PIE: A Partially Interpretable Model with Black-Box Refinement

Implements a novel predictive model, Partially Interpretable Estimators (PIE), which jointly trains an interpretable model and a black-box model to achieve high predictive performance as well as partial model. See the paper, Wang, Yang, Li, and Wang (2021) <doi:10.48550/arXiv.2105.02410>.

Version: 1.0.0
Depends: R (≥ 3.5.0), gglasso, xgboost
Imports: splines, stats
Suggests: knitr, rmarkdown
Published: 2025-01-27
DOI: 10.32614/CRAN.package.PIE
Author: Tong Wang [aut], Jingyi Yang [aut, cre], Yunyi Li [aut], Boxiang Wang [aut]
Maintainer: Jingyi Yang <jy4057 at stern.nyu.edu>
License: GPL-2
NeedsCompilation: no
Citation: PIE citation info
CRAN checks: PIE results

Documentation:

Reference manual: PIE.pdf
Vignettes: Introduction to PIE – A Partially Interpretable Model with Black-box Refinement (source)

Downloads:

Package source: PIE_1.0.0.tar.gz
Windows binaries: r-devel: not available, r-release: not available, r-oldrel: PIE_1.0.0.zip
macOS binaries: r-release (arm64): PIE_1.0.0.tgz, r-oldrel (arm64): not available, r-release (x86_64): not available, r-oldrel (x86_64): not available

Linking:

Please use the canonical form https://CRAN.R-project.org/package=PIE to link to this page.