SC.MEB: Spatial Clustering with Hidden Markov Random Field using Empirical Bayes

Spatial clustering with hidden markov random field fitted via EM algorithm, details of which can be found in Yi Yang (2021) <doi:10.1101/2021.06.05.447181>. It is not only computationally efficient and scalable to the sample size increment, but also is capable of choosing the smoothness parameter and the number of clusters as well.

Version: 1.1
Depends: mclust, parallel, ggplot2, Matrix, R (≥ 3.5)
Imports: Rcpp (≥ 1.0.6), SingleCellExperiment, purrr, BiocSingular, SummarizedExperiment, scater, scran, S4Vectors
LinkingTo: Rcpp, RcppArmadillo
Suggests: knitr, rmarkdown
Published: 2021-10-08
DOI: 10.32614/CRAN.package.SC.MEB
Author: Yi Yang [aut, cre], Xingjie Shi [aut], Jin Liu [aut]
Maintainer: Yi Yang <yygaosansiban at>
License: GPL-3
NeedsCompilation: yes
Materials: README
CRAN checks: SC.MEB results


Reference manual: SC.MEB.pdf
Vignettes: SC-MEB


Package source: SC.MEB_1.1.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release (arm64): SC.MEB_1.1.tgz, r-oldrel (arm64): SC.MEB_1.1.tgz, r-release (x86_64): SC.MEB_1.1.tgz, r-oldrel (x86_64): SC.MEB_1.1.tgz
Old sources: SC.MEB archive


Please use the canonical form to link to this page.