Most multilevel methodologies can only model macro-micro multilevel situations in an unbiased way, wherein group-level predictors (e.g., city temperature) are used to predict an individual-level outcome variable (e.g., citizen personality). In contrast, this R package enables researchers to model micro-macro situations, wherein individual-level (micro) predictors (and other group-level predictors) are used to predict a group-level (macro) outcome variable in an unbiased way.
Version: | 0.4.0 |
Depends: | R (≥ 3.1.0) |
Published: | 2017-07-01 |
DOI: | 10.32614/CRAN.package.MicroMacroMultilevel |
Author: | Jackson G Lu [aut], Elizabeth Page-Gould [aut], Nancy R Xu [aut, cre] |
Maintainer: | Nancy R Xu <nancyranxu at gmail.com> |
License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
NeedsCompilation: | no |
Materials: | README |
CRAN checks: | MicroMacroMultilevel results |
Reference manual: | MicroMacroMultilevel.pdf |
Package source: | MicroMacroMultilevel_0.4.0.tar.gz |
Windows binaries: | r-devel: MicroMacroMultilevel_0.4.0.zip, r-release: MicroMacroMultilevel_0.4.0.zip, r-oldrel: MicroMacroMultilevel_0.4.0.zip |
macOS binaries: | r-release (arm64): MicroMacroMultilevel_0.4.0.tgz, r-oldrel (arm64): MicroMacroMultilevel_0.4.0.tgz, r-release (x86_64): MicroMacroMultilevel_0.4.0.tgz, r-oldrel (x86_64): MicroMacroMultilevel_0.4.0.tgz |
Please use the canonical form https://CRAN.R-project.org/package=MicroMacroMultilevel to link to this page.