JOUSBoost: Implements Under/Oversampling for Probability Estimation

Implements under/oversampling for probability estimation. To be used with machine learning methods such as AdaBoost, random forests, etc.

Version: 2.1.0
Depends: R (≥ 2.10)
Imports: Rcpp, rpart, stats, doParallel, foreach
LinkingTo: Rcpp
Suggests: testthat, knitr, rmarkdown
Published: 2017-07-12
DOI: 10.32614/CRAN.package.JOUSBoost
Author: Matthew Olson [aut, cre]
Maintainer: Matthew Olson <maolson at>
License: MIT + file LICENSE
NeedsCompilation: yes
Materials: README
CRAN checks: JOUSBoost results


Reference manual: JOUSBoost.pdf
Vignettes: JOUSBoost


Package source: JOUSBoost_2.1.0.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release (arm64): JOUSBoost_2.1.0.tgz, r-oldrel (arm64): JOUSBoost_2.1.0.tgz, r-release (x86_64): JOUSBoost_2.1.0.tgz, r-oldrel (x86_64): JOUSBoost_2.1.0.tgz
Old sources: JOUSBoost archive

Reverse dependencies:

Reverse suggests: qeML


Please use the canonical form to link to this page.