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check_results Check results from MPTmultiverse

Description

Set of helper functions that allow checking if model estimation worked as intended. Depending on
the method and function, these functions return slightly different information.

Usage

check_results(results)

write_check_results(DATA_FILE, results, append = FALSE)

check_set(results)

Arguments

results An object of class multiverseMPT.

DATA_FILE character string. File name to use.

append logical. If TRUE, output will be appended to DATA_FILE; otherwise, it will over-
write the contents of DATA_FILE.

https://orcid.org/0000-0002-4842-3657
https://orcid.org/0000-0002-3421-6665
https://orcid.org/0000-0003-4900-788X
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Details

check_results prints relatively verbose output detailing diagnostic information for each method to
the console. For the frequentist methods, this is based on either the rank of the observed Fischer (or
Hessian) matrix of the MLE estimate or based on empirical identifiability (based either on repeated
re-runs or the width of the bootstrapped parameter distribution). For the Bayesian methods, this is
convergence statistics R-hat and number of effective samples. write_check_results writes the
results of check_results to a specififed file (instead of printing it to the console).

check_set returns a tibble with one row, where each expected method corresponds to a col-
umn with a boolean (TRUE/FALSE) value. Entries TRUE correspond to no problem and FALSE cor-
respond to problems. FALSE means the method is either missing from the results file or (for
the Bayesian methods) there are core parameters for which the convergence criteria defined in
getOption("MPTmultiverse") are not met.

Examples

load(file = system.file("extdata", "results_bayen_kuhlmann.RData",
package = "MPTmultiverse"))

## prints checks to console
check_results(results)

## returns tibble with single row
check_set(results)

fit_mpt Multiverse Analysis for MPT Models

Description

Performs a multiverse analysis for multinomial processing tree (MPT) models across different lev-
els of pooling (i.e., data aggregation) and across maximum-likelihood/frequentist and Bayesian
estimation approaches. For the frequentist approaches, no pooling (with and without parametric or
nonparametric bootstrap) and complete pooling are implemented using MPTinR. For the Bayesian
approaches, no pooling, complete pooling, and three different variants of partial pooling are imple-
mented using TreeBUGS. Requires data on a by-participant level with each row corresponding to
data from one participant (i.e., different response categories correspond to different columns) and
the data can contain a single between-subjects condition. Model equations need to be passed as a
.eqn model file and category labels (first column in .eqn file) need to match the column names in
data. Results are returned in one tibble with one row per estimation method.

Usage

fit_mpt(model, dataset, data, id = NULL, condition = NULL, core = NULL, method)
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Arguments

model A model definition, typically the path to an .eqn model file containing the model
equations. Category names need to match column names in data.

dataset scalar character vector. Name of the data set that will be copied to the results
tibble.

data A data.frame containing the data. Column names need to match category
names in model (i.e., different from MPTinR behavior, order of categories is
not important, matching is done via name).

id scalar character vector. Name of the column that contains the subject identi-
fier. If not specified, it is assumed that each row represents observations from
one participant.

condition scalar character vector. Name of the column specifying a between-subjects
factor. If not specified, no between-subjects comparisons are performed.

core character vector defining the core parameters of interest, e.g., core = c("Dn",
"Do"). All other parameters are treated as auxiliary parameters.

method character vector specifying which analysis approaches should be performed
(see Description below). Defaults to all available methods.

Details

This functions is a fancy wrapper for packages MPTinR and TreeBUGS applying various frequen-
tist and Bayesian estimation methods to the same data set with different levels of pooling/aggregation
using a single MPT model and collecting the results in one tibble where each row corresponds to
one estimation method. Note that parameter restrictions (e.g., equating different parameters or fix-
ing them to a constant) need to be part of the model (i.e., the .eqn file) and cannot be passed as an
argument.

The settings for the various methods are specified via function mpt_options. The default settings
use all available cores for calculating the boostrap distribution as well as independent MCMC chains
and should be appropriate for most situations.

The data can have a single between-subjects condition (specified via condition). This condition
can have more than two levels. If specified, the pairwise differences between each level, the stan-
dard error of the differences, and confidence-intervals of the differences are calculated for each
parameter. Please note that condition is silently converted to character in the output. Thus, a
specific ordering of the factor levels in the output cannot be guaranteed. If the data has more than
one between-subjects condition, these need to be combined into one condition for this function.

To include multiple within-subjects conditions, include separate trees and separate sets of parame-
ters for each within-subjects condition in your .eqn file.

Pooling: The following pooling levels are provided (not all by all estimation approaches, see
below).

• Complete pooling: The traditional analysis approach in the MPT literature in which data is
aggregated across participants within each between-subjects condition. This approach as-
sumes that there are no individual-dfferences. Produces one set of model parameters per
condition.
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• No pooling: The model is fitted to the individual-level data in an independent manner (i.e.,
no data aggregation). This approach assumes that there is no similarity across participants
and usually requires considerable amounts of data on the individual-level. Produces one
set of model parameters per participant. Group-level estimates are based on averaging the
individual-level estimates.

• Partial pooling: Data is fitted simultaneously to the individual-level data assuming that the
individual-level parameters come from a group-level distribution. Individual-level param-
eters are often treated as random-effects which are nested in the group-level parameters,
which is why this approach is also called hierarchical modeling. This approach assumes
both individual-level differences and similarities. Produces one set of model parameters per
participant plus one set of group-level parameters. Thus, although partial pooling models
usually have more parameters than the no-pooling approaches, they are usually less flexible
as the hierarchical-structure provides regularization of the individual-level parameters.

Implemented Estimation Methods: Maximum-likelihood estimation with MPTinR via fit.mpt:

• "asymptotic_complete": Asymptotic ML theory, complete pooling
• "asymptotic_no": Asymptotic ML theory, no pooling
• "pb_no": Parametric bootstrap, no pooling
• "npb_no": Nonparametric bootstrap, no pooling

Bayesian estimation with TreeBUGS
• "simple": Bayesian estimation, no pooling (C++, simpleMPT)
• "simple_pooling": Bayesian estimation, complete pooling (C++, simpleMPT)
• "trait": latent-trait model, partial pooling (JAGS, traitMPT)
• "trait_uncorrelated": latent-trait model without correlation parameters, partial pooling

(JAGS, traitMPT)
• "beta": beta-MPT model, partial pooling (JAGS, betaMPT)
• "betacpp": beta-MPT model, partial pooling (C++, betaMPTcpp)

Frequentist/Maximum-Likelihood Methods: For the complete pooling asymptotic approach,
the group-level parameter estimates and goodness-of-fit statistics are the maximum-likelihood
and G-squared values returned by MPTinR. The parameter differences are based on these values.
for between-subjects comparisons, the standard errors of the differences are simply the pooled
standard error of the individual parameters; for within-subjects comparisons, the standard errors
of the differences are based on the respective linear transform of the estimated variance-covariance
matrix calculated from the Hessian matrix. The overall fit (column gof) is based on an additional
fit to the completely aggregated data.
For the no pooling asymptotic approach, the individual-level maximum-likelihood estimates are
reported in column est_indiv and gof_indiv and provide the basis for the other results. Whether
or not an individual-level parameter estimate is judged as identifiable (column identifiable) is
based on separate fits with different random starting values. If, in these separate, fits the same
objective criterion is reached several times (i.e., Log.Likelihood within .01 of best fit), but the
parameter estimate differs (i.e., different estimates within .01 of each other), then an estimate is
flagged as non-identifiable. If they are the same (i.e., within .01 of each other) they are marked as
identifiable. The group-level parameters are simply the means of the identifiable individual-level
parameters, the SE is the SE of the mean for these parameter (i.e., SD/sqrt(N), where N excludes
non-identifiable parameters and thise estimated as NA), and the CI is based on mean and SE.
The group-level and overall fit is the sum of the individual G-squares, sum of individual-level
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df, and corresponding chi-square df. The difference between the conditions and corresponding
statistics are based on a t-test comparing the individual-level estimates (again, after excluding
non-identifiable estimates). The CIs of the difference are based on the SEs (which are derived
from a linear model equivalent to the t-test). Within-subjects comparisons are based on t-tests for
paired observations.
The individual-level estimates of the bootstrap based no-pooling approaches are identical to
the asymptotic ones. However, the SE is the SD of the bootstrapped distribution of parameter es-
timates, the CIs are the corresponding quantiles of the bootstrapped distribution, and the p-value
is obtained from the bootstrapped G-square distribution. Identifiability of individual-level param-
eter estimates is also based on the bootstrap distribution of estimates. Specifically, we calculate
the range of the CI (i.e., maximum minus minimum CI value) and flag those parameters as non-
identifiable for which the range is larger than mpt_options()$max_ci_indiv, which defaults to
0.99. Thus, in the default settings we say a parameter is non-identifiable if the bootstrap based CI
extends from 0 to 1. The group-level estimates are the mean of the identifiable individual-level es-
timates. The difference between conditions (as well as within conditions) is calculated in the same
manner as for the asymptotic case using the identifiable individual-level parameter estimates.

Bayesian Methods: The simple approaches fit fixed-effects MPT models. "simple" uses no
pooling and thus assumes independent uniform priors for the individual-level parameters. Group-
level means are obtained as generated quantities by averaging the posterior samples across par-
ticipants. "simple_pooling" aggregates observed frequencies across participants and assumes a
uniform prior for the group-level parameters.
The latent-trait approaches transform the individual-level parameters to a latent probit scale us-
ing the inverse cumulative standard normal distribution. For these probit values, a multivariate
normal distribution is assumed at the group level. Whereas "trait" estimates the corresponding
correlation matrix of the parameters (reported in the column est_rho), "trait_uncorrelated"
does not estimate this correlation matrix (i.e., parameters can still be correlated across individuals,
but this is not accounted for in the model).
For all Bayesian methods, the posterior distribution of the parameters is summarized by the
posterior mean (in the column est), posterior standard deviation (se), and credbility intervals
(ci_*). For parameter differences (test_between and test_within) and correlations (est_rho),
Bayesian p-values are computed (column p) by counting the relative proportion of posterior
samples that are smaller than zero. Goodness of fit is tested with the T1 statistic (observed
vs. posterior-predicted average frequencies, focus = "mean") and the T2 statistic (observed vs.
posterior-predicted covariance of frequencies, focus = "cov").

Value

A tibble with one row per estimation method and the following columns:

1. model: Name of model file (copied from model argument), character

2. dataset: Name of data set (copied from dataset argument), character

3. pooling: character specifying the level of pooling with three potential values: c("complete",
"no", "partial")

4. package: character specifying the package used for estimation with two potential values:
c("MPTinR", "TreeBUGS")

5. method: character specifying the method used with the following potential values: c("asymptotic",
"PB/MLE", "NPB/MLE", "simple", "trait", "trait_uncorrelated", "beta", "betacpp")
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6. est_group: Group-level parameter estimates per condition/group.

7. est_indiv: Individual-level parameter estimates (if provided by method).

8. est_rho: Estimated correlation of individual-level parameters on the probit scale (only in
method="trait").

9. test_between: Parameter differences between the levels of the between-subjects condition
(if specified).

10. test_within: Within-subjects parameter differences.

11. gof: Overall goodness of fit across all individuals.

12. gof_group: Group-level goodness of fit.

13. gof_indiv: Individual-level goodness of fit.

14. fungibility: Posterior correlation of the group-level means pnorm(mu) (only in method="trait").

15. test_homogeneity: Chi-square based test of participant homogeneity proposed by Smith and
Batchelder (2008). This test is the same for each estimation method.

16. convergence: Convergence information provided by the respective estimation method. For
the asymptotic frequentist methods this is a tibble with rank of the Fisher matrix, the number
of parameters (which should match the rank of the Fisgher matrix), and the convergence code
provided by the optimization algorithm (which is nlminb). The boostrap methods contain
an additional column, parameter, that contains the information which (if any) parameters
are empirically non-identifiable based on the bootstrapped distribution of parameter estimates
(see above for exact description). For the Bayesian methods this is a tibble containing infor-
mation of the posterior dsitribution (i.e., mean, quantiles, SD, SE, n.eff, and R-hat) for each
parameter.

17. estimation: Time it took for each estimation method and group.

18. options: Options used for estimation. Obtained by running mpt_options()

With the exception of the first five columns (i.e., after method) all columns are list columns
typically holding one tibble per cell. The simplest way to analyze the results is separately per
column using unnest. Examples for this are given below.

References

Smith, J. B., & Batchelder, W. H. (2008). Assessing individual differences in categorical data.
Psychonomic Bulletin & Review, 15(4), 713-731. https://doi.org/10.3758/PBR.15.4.713

Examples

# ------------------------------------------------------------------------------
# MPT model definition & Data

EQN_FILE <- system.file("extdata", "prospective_memory.eqn", package = "MPTmultiverse")
DATA_FILE <- system.file("extdata", "smith_et_al_2011.csv", package = "MPTmultiverse")

### if .csv format uses semicolons ";" (e.g., German format):
# data <- read.csv2(DATA_FILE, fileEncoding = "UTF-8-BOM")
### if .csv format uses commata "," (international format):

https://doi.org/10.3758/PBR.15.4.713
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data <- read.csv(DATA_FILE, fileEncoding = "UTF-8-BOM")
data <- data[c(1:10, 113:122),] ## select only subset of data for example
head(data)

COL_CONDITION <- "WM_EX" # name of the variable encoding group membership

# experimental condition should be labeled meaningfully ----
unique(data[[COL_CONDITION]])

data[[COL_CONDITION]] <- factor(
data[[COL_CONDITION]]
, levels = 1:2
, labels = c("low_WM", "high_WM")

)

# define core parameters:
CORE <- c("C1", "C2")

## Not run:
op <- mpt_options()
## to reset default options (which you would want) use:
mpt_options("default")

mpt_options() # to see the settings
## Note: settings are also saved in the results tibble

## without specifying method, all are used per default
fit_all <- fit_mpt(

model = EQN_FILE
, dataset = DATA_FILE
, data = data
, condition = COL_CONDITION
, core = CORE

)

mpt_options(op) ## reset options

## End(Not run)

load(system.file("extdata", "prospective_memory_example.rda", package = "MPTmultiverse"))

# Although we requested all 10 methods, only 9 worked:
fit_all$method
# Jags variant of beta MPT is missing.

# the returned method has a plot method. For example, for the group-level estimates:
plot(fit_all, which = "est")

## Not run:
### Full analysis of results requires dplyr and tidyr (or just 'tidyverse')
library("dplyr")
library("tidyr")
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## first few columns identify model, data, and estimation approach/method
## remaining columns are list columns containing the results for each method
## use unnest to work with each of the results columns
glimpse(fit_all)

## Let us inspect the group-level estimates
fit_all %>%

select(method, pooling, est_group) %>%
unnest()

## which we can plot again
plot(fit_all, which = "est")

## Next we take a look at the GoF
fit_all %>%

select(method, pooling, gof_group) %>%
unnest() %>%
as.data.frame()

# Again, we can plot it as well
plot(fit_all, which = "gof2") ## use "gof1" for overall GoF

## Finally, we take a look at the differences between conditions
fit_all %>%

select(method, pooling, test_between) %>%
unnest()

# and then we plot it
plot(fit_all, which = "test_between")

### Also possible to only use individual methods:
only_asymptotic <- fit_mpt(

model = EQN_FILE
, dataset = DATA_FILE
, data = data
, condition = COL_CONDITION
, core = CORE
, method = "asymptotic_no"

)
only_asymptotic$est_group

bayes_complete <- fit_mpt(
model = EQN_FILE
, dataset = DATA_FILE
, data = data
, condition = COL_CONDITION
, core = CORE
, method = "simple_pooling"

)
bayes_complete$est_group
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## End(Not run)

get_info Collect Model Equations and Data per Tree

Description

Helper function that collects model equation and data per tree for further analysis.

Usage

get_info(
model,
dataset,
data,
id = NULL,
condition = NULL,
include_data = FALSE,
core = NULL,
autosave = TRUE

)

Arguments

model A model definition, typically the path to an .eqn model file containing the model
equations. Category names need to match column names in data.

dataset scalar character vector. Name of the data set that will be copied to the results
tibble.

data A data.frame containing the data. Column names need to match category
names in model (i.e., different from MPTinR behavior, order of categories is
not important, matching is done via name).

id scalar character vector. Name of the column that contains the subject identi-
fier. If not specified, it is assumed that each row represents observations from
one participant.

condition scalar character vector. Name of the column specifying a between-subjects
factor. If not specified, no between-subjects comparisons are performed.

include_data If FALSE (the default) the response frequencies are not part of the output, but
only the number of observations per tree. If TRUE, the full data is part of the
output.

core character vector defining the core parameters of interest, e.g., core = c("Dn",
"Do"). All other parameters are treated as auxiliary parameters.

autosave If TRUE (the default) the results are automatically saved in the current working
directory in a file with name derived from both model and data.

Value

A list. If autosave = TRUE, the list is also saved in the current working directory.
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mpt_options Options Settings for MPT Comparison

Description

Set and examine a variety of options which affect the way MPT models are estimated.

Usage

mpt_options(...)

Arguments

... Named parameters to set. Possible values are:

• bootstrap_samples: Numeric. The number of bootstrap samples to be
drawn for the calculation parametric bootstrap confidence intervals.

• n.optim: Numeric. The number of optimization runs for the models esti-
mated with maximum-likelihood methods.

• n.chains: Numeric. The number of MCMC chains for the Bayesian mod-
els.

• n.adapt: Numeric. The number of iterations for adaptation.
• n.burnin: Numeric. The number of burn-in/warm-up iterations.
• n.iter: Numeric. The total number of iterations to be drawn after adapta-

tion (including burnin).
• n.thin: Numeric. Thinning interval.
• Rhat_max: Numeric. The maximum rhat.
• Neff_min: Numeric. The minimum number of effective samples you are

willing to accept.
• extend_max: Numeric.
• n.PPP: Numeric. The number of posterior predictive samples drawn for the

calculation of fit statistics T_1 and T_2.
• n.CPU: Numeric. The number of CPU cores to use for obtaining the para-

metric bootstrap dsitribution. Defaults to the number of available cores on
your machine.

• ci_size: Numeric.
• max_ci_indiv: Numeric. Used for excluding individual parameter esti-

mates in the bootstrap approaches. If the range of the CI (i.e., distance
between minimum and maximum) is larger than this value, the estimate is
excluded from the group-level estimates.

• silent_jags: Logical. Whether to suppress JAGS output.
• save_models: Logical. Default is FALSE which does not save the individual

MCMC samples in .RData files. Instead only summairzes are retained in
results object.



12 write_results

Examples

# Examine options:
mpt_options()

# Set number of MCMC chains to 20:
mpt_options(n.chains = 20)
mpt_options()

plot.multiverseMPT Plot multiverseMPT

Description

Plot the results from a multiverse MPT analysis.

Usage

## S3 method for class 'multiverseMPT'
plot(x, which = "est", save = FALSE, ...)

Arguments

x An object of class multiverseMPT.
which Character. Which information should be plotted? Possible values are "est"

for parameter estimates, "test_between" for between-subjects comparisions,
"gof1" for overall goodness-of-fit statistics, and "gof2" for group-wise goodness-
of-fit statistics.

save Logical. Indicates whether the plot should also be saved as a .pdf file.
... ignored.

write_results Write Results of Multiverse Analysis to csv-Files

Description

Exports the results to csv format.

Usage

write_results(results, path = "MPTmultiverse_")

Arguments

results An object of class multiverseMPT.
path a path where to save the files (e.g., "C:/results/modelX_dataY_")
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