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Abstract

We present the R package SimInf which provides an efficient and very flexible frame-
work to conduct data-driven epidemiological modeling in realistic large scale disease
spread simulations. The framework integrates infection dynamics in subpopulations as
continuous-time Markov chains using the Gillespie stochastic simulation algorithm and
incorporates available data such as births, deaths and movements as scheduled events
at predefined time-points. Using C code for the numerical solvers and divide work over
multiple processors ensures high performance when simulating a sample outcome. One of
our design goals was to make SimInf extendable and enable usage of the numerical solvers
from other R extension packages in order to facilitate complex epidemiological research.
In this paper, we provide a technical description of the framework and demonstrate its
use on some basic examples. We also discuss how to specify and extend the framework
with user-defined models.

Keywords: computational epidemiology, discrete-event simulation, multicore implementation,
stochastic modeling.

Note

This vignette is based on the paper by Widgren, Bauer, Eriksson, and Engblom (2019) but
has been updated in some places to describe functionality in SimInf that has been developed
since the paper was published. See the package NEWS file for recent changes. The results
reported here are based on SimInf version 9.7.0 unless otherwise stated.

1. Introduction

Cattle can act as a reservoir for Salmonella and verotoxin-producing Escherichia coli (VTEC),
two important examples of zoonotic food-borne pathogens. In order to develop effective con-
trol strategies, it is necessary to understand the spread of zoonotic diseases in the cattle
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population (Newell, Koopmans, Verhoef, Duizer, Aidara-Kane, Sprong, Opsteegh, Langelaar,
Threfall, Scheutz et al. 2010). Since cattle are aggregated into spatially segregated farms, it is
natural to use a metapopulation framework and partition the cattle population into interact-
ing subpopulations (Grenfell and Harwood 1997; Keeling, Danon, Vernon, and House 2010).
Furthermore, livestock data is commonly available, with information on births, deaths and
movements (Brooks-Pollock, de Jong, Keeling, Klinkenberg, and Wood 2015). Consequently,
detailed spatiotemporal demographic data and the transportation network are available and
can be used for epidemiologically relevant factors when simulating the infection process within
each subpopulation, coupled with spread among subpopulations governed by spatial proxim-
ity and livestock movements. However, incorporating large amounts of data in simulations is
computationally challenging and requires efficient algorithms.

In this work, we present the R (R Core Team 2017) package SimInf, a flexible framework
for data-driven spatio-temporal disease spread modeling, designed to efficiently handle pop-
ulation demographics and network data. The framework integrates infection dynamics in
each subpopulation as continuous-time Markov chains (CTMC) using the Gillespie stochastic
simulation algorithm (SSA) (Gillespie 1977) and incorporates available data such as births,
deaths or movements as scheduled events. A scheduled event is used to modify the state of
a subpopulation at a predefined time-point. Using compiled C (Kernighan and Ritchie 1988)
code, rather than interpreted R code, for the numerical solvers ensures high performance
when simulating a model. To further improve performance, OpenMP (OpenMP Architecture
Review Board 2008) is used to divide work over multiple processors and perform computa-
tions in parallel. Furthermore, the framework has a well-defined interface to incorporate data
that is shared among all subpopulations (global) and data that is specific to each subpopula-
tion (local), allowing sophisticated models to be straightforwardly formulated. The proposed
approach was used to study spread and control of VTEC in the complete Swedish cattle pop-
ulation, incorporating almost ten years of scheduled events data in a network of about 40,000
subpopulations (Bauer, Engblom, and Widgren 2016; Widgren, Engblom, Bauer, Frössling,
Emanuelson, and Lindberg 2016; Widgren, Engblom, Emanuelson, and Lindberg 2018). Even
if development of SimInf was inspired by livestock diseases and models driven by available
data, the design is of completely general character and applies to arbitrary metapopulation
models. One of our design goals was to make SimInf extendable and enable usage of the nu-
merical solvers from other R extension packages in order to facilitate complex epidemiological
research. To support this, SimInf has functionality to generate the required C and R code
from a model specification.

Various packages available at the Comprehensive R Archive Network (CRAN) implement SSA
to simulate a continuous-time stochastic process. The GillespieSSA package (Pineda-Krch
2008), on CRAN since 2007, implements both the direct method and three approximate meth-
ods. The hybridModels package (Marques, Amaku, and Grisi-Filho 2017) uses GillespieSSA

internally to simulate infections using a metapopulation model coupled with spread among
subpopulations. Since each outcome of a stochastic process is different, it is (generally) nec-
essary to study many realisations of the process to see the distribution of outcomes consistent
with the model structure and parameterization. Therefore, performance of the simulator be-
comes critical when using these methods in an applied context. Because the algorithms in
GillespieSSA are implemented in R, the computational efficiency is limited in comparison with
implementations in a compiled language, for example, C or C++. The adaptivetau package
(Johnson 2016) uses a hybrid R/C++ strategy to implement the direct method and adaptive
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tau leaping (Cao, Gillespie, and Petzold 2007).

There exists several related R packages for epidemiological analysis on CRAN. For example,
the package amei (Merl, Johnson, Gramacy, and Mangel 2010), designed for finding optimal
intervention strategies to minimize total expected cost to control a disease outbreak. Another
package is surveillance, a framework for monitoring, modeling, and regression analysis of
infectious diseases, (Meyer, Held, and Höhle 2017). EpiModel (Jenness, Goodreau, and Morris
2017) is an R package that includes a framework for modeling spread of diseases on networks.
In EpiModel the individual is the unit and transmission between individuals is modelled
through a contact network in discrete time.

The remainder of this paper is organized as follows. In Section 2 we summarize the mathemat-
ical foundation for our framework. Section 3 gives a technical description of the simulation
framework. In Section 4 we illustrate the use of the package by some worked examples. In
Section 5 we demonstrate how to extend SimInf with user-defined models. Finally, in Sec-
tion 6 we provide a small benchmark between various R packages of the run-time to simulate
SSA trajectories.

2. Epidemiological modeling

In mathematical modeling of the dynamics of an infectious disease in a population, the pop-
ulation under study is commonly divided into compartments representing discrete health
states, together with assumptions about the transition rates for individuals to move from one
compartment to another (Kermack and McKendrick 1927; Andersson and May 1991; Keeling
and Rohani 2007). In order to capture spatial characteristics of a disease process, a com-
partment model can be further partioned into metapopulations (cities, households, farms),
i.e., subpopulations with its own infection dynamics (Grenfell and Harwood 1997). Since the
population size of each subpopulation is small, it is often necessary to use stochastic models,
e.g., to account for the random event that an infection will become extinct (Bartlett 1957).
A stochastic compartment model is naturally formulated as a CTMC using SSA to simu-
late the number of individuals within each compartment through time (Keeling and Rohani
2007). Consequently, SSA is often used when modeling various infectious diseases, for exam-
ple, Ebola virus disease outbreak (King, Domenech de Cellès, Magpantay, and Rohani 2015),
seasonality of influenza epidemics (Dushoff, Plotkin, Levin, and Earn 2004), avian influenza
virus in bird populations (Breban, Drake, Stallknecht, and Rohani 2009), paratuberculosis
infection in cattle (Smith, Schukken, and Gröhn 2015).

In order to model disease spread on a larger scale, the infection process within each subpopu-
lation must be coupled with spread among subpopulations. For example, livestock movements
are an important transmission route for many infectious diseases and can transfer infectious in-
dividuals between farms over large distances (Danon, Ford, House, Jewell, Keeling, Roberts,
Ross, and Vernon 2011). The livestock movements create complex dynamic interactions
among farms that can be represented as a directed temporal network (Kempe, Kleinberg,
and Kumar 2002; Bajardi, Barrat, Natale, Savini, and Colizza 2011; Dutta, Ezanno, and
Vergu 2014). In network terminology, each farm is represented by a node (also called a ver-
tex). Moreover, each movement forms an edge (also called a link) between two nodes and
following all edges through time, an infection may “flow” in the network and spread from node
to node. Let Nnodes denote the number of nodes in a population, and let i, j, k ∈ {1, . . . , Nnodes}
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Figure 1: Illustration of movements as a temporal network. Each time step depicts movements
during one time unit, for example, a day. The network has N = 4 nodes where node 1 is
infected and nodes 2–4 are non-infected. Arrows indicate movements of individuals from a
source node to a destination node and labels denote the size of the shipment. Here, infection
may spread from node 1 to node 3 at t = 2 and then from node 3 to node 2 at t = 3.

denote three distinct nodes. As illustrated in Figure 1, just because there exists an edge from
i to j does not mean that there exists an edge from j to i. Moreover, the existence of an edge
from i to j and one from j to k does not imply there exists a path from i to k. Furthermore,
note that the order of the edges matter, consider swapping the first and second time step in
Figure 1, then another path for spread is possible, namely from node 3 to node 4 and then
to node 2.

In Sections 2.1–2.3, we provide an overview of the epidemiological modeling framework em-
ployed in SimInf. The overall approach consists of CTMCs as a general model of the dynamics
of the epidemiological state. Importantly, we also allow for variables obeying ordinary differ-
ential equations (ODEs). For example, this readily supports modeling infections that have
an indirect transmission route, e.g., via shedding of a pathogen to the environment (Ayscue,
Lanzas, Ivanek, and Gröhn 2009; Breban et al. 2009). Additionally, the framework handles
externally defined demographic and movement events. In Sections 2.1–2.2 below we distin-
guish between the local dynamics that describes the evolution of the epidemiological state at
a single node, and the global dynamics, which describes the system at the network level. The
overall numerical approach underlying SimInf is described in Section 2.3. We draw much of
the material here from (Bauer et al. 2016; Engblom and Widgren 2017).

2.1. Local dynamics

We describe the state of a single node with a state vector X(t) ∈ Z
Ncomp

+ , which counts the
number of individuals at each of Ncomp compartments at time t. The transitions between these
compartments are stochastic and are described by the transition matrix S ∈ Z

Ncomp×Ntrans

and the transition intensities R : Z
Ncomp

+ → R
Ntrans
+ , assuming Ntrans different transitions. We

then form a random counting measure µk(dt) = µ(Rk(X(t−)); dt) that is associated with a
Poisson process for the kth intensity Rk(X(t−), which in turn depends on the state prior to
any transition at time t, that is, X(t−).

The local dynamics can then compactly be described by a pure jump stochastic differential
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equation (SDE),

dX(t) = Sµ(dt), (1)

where µ(dt) is a vector measure built up from the scalar counting measures µ(dt) = [µ1(dt), . . . ,
µNtrans

(dt)]⊤. If at time t, transition k occurs, then the state vector is updated according to

X(t) = X(t−) + Sk, (2)

with Sk the kth column of S. In (1) the Ntrans different epidemiological state transitions are
competing in the sense of independent Poisson processes. The “winning” process decides what
event happens and changes the state according to (2). The simulation then proceeds under
the Markov assumption where previous events are remembered via the state variable X only.

To make this abstract notation a bit more concrete we consider a traditional example as
follows. In an SIS-model the transitions between a susceptible and an infected compartment
can be written as

S + I
β
−→ 2I

I
γ
−→ S

}

. (3)

With a state vector consisting of two compartments X = [S, I], i.e., the number of susceptible
and infected individuals, respectively, we can then write the transition matrix and intensity
vector as

S =

[

−1 1
1 −1

]

, (4)

R(x) = [βx1x2, γx2]⊤. (5)

To connect this with traditional ODE-based models, note that, replacing the random measure
in (1) with its mean drift, we arrive at

dx(t)

dt
= SR(x), (6)

where now the state variable x ∈ R
Ncomp . The differences between (1) and (6) are that the

randomness and discreteness of the state variable are not present in the latter formulation.
If these features are thought to be important, then (1) is an accurate stochastic alternative
to (6), relying only on the Markovian “memoryless” assumption.

There are, however, situations where we would like to mix the discrete stochastic model with
a concentration-type ODE model. In a multi-scale description there are typically variables
for which a continuous description is more natural: a typical example is the concentration
of bacteria in an infectious environment for which individual counting would clearly not be
feasible.

Assuming an additional concentration state vector Y ∈ R
Nconc a general model which aug-

ments (1) is

dX(t) = Sµ(dt)
Y ′(t) = f(X(t), Y (t))

}

, (7)
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where now the random measure depends also on the concentration variable,

µ(dt) = µ(R(X(t−), Y (t)), dt). (8)

The overall combined state vector is then [X; Y ] ∈ [ZNcomp ; R
Nconc ].

2.2. Global dynamics

To extend the local dynamics to a network model consisting of Nnodes nodes we first define
the overall state matrices X ∈ Z

Ncomp×Nnodes

+ and Y ∈ R
Nconc×Nnodes and then extend (7) to

dX(i)(t) = Sµ
(i)(dt), (9)

dY(i)(t)

dt
= f(X(i),Y(i)), (10)

where i ∈ {1, . . . , Nnodes} is the node index.

We then consider the Nnodes nodes being the vertices of an undirected graph G with interactions
defined in terms of the counting measures ν

(i,j) = ν
(i,j)(dt) and ν

(j,i). Here ν
(i,j) represents

the state changes due to an inflow of individuals from node i to node j, and ν
(j,i) represents

an inflow of individuals from node j to node i, assuming node j being in the connected
component C(i) of node i, and vice versa. We denote the connected components of the graph

G as the matrix C ∈ Z
Ncomp×Nnodes

+ .

The network dynamics is then written as

dX
(i)
t = −

∑

j∈C(i)

Cν
(i,j)(dt) +

∑

j; i∈C(j)

Cν
(j,i)(dt), (11)

dY(i)(t)

dt
= −

∑

j∈C(i)

g(X(i),Y(i)) +
∑

j; i∈C(j)

g(X(j),Y(j)). (12)

In (12), g is similarly the “flow” of the concentration variable Y between the nodes in the
network. For example, this could be the natural modeling target for concentration variables
Y which are transported via surface water or air.

Combining this with (9)–(10) we obtain the overall dynamics

dX(i)(t) = Sµ
(i)(dt) −

∑

j∈C(i)

Cν
(i,j)(dt) +

∑

j; i∈C(j)

Cν
(j,i)(dt), (13)

dY(i)(t)

dt
= f(X(i),Y(i)) −

∑

j∈C(i)

g(X(i),Y(i)) +
∑

j; i∈C(j)

g(X(j),Y(j)). (14)

Note that ν
(i,j) and ν

(j,i) may be equivalently employed for externally scheduled events given
by data using an equivalent construction in terms of Dirac measures. This is the case, for
example, when intra-nodal transport data of individuals are available.

2.3. Numerical method

In SimInf, we solve (13)–(14) by splitting the local update scheme (9)–(10) from the global
update scheme (11)–(12). We discretize time as 0 = t0 < t1 < t2 < · · · , which is partially
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Figure 2: Schematic overview of the functionality in SimInf. The central object is the S4 class
SimInf_model which contains the specification and data for a model. A new model object
is created using mparse or a predefined template, for example, SIR or SEIR. A stochastic
trajectory is simulated from a model using run. For computational efficiency, the numerical
solvers are implemented in C code. There are several functions in SimInf to facilitate analysis
and post-processing of simulated data, for example, trajectory, prevalence and plot.
SimInf supports usage of the numerical solvers from other R packages via the LinkingTo

feature in R.

required as external data has to be incorporated at some finitely resolved time stamps. The
numerical method of SimInf can then be written per node i as

X̃
(i)
n+1 = X

(i)
n +

∫ tn+1

tn

Sµ
(i)(ds), (15)

X
(i)
n+1 = X̃

(i)
n+1 −

∫ tn+1

tn

∑

j∈C(i)

Cν
(i,j)(ds) +

∫ tn+1

tn

∑

j; i∈C(j)

Cν
(j,i)(ds), (16)

Y
(i)
n+1 = Y

(i)
n + f(X̃

(i)
n+1,Y(i)

n ) ∆tn (17)

−
∑

j∈C(i)

g(X̃
(i)
n+1,Y(i)

n )∆tn +
∑

j; i∈C(j)

g(X̃
(j)
n+1,Y(j)

n )∆tn.

In this scheme, (15) forms the local stochastic step, that is in practice simulated by the
Gillespie method (Gillespie 1977). Equation (16) is the data step, where externally scheduled
events are incorporated. Note that the stochastic step evolves in continuous time in the
interval [tn, tn+1], and the data step operates only on the final state X̃ at tn+1. The final
step (17) is just the Euler forward method in time with time-step ∆tn = tn+1 − tn for the
concentration variable Y.

3. Technical description of the simulation framework

The overall design of SimInf was inspired and partly adapted from the Unstructured Mesh
Reaction-Diffusion Master Equation (URDME) framework (Engblom, Ferm, Hellander, and
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Lötstedt 2009; Drawert, Engblom, and Hellander 2012). SimInf uses object oriented program-
ming and the S4 class (Chambers 2008) SimInf_model is central and provides the basis for the
framework. A SimInf_model object supplies the state-change matrix, the dependency graph,
the scheduled events, and the initial state of the system. Briefly, the state-change matrix
defines the effect of the disease transitions on the state of the system while the dependency
graph indicates the transition rates that need to be updated after a given disease transition.
Additionally, model specific code written in C specifies the transition rate functions for the
disease transitions in the system. All predefined models in SimInf have a generating function
(Chambers 2008), with the same name as the model, to initialize the data structures for that
specific model, see the examples in Section 4. A model can also be created from a model spec-
ification using the mparse method, further described in Section 5. After a model is created, a
simulation is started with a call to the run method and if execution is successful, it returns a
modified SimInf_model object with a single stochastic solution trajectory attached to it. Sim-

Inf provides several utility functions to inspect simulated data, for example, show, summary

and plot. To facilitate custom analysis, SimInf provides the trajectory and prevalence

methods that both return a data.frame with simulated data. Figure 2 shows a schematic
overview of the functionality in SimInf. The overall modular design makes extensions easy to
handle.

3.1. Installation

The most recent stable version of SimInf is available from the Comprehensive R Archive
Network (CRAN) at (https://CRAN.R-project.org/package=SimInf) and may, depend-
ing on your platform, be available in source form or compiled binary form. The development
version is available on GitHub (https://github.com/stewid/SimInf). A binary form of
SimInf for macOS or Windows can be installed directly from CRAN. However, if you install
SimInf from source (from CRAN or a .tar.gz file), the installation process requires a C com-
piler, and that the GNU Scientific Library (GSL) (Galassi, Davies, Theiler, Gough, Jungman,
Alken, Booth, and Rossi 2009) is installed on your system and is on the path. On a Win-
dows machine you first need to download and install Rtools from https://cran.r-project.

org/bin/windows/Rtools. Note that GSL (https://www.gnu.org/software/gsl/) is not
an R add-on package, but needs to be installed separately, for example, from a terminal
using: sudo apt-get install libgsl0-dev on Debian and Ubuntu, sudo yum install

gsl-devel on Fedora, CentOS or RHEL, or brew install gsl on macOS with the Home-
brew package manager. On Windows, the GSL files are downloaded, if needed, from https:

//github.com/rwinlib/gsl during the installation of SimInf. Furthermore, when you in-
stall SimInf from source, depending on features of the compiler, the package is compiled with
support for OpenMP. To find out more about installing R add-on packages in general, the
R Installation and Administration (https://cran.r-project.org/manuals.html) manual
describes the process in detail. After installing the package

R> install.packages("SimInf")

it is loaded in R with the following command

R> library("SimInf")

https://CRAN.R-project.org/package=SimInf
https://github.com/stewid/SimInf
https://cran.r-project.org/bin/windows/Rtools
https://cran.r-project.org/bin/windows/Rtools
https://www.gnu.org/software/gsl/
https://github.com/rwinlib/gsl
https://github.com/rwinlib/gsl
https://cran.r-project.org/manuals.html
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Slot Description

S Each column corresponds to a state transition, and execution of state transition j
amounts to adding the S[, j] column to the state vector u[, i] of node i where the
transition occurred. Sparse matrix (Ncomp × Ntrans) of object class dgCMatrix.

G Dependency graph that indicates the transition rates that need to be updated after
a given state transition has occurred. A non-zero entry in element G[i, j] indicates
that transition rate i needs to be recalculated if the state transition j occurs. Sparse
matrix (Ntrans × Ntrans) of object class dgCMatrix.

tspan A vector of increasing time points where the state of each node is to be returned.
U The result matrix with the number of individuals in each compartment in every

node. U[, j] contains the number of individuals in each compartment at tspan[j].
U[1:Ncomp, j] contains the number of individuals in each compartment in node 1 at
tspan[j]. U[(Ncomp + 1):(2 * Ncomp), j] contains the number of individuals in each
compartment in node 2 at tspan[j] etc. Integer matrix (NnodesNcomp × length(tspan)).

U_sparse It is possible to run the simulator and write the number of individuals in each com-
partment to the U_sparse sparse matrix (dgCMatrix), which can save a lot of memory
if the model contains many nodes and time-points, but where only a few of the data
points are of interest. If U_sparse is non-empty when run is called, the non-zero entries
in U_sparse indicates where the number of individuals should be written to U_sparse.
The layout of the data in U_sparse is identical to U. Please note that the data in
U_sparse is numeric and that the data in U is integer.

u0 The initial number of individuals in each compartment in every node. Integer matrix
(Ncomp × Nnodes).

V The result matrix for the real-valued continuous state. V[, j] contains the real-valued
state of the system at tspan[j]. Numeric matrix (NnodesNld × length(tspan)).

V_sparse It is possible to run the simulator and write the real-valued continuous state to the
V_sparse sparse matrix (dgCMatrix), which can save a lot of memory if the model
contains many nodes and time-points, but where only a few of the data points are of
interest. If V_sparse is non-empty when run is called, the non-zero entries in V_sparse

indicates where the real-valued continuous state should be written to V_sparse. The
layout of the data in V_sparse is identical to V.

v0 The initial value for the real-valued continuous state. Numeric matrix (Nld × Nnodes).
ldata A numeric matrix with local data specific to each node. The column ldata[, j]

contains the local data vector for node j. The local data vector is passed as an argument
to the transition rate functions and the post time step function.

gdata A numeric vector with global data that is common to all nodes. The global data
vector is passed as an argument to the transition rate functions and the post time step
function.

events Scheduled events to modify the discrete state of individuals in a node at a pre-defined
time t. S4 class SimInf_events, see Section 3.3 and Table 2.

C_code Character vector with optional model C code, see Section 5. If non-empty, the C code
is written to a temporary file when the run method is called. The temporary file is
compiled and the resulting DLL is dynamically loaded.

Table 1: Description of the slots in the S4 class SimInf_model that defines the epidemiolog-
ical model. Ntrans is the number of state transitions in the model. Ncomp is the number of
compartments in the model. Nnodes is the number of nodes in the model. Nld is the number
of local data specific to each node and equals dim(ldata)[1].
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3.2. Specification of an epidemiological model

The within-node disease spread model in SimInf is specified as a compartment model with
the individuals divided into compartments defined by discrete disease statuses. The model is
defined by the slots in the S4 class SimInf_model (Table 1). The compartments contains the
number of individuals in each of the Ncomp disease states in every Nnodes nodes.

Equation (17), the stochastic step, contains Ntrans state transitions and is processed using the
two slots S and G. The S slot is the state-change matrix (Ncomp ×Ntrans) that determines how to
change the number of individuals in the compartments of a node when the jth state transition
occurs, where 1 ≤ j ≤ Ntrans. Each row corresponds to one compartment and each column to
a state transition. Let u[, i] be the number of individuals in each compartment in node i at
time ti. To move simulation time forward in node i to ti = ti+τi, the vector u[, i] is updated
according to the jth transition by adding the state-change vector S[, j] to u[, i]. After
updating u[, i], the transition rates must be recalculated to obtain the time to the next
event. However, a state transition might not need all transition rates to be recalculated. The
dependency graph G is a matrix (Ntrans × Ntrans) that determines which transition rates that
need to be recalculated. A non-zero entry in element G[k, j] indicates that transition rate k

needs to be recalculated if the jth state transition occurs, where 1 ≤ k ≤ Ntrans. Furthermore,
the final step (17) is incorporated using a model specific post time step callback to allow
update of the concentration variable Y.

Model-specific data that is passed to the transition-rate functions and the post time-step
function are stored in the two slots ldata and gdata in the SimInf_model object. The ldata

matrix holds local data for each node where ldata[, i] is the data vector for node i. Data
that is global, i.e., shared between nodes, is stored in the gdata vector.

The events slot in the SimInf_model holds data to process the scheduled events, further
described in Section 3.3.

During simulation of one trajectory, the state of the system is written to the two matrices
U and V. This happens at each occasion the simulation time passes a time point in tspan, a
vector of increasing time points. The first and last element in tspan determines the start-
and end-point of the simulation. The column U[, m] contains the number of individuals in
each compartment in every node at tspan[m], where 1 ≤ m ≤ length(tspan). The first
Ncomp rows in U contains the compartments of the first node. The next Ncomp rows contains
the compartments of the second node etc. The V matrix contains output from continuous
state variables. The column V[, m] contains the values at tspan[m]. The rows are grouped
per node and the number of rows per node is determined by the number of continuous state
variables in that specific model. It is also possible to configure the simulator to write the
state of the system to the sparse matrices U_sparse and V_sparse, which can save a lot of
memory if the model contains many nodes and time-points, but where only a few of the data
points are of interest. In order to use this feature, call the U and V methods (before running a
trajectory) with a data.frame that specify the nodes, time-points and compartments where
the simulator should write the state of the system. The initial state in each node is specified
by the two matrices u0 and v0 where u0[, i] is the initial number of individuals in each
compartment at node i and v0[, i] is the initial continuous state in node i.

3.3. Specification of scheduled events

The scheduled events are used to modify the discrete state of individuals in a node at a
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Slot Description

E Each row corresponds to one compartment in the model. The non-zero entries in
a column indicate which compartments to sample individuals from when processing
an event. Which column to use for each event is specified by the select vector (see
below). E is a sparse matrix of class dgCMatrix.

N Determines how individuals in internal transfer and external transfer events are
shifted to enter another compartment. Each row corresponds to one compartment in
the model. The values in a column are added to the current compartment of sampled
individuals to specify the destination compartment, for example, a value of 1 in an
entry means that sampled individuals in this compartment are moved to the next
compartment. Which column to use for each event is specified by the shift vector
(see below). N is an integer matrix.

event Four event types are supported by the current solvers: exit, enter, internal transfer,
and external transfer. When assigning the events from a data.frame, they can either
be coded as a numerical value or a character string: exit; 0 or ’exit’, enter; 1 or
’enter’, internal transfer; 2 or ’intTrans’, and external transfer; 3 or ’extTrans’.
Internally in SimInf, the event type is coded as a numerical value.

time Time of when the event occurs i.e., the event is processed when time is reached in
the simulation. time is an integer vector.

node The node that the event operates on. Also the source node for an external transfer
event. node is an integer vector, where 1 ≤ node[i] ≤ Nnodes.

dest The destination node for an external transfer event i.e., individuals are moved from
node to dest, where 1 ≤ dest[i] ≤ Nnodes. Set event = 0 for the other event types.
dest is an integer vector.

n The number of individuals affected by the event. n is an integer vector, where n[i]

≥ 0.
proportion If n[i] equals zero, the number of individuals affected by event[i] is calculated by

summing the number of individuals in the compartments determined by select[i]

and sampling from a binomial distribution with proportion[i]. proportion is a
numeric vector, where 0 ≤ proportion[i] ≤ 1.

select To process an event[i], the compartments affected by the event are specified with
select[i] together with the matrix E, where select[i] determines which column
in E to use. The specific individuals affected by the event are sampled from the
compartments corresponding to the non-zero entries in the specified column in E[,

select[i]], where select is an integer vector.
shift Determines how individuals in enter, internal transfer and external transfer events are

shifted to enter another compartment. The sampled individuals are shifted according
to column shift[i] in matrix N i.e., N[, shift[i]], where shift is an integer
vector. See above for a description of N.

Table 2: Description of the slots in the S4 class SimInf_events that holds data to process
scheduled events to modify the discrete state of individuals in a node at a pre-defined time t.
Each index, i, of the vectors represent one event. Nnodes is the number of nodes in the model.
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Argument Description

v_new If a continuous state vector is used by a model, this is the new continuous state vector
in the node after the post time step. Exists only in PTSFun.

u The compartment state vector in the node.
v The current continuous state vector in the node.
ldata The local data vector for the node.
gdata The global data vector that is common to all nodes.
node The node index. Note the node index is zero-based, i.e., the first node is 0.
t Current time in the simulation.

Table 3: Description of the arguments to the transition rate functions (TRFun) and the post
time step function (PTSFun).

pre-defined time t. There are four different types of events; enter, internal transfer, external
transfer and exit. The enter event adds individuals to a node, for example, due to births.
The internal transfer event moves individuals between compartments within one node. For
example, to simulate vaccination and move individuals to a vaccinated compartment (see
example in Section 5.1.2). Or ageing according to birth records in an age-structured model
(Widgren et al. 2016). The external transfer event moves individuals from compartments in
one node to compartments in a destination node. Finally, the exit event removes individuals
from a node, for example, due to death. The event types are classified into those that operate
on the compartments of a single node E1 = {enter, internal transfer, exit} and those that
operate on the compartments of two nodes E2 = {external transfer}. The parallel algorithm
processes these two classes of events differently, see Appendix A for pseudo-code of the core
simulation solver. The scheduled events are processed when simulation time reaches the time
for any of the events. Events that are scheduled at the same time are processed in the following
order: exit, enter, internal transfer and external transfer.

The S4 class SimInf_events contains slots with data structures to process events (Table 2).
The slots event, time, node, dest, n, proportion, select and shift, are vectors of equal
length. These vectors hold data to process one event: e, where 1 < e ≤ length(event). The
event type and the time of the event are determined by event[e] and time[e], respectively.
The compartments that event[e] operates on, are specified by select[e] together with the
slot E. Each row {1, 2, . . . , Ncomp} in the sparse matrix E, represents one compartment in the
model. Let s <- select[e], then each non-zero entry in the column E[, s] includes that
compartment in the event[e] operation. The definitions of all of these operations are a bit
involved and to quickly get an overview, schematic diagrams illustrating all of them have been
prepared, we refer to Figures 10, 11, 12, 13, 14 in Appendix B.

Processing of an enter event

The enter event adds n[e] individuals to one or more compartments in node[e], where the
possible compartments are specified by a non-zero entry in the row for a compartment in col-
umn E[, s]. If n[e] equals zero, the number of individuals to add is calculated by sampling
from a binomial distribution with proportion[e] and the total number of individuals in the
compartments represented by the non-zero entries in column E[, s]. If the column E[, s]

contains several non-zero entries, the compartment to add an individual is sampled in such
a way that the probability is proportional to the weight in E[, s]. Before the individuals
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are added to the compartments, it is possible to use the shift[e] feature (described below)
to further control in which compartments they are added. The value of dest[e], described
below, is not used when processing an enter event. See Figure 11 in Appendix B for an
illustration of a scheduled enter event.

Processing of an internal transfer event

The internal transfer event moves n[e] individuals into new compartments within node[e].
However, if n[e] equals zero, the number of individuals to move is calculated by sampling
from a binomial distribution with proportion[e] and the total number of individuals in the
compartments represented by the non-zero entries in column E[, s]. The individuals are
then sampled, one by one, without replacement from the compartments specified by E[, s]

in such a way that the probability that a particular individual is sampled at a given draw is
proportional to the weight in E[, s]. This sampling follows an hypergeometric distribution
when all compartments have the same weight, and a Wallenius’ noncentral hypergeometric
distribution when the weights are different. (Fog 2008). The next step is to move the sam-
pled individuals to their new compartment using the matrix N and shift[e], where shift[e]

specifies which column in N to use. Each row {1, 2, . . . , Ncomp} in N, represents one compart-
ment in the model and the values determine how to move sampled individuals before adding
them to node[e] again. Let q <- shift[e], then each non-zero entry in N[, q] defines the
number of rows to move sampled individuals from that compartment i.e., sampled individu-
als from compartment p are moved to compartment N[p, q] + p, where 1 ≤ N[p, q] + p

≤ Ncomp. The value of dest[e], described below, is not used when processing an internal
transfer event. See Figure 13 in Appendix B for an illustration of a scheduled internal transfer
event.

Processing of an external transfer event

The external transfer event moves individuals from node[e] to dest[e]. The sampling of
individuals from node[e] is performed in the same way as for an internal transfer event. The
compartments at node[e] are updated by subtracting the sampled individuals while adding
them to the compartments at dest[e]. The sampled individuals are added to the same
compartments in dest[e] as in node[e], unless shift[e] > 0. In that case, the sampled
individuals change compartments according to N as described in processing an internal transfer
event before adding them to dest[e]. See Figures 12 and 14 in Appendix B for illustrations
of scheduled external transfer events.

Processing of an exit event

The exit event removes individuals from node[e]. The sampling of individuals from node[e]

is performed in the same way as for an internal transfer event. The compartments at node[e]

are updated by subtracting the sampled individuals. The values of dest[e] and shift[e]

are not used when processing an exit event. See Figure 10 in Appendix B for an illustration
of a scheduled exit event.

3.4. Core simulation solvers

The SimInf package uses the ability to interface compiled code from R Chambers (2008).
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The solvers are implemented in the compiled language C and is called from R using the
.Call() interface (Chambers 2008). Using C code rather than interpreted R code ensures
high performance when running the model. To improve performance further, the numerical
solvers use OpenMP to divide work over multiple processors and perform computations in
parallel. Two numerical solvers are currently supported. The default solver is a split-step
method named ssm, that uses direct SSA, but once every unit of time, it also processes
scheduled events and calls the post time step function. The other solver implements an “all
events method” (Bauer and Engblom 2015) and is named aem. Similarly, it also processes
scheduled events and calls the post time step function once every unit of time. A core feature
of the aem solver is that transition events are carried out in channels which access private
streams of random numbers, in contrast to the ssm solver where one uses only one stream for
all events.

Function pointers

The flexibility of the solver is partly achieved by using function pointers (Kernighan and
Ritchie 1988). A function pointer is a variable that stores the address of a function that can
be used to invoke the function. This provides a simple way to incorporate model specific
functionality into the solver. A model must define one transition rate function for each state
transition in the model. These functions are called by the solver to calculate the transition rate
for each state transition in each node. The output from the transition rate function depends
only on the state of the system at the current time. However, the output is unique to a model
and data are for that reason passed on to the function for the calculation. Furthermore, a
model must define the post time step function. This function is called once for each node
each time the simulation of the continuous-time Markov chain reaches the next day (or, more
generally, the next unit of time) and after the E1 and E2 events have been processed. The
main purpose of the post time step function is to allow for a model to update continuous
state variables in each node.

The transition rate function is defined by the data type TRFun and the post time step function
by the data type PTSFun. These data types are defined in the header file src/SimInf.h and
shown below. The arguments v_new, u, v, ldata, gdata, node, and t of the functions are
described in Table 3.

typedef double (∗TRFun) ( const int ∗u , const double ∗v , const double ∗ ldata ,
const double ∗gdata , double t ) ;

typedef int (∗PTSFun) ( double ∗v_new , const int ∗u , const double ∗v ,
const double ∗ ldata , const double ∗gdata ,
int node , double t ) ;

Overview of the solvers

Here follows an overview of the steps a solver performs to run a trajectory, see Appendix A
for pseudo-code for the ssm solver and src/solvers/ssm/SimInf_solver.c for the source code.
The simulation starts with a call to the run method with the model as the first argument.
This method will first call the validity method on the model to perform error-checking and
then call a model specific C function to initialize the function pointers to the transition rate
functions and the post time step function of the model. Subsequently, the simulation solver
is called to run one trajectory using the model specific data, the transition rate functions,
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and the post time step function. If the C_code slot is non-empty, the C code is written to a
temporary file when the run method is called. The temporary file is compiled using ’R CMD

SHLIB’ and the resulting DLL is dynamically loaded. This is further described in Section 5.

The solver simulates the trajectory in parallel if OpenMP is available. The default is to
use all available threads. However, the user can specify the number of threads to use with
set_num_threads(). The solver divides data for the Nnodes nodes and the E1 events over the
number threads. All E1 events that affect node i is processed in the same thread as node i is
simulated in. The E2 events are processed in the main thread.

The solver runs the continuous-time Markov chain for each node i. For every time step τi,
the count in the compartments at node i is updated according to the state transition that
occurred (Section 3.2). The time to the next event is computed, after recalculating affected
transition rate functions (Section 3.2). When simulated time reaches the next day in node i
the E1 events are processed for that node (Section 3.3). The E2 events are processed when all
nodes reaches the next day (Section 3.3). Thereafter, the post time step function is called to
allow the model to incorporate model specific actions. When simulated time passes the next
time in tspan, the count of the compartments and the continuous state variables are written
to U and V.

4. Model construction and data analysis: Basic examples

4.1. A first example: The SIR model

Specification of the SIR model without scheduled events

This section illustrates the specification of the predefined SIR model, which contains the
three compartments susceptible (S), infected (I) and recovered (R). The transmission route of
infection to susceptible individuals is through direct contact between susceptible and infected
individuals. The SIR model has two state transitions in each node i,

Si
βSiIi/(Si+Ii+Ri)
−−−−−−−−−−−→ Ii,

Ii
γIi−−→ Ri,

(18)

where β is the transmission rate and γ is the recovery rate. To create an SIR model object, we
need to define u0, a data.frame with the initial number of individuals in each compartment
when the simulation starts. Let us consider a node with 999 susceptible, 1 infected and
0 recoverd individuals. Since there are no between-node interactions in this example, the
stochastic process in one node does not affect any other nodes in the model. Consequently,
it is straightforward to run many realizations of this model, simply by replicating a node in
u0, for example, n = 1000 times.

R> n <- 1000

R> u0 <- data.frame(S = rep(999, n), I = rep(1, n), R = rep(0, n))

Next, we define the time period over which we want to simulate the disease spread. This is
a vector of integers in units of time or a vector of dates. You specify those time points that



16 SimInf: Data-Driven Stochastic Disease Spread Simulations

you wish the model to return results for. The model itself does not run in discrete time steps,
but in continuous time, so this does not affect the internal calculations of disease transitions
through time. In this example we will assume that the unit of time is one day and simulate
over 180 days returning results every 7th day.

R> tspan <- seq(from = 1, to = 180, by = 7)

We are now ready to create an SIR model and then use the run() routine to simulate data
from it. For reproducibility, we first call the set.seed() function and also specify the number
of threads to use for the simulation. To use all available threads, you only have to remove
the set_num_threads() call.

R> model <- SIR(u0 = u0, tspan = tspan, beta = 0.16, gamma = 0.077)

R> set.seed(123)

R> set_num_threads(1)

R> result <- run(model = model)

The return value from run() is a SimInf_model object with a single stochastic solution
trajectory attached to it. The show() method of the SimInf_model class prints some basic
information about the model, such as the global data parameters and the extremes, the mean
and the quartiles of the count in each compartment across all nodes.

R> result

Model: SIR

Number of nodes: 1000

Number of transitions: 2

Number of scheduled events: 0

Local data

----------

Parameter Value

beta 0.160

gamma 0.077

Compartments

------------

Min. 1st Qu. Median Mean 3rd Qu. Max.

S 108.0 368.0 993.0 755.4 999.0 999.0

I 0.0 0.0 1.0 30.4 38.0 235.0

R 0.0 1.0 5.0 214.2 484.0 891.0

The plot() method of the SimInf_model class can be used to visualize the simulated tra-
jectory. The default plot will display the median count in each compartment across nodes
as a colored line together with the inter-quartile range using the same color, but with trans-
parency. To display the outcome for individual nodes, specify the subset of nodes to plot
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Figure 3: Output from a stochastic SIR model in 1000 nodes starting with 999 susceptible,
1 infected and 0 recovered individuals in each node (β = 0.16, γ = 0.077). There are no
between-node interactions. Left: The default plot shows the median and inter-quartile range
of the count in each compartment through time across all nodes. Right: Realizations from a
subset of 10 nodes.

using the index parameter and set range = FALSE. In this example, an outbreak is likely to
occur in an infected node, but sometimes the infectious disease will become extinct before it
causes an epidemic, as shown in Figure 3.

R> plot(result)

R> plot(result, index = 1:10, range = FALSE)

Most modeling and simulation studies require custom data analysis once the simulation data
has been generated. To support this, SimInf provides the trajectory() method to obtain a
data.frame with the number of individuals in each compartment at the time points specified
in tspan. Below is an excerpt of the simulated data from the first node that clearly shows
there was an outbreak there. To extract all data from every node, you only have to remove
the index argument. Consult the help page for other trajectory() parameter options.

R> head(trajectory(model = result, index = 1))

node time S I R

1 1 1 999 1 0

2 1 8 998 1 1

3 1 15 991 8 1

4 1 22 973 21 6

5 1 29 935 42 23

6 1 36 886 61 53

Specification of scheduled events in the SIR model

In this example, we will continue to work with the predefined SIR model to illustrate how
demographic data can be incorporated into a simulation. In order for the numerical solver to
process a scheduled event, the compartments that are involved in the event must be specified.
This is done by each event specifies one column in the select matrix E using the select
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attribute of the event. The non-zero entries in the selected column in E specify the involved
compartments. For the predefined SIR model, E is defined as

E =





1 2 3 4

S 1 0 0 1
I 0 1 0 1
R 0 0 1 1





This means that we can specify a scheduled event to operate on a single compartment (S, I or
R) as well as an event that involves all three compartments. When several compartments are
involved in an event, the individuals affected by the event will be sampled without replacement
from the specified compartments. The numerical solver performs an extensive error checking
of the event before it is processed. And an error will be raised if the event is invalid, for
example, if the event tries to move more individuals than exists in the specified compartments.

Consider we have 4 scheduled events to include in a simulation. Below is a data.frame, that
contains the events.

R> events

event time node dest n proportion select shift

1 enter 2 3 0 5 0.0 1 0

2 extTrans 3 1 3 7 0.0 4 0

3 exit 4 2 0 0 0.2 4 0

4 enter 4 1 0 1 0.0 2 0

Interpret it as follows:

1. In time step 2 we add 5 susceptible individuals to node 3.

2. In time step 3 we sample 7 individuals without replacement among the S, I and R
compartments in node 1 and move them to the corresponding compartments in node 3.

3. In time step 4 we sample 20% of all individuals without replacement among the S, I
and R compartments in node 2 and remove them from node 2.

4. In time step 4 we add 1 infected individual to node 1.

Now, let us illustrate with a small example, consisting only of five nodes, how scheduled
events can alter the composition within nodes during simulation. Let us start with empty
nodes and then create some enter events to add susceptible individuals to each node during
the first ten time-steps.

R> u0 <- data.frame(S = rep(0, 5), I = rep(0, 5), R = rep(0, 5))

R> add <- data.frame(event = "enter", time = rep(1:10, each = 5),

+ node = 1:5, dest = 0, n = 1:5, proportion = 0, select = 1, shift = 0)

We then create one enter event to introduce an infected individual to the 5th node at t = 25.

R> infect <- data.frame(event = "enter", time = 25, node = 5,

+ dest = 0, n = 1, proportion = 0, select = 2, shift = 0)
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Figure 4: An SIR model in five nodes with scheduled events. Left: One realization where sus-
ceptible individuals were added during the first ten time-steps. Then, one infected individual
was introduced at t = 25. Further, some movements occurred between t = 35 and t = 45.
Finally, at t = 70 and t = 110, twenty percent of the individuals were removed. Right: For
comparison, the deterministic dynamics when not introducing an infected individual.

Additionally, we create some external transfer events to form interactions among the nodes
with movements between t = 35 and t = 45. Each shipment contains n = 5 individuals.

R> move <- data.frame(event = "extTrans", time = 35:45, node = c(5, 5, 5,

+ 5, 4, 4, 4, 3, 3, 2, 1), dest = c(4, 3, 3, 1, 3, 2, 1, 2, 1, 1, 2),

+ n = 5, proportion = 0, select = 4, shift = 0)

Finally, we create exit events to remove 20% of the individuals from each node at t = 70 and
t = 110.

R> remove <- data.frame(event = "exit", time = c(70, 110),

+ node = rep(1:5, each = 2), dest = 0, n = 0, proportion = 0.2,

+ select = 4, shift = 0)

Figure 4 shows one realization of a model incorporating the events. Here we observe two
transmission processes on different scales. First, the stochastic transmission process within
each node. Secondly, the between-node transmission due to movements. Also stochastic,
because of the sampling process that select susceptible, infected or recovered individuals to
move between the nodes.

R> events <- rbind(add, infect, move, remove)

R> model <- SIR(u0 = u0, tspan = 1:180, events = events, beta = 0.16,

+ gamma = 0.077)

R> set.seed(3)

R> set_num_threads(1)

R> result <- run(model)

R> plot(result, index = 1:5, range = FALSE)

We can use replicate (or similar) to generate many realizations from a SimInf_model object,
together with some custom analysis of each trajectory. Here, we find that infection spread
from the 5th node in about half of n = 1000 trajectories.
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R> set.seed(123)

R> set_num_threads(1)

R> mean(replicate(n = 1000, {

+ nI <- trajectory(run(model = model), index = 1:4)$I

+ sum(nI) > 0

+ }))

[1] 0.477

C code for the SIR model

The C code for the SIR model is defined in the source file src/models/SIR.c. This file contains
the SIR_run function to initialize the core solver (Listing 1 in Appendix C), the transition rate
functions (Listing 2 in Appendix C) and the post time step function (Listing 3 in Appendix C).

4.2. A second example: The SISe_sp model

Here we will illustrate the use of local data (ldata) and continuous state variables (V) to
formulate a more complex model with variables obeying ODEs. Moreover, we will introduce
the prevalence() method, another important function for post-processing trajectories. Let
us consider VTEC in cattle for this example. Briefly, a VTEC infection in cattle can be
formulated as a susceptible-infected-susceptible (SIS) compartment model. However, previous
modeling has shown that it is important to consider within and between-farm transmission
via the environment (Ayscue et al. 2009; Zhang, Chase-Topping, McKendrick, Savill, and
Woolhouse 2010), ambient temperature (Gautam, Bani-Yaghoub, Neill, Döpfer, Kaspar, and
Ivanek 2011), herd size and between-farm spread from livestock movements (Zhang et al.
2010). Therefore, let us use the predefined SISe_sp model. It contains an environmental
compartment to model shedding of a pathogen to the environment. Moreover, it also includes
a spatial coupling of the environmental contamination among proximal nodes to capture
between-node spread unrelated to moving infected individuals. Consequently, the model has
two state transitions,

Si
υϕi−−→ Ii,

Ii
γ
−→ Si,

(19)

where the transition rate per unit of time from susceptible to infected is proportional to the
concentration of the environmental contamination ϕi(t) in node i. Moreover, the transition
rate from infected to susceptible is the recovery rate γ, measured per individual and per unit
of time. Finally, the environmental infectious pressure is evolved by

dϕi(t)

dt
=

αIi(t)

Ni(t)
+

∑

k

ϕk(t)Nk(t) − ϕi(t)Ni(t)

Ni(t)
·

D

dik
− β(t)ϕi(t), (20)

where α is the average shedding rate of the pathogen to the environment per infected indi-
vidual and Ni = Si + Ii the size of node i. Next comes the spatial coupling among proximal
nodes, where D is the rate of the local spread and dik the distance between holdings i and
k. The seasonal decay and removal of the pathogen is captured by β(t). The environmental
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infectious pressure ϕi(t) in each node is evolved in the post-time-step function by the Euler
forward method (see the file ’src/models/SISe_sp.c’ for the C code). The value of ϕi(t) is
saved to the V matrix at the time-points specified by tspan.

Let us use a synthetic dataset of 1600 farms located within a 50 square kilometer region.
Load the data with the following commands

R> data("nodes", package = "SimInf")

R> u0 <- u0_SISe()

R> events <- events_SISe()

where the location of each farm is in nodes, u0 defines the initial cattle population and events

contains four years (1460 days) of scheduled events data (births, deaths and movements).
Moreover, let us define proximal neighbors as neighbors within 2500m and use the utility
function distance_matrix() to estimate the distance between farms within that cutoff.

R> d_ik <- distance_matrix(x = nodes$x, y = nodes$y, cutoff = 2500)

Let us assume that 10% of the farms have 5% infected cattle at the beginning of the simulation.

R> set.seed(123)

R> i <- sample(x = 1:1600, size = 160)

R> u0$I[i] <- as.integer(u0$S[i] * 0.05)

R> u0$S[i] <- u0$S[i] - u0$I[i]

The SISe_sp model contains parameters at a global and local scale. Here, the parameter
values were chosen such that the proportion of infected nodes in a trajectory is about 10%
and displays a seasonal pattern. The global parameters are: the spatial coupling = 0.2

(D in Equation (20)), the shedding rate alpha = 1, the recovery rate gamma = 0.1 and the
indirect transmission rate upsilon = 0.012. Moreover, the global parameter β(t) captures
decay of the pathogen in four seasons: beta_t1 = 0.1, beta_t2 = 0.12, beta_t3 = 0.12

and beta_t4 = 0.1. However, the duration of each season is local to a node and is specified as
the day of the year each season ends. Here, for simplicity, we let end_t1 = 91, end_t2 = 182,
end_t3 = 273 and end_t4 = 365 in all nodes. Furthermore, the distances between nodes are
local data extracted from distance = d_ik. Finally, we let phi = 0 at the beginning of the
simulation (becomes v0 in the model object).

R> model <- SISe_sp(u0 = u0, tspan = 1:1460, events = events, phi = 0,

+ upsilon = 0.012, gamma = 0.1, alpha = 1, beta_t1 = 0.10,

+ beta_t2 = 0.12, beta_t3 = 0.12, beta_t4 = 0.10, end_t1 = 91,

+ end_t2 = 182, end_t3 = 273, end_t4 = 365, distance = d_ik,

+ coupling = 0.2)

Let us use the prevalence() method to explore the proportion of infected nodes through
time. It takes a model object and a formula specification, where the left hand side of the
formula specifies the compartments representing cases i.e., have an attribute or a disease. The
right hand side of the formula specifies the compartments at risk. Here, we are interested in
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Figure 5: Exploring options for reducing disease spread. Reference trajectories showing the
proportion infected nodes (black solid lines). The proportion infected nodes after reducing
the spatial coupling with 50% (blue dotted lines).

the proportion of nodes with at least one infected individual, therefore, we let formula = I

~ S + I and specify level = 2. Consult the help page for other prevalence() parameter
options.

R> plot(NULL, xlim = c(0, 1500), ylim = c(0, 0.18), ylab = "Prevalance",

+ xlab = "Time")

R> set.seed(123)

R> set_num_threads(1)

R> replicate(5, {

+ result <- run(model = model)

+ p <- prevalence(model = result, formula = I ~ S + I, level = 2)

+ lines(p)

+ })

Assume there exists some sort of treatment by which the coupling can be reduced by 50%.
Is that sufficient for controlling the disease? We can use the function gdata() to change the
global coupling parameter and then run some more trajectories.

R> gdata(model, "coupling") <- 0.1

R> replicate(5, {

+ result <- run(model = model)

+ p <- prevalence(model = result, formula = I ~ S + I, level = 2)

+ lines(p, col = "blue", lty = 2)

+ })

The results in Figure 5 indicate that reducing the spatial coupling D with 50% is not sufficient
to eradicate the infection from this synthetic cattle population. Nevertheless this short exam-
ple serves as a template for using the SimInf computational framework when implementing
large scale data-driven disease spread models and exploring options for control.
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5. Extending SimInf: New models

One of the design goals of SimInf was to make it extendable. The current design supports
two ways to extend SimInf with new models, and this section describes the relevant steps
to implement a new model. Since extending SimInf requires that C code can be compiled,
you will first need to install a compiler. To read more about interfacing compiled code from
R and creating R add-on packages, the Writing R extensions (https://cran.r-project.

org/doc/manuals/r-release/R-exts.html) manual is the official guide and describes the
process in detail. Another useful resource is the R packages book by Wickham (2015) (http:

//r-pkgs.had.co.nz/).

5.1. Using the model parser to define a new model

The simplest way to define a new model for SimInf is to use the model parser method mparse.
It takes a character vector of transitions in the form of "X -> propensity -> Y" and gen-
erates the C and R code for the model. The left hand side of the first ’->’-sign is the initial
state, the right hand side of the last ’->’-sign is the final state, and the propensity is written
between the ’->’-signs. The special symbol ’@’ is reserved for the empty set ∅. We suggest to
first draw a schematic representation of the model that includes all compartments and arrows
for all state transitions.

Introductory examples of using mparse

In a first example we will consider the SIR model in a closed population i.e., no births or
deaths. If we let b denote the transmission rate and g the recovery rate, the model can be
described as,

R> transitions <- c("S -> b*S*I/(S+I+R) -> I", "I -> g*I -> R")

R> compartments <- c("S", "I", "R")

We can now use the transitions and compartments variables, together with the constants
b and g to build an object of class ’SimInf_model’ via a call to mparse. It also needs to be
initialized with the initial condition u0 and tspan.

R> n <- 1000

R> u0 <- data.frame(S = rep(99, n), I = rep(5, n), R = rep(0, n))

R> model <- mparse(transitions = transitions, compartments = compartments,

+ gdata = c(b = 0.16, g = 0.077), u0 = u0, tspan = 1:180)

As in earlier examples, the model object can now be used to simulate data and plot the
results. Internally, the C code that was generated by mparse is written to a temporary file
when the run method is called. The name of the temporary file is computed from the MD5
hash of the C code, using the digest package. If the temporary file is compiled successfully,
the resulting DLL is dynamically loaded and used to run one trajectory of the model. The
hash of the C code is also used to determine if a model has already been compiled and loaded,
and thus the compilation step can be skipped before running a trajectory.

https://cran.r-project.org/doc/manuals/r-release/R-exts.html
https://cran.r-project.org/doc/manuals/r-release/R-exts.html
http://r-pkgs.had.co.nz/
http://r-pkgs.had.co.nz/
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Figure 6: Showing the median and inter-quartile range from 1000 realizations of an mparse

SIR model (β = 0.16, γ = 0.077), starting with 99 susceptible, 5 infected, and 0 recovered
individuals.

R> set.seed(123)

R> set_num_threads(1)

R> result <- run(model = model)

R> plot(result)

The flexibility of the mparse approach allows for quick prototyping of new models or features.
Let us elaborate on the previous example and explore the incidence cases per day. This can
easily be done by adding a new compartment ’Icum’ whose sole purpose is to keep track of
how many individuals who become infected over time. The right hand side ’I + Icum’ of
the transition ’S -> b*S*I/(S+I+R) -> I + Icum’, means that both ’I’ and ’Icum’ are
incremented by one each time the transition happens.

R> transitions <- c("S -> b*S*I/(S+I+R) -> I + Icum", "I -> g*I -> R")

R> compartments <- c("S", "I", "Icum", "R")

Since there are no between-node movements in this example, the stochastic process in one
node does not affect any other nodes in the model. It is therefore straightforward to run
many realizations of this model, simply by replicating a node in the initial condition u0, for
example, n = 1000 times.

R> n <- 1000

R> u0 <- data.frame(S = rep(99, n), I = rep(1, n), Icum = rep(0, n),

+ R = rep(0, n))

R> model <- mparse(transitions = transitions, compartments = compartments,

+ gdata = c(b = 0.16, g = 0.077), u0 = u0, tspan = 1:150)

R> set.seed(123)

R> set_num_threads(1)

R> result <- run(model = model)
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Figure 7: (black solid line) One realization of an epidemic curve displaying the number of
incident cases per day in a node when simulating 150 days of an mparse SIR model (β =
0.16, γ = 0.077), starting with 99 susceptible, 1 infected and 0 recovered individuals. (blue
dashed line) Average number of incident cases per day from 1000 realizations of the model.

Let us post-process the simulated trajectory to compare the incidence cases in the first node
with the average incidence cases among all realizations by extracting the trajectory data and
calculate successive differences of ’Icum’ at each time-point.

R> traj <- trajectory(model = result, compartments = "Icum")

R> cases <- stepfun(result@tspan[-1], diff(c(0, traj$Icum[traj$node == 1])))

R> avg_cases <- c(0, diff(by(traj, traj$time, function(x) sum(x$Icum))) / n)

Finally, plot the result as an epidemic curve (Figure 7). In this example, the number of
incident cases in the first node exceeds what is expected on average.

R> plot(cases, main = "", xlab = "Time", ylab = "Number of cases",

+ do.points = FALSE)

R> lines(avg_cases, col = "blue", lwd = 2, lty = 2)

Incorporate scheduled events in an mparse model

To illustrate how models generated using mparse can incorporate scheduled events, consider
an epidemic in a population consisting of 1600 nodes, for example, cattle herds, that are
connected to each other by livestock movements. Assume an outbreak is detected on day
twenty-one after introduction of an infection in one node and that we wish to explore how
vaccination could limit the outbreak, if resources for vaccination can handle 50 herds per
day and 80% of the animals in each herd. Let us add a new compartment V to the model
to represent vaccinated individuals, so that the model now contains the {S, I, Icum, R, V }
compartments. As before, let b denote the transmission rate and g the recovery rate.
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R> transitions <- c("S -> b*S*I/(S+I+R+V) -> I + Icum", "I -> g*I -> R")

R> compartments <- c("S", "I", "Icum", "R", "V")

Load the example data for an SIR model in a population of 1600 nodes (cattle herds) with its
associated scheduled events: births, deaths, and livestock movements. Moreover, let Icum = 0
and R = 0.

R> u0 <- u0_SIR()

R> u0$Icum <- 0

R> u0$V <- 0

R> events <- events_SIR()

Now generate vaccination events i.e., internal transfer events. Use select = 3 and shift

= 1 to move animals from the susceptible, infectious and recovered compartments to the
vaccinated compartment, see the definitions of E and N below. Let us start the vaccinations
in nodes 1–50 on day twenty-one, and continue until all herds are vaccinated on day fifty-two.
Moreover, use proportion = 0.8 to vaccinate 80% of the animals in each herd. We assume,
for the sake of simplicity, that vaccinated individuals become immune and non-infectious
immediately.

R> vaccination <- data.frame(event = "intTrans", time = rep(21:52,

+ each = 50), node = 1:1600, dest = 0, n = 0, proportion = 0.8,

+ select = 3, shift = 1)

To simulate from this model, we have to define the select matrix E to handle which compart-
ments to sample from when processing a scheduled event. Let the first column in E handle
enter events (births); add newborn animals to the susceptible compartment S. The second
column is for exit events (deaths) and external transfer events (livestock movements); sample
animals from the S, I, R and V compartments. Finally, the third column is for internal trans-
fer events (vaccination); sample individuals from the S, I and R compartments. We must
also define the shift matrix N to process internal transfer events (vaccination); move sampled
animals from the S compartment four steps forward to the V compartment. Similarly, move
sampled animals from the I compartment three steps forward to the V compartment, and
finally, move sampled individuals from the R compartment one step forward.

E =













1 2 3

S 1 1 1
I 0 1 1
Icum 0 0 0
R 0 1 1
V 0 1 0













N =













1

S 4
I 3
Icum 0
R 1
V 0













R> E <- matrix(c(1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0), nrow = 5,

+ ncol = 3, dimnames = list(c("S", "I", "Icum", "R", "V"),

+ c("1", "2", "3")))

R> N <- matrix(c(4, 3, 0, 1, 0), nrow = 5, ncol = 1,

+ dimnames = list(c("S", "I", "Icum", "R", "V"), "1"))
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Additionally, we have to redefine the select column in the events, since the data is from the
predefined SIR model with another E matrix. Let us change select for movements.

R> events$select[events$select == 4] <- 2

Now let us create an epicurve function to estimate the average number of new cases per
day from n = 1000 realizations in a for-loop and simulate one trajectory at a time. To
clear infection that was introduced in the previous trajectory, animals are first moved to
the susceptible compartment. Then, one infected individual is introduced into a randomly
sampled node from the population. Note that we use the ’L’ suffix to create an integer value
rather than a numeric value. Run the model and accumulate Icum. For efficiency, use format

= "matrix", the internal matrix format, to extract Icum in every node at each time-point in
tspan.

R> epicurve <- function(model, n = 1000) {

+ Icum <- numeric(length(model@tspan))

+ for (i in seq_len(n)) {

+ model@u0["S", ] <- model@u0["S", ] + model@u0["I", ]

+ model@u0["I", ] <- 0L

+ j <- sample(seq_len(n_nodes(model)), 1)

+ model@u0["I", j] <- 1L

+ model@u0["S", j] <- model@u0["S", j] - 1L

+ result <- run(model = model)

+ traj <- trajectory(model = result, compartments = "Icum",

+ format = "matrix")

+ Icum <- Icum + colSums(traj)

+ }

+ stepfun(model@tspan[-1], diff(c(0, Icum / n)))

+ }

Generate an epicurve with the average number of cases per day for the first three hundred
days of the epidemic without vaccination.

R> model_no_vac <- mparse(transitions = transitions,

+ compartments = compartments, gdata = c(b = 0.16, g = 0.077),

+ u0 = u0, tspan = 1:300, events = events, E = E, N = N)

R> cases_no_vac <- epicurve(model_no_vac)

Similarly, generate an epicurve after incorporating the vaccination events.

R> model_vac <- mparse(transitions = transitions,

+ compartments = compartments, gdata = c(b = 0.16, g = 0.077),

+ u0 = u0, tspan = 1:300, events = rbind(events, vaccination),

+ E = E, N = N)

R> cases_vac <- epicurve(model_vac)

As expected, the number of cases decrease rapidly after vaccination, while the outbreak is
ongoing for a longer time in the unvaccinated population (Figure 8).
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Figure 8: Comparison between the number of cases per day of an outbreak in an unvaccinated
population of cattle herds (black solid line) and after vaccination of animals (blue dashed line).
The vertical line (dotted) indicates when vaccination was initiated.

R> plot(cases_no_vac, main = "", xlim = c(0, 300), xlab = "Time",

+ ylab = "Number of cases", do.points = FALSE)

R> lines(cases_vac, col = "blue", do.points = FALSE, lty = 2)

R> abline(v = 21, col = "red", lty = 3)

R> legend("topright", c("No vaccination", "Vaccination"),

+ col = c("black", "blue"), lty = 1:2)

5.2. Use the SimInf framework from another package

Another possibility is to extend SimInf by creating an R add-on package that uses SimInf

by linking to its core solver native routine. To facilitate this, the SimInf package includes
the package_skeleton method to automate some of the setup for a new source package. It
creates directories, saves R and C code files to appropriate places, and creates skeleton help
files.

Even if SimInf was designed to study the dynamics of infectious diseases, it is not limited
to that use case but can be used to study the dynamics of other systems. Consider we
wish to create a new add-on package PredatorPrey based on the Rosenzweig-MacArthur
predator-prey model demonstrated in the GillespieSSA package (Rosenzweig and MacArthur
1963; Pineda-Krch 2008). The model has a density-dependent growth in the prey and and
a nonlinear Type-2 functional response in the predator (Rosenzweig and MacArthur 1963).
Let R and F denote the number of prey and predators, respectively. The model consists of
five transitions (Equation (21)): i) prey birth, ii) prey death due to non-predatory events, iii)
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prey death due to predation, iv) predator birth, and v) predator death

∅
bR·R
−−−→ R

R
(dR+(bR−dR)·R/K)·R
−−−−−−−−−−−−−−→ ∅

R
α/(1+w·R)·R·F
−−−−−−−−−−→ ∅

∅
bF ·α/(1+w·R)·R·F
−−−−−−−−−−−−→ F

F
dF ·F
−−−→ ∅







































, (21)

where bR, dR, bF , and dF are the per capita birth and death rate of the prey and predator,
respectively. Moreover, K is the carrying capacity of the prey, α is the predation efficiency,
and w is the degree of predator saturation (Pineda-Krch 2008). Using parameter values from
Pineda-Krch (2008), we define the model as

R> transitions <- c("@ -> bR*R -> R", "R -> (dR+(bR-dR)*R/K)*R -> @",

+ "R -> alpha/(1+w*R)*R*F -> @", "@ -> bF*alpha/(1+w*R)*R*F -> F",

+ "F -> dF*F -> @")

R> compartments <- c("R", "F")

R> parameters <- c(bR = 2, bF = 2, dR = 1, K = 1000, alpha = 0.007,

+ w = 0.0035, dF = 2)

Assume the initial population consists of R = 1000 prey and F = 100 predators and we are
interested in simulating n = 1000 replicates over 100 days. Since there are no between-node
movements in this example, we can generate replicates simply by starting with n identical
nodes.

R> n <- 1000

R> u0 <- data.frame(R = rep(1000, n), F = rep(100, n))

R> model <- mparse(transitions = transitions, compartments = compartments,

+ gdata = parameters, u0 = u0, tspan = 1:100)

Now instead of running the model to generate data, let us use it to create an R add-on
package.

R> path <- tempdir()

R> package_skeleton(model = model, name = "PredatorPrey", path = path)

Where the first argument is the SimInf_model object generated by the mparse method, the
second argument is the name of the package to create a skeleton for and the third argument
is the path to the new package. Note that a temporary directory is used here for illustration
of the functionality. We refer to the SimInf documentation for other arguments that can be
supplied to the package_skeleton method. The created R file (R/models.R) defines the S4
class PredatorPrey that contains the SimInf_model and a generating function to create a
new object of the PredatorPrey model. The generating function is a template that might
need to be extended to meet the specific requirements for the model.

The C file (src/models.c) defines one function for each state transition, the post time step func-
tion and the model specific run function. The file is automatically compiled when installing
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Figure 9: Left: Phase plane trajectories from 1000 realizations of the Rosenzweig-MacArthur
predator-prey model. Right: One realization of the Rosenzweig-MacArthur predator-prey
model, where the predators go extinct and then the prey population fluctuates around a
plateu of 1000 individuals.

the package. The header file "SimInf.h" contains the declarations for these functions and
must be included. The SimInf_model_run function is the interface from R to the core solver
in C and list all function pointers to the transition rate functions in a vector in the order the
state transitions appear in the dependency graph G, see Listings 1 and 2 in Appendix C for
an example from the predefined SIR model in SimInf and the use of the address of operator
’&’ to obtain the address of a function. The SimInf_model_run function must return the
result from the call to the core solver with SimInf_run. The arguments to SimInf_run are
the arguments passed to the SimInf_model_run function plus the vector of function point-
ers to the transition rate functions and the function pointer to the post time step function.
The add-on PredatorPrey source package can now be built and installed with the following
commands.

R> pkg <- file.path(path, "PredatorPrey")

R> install.packages(pkg, repos = NULL, type = "source")

Here we let repos = NULL to install from local files and use type = "source" to compile
the files. If the installation was successful, the newly installed package PredatorPrey can be
loaded in R with the following command.

R> library("PredatorPrey")

Now create a model and run it to generate data.

R> model <- PredatorPrey(u0 = u0, tspan = 1:100, gdata = parameters)

R> set.seed(123)

R> set_num_threads(1)

R> result <- run(model)
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Because a PredatorPrey object contains the SimInf_model class, it can make use of all utility
functions provided in the SimInf package, for example, show().

R> result

Model: PredatorPrey

Number of nodes: 1000

Number of transitions: 5

Number of scheduled events: 0

Global data

-----------

Parameter Value

bR 2.0e+00

bF 2.0e+00

dR 1.0e+00

K 1.0e+03

alpha 7.0e-03

w 3.5e-03

dF 2.0e+00

Compartments

------------

Min. 1st Qu. Median Mean 3rd Qu. Max.

R 8 236 607 598 975 1195

F 0 0 35 112 161 851

Or the trajectory() method, for example, to plot the phase plane from 1000 realizations or
to illustrate stochastic extinction of the predators in the fourth node (Figure 9).

R> opar <- par(mfrow = c(1, 2))

R> plot(R ~ F, trajectory(model = result), cex = 0.3, pch = 20,

+ xlab = "Number of predators", ylab = "Number of prey",

+ col = rgb(0, 0, 0, alpha = 0.1))

R> plot(R ~ time, trajectory(model = result, index = 4), type = "l",

+ xlab = "Time", ylab = "N")

R> lines(F ~ time, trajectory(model = result, index = 4), type = "l", lty = 2)

R> legend("right", c("Prey", "Predator"), lty = 1:2)

R> par(opar)

This example illustrated how SimInf supports usage of the numerical solvers from other R

packages via the LinkingTo feature in R.

6. Benchmark

A comprehensive analysis of the performance of the numerical solver in SimInf is presented
by Bauer et al. (2016). Here, we provide a small benchmark of the run-time of an SIR
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model using three R packages on CRAN: SimInf version 6.1.0, adaptivetau version 2.2-3 and
GillespieSSA version 0.6.1. The measurements were obtained on a ThinkPad T460p, Intel
core i7-6700HQ quad-core at 2.6GHz , 32GB 2133MHz RAM, running Fedora 30 and using R

version 3.6.1. Ten replicates were performed and average run-time was estimated to generate
1,000 realizations of an SIR model with parameters β = 0.16 and γ = 0.077 and initial
conditions S = 1000, I = 10 and R = 0. As shown in Table 4, the implementation in SimInf

appears to run faster than adaptivtau. This difference probably depends on adaptivetau using
a hybrid R/C++ implementation with R code for the transition rate functions while SimInf

uses C code. To reduce run-time further, SimInf has built-in support to perform computations
in parallel. As expected, GillespieSSA has the longest run-time since it has an implementation
in pure R.

R package Method Threads Time [ms]

SimInf Direct SSA 4 38
SimInf Direct SSA 2 69
SimInf Direct SSA 1 126
adaptivetau Tau-leaping 1 2730
adaptivetau Direct SSA 1 8894
GillespieSSA Tau-leaping 1 18465
GillespieSSA Direct SSA 1 53009

Table 4: Comparison of the average run-time for generating 1000 realizations of an SIR model.

7. Conclusion

In this paper we have introduced the R package SimInf which supports data-driven simulations
of disease transmission over spatio-temporal networks. The package offers a very efficient and
highly flexible tool to incorporate real data in simulations at realistic scales.

We hope that our package will facilitate incorporating available data, for example, livestock
data, in network epidemic models to better understand disease transmission in a temporal
network and improve design of intervention strategies for endemic and emerging threats.
Future efforts will be concentrated on a software development driven predominantly by actual
use cases.
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A. Pseudo-code for the default simulation solver

Algorithm Pseudo-code for the default simulation solver using direct SSA

1: Run trajectory: Dispatch to model specific run method.
2: C interface: Initialize model transition rate functions and post time step function.
3: for all nodes i = 1 to Nnodes do in parallel
4: Compute transition rates for all transitions ωi,j , j = 1, . . . , Ntrans.
5: end for
6: while t < TEnd do
7: for all nodes i = 1 to Nnodes do in parallel
8: loop

9: Compute sum of transition rates λi =
∑Ntrans

j=1 ωi,j

10: Sample time to next stochastic event τi = − log(r1)/λi where r1

is a uniformly distributed random number in the range (0, 1)
11: if τi + ti >= TNext day then
12: Move simulated time forward ti = TNext day

13: go to 20

14: end if
15: Move simulated time forward ti = ti + τi

16: Determine which state transition happened; by inversion,

find n such that
∑n−1

j=1 ωi,j < λr2 ≤
∑n

j=1 ωi,j where r2

is a uniformly distributed random number in the range (0, 1)
17: Update the compartments u[, i] using the state-change vector S[, n]

18: Use the dependency graph G[, n] to recalculate affected transition rates ωi,j

19: end loop
20: Process E1 events
21: end for
22: Process E2 events
23: for all nodes i = 1 to Nnodes do in parallel
24: Call post time step function and update the continuous state variable v[ ,i].
25: end for
26: TNext day = TNext day + 1
27: end while
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B. Illustration of scheduled events

This section illustrates how the scheduled events for the SISe3_sp model are specified (Ta-
ble 5) and how each event type is executed (Figures 10, 11, 12, 13, 14)

Action event time node dest n proportion select shift

Exit individuals in S1 and I1 exit t i 0 n 0 4 0
Exit individuals in S2 and I2 exit t i 0 n 0 5 0
Exit individuals in S3 and I3 exit t i 0 n 0 6 0
Enter individuals in S1 and I1 enter t i 0 n 0 1 0
Enter individuals in S2 and I2 enter t i 0 n 0 2 0
Enter individuals in S3 and I3 enter t i 0 n 0 3 0
Age individuals in S1 and I1 intTrans t i 0 n 0 4 1
Age individuals in S2 and I2 intTrans t i 0 n 0 5 2
Move individuals in S1 and I1 extTrans t i j n 0 4 0
Move individuals in S2 and I2 extTrans t i j n 0 5 0
Move individuals in S3 and I3 extTrans t i j n 0 6 0

Table 5: Examples of the specification of a single row of scheduled event data in the SISe3_sp

model to add, move or remove individuals during the simulation, where t is the time-point
for the event, i is the node to operate on, j is the destination node for a movement.
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Figure 10: Illustration of a scheduled exit event in the SISe3_sp model at time = 4. The
removal of one individual in the third age category {S3, I3} from node 14. Interpreting the
figure from left to right: i) A single row of the event data operating on node 14. ii) u[, 14]

is the current state of node 14; E[, 6] is the 6th column in the select matrix that determines
which compartments (age categories) that are eligible for sampling. iii) The operation of
randomly sampling one individual (n = 1) to move from the compartments selected in step
ii). iv) The resultant state of node 14 after subtracting the sampled individual in step iii from
node 14. †dest and §shift are not used in a scheduled exit event. ‡proportion is not used
when n > 0.
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Figure 11: Illustration of a scheduled enter event in the SISe3_sp model at time = 4. Add
three susceptible individuals to the first age category {S1} in node 14. Interpreting the figure
from left to right: i) A single row of the event data operating on node 14. ii) u[, 14] is the
current state of node 14. iii) E[, 1] is the first column in the select matrix that determines
which compartments (age categories) the new individuals are added. iv) The resultant state
of node 14 after adding the individuals in step iii). §shift can be used in a scheduled enter
event, see Figure 13 for an illustration of that functionality. ‡proportion is not used when
n > 0. †dest is not used in a scheduled enter event.
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Figure 12: Illustration of a scheduled external transfer event in the SISe3_sp model at time
= 4. The movement of one individual in the third age category {S3, I3} from node 14 to
destination node 23. Interpreting the figure from left to right: i) A single row of the event
data operating on node 14 and destination node 23. ii) u[, 14] is the current state of node
14; u[, 23] is the current state of the destination node 23; E[, 6] is the 6th column in
the select matrix that determines which compartments (age categories) that are eligible for
sampling. iii) The operation of randomly sampling one individual (n = 1) to move from the
compartments selected in step ii). iv) The resultant state of node 14 and destination node
23 after subtracting the sampled individuals in step iii) from node 14 and adding them to
destination node 23. †shift can be used in a scheduled external transfer event, see Figure 14.
‡proportion is not used when n > 0.
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Figure 13: Illustration of a scheduled internal transfer event in the SISe3_sp model at time
= 4. The ageing of three individuals in the first age category {S1, I1}. Interpreting the figure
from left to right: i) A single row of the event data operating on node 14. ii) u[, 14] is
the current state of node 14; E[, 4] is the 4th column in the select matrix that determines
which compartments (age categories) that are eligible for sampling. iii) The operation of
randomly sampling three individuals (n = 3) to age from the compartments selected in step
ii). iv) The shift operation applies the shift specified in column 1 of the shift matrix (N) to
the individuals sampled in step iii). v) The resultant state of node 14 after subtracting the
sampled individuals in step iii) and adding the individuals after the shift operation in step
iv). †dest is not used in internal transfers. ‡proportion is not used when n > 0.
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Figure 14: Illustration of a scheduled external transfer event in the SISe3 model at time =
4. The ageing of three individuals in the second age category {S2, I2} that are subsequently
moved. Interpreting the figure from left to right: i) A single row of the event data operating
on node 14 and destination node 23. ii) u[, 14] is the current state of node 14; u[, 23] is
the current state of the destination node 23; E[, 5] is the 5th column in the select matrix
that determines which compartments (age categories) that are eligible for sampling. iii) The
operation of randomly sampling three individuals (n = 3) to move from the compartments
selected in step ii). iv) The shift operation applies the shift specified in column 2 of the shift
matrix (N) to the individuals sampled in step iii). v) The resultant state of node 14 and
destination node 23 after subtracting the sampled individuals in step iii) from node 14 and
adding them to the destination node 23 after the shift operation in step iv). ‡proportion is
not used when n > 0.
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C. C code for the SIR model

Listing 1: Implementation of the function to init and run a simulation with the SIR model

SEXP SIR_run (SEXP model , SEXP s o l v e r )
{

TRFun tr_fun [ ] = {&SIR_S_to_I , &SIR_I_to_S } ;

return SimInf_run ( model , s o l v e r , tr_fun , &SIR_post_time_step ) ;
}

Listing 2: Implementation of the transition rate functions in the SIR model for the transi-
tions in Equation 18 between the susceptible and infected compartments. The enumeration
declarations are used to name the variable offsets and facilitate extraction of the values from
the various data vectors.

/∗ O f f s e t in i n t e g e r compartment s t a t e v e c t o r ∗/
enum {S , I , R} ;

/∗ O f f s e t s in g l o b a l data ( gdata ) to parameters in the model ∗/
enum {BETA, GAMMA} ;

/∗ s u s c e p t i b l e to i n f e c t e d : S −> I ∗/
double SIR_S_to_I ( const int ∗u , const double ∗v , const double ∗ ldata ,

const double ∗gdata , double t )
{

const double S_n = u [ S ] ;
const double I_n = u [ I ] ;
const double n = S_n + I_n + u [R ] ;

i f (n > 0 . 0 )
return ( gdata [BETA] ∗ S_n ∗ I_n ) / n ;

return 0 . 0 ;
}

/∗ i n f e c t e d to s u s c e p t i b l e : I −> S ∗/
double SIR_I_to_S ( const int ∗u , const double ∗v , const double ∗ ldata ,

const double ∗gdata , double t )
{

return gdata [GAMMA] ∗ u [ I ] ;
}

Listing 3: Implementation of the post time step function in the SIR model. The post time
step function should return a value > 0 if the node needs to recalculate the transition rates
for the node, a value (error code) < 0 if an error is detected, or otherwise 0. Since the post
time step function for the SIR model does not make any changes to a node, it always return
0.

int SIR_post_time_step ( double ∗v_new , const int ∗u , const double ∗v ,
const double ∗ ldata , const double ∗gdata ,
int node , double t )

{
return 0 ;

}
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