
unsolvable[5, 1] <- -1
unsolvable <- as.dist(unsolvable)
unsolvable
optimal_dispersion(unsolvable, K = 2)

plot_clusters Visualize a cluster analysis

Description

Visualize a cluster analysis

Usage

plot_clusters(
features,
clusters,
within_connection = FALSE,
between_connection = FALSE,
illustrate_variance = FALSE,
show_axes = FALSE,
xlab = NULL,
ylab = NULL,
xlim = NULL,
ylim = NULL,
main = "",
cex = 1.2,
cex.axis = 1.2,
cex.lab = 1.2,
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lwd = 1.5,
lty = 2,
frame.plot = FALSE,
cex_centroid = 2

)

Arguments

features A data.frame or matrix representing the features that are plotted. Must have two
columns.

clusters A vector representing the clustering
within_connection

Boolean. Connect the elements within each clusters through lines? Useful to
illustrate a graph structure.

between_connection

Boolean. Connect the elements between each clusters through lines? Useful to
illustrate a graph structure. (This argument only works for two clusters).

illustrate_variance

Boolean. Illustrate the variance criterion in the plot?

show_axes Boolean, display values on the x and y-axis? Defaults to ‘FALSE‘.

xlab The label for the x-axis

ylab The label for the y-axis

xlim The limits for the x-axis

ylim The limits for the y-axis

main The title of the plot

cex The size of the plotting symbols, see par

cex.axis The size of the values on the axes

cex.lab The size of the labels of the axes

lwd The width of the lines connecting elements.

lty The line type of the lines connecting elements (see par).

frame.plot a logical indicating whether a box should be drawn around the plot.

cex_centroid The size of the cluster center symbol (has an effect only if illustrate_variance
is TRUE)

Details

In most cases, the argument clusters is a vector returned by one of the functions anticlustering,
balanced_clustering or matching. However, the plotting function can also be used to plot the
results of other cluster functions such as kmeans. This function is usually just used to get a fast
impression of the results of an (anti)clustering assignment, but limited in its functionality. It is
useful for depicting the intra-cluster connections using argument within_connection.

Author(s)

Martin Papenberg <martin.papenberg@hhu.de>
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Examples

N <- 15
features <- matrix(runif(N * 2), ncol = 2)
K <- 3
clusters <- balanced_clustering(features, K = K)
anticlusters <- anticlustering(features, K = K)
user_par <- par("mfrow")
par(mfrow = c(1, 2))
plot_clusters(features, clusters, main = "Cluster editing", within_connection = TRUE)
plot_clusters(features, anticlusters, main = "Anticluster editing", within_connection = TRUE)
par(mfrow = user_par)

plot_similarity Plot similarity objective by cluster

Description

Plot similarity objective by cluster

Usage

plot_similarity(x, groups)

Arguments

x The data input. Can be one of two structures: (1) A data matrix where rows
correspond to elements and columns correspond to features (a single numeric
feature can be passed as a vector). (2) An N x N matrix dissimilarity matrix;
can be an object of class dist (e.g., returned by dist or as.dist) or a matrix
where the entries of the upper and lower triangular matrix represent the pairwise
dissimilarities.

groups A grouping vector of length N, usually the output of matching.

Details

Plots the sum of pairwise distances by group.

Value

The diversity (sum of distances) by group.

Author(s)

Martin Papenberg <martin.papenberg@hhu.de>
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See Also

diversity_objective

Examples

# Match elements and plot similarity by match
N <- 100
lds <- data.frame(f1 = rnorm(N), f2 = rnorm(N))
pairs <- matching(lds, p = 2)
plot_similarity(lds, pairs)

schaper2019 Ratings for 96 words

Description

A stimulus set that was used in experiments by Schaper, Kuhlmann and Bayen (2019a; 2019b).
The item pool consists of 96 German words. Each word represents an object that is either typically
found in a bathroom or in a kitchen.

Usage

schaper2019

Format

A data frame with 96 rows and 7 variables

item The name of an object (in German)

room The room in which the item is typically found; can be ’kitchen’ or ’bathroom’

rating_consistent How expected would it be to find the item in the typical room

rating_inconsistent How expected would it be to find the item in the atypical room

syllables The number of syllables in the object name

frequency A value indicating the relative frequency of the object name in German language (lower
values indicate higher frequency)

list Represents the set affiliation of the item as realized in experiments by Schaper et al.

Source

Courteously provided by Marie Lusia Schaper and Ute Bayen.
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References

Schaper, M. L., Kuhlmann, B. G., & Bayen, U. J. (2019a). Metacognitive expectancy effects in
source monitoring: Beliefs, in-the-moment experiences, or both? Journal of Memory and Lan-
guage, 107, 95–110. https://doi.org/10.1016/j.jml.2019.03.009

Schaper, M. L., Kuhlmann, B. G., & Bayen, U. J. (2019b). Metamemory expectancy illusion and
schema-consistent guessing in source monitoring. Journal of Experimental Psychology: Learning,
Memory, and Cognition, 45, 470. https://doi.org/10.1037/xlm0000602

Examples

head(schaper2019)
features <- schaper2019[, 3:6]

# Optimize the variance criterion
# (tends to maximize similarity in feature means)
anticlusters <- anticlustering(

features,
K = 3,
objective = "variance",
categories = schaper2019$room,
method = "exchange"

)

# Means are quite similar across sets:
by(features, anticlusters, function(x) round(colMeans(x), 2))
# Check differences in standard deviations:
by(features, anticlusters, function(x) round(apply(x, 2, sd), 2))
# Room is balanced between the three sets:
table(Room = schaper2019$room, Set = anticlusters)

# Maximize the diversity criterion
ac_dist <- anticlustering(

features,
K = 3,
objective = "diversity",
categories = schaper2019$room,
method = "exchange"

)
# With the distance criterion, means tend to be less similar,
# but standard deviations tend to be more similar:
by(features, ac_dist, function(x) round(colMeans(x), 2))
by(features, ac_dist, function(x) round(apply(x, 2, sd), 2))

variance_objective Objective value for the variance criterion
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Description

Compute the k-means variance objective for a given clustering.

Usage

variance_objective(x, clusters)

Arguments

x A vector, matrix or data.frame of data points. Rows correspond to elements and
columns correspond to features. A vector represents a single feature.

clusters A vector representing (anti)clusters (e.g., returned by anticlustering or balanced_clustering)

Details

The variance objective is given by the sum of the squared errors between cluster centers and indi-
vidual data points. It is the objective function used in k-means clustering, see kmeans.

Value

The total within-cluster variance

Author(s)

Martin Papenberg <martin.papenberg@hhu.de>

References

Jain, A. K. (2010). Data clustering: 50 years beyond k-means. Pattern Recognition Letters, 31,
651–666.

Papenberg, M., & Klau, G. W. (2021). Using anticlustering to partition data sets into equivalent
parts. Psychological Methods, 26(2), 161–174. https://doi.org/10.1037/met0000301.

Späth, H. (1986). Anticlustering: Maximizing the variance criterion. Control and Cybernetics, 15,
213–218.

Examples

data(iris)
## Clustering
clusters <- balanced_clustering(

iris[, -5],
K = 3

)
# This is low:
variance_objective(

iris[, -5],
clusters

)
## Anticlustering
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anticlusters <- anticlustering(
iris[, -5],
K = 3,
objective = "variance"

)
# This is higher:
variance_objective(

iris[, -5],
anticlusters

)

# Illustrate variance objective
N <- 18
data <- matrix(rnorm(N * 2), ncol = 2)
cl <- balanced_clustering(data, K = 3)
plot_clusters(data, cl, illustrate_variance = TRUE)

wce Exact weighted cluster editing

Description

Optimally solves weighted cluster editing (also known as »correlation clustering« or »clique parti-
tioning problem«).

Usage

wce(x, solver = NULL)

Arguments

x A N x N similarity matrix. Larger values indicate stronger agreement / similarity
between a pair of data points

solver Optional argument; if passed, has to be either "glpk" or "symphony". See details.

Details

Finds the clustering that maximizes the sum of pairwise similarities within clusters. In the input
some similarities should be negative (indicating dissimilarity) because otherwise the maximum sum
of similarities is obtained by simply joining all elements within a single big cluster. If the argument
solver is not specified, the function will try to find the GLPK or SYMPHONY solver by itself (it
prioritizes using SYMPHONY if both are available).

Value

An integer vector representing the cluster affiliation of each data point
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Note

This function either requires the R package Rglpk and the GNU linear programming kit (<http://www.gnu.org/software/glpk/>)
or the R package Rsymphony and the COIN-OR SYMPHONY solver libraries (<https://github.com/coin-
or/SYMPHONY>).

Author(s)

Martin Papenberg <martin.papenberg@hhu.de>

References

Bansal, N., Blum, A., & Chawla, S. (2004). Correlation clustering. Machine Learning, 56, 89–113.

Böcker, S., & Baumbach, J. (2013). Cluster editing. In Conference on Computability in Europe
(pp. 33–44).

Grötschel, M., & Wakabayashi, Y. (1989). A cutting plane algorithm for a clustering problem.
Mathematical Programming, 45, 59-96.

Wittkop, T., Emig, D., Lange, S., Rahmann, S., Albrecht, M., Morris, J. H., ..., Baumbach, J. (2010).
Partitioning biological data with transitivity clustering. Nature Methods, 7, 419–420.

Examples

features <- swiss
distances <- dist(scale(swiss))
hist(distances)
# Define agreement as being close enough to each other.
# By defining low agreement as -1 and high agreement as +1, we
# solve *unweighted* cluster editing
agreements <- ifelse(as.matrix(distances) < 3, 1, -1)
clusters <- wce(agreements)
plot(swiss, col = clusters, pch = 19)
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