
Standard Errors for Risk and Performance Estimators

in PerformanceAnalytics

Anthony Christidis and Doug Martin

December 31, 2019

Abstract

The PerformanceAnalytics package allows users to perform risk analysis of �nancial

instruments or portfolios. In general, the package requires returns data and allows users

to compute risk estimators (including the standard deviation, semi-standard deviation,

value-at risk and expected shortfall), and performance estimators (such as the Sharpe

ratio, Sortino ratio, and expected shortfall ratio). However, users have no way of as-

sessing the statistical accuracy of the estimates. A new method for computing accurate

standard errors of risk and performance measures for serially correlated or uncorrelated

returns has been developed using a sophisticated method based on the spectral den-

sity of the in�uence-function (IF) transformed returns, and has been implemented in

the RPESE package. This capability has been integrated in the PerformanceAnalytics

package, and this vignette provides basic instruction on how to use the standard errors

capability of the PerformanceAnalytics package.

1 Introduction

The current �nance industry practice in reporting risk and performance estimates for indi-
vidual assets and portfolios seldom includes reporting estimate standard errors (SEs). For
this reason, consumers of such reports have no way of assessing the statistical accuracy
of the estimates. As a leading example, SE's are seldom reported for Sharpe ratios, and
consequently one cannot tell whether or not two Sharpe ratios for two di�erent portfolio
products are signi�cantly di�erent. Chen and Martin [2018], henceforth (CM), have devel-
oped a method to compute accurate standard errors for risk and performance estimators
that properly re�ects the impacts of: (1) returns that are serially correlated as well as when

1

they are uncorrelated, and (2) fat-tailed and skewed non-normality of returns distributions.
The risk and performance standard errors computing package RPESE was developed to im-
plement this new CM methodology, and this capability has been integrated in the highly
popular PerformanceAnalytics package that is frequently used in the quantitative �nance
community.

The current release of PerformanceAnalytics supports computing SEs for the six risk es-
timators described in Table 1, and the eight performance estimators described in Table 2.
The Name column in each of those two tables contains the name of the R function in the
RPESE package, For each of the names in the Name column of the two tables, there is a
corresponding R function in PerformanceAnalytics, except for LMP1 and LPM2 in Table
1 for which there is a single function with an optional argument to choose between these two
risk estimators, and for SorR.µ and SorR.c in Table 2 for which there is a single function
with an optional argument to choose between these two performance estimators. The names
of the PerformanceAnalytics functions that correspond to the names in Tables 1 and 2 are
provided in Tables 3 and 4 of Section 3.2.

The PerformanceAnalytics package internally computes the point estimates in Tables 1
and 2, and uses the RPESE package to compute the standard errors of the point estimates.

Name Estimator Description

SD Sample standard deviation

SemiSD Semi-standard deviation

LPM1 Lower partial moment of order 1

LPM2 Lower partial moment of order 2

ES Expected shortfall with tail probability α

VaR Value-at-risk with tail probability α

Table 1: Risk Estimator Names and Descriptions

2

Name Estimator Description

Mean Sample mean

SR Sharpe ratio

SorR.µ Sortino ratio with threshold the mean

SorR.c Sortino ratio with threshold a constant c

ESratio Mean excess return to ES ratio with tail probability α

VaRratio Mean excess return to VaR ratio with tail probability α

RachevRatio Rachev ratio with lower upper tail probabilities α and β

OmegaRatio Omega ratio with threshold c

Table 2: Performance Estimator Names and Descriptions

The New Method of Computing Standard Errors of Risk and Per-

formance Estimators

The essence of the new method is as follows. Given a risk or performance estimators, such
as the Sharpe ratio, the time series of returns used to compute the estimate are transformed
using the in�uence function (IF) of the estimator. For an introduction to in�uence func-
tions for risk and performance estimators, and derivations of the in�uence functions of the
estimators in Tables 1 and 2, see the paper Zhang et al. [2019]. In CM, it is shown that a
risk or performance estimator can be represented as a sample mean of the time series of IF
transformed returns.

It is a well-known result that an appropriately standardized (with respect to sample size)
sum of a stationary time series has a variance that is approximated by the spectral density of
the time series at zero frequency, with the approximation becoming exact as the sample size
tends to in�nity. Using this result, computing the standard error of a risk or performance
estimator reduces to estimating the spectral density at zero frequency of a standardized sum
of the in�uence-function transformed returns.

CM developed an e�ective method of doing so based on �rst computing the periodogram of
the IF transformed returns, and then using a regularized generalized linear model (GLM)
method for Exponential and Gamma distributions, to �t a polynomial to the periodogram
values. The regularization method used is an elastic net (EN) penalty that is well-known in
the machine learning community, and encourages sparsity of coe�cients. The intercept of

3

such GLM �tting provides an estimate of the spectral density at zero frequency, and hence
a risk or performance estimator standard error.

The interested reader can �nd further details in the vignette of the RPESE package available
at CRAN and in the CM paper.

2 Packages Involved in the Computation of Standard Er-

rors

In order to compute the standard errors of the point estimates in PerformanceAnalytics,
the RPESE package must be installed by the user. However, note that if a user does not have
the RPESE package downloaded, then the PerformanceAnalytics package will still work
with all its many capabilities other than standard error computation. In the source code of
PerformanceAnalytics, the RPESE package is only suggested. If a user attempts to compute
standard errors without the required package, an error will be returned with the required
instructions to download RPESE.

On a side note, the overall structure of the packages involved in the computation of standard
errors for risk and performance estimators in PerformanceAnalytics are depicted in Figure
1. As the �gure indicates, RPESE makes use of the following two new packages:

� RPEIF (Risk and Performance Estimators In�uence Functions)

� RPEGLMEN (Risk and Performance Estimators Generalized Linear Model �tting with
Elastic Net, for Exponential and Gamma distributions)

The purpose of RPEIF is to provide the analytic formulas of in�uence functions in support of
computing the IF transformed returns for the risk and performance estimators. For each risk
and performance estimator in Tables 1 and 2, the RPEGLMEN package �ts an EN regularized
GLM polynomial �t to the periodogram of the time series of IF-transformed returns, using
a GLM for Exponential distributions or Gamma distributions.

4

Figure 1: Packages Relations between RPEIF, RPGLMEN, RPESE and PerformanceAnalytics

If a user of PerformanceAnalytics wishes to compute standard errors of risk and perfor-
mance estimators, only the RPESE packages is needed. The other two packages, RPEIF and
RPEGLMEN will be installed automatically if RPESE is installed (they are imported packages
by RPESE).

3 How to Compute Standard Errors in PerformanceAnalytics

In the following sections, we show how to use the functions in PerformanceAnalytics to
compute standard errors of risk and performance estimators using the edhec time series of
monthly hedge fund returns contained in the PerformanceAnalytics package.

3.1 Installing and Loading RPESE and Loading an Examples Data

Set

As previously mentioned, to use the standard errors computation capability in PerformanceAnalytics,
the RPESE package must be installed. The RPESE package can be installed form CRAN as
follows:

5

install.packages("RPESE")

We will use the xts data set edhec of hedge fund returns, contained in PerformanceAnalytics,
in demonstrating the functionality of PerformanceAnalytics. The following code loads the
edhec data, con�rms the object's class, lists the names of the hedge funds, and displays the
range of dates of the data.

library(PerformanceAnalytics)

data(edhec, package='PerformanceAnalytics')

class(edhec)

[1] "xts" "zoo"

names(edhec)

[1] "Convertible Arbitrage" "CTA Global"

[3] "Distressed Securities" "Emerging Markets"

[5] "Equity Market Neutral" "Event Driven"

[7] "Fixed Income Arbitrage" "Global Macro"

[9] "Long/Short Equity" "Merger Arbitrage"

[11] "Relative Value" "Short Selling"

[13] "Funds of Funds"

library(xts) # Need this for the next line and later use of plot.zoo

range(index(edhec))

[1] "1997-01-31" "2019-07-31"

Since the hedge fund names are too long for convenient display, the following code is used to
create shorter two or three letter names:

names(edhec) <- c("CA", "CTA", "DIS", "EM","EMN", "ED", "FIA",

"GM", "LS","MA", "RV", "SS", "FOF")

6

3.2 PerformanceAnalytics Functions for Computing Standard Errors

The names of the PerformanceAnalytics for computing standard errors are provide in the
second column, with the names of the corresponding RPESE functions in the �rst column.

Name PerformanceAnalytics Function

SD StdDev

SemiSD SemiSD

LPM1 lpm with argument n=1

LPM2 lpm with argument n=2

ES ES

VaR VaR

Table 3: Risk Estimator Names and Descriptions

Name PerformanceAnalytics Function

Mean Mean.arithmetic

SR SharpeRatio with argument FUN="StdDev"

SorR.µ Sortino with argument threshold="mean"

SorR.c Sortino with argument threshold="const"

ESratio SharpeRatio with argument FUN="ES"

VaRratio SharpeRatio with argument FUN="VaR"

RachevRatio RachevRatio

OmegaRatio Omega

Table 4: Performance Estimator Names and Descriptions

7

3.3 Basic Functionality

The arguments of risk and performance estimator functions in PerformanceAnalytics are
di�erent for di�erent functions, and sometimes quite extensive. For example, below we show
the arguments of the StdDev and ES (expected shortfall) functions using the args function:

args(StdDev)

function (R, ..., clean = c("none", "boudt", "geltner", "locScaleRob"),

portfolio_method = c("single", "component"), weights = NULL,

mu = NULL, sigma = NULL, use = "everything", method = c("pearson",

"kendall", "spearman"), SE = FALSE, SE.control = NULL)

NULL

args(ES)

function (R = NULL, p = 0.95, ..., method = c("modified", "gaussian",

"historical"), clean = c("none", "boudt", "geltner", "locScaleRob"),

portfolio_method = c("single", "component"), weights = NULL,

mu = NULL, sigma = NULL, m3 = NULL, m4 = NULL, invert = TRUE,

operational = TRUE, SE = FALSE, SE.control = NULL)

NULL

However, for computing standard errors of the risk and performance estimators of Tables 3
and 4 in PerformanceAnalytics, only two arguments are two arguments besides the data
set name are needed, namely the arguments SE and SE.control, and often one only uses
the SE argument by settting SE=TRUE. This works for example when you want to compute
the standard error of an expected shortfall estimate for the convertible arbitrage (CA) hedge
fund, as follows.

Expected shortfall SE computation for a single hedge fund

ESout.CA <- t(ES(edhec$CA, SE=TRUE))

ESout.CA

ES IFiid IFcor

CA 0.03655 0.008973782 0.01580664

8

The �rst column above contains the ES estimate for CA hedge fund, and the second and
third column contain the standard errors for two di�erent methods, �IFiid� and �IFcor�.
These are just two of the following possible choices, which can be set as demonstrated in
Section 3.4:

� "IFiid": This results in an in�uence function (IF) method based computation of a
standard error assuming i.i.d. returns

� "IFcor": This is the basic IF method computation of a standard error that takes into
account serial correlation in the returns

� "IFcorAdapt": This IF based method adaptively interpolates between IFcor and IF-
corPW, and can sometimes result in better accounting for serial correlation in the
returns than with either IFcor or IFcorPW alone

� "IFcorPW": This IF based method uses pre-whitening of the IF transformed returns
and is useful when serial correlation is large

� "BOOTiid": This choice results in computing a bootstrap standard error assuming i.i.d.
returns

� "BOOTcor": This choice uses a block bootstrap method to compute a standard error
that takes into account serial correlation of returns.

The two default choices of methods are:

� �IFiid� and �IFcor� for risk estimators, and for performance estimators when re-
turns serial correlation are known to be small

� �IFiid� and �IFcorAdapt� for performance estimators when returns correlations
are unknown and may be large

The value of including IFiid, along with IFcor and IFcorAdapt is that it allows the user to
see whether or not serial correlation results in a di�erence in the standard error that assumes
i.i.d. returns and the standard error that takes into account serial correlation. If there is
no serial correlation there will not be much di�erence, but if there is serial correlation the
di�erence can be considerable. For example, in the above case of computing SEs for the CA
hedge fund, the IFcor standard error is a considerable 76% larger than that of the IFiid

standard error.

9

The BOOTiid and BOOTcor methods are provided for users who want to see how these boot-
strap methods of computing standard errors compare with the IF based methods. Our
experience to date indicates that BOOTiid generally agrees quite well with IFiid, but that
BOOTcor is not as consistent in giving values similar to those of IFcor.

The risk and performance estimator functions allow you to return the standard errors for
more than one asset or portfolio, e.g. a portfolio of assets, at the same time. For example,
the following code results in computing standard errors for all thirteen of the edhec hedge
funds.

Expected shortfall SE computation for all hedge funds in data set

ESout <- t(ES(edhec, SE=TRUE))

ESout

ES IFiid IFcor

CA 0.03655000 0.008973782 0.015801898

CTA 0.04126429 0.003459795 0.003433112

DIS 0.03669286 0.006728856 0.010249305

EM 0.07236429 0.013914916 0.016417564

EMN 0.01687857 0.004262266 0.004570448

ED 0.03856429 0.006000260 0.007780399

FIA 0.02825714 0.007971074 0.013084620

GM 0.02062857 0.002098174 0.002104368

LS 0.04220714 0.005082402 0.007472049

MA 0.01914286 0.003892194 0.004335635

RV 0.02465000 0.004975177 0.009391730

SS 0.09682143 0.009600362 0.010901638

FOF 0.03320714 0.005092672 0.007234076

Help �les for the functions in the PerformanceAnalytics are available as usual. For functions
in Tables 3 and 4 that were already in PerformanceAnalytics (PA) prior to the current
release, the help �le will be almost the same as before, with the only di�erence being that
you will see the addtional arguments SE = FALSE and SE.control = NULL. You can con�rm
this claim, for example, for the ES function with the following code.

?ES

help(ES)

PA functions for computing SEs that are new with this release, will of course also have the
optional arguments SE = FALSE and SE.control = NULL.

10

3.4 Controlling Standard Errors Computation Using the RPESE.control

Function

The argument SE.control in the PA risk and performance estimator function in Tables 3
and 4 is used to control the parameters in the computation of standard errors, namely: the
standard error methods used, as listed in Section 3.3, along with the outlier cleaning option,
the model �tting method, the frequency decimation or truncation option, and the adaptive
correlation standard errors tuning parameters described in this Section.

The SE.control argument should be set using the RPESE.control function, whose argu-
ments are:

args(RPESE.control)

function (estimator = c("Mean", "SD", "VaR", "ES", "SR", "SoR",

"ESratio", "VaRratio", "SoR", "LPM", "OmegaRatio", "SemiSD",

"RachevRatio")[1], se.method = NULL, cleanOutliers = NULL,

fitting.method = NULL, freq.include = NULL, freq.par = NULL,

a = NULL, b = NULL)

NULL

Here is what the RPESE.control arguments do:

� "estimator": This argument takes one of the optinos "Mean", "SD", "VaR", "ES", "SR",
"SoR", "ESratio", "VaRratio", "LPM", "OmegaRatio", "SemiSD", "RachevRatio" and
sets the other arguments to the function with the default for the measure used. If this
argument is ignored, then the default used is "Mean" as indicated in the documentation.
If this argument is used and the other arguments listed below are also used, then the
default from the measure is overwritten by the user set option. See example code for
demonstration.

� "se.method": This argument controls which of the standard errors methods listed in
Section 3.3 are used.

� "cleanOutliers": Argument TRUE or FALSE (default) to determine if the returns data
outlier should be shrunk.

� "fitting.method": Distribution used in RPEGLMEN �t method. Should be one of
"Exponential" (default) or "Gamma".

11

� "freq.include": DFT frequencies inclusion criteria. Must be one of "All" (de-
fault), "Decimate" or "Truncate" choices. If the argument "freq.include" is set
to "Decimate" or "Truncate", a value of 0.5 is used for the "freq.par" argument:
every second frequency is used in the decimation case, and only the �rst half of the
frequencies are used in the truncation case.

� "freq.par": Percentage of the frequency used if "freq.include" is "Decimate" or
"Truncate." Default is 0.5.

� "a" and "b": Adaptive parameters for the standard errors computation if when "IFcorAdapt"
is chosen.

For example, for the control parameters for the expected shortfall, we can use the simple
default:

ES.control <- RPESE.control(estimator="ES")

ES.control

Note that the return value is a list with the control parameters, and we can change individual
components of the list, as for example:

ES.control$cleanOutliers <- TRUE

If we want to enforce some parameters directly by the function call, we can use the relevant
arguments of RPESE.control directly.

ES.control <- RPESE.control(estimator="ES", cleanOutliers=TRUE,

freq.include="Decimate")

ES.control

This the above ES.control is to be used for the SE.control argument if SE=TRUE.

Expected shortfall SE computation with control parameters

ESout <- t(ES(edhec, SE=TRUE, SE.control=ES.control))

ESout

12

ES IFiid IFcor

CA 0.03655000 0.008973782 0.003723893

CTA 0.04126429 0.003459795 0.003532085

DIS 0.03669286 0.006728856 0.006105000

EM 0.07236429 0.013914916 0.007730818

EMN 0.01687857 0.004262266 0.001670694

ED 0.03856429 0.006000260 0.003387294

FIA 0.02825714 0.007971074 0.001991072

GM 0.02062857 0.002098174 0.002253347

LS 0.04220714 0.005082402 0.006085118

MA 0.01914286 0.003892194 0.002280315

RV 0.02465000 0.004975177 0.003088431

SS 0.09682143 0.009600362 0.011187394

FOF 0.03320714 0.005092672 0.003038685

We can use RPESE.control directly in the function call

ESout <- t(ES(edhec,

SE=TRUE,

SE.control=RPESE.control(estimator="ES",

se.method=c("IFiid",

"IFcor",

"BOOTiid",

"BOOTcor"))))

ESout

ES IFiid IFcor BOOTiid BOOTcor

CA 0.03655000 0.008973782 0.015803015 0.008884762 0.013433128

CTA 0.04126429 0.003459795 0.003433112 0.003243576 0.003474148

DIS 0.03669286 0.006728856 0.010245235 0.007232031 0.007567787

EM 0.07236429 0.013914916 0.016426163 0.012873529 0.013253707

EMN 0.01687857 0.004262266 0.004570448 0.004004225 0.005120100

ED 0.03856429 0.006000260 0.006243036 0.005482296 0.005301204

FIA 0.02825714 0.007971074 0.013084620 0.007563858 0.010379640

GM 0.02062857 0.002098174 0.002105179 0.001898005 0.001852979

LS 0.04220714 0.005082402 0.005758981 0.005319016 0.005520263

MA 0.01914286 0.003892194 0.004335635 0.003725457 0.003211319

RV 0.02465000 0.004975177 0.009393838 0.004787178 0.007092247

13

SS 0.09682143 0.009600362 0.010968308 0.007456624 0.015860880

FOF 0.03320714 0.005092672 0.007237515 0.005435848 0.005977324

3.5 Outlier Cleaning

There is also an outlier cleaning functionality in the RPEIF package that is fully described in
Section 7 of CM, and is available in RPESE. Here we illustrate the use of the outlier cleaning
facility in terms of the in�uence function transformed returns for the sample mean estimator.
It is shown in Section 2 of CM that the in�uence function for the sample mean estimator is
IF (r;µ) = r − µ. Thus the IF transformed returns time series, computed with the function
IF.mean is just rt − µ, where µ is replaced by the sample mean in the SE computation
implementation. The function IF.mean is made accessible by loading the package RPEIF.
The following code produces Figure 2, which illustrate the e�ect of outlier cleaning relative
to no outlier cleaning for the FIA hedge fund returns.

library(RPEIF)

IFout <- IF.mean(returns = edhec[,"FIA"], cleanOutliers = F, IFprint = T)

IFout.clean <- IF.mean(returns = edhec[,"FIA"], cleanOutliers = T,

IFprint = T)

par(mfrow = c(2,1))

ylim = c(-.1,.035)

plot.zoo(IFout,type = "b",

ylab = expression(paste("Returns - ",mu)),

main = "FIA Returns", pch = 20, lwd = .8, cex = .9,

ylim = ylim)

plot.zoo(IFout.clean,type = "b", ylab = expression(paste("Returns - ",mu)),

main = "FIA Outlier Cleaned Returns", pch = 20, lwd = .8, cex = .9,

ylim = ylim)

par(mfrow = c(1,1))

14

Figure 2: FIA Returns Versus Outlier Cleaned FIA Returns (with sample mean subtracted)

You can use the following code to compare expected shortfall SE's without and with outlier
cleaning.

IFcor SE results with outliers present and with outliers cleaned

ESout <- t(ES(edhec, SE=TRUE, SE.control=RPESE.control(estimator="ES")))

ESout.clean <- t(ES(edhec, SE=TRUE, SE.control=RPESE.control(estimator="ES",

cleanOutliers=T)))

clean.compare <- data.frame(ESout[,3], ESout.clean[,3])

names(clean.compare) <- c("With Outliers", "Outliers Cleaned")

row.names(clean.compare) <- names(edhec)

round(clean.compare,3)

With Outliers Outliers Cleaned

15

CA 0.016 0.004

CTA 0.003 0.003

DIS 0.009 0.006

EM 0.016 0.008

EMN 0.005 0.001

ED 0.008 0.003

FIA 0.013 0.002

GM 0.002 0.002

LS 0.007 0.006

MA 0.004 0.002

RV 0.009 0.003

SS 0.011 0.011

FOF 0.007 0.003

It is not surprising that the SE's of the expected shortfall are smaller with outlier cleaning
than with the outliers in the returns, as outliers generally in�ate estimator variability.

3.6 Remark for Con�icting Arguments for Standard Errors Com-

putation

There are some arguments in some of the PerformanceAnalytics functions that will be
assumed to hold a certain value when standard errors are computed. For example, recall the
arguments of the ES function.

args(ES)

function (R = NULL, p = 0.95, ..., method = c("modified", "gaussian",

"historical"), clean = c("none", "boudt", "geltner", "locScaleRob"),

portfolio_method = c("single", "component"), weights = NULL,

mu = NULL, sigma = NULL, m3 = NULL, m4 = NULL, invert = TRUE,

operational = TRUE, SE = FALSE, SE.control = NULL)

NULL

The following ES arguments will be overwritten if SE=TRUE and the arguments do not contain
the values below.

� "method": This argument will be enforced to be "historical".

16

� "portfolio_method": This argument will be enforced to be "single".

� "invert": This argument will be enforced to be "FALSE".

� "clean": This argument will be enforced to be match the argument in the "SE.control"
argument.

References

X. Chen and R. D. Martin. Standard errors of risk and performance measure estimators for
serially correlated returns. 2018. URL https://ssrn.com/abstract=3085672.

S Zhang, R D Martin, and A A Christidis. In�uence functions for risk and performance
estimators. Working paper, 2019.

17

https://ssrn.com/abstract=3085672

	1 Introduction
	2 Packages Involved in the Computation of Standard Errors
	3 How to Compute Standard Errors in PerformanceAnalytics
	3.1 Installing and Loading RPESE and Loading an Examples Data Set
	3.2 PerformanceAnalytics Functions for Computing Standard Errors
	3.3 Basic Functionality
	3.4 Controlling Standard Errors Computation Using the RPESE.control Function
	3.5 Outlier Cleaning
	3.6 Remark for Conflicting Arguments for Standard Errors Computation

