Package 'TRMF'

October 12, 2022

Type Package

Title Temporally Regularized Matrix Factorization
Version 0.1.5
Author Chad Hammerquist [aut, cre], Scentsy Inc [cph]
Maintainer Chad Hammerquist <chammerquist@scentsy.com></chammerquist@scentsy.com>
Description Functions to estimate temporally regularized matrix factorizations (TRMF) for forecasting and imputing values in short but high-dimensional time series. Uses regularized alternating least squares to compute the factorization, allows for several types of constraints on matrix factors and natively handles weighted and missing data.
License GPL-3
Encoding UTF-8
Imports Matrix(>= 1.3-3),limSolve,generics
Suggests magrittr, knitr,rmarkdown
VignetteBuilder knitr
RoxygenNote 7.1.1
NeedsCompilation no
Repository CRAN
Date/Publication 2021-08-16 16:20:06 UTC
R topics documented:
coef.TRMF
components.TRMF
create_TRMF
fitted.TRMF
impute_TRMF
plot.TRMF
predict.TRMF
residuals.TRMF

2 coef.TRMF

	retrain	11
	summary.TRMF	12
	train.TRMF	13
	TRMF_ar	14
	TRMF_columns	15
	TRMF_es	17
	TRMF_regression	
	TRMF_seasonal	20
	TRMF_simple	21
	TRMF_trend	22
Index		25

coef.TRMF

Extract TRMF Coefficients (Fm)

Description

Returns the Fm (transposed) matrix from the matrix factorization Xm*Fm.

Usage

```
## S3 method for class 'TRMF'
coef(object, ...)
```

Arguments

object a trained TRMF object.
... other arguments.

Value

the coefficient matrix, t(Fm)

Author(s)

Chad Hammerquist

```
create_TRMF, TRMF_columns, TRMF_trend
```

components.TRMF 3

Examples

```
xm = poly(x = (-10:10)/10,degree=4)
fm = matrix(runif(40),4,10)
Am = xm%*%fm+rnorm(210,0,.2)

# create model
obj = create_TRMF(Am)
out = train(obj)
coef(out)
```

 ${\tt components.TRMF}$

Access TRMF factors

Description

This function returns the factors (Xm, Fm) from a trained TRMF object

Usage

```
## S3 method for class 'TRMF'
components(object, XorF = c("Xm","Fm"), ...)
```

Arguments

object trained TRMF object

XorF which factor to return

... ignored

Details

Returns the matrix factors. Could also use object\$Factors\$Xm, object\$Factors\$Fm. If matrix normalization was used in create_TRMF, Xm%*%Fm could look much different than the input data matrix.

Value

A matrix.

Author(s)

Chad Hammerquist

```
create_TRMF, TRMF_columns, TRMF_trend
```

4 create_TRMF

Examples

```
# create test data
xm = poly(x = (-10:10)/10,degree=4)
fm = matrix(rnorm(40),4,10)
Am = xm%*%fm+rnorm(210,0,.2)

# create model
obj = create_TRMF(Am)
out = train(obj)
plot(out)
components(out,"Xm")
```

create_TRMF

Create a TRMF object

Description

Creates a TRMF object from a data matrix. This function is always needed to initialize a TRMF model.

Usage

```
create_TRMF(dataM, weight = 1,
    normalize = c("none", "standard", "robust", "range"),
    normalize.type = c("global", "columnwise", "rowwise"),
    na.action = c("impute", "fail"))
```

Arguments

The data matrix, each column represents a time series.

Weight An optional matrix of weights to be used in the fitting process. If used, sum(w^2*e^2) is minimized.

Type of scaling/centering for the data. Recommended to reduce bias when using regularization. none does nothing, standard centers with mean, and scales by sd(), robust centers with the median and scales by mad(, constant=1), range maps to [0-1] interval

normalize.type how should normalization be applied. global scales and centers matrix by one value. columnwise and rowwise normalize each column or row separately.

ma.action what action to take when data contains NAs

Details

This function doesn't do any computation, it is the entry point for creating a TRMF model. To train the model or add additional details, see examples. Normalization is recommended in general. Regularization biases the factorization toward zero a little bit, centering changes that to bias towards

fitted.TRMF 5

the mean. Scaling makes the choosing of regularization parameters easier. If the factorization is to be used for forward forecasting, rowwise normalization is not recommended as it could remove some temporal information.

Value

create_TRMF returns an object of class "TRMF" to be passed to other TRMF functions.

Author(s)

Chad Hammerquist

References

Yu, Hsiang-Fu, Nikhil Rao, and Inderjit S. Dhillon. "High-dimensional time series prediction with missing values." arXiv preprint arXiv:1509.08333 (2015).

See Also

```
train.TRMF, TRMF_columns, TRMF_trend
```

Examples

```
# create test data
xm = poly(x = (-10:10)/10,degree=4)
fm = matrix(runif(40),4,10)
Am = xm%*%fm+rnorm(210,0,.2)

# create model
obj = create_TRMF(Am)
obj = TRMF_columns(obj,reg_type ="interval")
obj = TRMF_trend(obj,numTS=4,order=2)
out = train(obj)
plot(out)
```

fitted.TRMF

Extract TRMF fitted values.

Description

A function to extract fitted values from a trained TRMF object.

Usage

```
## S3 method for class 'TRMF'
fitted(object,impute = FALSE,...)
```

6 impute_TRMF

Arguments

```
object a trained TRMF object.

impute logical, should imputed values be returned?

other arguments.
```

Value

Fitted values extracted from object. If impute is TRUE then entire fitted (unscaled and uncentered) matrix is returned, otherwise there are NAs in the same locations as the time series matrix.

Author(s)

Chad Hammerquist

See Also

```
create_TRMF, TRMF_columns, TRMF_trend
```

Examples

```
xm = poly(x = (-10:10)/10,degree=4)
fm = matrix(runif(40),4,10)
Am = xm%*%fm+rnorm(210,0,.2)

# create model
obj = create_TRMF(Am)
out = train(obj)
fitted(out)
```

impute_TRMF

Impute missing values in a matrix

Description

Impute missing values in matrix from a pre-trained TRMF object.

Usage

```
impute_TRMF(obj)
```

Arguments

obj a trained TRMF object

Details

Essentially an accessor function. Replaces the missing values in data matrix with values from the fitted TRMF object.

NormalizeMatrix 7

Value

data matrix with missing values imputed

Author(s)

Chad Hammerquist

References

Yu, Hsiang-Fu, Nikhil Rao, and Inderjit S. Dhillon. "High-dimensional time series prediction with missing values." arXiv preprint arXiv:1509.08333 (2015).

See Also

```
train.TRMF, create_TRMF, TRMF_trend
```

Examples

```
# create test data
xm = poly(x = (-10:10)/10,degree=4)
fm = matrix(rnorm(40),4,10)
Am = xm%*%fm+rnorm(210,0,.2)
Am[sample.int(210,20)] = NA

# create model
obj = create_TRMF(Am)
obj = TRMF_trend(obj,numTS=4,order=2)
out = train(obj)
impute_TRMF(out)
```

NormalizeMatrix

Matrix Scaling

Description

A function for normalizing (scaling and centering) a matrix.

Usage

```
NormalizeMatrix(X, method = c("standard", "robust", "range", "none"),
type = c("global", "rowwise", "columnwise"), na.rm = TRUE)
```

8 plot.TRMF

Arguments

X	a numeric matrix(like object)

method type of scaling to perform, standard centers with mean, and scales by sd(),

robust centers with the median and scales by mad(, constant=1), range maps

to [0-1] interval

type how should normalization be applied. global scales and centers matrix by one

value. columnwise and rowwise normalize each column or row separately.

na.rm logical value, ignore NA values or not.

Details

Scaling and centering quantities are stored as attributes.

Value

The possibly centered and scaled matrix. Scaling and centering quantities are stored as attributes.

Author(s)

Chad Hammerquist

Examples

```
x = matrix(1:10, ncol = 2)
NormalizeMatrix(x)
```

plot.TRMF

Plot Latent Time Series for a TRMF Object

Description

Plots all the time series in Xm from a trained TRMF object.

Usage

```
## S3 method for class 'TRMF' plot(x, ...)
```

Arguments

x a trained TRMF object.

... ignored.

Value

No return value, called for side effects

predict.TRMF 9

Author(s)

Chad Hammerquist

See Also

```
create_TRMF, TRMF_columns, TRMF_trend
```

Examples

```
xm = poly(x = (-10:10)/10,degree=4)
fm = matrix(runif(40),4,10)
Am = xm%*%fm+rnorm(210,0,.2)

# create model
obj = create_TRMF(Am)
out = train(obj)
plot(out)
```

predict.TRMF

Predict method for TRMF model fit

Description

Predict values based on the TRMF fit

Usage

```
## S3 method for class 'TRMF'
predict(object,newdata=NULL, ...)
```

Arguments

object A trained TRMF object

newdata A list with slot Xm and possibly with slots cXreg and gXreg

... other arguments, ignored.

Details

If newdata is NULL, returns fitted model. If newdata doesn't have the term Xm or if it has a different number of columns than the number of latent time series, it will throw an error. If the object also contains a global regression, gXreg must be present and appropriately sized. If the object also contains a column-wise regression, cXreg must be present and appropriately sized.

Value

Returns a matrix of predictions.

10 residuals.TRMF

Author(s)

Chad Hammerquist

See Also

```
create_TRMF, TRMF_columns, TRMF_trend,train.TRMF
```

Examples

```
xm = poly(x = (-10:10)/10,degree=4)
fm = matrix(runif(40),4,10)
Am = xm%*%fm+rnorm(210,0,.2)

# create model
obj = create_TRMF(Am)
out = train(obj)
fitted(out)
newXm = 1:5
predict(out,newdata=list(Xm=newXm))
```

residuals.TRMF

Extract TRMF residuals

Description

A function to extract residuals from a trained TRMF object.

Usage

```
## S3 method for class 'TRMF'
residuals(object, ...)
```

Arguments

```
object a trained TRMF object.
... ignored
```

Value

residuals extracted from TRMF object

Author(s)

Chad Hammerquist

```
create_TRMF, TRMF_columns, TRMF_trend
```

retrain 11

Examples

```
xm = poly(x = (-10:10)/10,degree=4)
fm = matrix(runif(40),4,10)
Am = xm%*%fm+rnorm(210,0,.2)

# create model
obj = create_TRMF(Am)
out = train(obj)
resid(out)
```

retrain

Retrain TRMF objects.

Description

Continue training on a pretrained TRMF object.

Usage

```
retrain(obj, numit, fit_xm_first = TRUE)
```

Arguments

obj Pretrained TRMF object

numit Number of training iterations

fit_xm_first Fit the Xm factor first? This could be useful it modifications are made to one of

The the Zam ractor first: This could be discrete it modifications are made to one of

the factors that we don't want to be overwritten.

Details

This is basically the same function as train() but it doesn't create any of the constraint matrices and doesn't do any initialization.

Value

A trained TRMF object.

```
train.TRMF
```

12 summary.TRMF

Examples

```
# create test data
tm = 3*poly(x = (-20:20)/10, degree=3)
sm = diffinv(rnorm(29,0,.1),lag=12,xi=(-5:6)/6)
xm = cbind(sm,tm)
fm = matrix(runif(40), 4, 10)
Am = xm%*%fm+rnorm(410,0,.1)
# create model
obj = create_TRMF(Am)
obj = TRMF_columns(obj,reg_type ="interval")
obj = TRMF_trend(obj,numTS=3,order=2)
obj = TRMF_seasonal(obj,numTS=1,freq=12,lambdaD=5)
# train
out = train(obj,numit=0) # intialize
plot(out)
new_out = retrain(out,numit=10)
plot(new_out)
```

summary.TRMF

Summarize TRMF

Description

summary method for class "TRMF"

Usage

```
## S3 method for class 'TRMF'
summary(object, ...)
```

Arguments

```
object TRMF object. ... other arguments.
```

Value

NULL

Author(s)

Chad Hammerquist

```
create_TRMF, TRMF_columns, TRMF_trend
```

train.TRMF

Examples

```
xm = poly(x = (-10:10)/10,degree=4)
fm = matrix(runif(40),4,10)
Am = xm%*%fm+rnorm(210,0,.2)

# create model
obj = create_TRMF(Am)
out = train(obj)
summary(obj)
summary(out)
```

train.TRMF

Train a TRMF model

Description

This function is the "engine" of the TRMF package. It takes a previously created TRMF object and fits it to the data using an alternating least squares algorithm.

Usage

```
## S3 method for class 'TRMF'
train(x, numit = 10, ...)
```

Arguments

```
x A TRMF object to be fit.numit Number of alternating least squares iterations... ignored
```

Details

If a coefficient model is not present in object, it adds a L2 regularization model. If no time series models have been added to object, it adds a simple model using TRMF_simple.

Value

train returns a fitted object of class "TRMF" that contains the data, all added models, matrix factorization and fitted model. The matrix factors Xm, Fm are stored in object\$Factors\$Xm and object\$Factors\$Fm respectively. Use fitted to get fitted model, use resid to get residuals, use coef to get coefficients (Fm matrix) and components to get Xm or Fm.

Author(s)

Chad Hammerquist

TRMF_ar

References

Yu, Hsiang-Fu, Nikhil Rao, and Inderjit S. Dhillon. "High-dimensional time series prediction with missing values." arXiv preprint arXiv:1509.08333 (2015).

See Also

```
create_TRMF, TRMF_columns, TRMF_trend
```

Examples

```
# create test data
xm = poly(x = (-10:10)/10,degree=4)
fm = matrix(rnorm(40),4,10)
Am = xm%*%fm+rnorm(210,0,.2)

# create model
obj = create_TRMF(Am)
out = train(obj)
plot(out)
```

TRMF_ar

Add an Auto-Regressive Regularization Model to a TRMF Object.

Description

Creates a regularization scheme that constrains latent time-series based on auto-regressive parameters and adds it to a TRMF object. In matrix optimization form, it adds the following term to the TRMF cost function: $R(x) = lambdaD^2||w(DX_s)||^2 + lambdaA^2||X_s||^2$ where X_s is sub-set of the Xm matrix controlled by this model and D is a matrix that corresponds to an auto-regressive model.

Usage

```
TRMF_ar(obj,numTS = 1,AR,lambdaD=1,lambdaA=0.0001,weight=1)
```

Arguments

obj	A TRMF object
numTS	number of latent time series in this model
lambdaD	regularization parameter for temporal constraint matrix
lambdaA	regularization parameter to apply simple L2 regularization to this time series model
weight	optional vector of weights to weight constraints, i.e. $R(x) = lambda D^2 w^*(D\%^*\%X) ^2$
AR	vector of autoregressive parameters. No checks are performed

TRMF_columns 15

Details

```
Setting AR = c(1) gives a random walk model, same as TRMF_trend(..., order=1)
```

Value

Returns an updated object of class TRMF.

Author(s)

Chad Hammerquist

References

Yu, Hsiang-Fu, Nikhil Rao, and Inderjit S. Dhillon. "High-dimensional time series prediction with missing values." arXiv preprint arXiv:1509.08333 (2015).

See Also

```
create_TRMF, TRMF_columns, TRMF_trend
```

Examples

```
# create test data
xm = matrix(rnorm(80),20,4)
fm = matrix(rnorm(40),4,10)+1
Am = xm%*%fm+rnorm(200,0,.1)

# create model
obj = create_TRMF(Am)
obj = TRMF_columns(obj,reg_type ="interval")
obj = TRMF_ar(obj,numTS=2,AR=c(0.5),lambdaD=4)
out = train(obj)
plot(out)
```

TRMF_columns

Add a column regularization model to TRMF object

Description

Adds a regularization model to TRMF object created by create_TRMF() to constrain the fitting process of the coefficient matrix.

TRMF_coefficient is a (soon to be deprecated) alias for TRMF_columns.

TRMF_columns

Usage

```
TRMF_columns(obj,
    reg_type = c("12", "nnls", "constrain", "interval", "none"), lambda = 0.0001)
TRMF_coefficients(obj,
    reg_type = c("12", "nnls", "constrain", "interval", "none"), lambda = 0.0001)
```

Arguments

obj TRMF object created by create_TRMF()

reg_type regularization type to apply when fitting TRMF model. 12 regularizes by sim-

ple sum of squares, nnls forces coefficients to be non-negative. constrain constrains coefficients to be non-negative and to sum to 1. interval constrains

coefficients to the interval [0-1]

lambda L2 regularization parameter used for all regularization types. If NULL, uses

lambda set in create_TRMF().

Details

This function doesn't do any computations, it just sets up regularization parameters for the coefficient matrix. This function should only be called once on a TRMF object. If called twice, it will overwrite previous model with a warning.

Value

Returns an updated object of class TRMF.

Author(s)

Chad Hammerquist

References

Yu, Hsiang-Fu, Nikhil Rao, and Inderjit S. Dhillon. "High-dimensional time series prediction with missing values." arXiv preprint arXiv:1509.08333 (2015).

See Also

```
train.TRMF, create_TRMF, TRMF_trend
```

Examples

```
# create test data
xm = poly(x = (-10:10)/10,degree=4)
fm = matrix(abs(rnorm(40)),4,10)
Am = xm%*%fm+rnorm(210,0,.2)

# create model
obj = create_TRMF(Am)
obj = TRMF_columns(obj,reg_type ="nnls")
```

TRMF_es 17

```
out = train(obj)
plot(out)
```

TRMF_es

Add exponential smoothing regularization model to a TRMF object.

Description

Creates a regularization scheme that favors exponentially smoothed solutions and adds it to a TRMF object. In matrix optimization form, it adds the following term to the TRMF cost function: $R(x) = lambdaD^2||w(DX_s)||^2 + lambdaA^2||X_s||^2$ where X_s is sub-set of the Xm matrix controlled by this model and D is a matrix with weights from exponential smoothing.

Usage

Arguments

obj	A TRMF object
numTS	number of latent time series in this model
lambdaD	regularization parameter for temporal constraint matrix
lambdaA	regularization parameter to apply simple L2 regularization to this time series model
weight	optional vector of weights to weight constraint, i.e. $R(x) = lambdaD^2* w^*(D\%*\%X) ^2$
es_type	type of exponential smoothing. "double" does Brown's double exponential smoothing.
alpha	exponential smoothing parameter, constrained to be in the interval [0,1]

Details

This creates a non-sparse constraint matrix which could slow training down for longer time series.

Value

Returns an updated object of class TRMF.

Author(s)

Chad Hammerquist

TRMF_regression

References

Yu, Hsiang-Fu, Nikhil Rao, and Inderjit S. Dhillon. "High-dimensional time series prediction with missing values." arXiv preprint arXiv:1509.08333 (2015).

https://en.wikipedia.org/wiki/Exponential_smoothing

See Also

```
create_TRMF, TRMF_columns, TRMF_trend,TRMF_seasonal
```

Examples

```
# create test data
xm = cbind(cumsum(rnorm(20)),cumsum(rnorm(20)))
fm = matrix(runif(20),2,10)
Am = xm%*%fm+rnorm(200,0,.2)

# create model
obj = create_TRMF(Am)
obj = TRMF_es(obj,numTS=2,alpha=0.5)
out = train(obj)
plot(out)
```

TRMF_regression

Add external regressors to TRMF object

Description

A function to add external regressors to a TRMF object.

Usage

```
TRMF_regression(obj, Xreg, type = c("global", "columnwise"))
```

Arguments

obj	TRMF object created by create_TRMF()
Xreg	Vector or matrix of external regressors. If type = "columnwise", Xreg can be a matrix or array, but the first two dimensions must match those of the data matrix.
type	how are the regressors added to the model. If type = "global" the matrix factorization includes all the regressors. If type = "columnwise" each column in the data matrix is regressed of the corresponding column of Xreg.

TRMF_regression 19

Details

The coefficients model for the regressors are subject to the same regularization as the rest of the matrix factorization. Only one columnwise and one global model should be used in the same model. Both types can be include in the same model though.

Value

Returns an updated object of class TRMF.

Author(s)

Chad Hammerquist

See Also

```
create_TRMF, TRMF_columns, TRMF_trend
```

Examples

```
# ~ Global regression example ~
# create test data
bb = (-10:10)/10
xReg = 10*cos(bb*10)
xm = poly(x = bb, degree=3)
fm = matrix(rnorm(40), 4, 10)
Am = cbind(xReg, xm)%*%fm+rnorm(210, 0, .2)
# creat model and fit
obj = create_TRMF(Am)
obj = TRMF_trend(obj,numTS=3,order=2)
obj = TRMF_regression(obj, Xreg=xReg, type="global")
out = train(obj)
plot(out)
# ~ columnwise regression example ~
# create test data
bb = (-10:10)/10
xm = poly(x = bb, degree=4)
fm = matrix(rnorm(84), 4, 21)
Am = xm%*%fm+rnorm(441,0,.2)
layers = array(0, dim=c(21, 21, 2))
layers[,,1] = 2*\cos(2*bb)\%o\%\sin(4*bb)
layers[,,2] = 2*sqrt(abs(bb%o%bb))
nAm = Am+layers[,,1]+layers[,,2]
# creat model and fit
obj = create_TRMF(nAm)
obj = TRMF_trend(obj,numTS=4,order=2)
obj = TRMF_regression(obj, Xreg=layers, type="columnwise")
out = train(obj)
plot(out)
```

20 TRMF_seasonal

TRMF_seasonal

Add seasonal regularization model to a TRMF object

Description

Creates a regularization scheme that favors seasonally varying solutions and adds it to a TRMF object. In matrix optimization form, it adds the following term to the TRMF cost function: $R(x) = lambdaD^2||w(DX_s)||^2 + lambdaA^2||X_s||^2$ where X_s is sub-set of the Xm matrix controlled by this model and D is a (with a lag of freq) finite difference matrix.

Usage

TRMF_seasonal(obj,numTS = 1,freq = 12,sumFirst=FALSE,lambdaD=1,lambdaA=0.0001,weight=1)

Arguments

obj	A TRMF object
numTS	number of latent time series in this model
lambdaD	regularization parameter for temporal constraint matrix
lambdaA	regularization parameter to apply simple L2 regularization to this time series model
weight	optional vector of weights to weight constraints, i.e. $R(x) = lambda D^2 + w (D\% *\% X) ^2$
freq	The frequency of the seasonal time series model. Minimize the differences of lag = freq
sumFirst	minimize the sum of first freq elements in time series

Details

TRMF_seasonal(freq=N) fits a lag N random walk. For monthly data, use freq=12, for quarterly data, freq=4. If sumFirst = TRUE, the sum of the first freq elements in the latent time series are also minimized. This can be used to help force the seasonal component to vary around a zero mean.

Value

Returns an updated object of class TRMF.

Author(s)

Chad Hammerquist

References

Yu, Hsiang-Fu, Nikhil Rao, and Inderjit S. Dhillon. "High-dimensional time series prediction with missing values." arXiv preprint arXiv:1509.08333 (2015).

TRMF_simple 21

See Also

```
create_TRMF, TRMF_columns,TRMF_simple, TRMF_trend
```

Examples

```
# create test data
tm = 3*poly(x = (-20:20)/10,degree=3)
sm = diffinv(rnorm(29,0,.1),lag=12,xi=(-5:6)/6)
xm = cbind(sm,tm)
fm = matrix(runif(40),4,10)
Am = xm%**%fm+rnorm(410,0,.1)

# create model
obj = create_TRMF(Am)
obj = TRMF_columns(obj,reg_type ="interval")
obj = TRMF_trend(obj,numTS=3,order=2)
obj = TRMF_seasonal(obj,numTS=1,freq=12,lambdaD=5)
out = train(obj)
plot(out)
```

TRMF_simple

Add L2 regularization model to a TRMF object

Description

Creates an L2 regularization and adds it to a TRMF object. In matrix optimization form, it adds the following term to the TRMF cost function: $R(x) = lambdaA^2||w(X_s)||^2$ where X_s is sub-set of the Xm matrix controlled by this model.

Usage

```
TRMF_simple(obj,numTS = 1,lambdaA=0.0001,weight=1)
```

Arguments

obj	A TRMF object
numTS	number of latent time series in this model
lambdaA	regularization parameter to apply simple L2 regularization to this time series model
weight	optional vector of weights to weight constraints, i.e. $R(x) = lambda A^2 w^*X ^2$

Details

This is called by train_TRMF if the TRMF object doesn't have any time series models.

TRMF_trend

Value

Returns an updated object of class TRMF.

Author(s)

Chad Hammerquist

References

Yu, Hsiang-Fu, Nikhil Rao, and Inderjit S. Dhillon. "High-dimensional time series prediction with missing values." arXiv preprint arXiv:1509.08333 (2015).

See Also

```
create_TRMF, TRMF_columns,TRMF_seasonal, TRMF_trend
```

Examples

```
# create test data
xm = matrix(rnorm(160),40,4)
fm = matrix(runif(40),4,10)
Am = xm%*%fm+rnorm(400,0,.1)

# create model
obj = create_TRMF(Am)
obj = TRMF_simple(obj,numTS=4,lambdaA=0.1)
out = train(obj)
plot(out)
```

TRMF_trend

Add Trend Model to a TRMF Object

Description

Creates a regularization scheme that favors trend-like solutions and adds it to a TRMF object. In matrix optimization form, it adds the following term to the TRMF cost function: $R(x) = lambdaD^2||w(DX_s)||^2 + lambdaA^2||X_s||^2$ where X_s is sub-set of the Xm matrix controlled by this model and D is a finite difference matrix.

Usage

```
TRMF_trend(obj,numTS = 1,order = 1,lambdaD=1,lambdaA=0.0001,weight=1)
```

TRMF_trend 23

Arguments

obj	A TRMF object
numTS	number of latent time series in this model
order	The order of derivative for finite difference constraint matrix. Fractionally and negative values allowed.
lambdaD	regularization parameter for temporal constraint matrix
lambdaA	regularization parameter to apply simple L2 regularization to this time series model
weight	optional vector of weights to weight constraints, i.e. $R(x) = lambdaD^2 w^*(D\%^*X) ^2$

Details

An arbitrary number of time series models can be added. TRMF_trend(order = 1) fits a random walk. TRMF_trend(order = 2) fits a cubic smoothing spline. For a single time series, TRMF_trend(order = 2) is basically equivalent to the Hodge-Prescot filter. A fractional value for order minimizes a squared fractional derivative. A negative value minimizes a (possibly fractional order) squared integral of time-series. Using a fractional or negative order for TRMF_trend or using TRMF_es could drastically reduce the sparsity of constraint matrix and slow down training. Fractional or negative order has only been lightly tested, so use with care.

Value

Returns an updated object of class TRMF.

Author(s)

Chad Hammerquist

References

Yu, Hsiang-Fu, Nikhil Rao, and Inderjit S. Dhillon. "High-dimensional time series prediction with missing values." arXiv preprint arXiv:1509.08333 (2015).

See Also

```
create_TRMF, TRMF_columns, TRMF_simple, TRMF_seasonal
```

Examples

```
# create test data
xm = poly(x = (-10:10)/10,degree=4)
fm = matrix(runif(40),4,10)
Am = xm%*%fm+rnorm(210,0,.1)

# create model
obj = create_TRMF(Am)
obj = TRMF_columns(obj,reg_type ="interval")
```

24 TRMF_trend

```
obj = TRMF_trend(obj,numTS=4,order=2,lambdaD=2)
out = train(obj)
plot(out)

# more complex model
require(magrittr) # for pipes

obj = create_TRMF(Am)%>%
    TRMF_columns(reg_type ="interval")%>%
    TRMF_trend(numTS=2,order=1,lambdaD=4)%>%
    TRMF_trend(numTS=2,order=2,lambdaD=4)%>%
    TRMF_trend(numTS=1,order=1.5)

out = train(obj)
plot(out)
```

Index

```
class, 5, 13
coef, 13
coef.TRMF, 2
components, 13
components.TRMF, 3
create_TRMF, 2, 3, 4, 6, 7, 9, 10, 12, 14-16,
         18, 19, 21–23
fitted, 13
fitted.TRMF, 5
impute_TRMF, 6
NormalizeMatrix, 7
plot.TRMF, 8
{\tt predict.TRMF}, {\color{red}9}
resid, 13
residuals.TRMF, 10
retrain, 11
summary.TRMF, 12
train.TRMF, 5, 7, 10, 11, 13, 16
TRMF_ar, 14
TRMF_coefficients (TRMF_columns), 15
TRMF_columns, 2, 3, 5, 6, 9, 10, 12, 14, 15, 15,
         18, 19, 21–23
TRMF_es, 17
TRMF_regression, 18
TRMF_seasonal, 18, 20, 22, 23
TRMF_simple, 13, 21, 21, 23
TRMF_trend, 2, 3, 5-7, 9, 10, 12, 14-16, 18,
         19, 21, 22, 22
```