
Package ‘MADMMplasso’
January 8, 2025

Title Multi Variate Multi Response ADMM with Interaction Effects

Version 1.0.0

Description This system allows one to model a multi-variate, multi-response
problem with interaction effects. It combines the usual squared error loss
for the multi-response problem with some penalty terms to encourage
responses that correlate to form groups and also allow for modeling main and
interaction effects that exit within the covariates.
The optimization method employed is the Alternating Direction Method of
Multipliers (ADMM). The implementation is based on the methodology
presented on Quachie Asenso, T., & Zucknick, M. (2023)
<doi:10.48550/arXiv.2303.11155>.

Imports Matrix, MASS, Rcpp, RcppArmadillo, foreach, doParallel, class,
graphics, parallel, stats, spatstat.sparse, methods

LinkingTo Rcpp, RcppArmadillo

Suggests testthat (>= 3.0.0), lintr

License GPL-3

Encoding UTF-8

RoxygenNote 7.3.2

Config/testthat/edition 3

Date 2025-01-08

Language en-GB

NeedsCompilation yes

Author Theophilus Quachie Asenso [aut],
Manuela Zucknick [aut],
Waldir Leoncio [aut, cre] (<https://orcid.org/0000-0002-6719-6162>),
Chi Zhang [aut]

Maintainer Waldir Leoncio <w.l.netto@medisin.uio.no>

Repository CRAN

Date/Publication 2025-01-08 16:40:06 UTC

1

https://doi.org/10.48550/arXiv.2303.11155
https://orcid.org/0000-0002-6719-6162

2 admm_MADMMplasso

Contents
admm_MADMMplasso . 2
admm_MADMMplasso_cpp . 4
compute_pliable . 6
cv_MADMMplasso . 6
generate_my_w . 10
MADMMplasso . 11
predict.MADMMplasso . 15
sim2 . 16
tree_parms . 16

Index 18

admm_MADMMplasso Fit the ADMM part of model for the given lambda values

Description

This function fits a multi-response pliable lasso model over a path of regularization values.

Usage

admm_MADMMplasso(
beta0,
theta0,
beta,
beta_hat,
theta,
rho1,
X,
Z,
max_it,
W_hat,
XtY,
y,
N,
e.abs,
e.rel,
alpha,
lambda,
alph,
svd.w,
tree,
my_print,
invmat,
gg = 0.2

)

admm_MADMMplasso 3

Arguments

beta0 a vector of length ncol(y) of estimated beta_0 coefficients

theta0 matrix of the initial theta_0 coefficients ncol(Z) by ncol(y)

beta a matrix of the initial beta coefficients ncol(X) by ncol(y)

beta_hat a matrix of the initial beta and theta coefficients (ncol(X)+ncol(X) by ncol(Z))
by ncol(y)

theta an array of initial theta coefficients ncol(X) by ncol(Z) by ncol(y)

rho1 the Lagrange variable for the ADMM which is usually included as rho in the
MADMMplasso call.

X N by p matrix of predictors

Z N by K matrix of modifying variables. The elements of Z may represent quan-
titative or categorical variables, or a mixture of the two. Categorical variables
should be coded by 0-1 dummy variables: for a k-level variable, one can use
either k or k-1 dummy variables.

max_it maximum number of iterations in loop for one lambda during the ADMM opti-
mization

W_hat N by (p+(p by nz)) of the main and interaction predictors. This generated inter-
nally when MADMMplasso is called or by using the function generate_my_w.

XtY a matrix formed by multiplying the transpose of X by y.

y N by D matrix of responses. The X and Z variables are centered in the function.
We recommend that X and Z also be standardized before the call

N nrow(X)

e.abs absolute error for the ADMM

e.rel relative error for the ADMM

alpha mixing parameter. When the goal is to include more interactions, alpha should
be very small and vice versa.

lambda user specified lambda_3 values.

alph an overrelaxation parameter in [1, 1.8]. The implementation is borrowed from
Stephen Boyd’s MATLAB code

svd.w singular value decomposition of W

tree The results from the hierarchical clustering of the response matrix. The easy
way to obtain this is by using the function (tree_parms) which gives a default
clustering. However, user decide on a specific structure and then input a tree
that follows such structure.

my_print Should information form each ADMM iteration be printed along the way? This
prints the dual and primal residuals

invmat A list of length ncol(y), each containing the C_d part of equation 32 in the paper

gg penalty terms for the tree structure for lambda_1 and lambda_2 for the ADMM
call.

https://stanford.edu/~boyd/papers/admm/lasso/lasso.html

4 admm_MADMMplasso_cpp

Value

predicted values for the ADMM part beta0: estimated beta_0 coefficients having a size of 1 by
ncol(y)

beta: estimated beta coefficients having a matrix ncol(X) by ncol(y)

BETA_hat: estimated beta and theta coefficients having a matrix (ncol(X)+ncol(X) by ncol(Z)) by
ncol(y)

theta0: estimated theta_0 coefficients having a matrix ncol(Z) by ncol(y)

theta: estimated theta coefficients having a an array ncol(X) by ncol(Z) by ncol(y) converge: did
the algorithm converge?

Y_HAT: predicted response nrow(X) by ncol(y)

admm_MADMMplasso_cpp Fit the ADMM part of model for a given lambda vale

Description

This function fits a multi-response pliable lasso model over a path of regularization values.

Usage

admm_MADMMplasso_cpp(
beta0,
theta0,
beta,
beta_hat,
theta,
rho1,
X,
Z,
max_it,
W_hat,
XtY,
y,
N,
e_abs,
e_rel,
alpha,
lambda,
alph,
svd_w_tu,
svd_w_tv,
svd_w_d,
C,
CW,
gg,

admm_MADMMplasso_cpp 5

my_print = TRUE
)

Arguments

beta0 a vector of length ncol(y) of estimated beta_0 coefficients

theta0 matrix of the initial theta_0 coefficients ncol(Z) by ncol(y)

beta a matrix of the initial beta coefficients ncol(X) by ncol(y)

beta_hat a matrix of the initial beta and theta coefficients (ncol(X)+ncol(X) by ncol(Z))
by ncol(y)

theta an array of initial theta coefficients ncol(X) by ncol(Z) by ncol(y)

rho1 the Lagrange variable for the ADMM which is usually included as rho in the
MADMMplasso call.

X n by p matrix of predictors

Z n by nz matrix of modifying variables. The elements of z may represent quan-
titative or categorical variables, or a mixture of the two. Categorical variables
should be coded by 0-1 dummy variables: for a k-level variable, one can use
either k or k-1 dummy variables.

max_it maximum number of iterations in loop for one lambda during the ADMM opti-
mization. This is usually included in the MADMMplasso call

W_hat N by (p+(p by nz)) of the main and interaction predictors. This generated inter-
nally when MADMMplasso is called or by using the function generate_my_w.

XtY a matrix formed by multiplying the transpose of X by y.

y N by D matrix of responses. The X and Z variables are centered in the function.
We recommend that X and Z also be standardized before the call

N nrow(X)

e_abs absolute error for the ADMM. This is included int the call of MADMMplasso.

e_rel relative error for the ADMM. This is included int the call of MADMMplasso.

alpha mixing parameter, usually obtained from the MADMMplasso call. When the
goal is to include more interactions, alpha should be very small and vice versa.

lambda a vector lambda_3 values for the ADMM call with length ncol(y). This is usually
calculated in the MADMMplasso call. In our current setting, we use the same
the lambda_3 value for all responses.

alph an overrelaxation parameter in [1, 1.8], usually obtained from the MADMM-
plasso call.

svd_w_tu the transpose of the U matrix from the SVD of W_hat

svd_w_tv the transpose of the V matrix from the SVD of W_hat

svd_w_d the D matrix from the SVD of W_hat

C the trained tree

CW weights for the trained tree The easy way to obtain this is by using the func-
tion (tree_parms) which gives a default clustering. However, user decide on a
specific structure and then input a tree that follows such structure.

6 cv_MADMMplasso

gg penalty terms for the tree structure for lambda_1 and lambda_2 for the ADMM
call.

my_print Should information form each ADMM iteration be printed along the way? De-
fault TRUE. This prints the dual and primal residuals

Value

predicted values for the ADMM part

compute_pliable Compute the interaction part of the model.

Description

Compute the interaction part of the model.

Usage

compute_pliable(X, Z, theta)

Arguments

X N by p matrix of predictors

Z N by K matrix of modifying variables. The elements of Z may represent quan-
titative or categorical variables, or a mixture of the two. Categorical variables
should be coded by 0-1 dummy variables: for a k-level variable, one can use
either k or k-1 dummy variables.

theta theta coefficients for a single response ncol(X) by ncol(Z)

Value

a vector of length N of the calculated interaction term for a single response

cv_MADMMplasso Carries out cross-validation for a MADMMplasso model over a path
of regularization values

Description

Carries out cross-validation for a MADMMplasso model over a path of regularization values

cv_MADMMplasso 7

Usage

cv_MADMMplasso(
fit,
nfolds,
X,
Z,
y,
alpha = 0.5,
lambda = fit$Lambdas,
max_it = 50000,
e.abs = 0.001,
e.rel = 0.001,
nlambda,
rho = 5,
my_print = FALSE,
alph = 1,
foldid = NULL,
pal = cl == 1L,
gg = c(7, 0.5),
TT,
tol = 1e-04,
cl = 1L,
legacy = FALSE

)

Arguments

fit object returned by the MADMMplasso function

nfolds number of cross-validation folds

X N by p matrix of predictors

Z N by K matrix of modifying variables. The elements of Z may represent quan-
titative or categorical variables, or a mixture of the two. Categorical variables
should be coded by 0-1 dummy variables: for a k-level variable, one can use
either k or k-1 dummy variables.

y N by D matrix of responses. The X and Z variables are centered in the function.
We recommend that X and Z also be standardized before the call

alpha mixing parameter. When the goal is to include more interactions, alpha should
be very small and vice versa.

lambda user specified lambda_3 values.

max_it maximum number of iterations in loop for one lambda during the ADMM opti-
mization

e.abs absolute error for the ADMM

e.rel relative error for the ADMM

nlambda number of lambda_3 values desired. Similar to maxgrid but can have a value
less than or equal to maxgrid.

8 cv_MADMMplasso

rho the Lagrange variable for the ADMM. This value is updated during the ADMM
call based on a certain condition.

my_print Should information form each ADMM iteration be printed along the way? This
prints the dual and primal residuals

alph an overrelaxation parameter in [1, 1.8]. The implementation is borrowed from
Stephen Boyd’s MATLAB code

foldid vector with values in 1:K, indicating folds for K-fold CV. Default NULL

pal Should the lapply function be applied for an alternative to parallelization.

gg penalty term for the tree structure. This is a 2×2 matrix values in the first row
representing the maximum to the minimum values for lambda_1 and the second
row representing the maximum to the minimum values for lambda_2. In the
current setting, we set both maximum and the minimum to be same because
cross validation is not carried across the lambda_1 and lambda_2. However,
setting different values will work during the model fit.

TT The results from the hierarchical clustering of the response matrix. This should
same as the parameter tree used during the MADMMplasso call.

tol threshold for the non-zero coefficients

cl The number of CPUs to be used for parallel processing

legacy If TRUE, use the R version of the algorithm

Value

results containing the CV values

Examples

Train the model
generate some data
set.seed(1235)
N <- 100
p <- 50
nz <- 4
K <- nz
X <- matrix(rnorm(n = N * p), nrow = N, ncol = p)
mx <- colMeans(X)
sx <- sqrt(apply(X, 2, var))
X <- scale(X, mx, sx)
X <- matrix(as.numeric(X), N, p)
Z <- matrix(rnorm(N * nz), N, nz)
mz <- colMeans(Z)
sz <- sqrt(apply(Z, 2, var))
Z <- scale(Z, mz, sz)
beta_1 <- rep(x = 0, times = p)
beta_2 <- rep(x = 0, times = p)
beta_3 <- rep(x = 0, times = p)
beta_4 <- rep(x = 0, times = p)
beta_5 <- rep(x = 0, times = p)
beta_6 <- rep(x = 0, times = p)

https://stanford.edu/~boyd/papers/admm/lasso/lasso.html

cv_MADMMplasso 9

beta_1[1:5] <- c(2, 2, 2, 2, 2)
beta_2[1:5] <- c(2, 2, 2, 2, 2)
beta_3[6:10] <- c(2, 2, 2, -2, -2)
beta_4[6:10] <- c(2, 2, 2, -2, -2)
beta_5[11:15] <- c(-2, -2, -2, -2, -2)
beta_6[11:15] <- c(-2, -2, -2, -2, -2)

Beta <- cbind(beta_1, beta_2, beta_3, beta_4, beta_5, beta_6)
colnames(Beta) <- c(1:6)

theta <- array(0, c(p, K, 6))
theta[1, 1, 1] <- 2
theta[3, 2, 1] <- 2
theta[4, 3, 1] <- -2
theta[5, 4, 1] <- -2
theta[1, 1, 2] <- 2
theta[3, 2, 2] <- 2
theta[4, 3, 2] <- -2
theta[5, 4, 2] <- -2
theta[6, 1, 3] <- 2
theta[8, 2, 3] <- 2
theta[9, 3, 3] <- -2
theta[10, 4, 3] <- -2
theta[6, 1, 4] <- 2
theta[8, 2, 4] <- 2
theta[9, 3, 4] <- -2
theta[10, 4, 4] <- -2
theta[11, 1, 5] <- 2
theta[13, 2, 5] <- 2
theta[14, 3, 5] <- -2
theta[15, 4, 5] <- -2
theta[11, 1, 6] <- 2
theta[13, 2, 6] <- 2
theta[14, 3, 6] <- -2
theta[15, 4, 6] <- -2

pliable <- matrix(0, N, 6)
for (e in 1:6) {

pliable[, e] <- compute_pliable(X, Z, theta[, , e])
}

esd <- diag(6)
e <- MASS::mvrnorm(N, mu = rep(0, 6), Sigma = esd)
y_train <- X %*% Beta + pliable + e
y <- y_train

colnames(y) <- c(paste("y", 1:(ncol(y)), sep = ""))
TT <- tree_parms(y)
plot(TT$h_clust)
gg1 <- matrix(0, 2, 2)
gg1[1,] <- c(0.02, 0.02)
gg1[2,] <- c(0.02, 0.02)

10 generate_my_w

nlambda <- 3
e.abs <- 1E-3
e.rel <- 1E-1
alpha <- .2
tol <- 1E-2
fit <- MADMMplasso(

X, Z, y, alpha = alpha, my_lambda = NULL, lambda_min = 0.001, max_it = 100,
e.abs = e.abs, e.rel = e.rel, maxgrid = nlambda, nlambda = nlambda, rho = 5,
tree = TT, my_print = FALSE, alph = 1, gg = gg1, tol = tol, cl = 2L

)
cv_admp <- cv_MADMMplasso(

fit, nfolds = 5, X, Z, y, alpha = alpha, lambda = fit$Lambdas, max_it = 100,
e.abs = e.abs, e.rel = e.rel, nlambda, rho = 5, my_print = FALSE, alph = 1,
foldid = NULL, gg = fit$gg, TT = TT, tol = tol

)
plot(cv_admp)

generate_my_w Generate the matrix W as seen in equation 8 for use in the function.

Description

Generate the matrix W as seen in equation 8 for use in the function.

Usage

generate_my_w(X = matrix(), Z = matrix())

Arguments

X N by p matrix of predictors

Z N by nz matrix of modifying variables. The elements of z may represent quan-
titative or categorical variables, or a mixture of the two. Categorical variables
should be coded by 0-1 dummy variables: for a k-level variable, one can use
either k or k-1 dummy variables.

Value

Generated W matrix nrow(X) by (ncol(X)+ncol(X) by ncol(Z))

MADMMplasso 11

MADMMplasso MADMMplasso: Multi Variate Multi Response ADMM with Interac-
tion Effects

Description

This system allows one to model a multi-variate, multi-response problem with interaction effects.
It combines the usual squared error loss for the multi-response problem with some penalty terms to
encourage responses that correlate to form groups and also allow for modeling main and interaction
effects that exit within the covariates. The optimization method employed is the Alternating Direc-
tion Method of Multipliers (ADMM). The implementation is based on the methodology presented
on Quachie Asenso, T., & Zucknick, M. (2023) doi:10.48550/arXiv.2303.11155.

This function fits a multi-response pliable lasso model over a path of regularization values.

Usage

MADMMplasso(
X,
Z,
y,
alpha,
my_lambda = NULL,
lambda_min = 0.001,
max_it = 50000,
e.abs = 0.001,
e.rel = 0.001,
maxgrid,
nlambda,
rho = 5,
my_print = FALSE,
alph = 1.8,
tree,
pal = cl == 1L,
gg = NULL,
tol = 1e-04,
cl = 1L,
legacy = FALSE

)

Arguments

X N by p matrix of predictors

Z N by K matrix of modifying variables. The elements of Z may represent quan-
titative or categorical variables, or a mixture of the two. Categorical variables
should be coded by 0-1 dummy variables: for a k-level variable, one can use
either k or k-1 dummy variables.

https://doi.org/10.48550/arXiv.2303.11155

12 MADMMplasso

y N by D matrix of responses. The X and Z variables are centered in the function.
We recommend that X and Z also be standardized before the call

alpha mixing parameter. When the goal is to include more interactions, alpha should
be very small and vice versa.

my_lambda user specified lambda_3 values

lambda_min the smallest value for lambda_3 , as a fraction of max(lambda_3), the (data
derived (lammax)) entry value (i.e. the smallest value for which all coefficients
are zero)

max_it maximum number of iterations in loop for one lambda during the ADMM opti-
mization

e.abs absolute error for the ADMM

e.rel relative error for the ADMM

maxgrid number of lambda_3 values desired

nlambda number of lambda_3 values desired. Similar to maxgrid but can have a value
less than or equal to maxgrid.

rho the Lagrange variable for the ADMM. This value is updated during the ADMM
call based on a certain condition.

my_print Should information form each ADMM iteration be printed along the way? This
prints the dual and primal residuals

alph an overrelaxation parameter in [1, 1.8]. The implementation is borrowed from
Stephen Boyd’s MATLAB code

tree The results from the hierarchical clustering of the response matrix. The easy
way to obtain this is by using the function (tree_parms) which gives a default
clustering. However, user decide on a specific structure and then input a tree
that follows such structure.

pal Should the lapply function be applied for an alternative to parallelization.

gg penalty term for the tree structure. This is a 2×2 matrix values in the first row
representing the maximum to the minimum values for lambda_1 and the second
row representing the maximum to the minimum values for lambda_2. In the
current setting, we set both maximum and the minimum to be same because
cross validation is not carried across the lambda_1 and lambda_2. However,
setting different values will work during the model fit.

tol threshold for the non-zero coefficients

cl The number of CPUs to be used for parallel processing

legacy If TRUE, use the R version of the algorithm

Value

predicted values for the MADMMplasso object with the following components: path: a table con-
taining the summary of the model for each lambda_3.

beta0: a list (length=nlambda) of estimated beta_0 coefficients each having a size of 1 by ncol(y)

beta: a list (length=nlambda) of estimated beta coefficients each having a matrix ncol(X) by ncol(y)

https://stanford.edu/~boyd/papers/admm/lasso/lasso.html

MADMMplasso 13

BETA_hat: a list (length=nlambda) of estimated beta and theta coefficients each having a matrix
(ncol(X)+ncol(X) by ncol(Z)) by ncol(y)

theta0: a list (length=nlambda) of estimated theta_0 coefficients each having a matrix ncol(Z) by
ncol(y)

theta: a list (length=nlambda) of estimated theta coefficients each having a an array ncol(X) by
ncol(Z) by ncol(y)

Lambdas: values of lambda_3 used

non_zero: number of nonzero betas for each model in path

LOSS: sum of squared of the error for each model in path

Y_HAT: a list (length=nlambda) of predicted response nrow(X) by ncol(y)

gg: penalty term for the tree structure (lambda_1 and lambda_2) for each lambda_3 nlambda by 2

Author(s)

Maintainer: Waldir Leoncio <w.l.netto@medisin.uio.no> (ORCID)

Authors:

• Theophilus Quachie Asenso <t.q.asenso@medisin.uio.no>

• Manuela Zucknick <Manuela.zucknick@medisin.uio.no>

• Chi Zhang <andreachizhang@yahoo.com>

Examples

Train the model
generate some data
set.seed(1235)
N <- 100
p <- 50
nz <- 4
K <- nz
X <- matrix(rnorm(n = N * p), nrow = N, ncol = p)
mx <- colMeans(X)
sx <- sqrt(apply(X, 2, var))
X <- scale(X, mx, sx)
X <- matrix(as.numeric(X), N, p)
Z <- matrix(rnorm(N * nz), N, nz)
mz <- colMeans(Z)
sz <- sqrt(apply(Z, 2, var))
Z <- scale(Z, mz, sz)
beta_1 <- rep(x = 0, times = p)
beta_2 <- rep(x = 0, times = p)
beta_3 <- rep(x = 0, times = p)
beta_4 <- rep(x = 0, times = p)
beta_5 <- rep(x = 0, times = p)
beta_6 <- rep(x = 0, times = p)

beta_1[1:5] <- c(2, 2, 2, 2, 2)
beta_2[1:5] <- c(2, 2, 2, 2, 2)

https://orcid.org/0000-0002-6719-6162

14 MADMMplasso

beta_3[6:10] <- c(2, 2, 2, -2, -2)
beta_4[6:10] <- c(2, 2, 2, -2, -2)
beta_5[11:15] <- c(-2, -2, -2, -2, -2)
beta_6[11:15] <- c(-2, -2, -2, -2, -2)

Beta <- cbind(beta_1, beta_2, beta_3, beta_4, beta_5, beta_6)
colnames(Beta) <- 1:6

theta <- array(0, c(p, K, 6))
theta[1, 1, 1] <- 2
theta[3, 2, 1] <- 2
theta[4, 3, 1] <- -2
theta[5, 4, 1] <- -2
theta[1, 1, 2] <- 2
theta[3, 2, 2] <- 2
theta[4, 3, 2] <- -2
theta[5, 4, 2] <- -2
theta[6, 1, 3] <- 2
theta[8, 2, 3] <- 2
theta[9, 3, 3] <- -2
theta[10, 4, 3] <- -2
theta[6, 1, 4] <- 2
theta[8, 2, 4] <- 2
theta[9, 3, 4] <- -2
theta[10, 4, 4] <- -2
theta[11, 1, 5] <- 2
theta[13, 2, 5] <- 2
theta[14, 3, 5] <- -2
theta[15, 4, 5] <- -2
theta[11, 1, 6] <- 2
theta[13, 2, 6] <- 2
theta[14, 3, 6] <- -2
theta[15, 4, 6] <- -2

pliable <- matrix(0, N, 6)
for (e in 1:6) {

pliable[, e] <- compute_pliable(X, Z, theta[, , e])
}

esd <- diag(6)
e <- MASS::mvrnorm(N, mu = rep(0, 6), Sigma = esd)
y_train <- X %*% Beta + pliable + e
y <- y_train

colnames(y) <- c(paste0("y", seq_len(ncol(y))))
TT <- tree_parms(y)
plot(TT$h_clust)
gg1 <- matrix(0, 2, 2)
gg1[1,] <- c(0.02, 0.02)
gg1[2,] <- c(0.02, 0.02)

nlambda <- 1
e.abs <- 1E-4

predict.MADMMplasso 15

e.rel <- 1E-2
alpha <- 0.2
tol <- 1E-3
fit <- MADMMplasso(

X, Z, y,
alpha = alpha, my_lambda = matrix(rep(0.2, ncol(y)), 1),
lambda_min = 0.001, max_it = 1000, e.abs = e.abs, e.rel = e.rel,
maxgrid = nlambda, nlambda = nlambda, rho = 5, tree = TT, my_print = FALSE,
alph = TRUE, gg = gg1, tol = tol, cl = 2L

)

predict.MADMMplasso Compute predicted values from a fitted MADMMplasso object. Make
predictions from a fitted MADMMplasso model

Description

Compute predicted values from a MADMMplasso object. Make predictions from a fitted MAD-
MMplasso model

Usage

S3 method for class 'MADMMplasso'
predict(object, X, Z, y, lambda = NULL, ...)

Arguments

object object returned from a call to MADMMplasso

X N by p matrix of predictors

Z N by nz matrix of modifying variables. These may be observed or the predic-
tions from a supervised learning algorithm that predicts z from test features x
and possibly other features.

y N by D matrix of responses.

lambda values of lambda at which predictions are desired. If NULL (default), the path
of lambda values from the fitted model. are used. If lambda is not NULL, the
predictions are made at the closest values to lambda in the lambda path from the
fitted model

... additional arguments to the generic predict() method

Value

predicted values

16 tree_parms

sim2 Simulate data for the model. This is the second simulation data used
in the paper

Description

Simulate data for the model

Usage

sim2(p = 500, n = 100, m = 24, nz = 4, rho = 0.4, B.elem = 0.5)

Arguments

p column for X which is the main effect

n number of observations

m number of responses

nz number of modifiers

rho values to be used in the covariance matrix when generating X

B.elem the value of the non-zero elements in beta?

Value

The simulated data with the following components: Beta: matrix of actual beta coefficients p by m
Theta: a m by p by K array of actual theta coefficients Y: a N by m matrix of response variables X:
a N by p matrix of covariates Z: a N by K matrix of modifiers

tree_parms Fit the hierarchical tree structure

Description

Fit the hierarchical tree structure

Usage

tree_parms(y = y, h = 0.7)

Arguments

y N by D matrix of response variables

h is the tree cut off

tree_parms 17

Value

A trained tree with the following components: Tree: the tree matrix stored in 1s and 0s Tw: tree
weights associated with the tree matrix. Each weight corresponds to a row in the tree matrix.
h_clust: Summary of the hclust call y.colnames: names of the response

Index

admm_MADMMplasso, 2
admm_MADMMplasso_cpp, 4

compute_pliable, 6
cv_MADMMplasso, 6

generate_my_w, 10

MADMMplasso, 11
MADMMplasso-package (MADMMplasso), 11

predict.MADMMplasso, 15

sim2, 16

tree_parms, 16

18

	admm_MADMMplasso
	admm_MADMMplasso_cpp
	compute_pliable
	cv_MADMMplasso
	generate_my_w
	MADMMplasso
	predict.MADMMplasso
	sim2
	tree_parms
	Index

