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The Cascade package has two vignettes and a manual:

� Introduction to the Cascade package with application to the GSE39411 dataset, available
thanks to the R-command: vignette("Cascade")

� Additional application of the Cascade package to E-MTAB-1475 dataset, available thanks
to the R-command: vignette("E-MTAB-1475_re-analysis")

� The manual for the Cascade package is available thanks to the R-command:
vignette("Cascade-manual")
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1 Introduction

In a cell, after a specific activation, a gene contained in the DNA can be expressed as RNA molecules
that are later traduced in proteins that will sustain the cell response (Crick et al., 1970). Cells are
in continuous contact with their environment within the organism and display an adapted response
to its modifications (Barabási and Oltvai, 2004). For this, each transient environmental modification
activates cell’ surface receptors (and co-receptors) that induce multiple integrated signaling cascades
whose ultimate events are expression of specific transcriptional factors (TF). These first TF induce the
expression of other genes within the cell. Some of these genes code themselves for TF or transcriptional
regulators (TR) that induce sequential activation of other genes. At the end, concerted expression of
these multiple genes induces protein expressions that are the substratum of the adapted cellular reaction
to the initial stimulus.

One Common tool to analyze such complex systems is regulatory networks (RN). When studying
transcriptional data, this RN is called a gene regulatory network (GRN) in which the vertex represent
genes and edges represent potential (orientated) interactions between these genes.

Since the emergence of high-throughput technologies that allow simultaneously measuring mRNA
expression of thousands of genes, many tools have been developed to analyze and reverse engineer their
underlying GRN (Bansal et al., 2007; Hecker et al., 2009; Bar-Joseph et al., 2012). These methods should
be splitted between static and time dependent methods. While the former relies on the assumption
than co-expressed genes share some biological characteristics, the latter infers a directed network. In
this last case, another important distinction should be made between temporal phenomenom induced
by exogenous stimulus (e.g, stress response) or endogenous stimulus (e.g., cell cycle) (Zhu et al., 2007;
Luscombe et al., 2004; Yosef and Regev, 2011). These two stimulii result in different network topologies.
Indeed, after an exogenous stimulus, networks topologies seem to have larger hubs and shorter paths
leading to a quick response to external conditions (Luscombe et al., 2004) and resulting in a cascade
topology (Figure 1).

Time t1
genes

Time t2
genes

Time tT
genes

...

Figure 1: Cascade networks are temporal nested networks

The Cascade package is a tool dedicated to the analysis of microarray data and to the inference
cascade networks. The statistical tools provided in this library are based on the methodology described
by Vallat et al. (Vallat et al., 2013) and contained several major improvements described here.
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2 Installation requirements

Following software is required to run the Cascade package:

� R (> 2.14.2). For installation of R, refer to http://www.r-project.org.

� R-packages: abind ; animation ; cluster ; datasets ; graphics ; grDevices ; igraph ; lars
; lattice ; limma* ; magic ; methods ; nnls ; splines ; stats ; stats4 ; survival* ; tnet ;
utils ; VGAM.

To install them :

� without stars:

> install.packages("name_of_the_package")

� with one star:

> source("http://bioconductor.org/biocLite.R")

> biocLite("name_of_the_package")

Once the Cascade package is installed, you can load the package by:

> library(Cascade)

3 Data pre-processing

To illustrate our approach we will analyze a microarray dataset of the transcriptional response of
healthy B-cells after B-cell receptor stimulation (Vallat et al., 2007). Our dataset (part of GSE39411,
(Vallat et al., 2007)) is separated in two files: the first, micro_S, corresponds to the stimulated gene
expressions while the second, micro_US, corresponds to the unstimulated gene expressions. In other
words, micro_US is the control dataset. You can load these data by:

> data(micro_S)

> data(micro_US)

Each of the these dataset corresponds to 54613 genes measured through 4 time points and 6 subjects
(we have repeated longitudinal data).
These data need to be coerced into a micro_array class. The matrix with the microarray measurements
has to be of size N ×K where N is the number of genes and K = T ×P where T stands for the number
of time points and P for the number of subjects. The first T columns are the gene expressions for
subject 1, the following T are the gene expressions for subject 2... In our case:

> colnames(micro_S)

[1] "N1_S_T60" "N1_S_T90" "N1_S_T210" "N1_S_T390"

[5] "N2_S_T60" "N2_S_T90" "N2_S_T210" "N2_S_T390"

[9] "N3_S_T60" "N3_S_T90" "N3_S_T210" "N3_S_T390"

[13] "N4_S_T60" "N4_S_T90" "N4_S_T210" "N4_S_T390"

[17] "N5_S_T60" "N5_S_T90" "N5_S_T210" "N5_S_T390"

[21] "N6_S_T60" "N6_S_T90" "N6_S_T210" "N6_S_T390"

To coerce the data toward a micro_array class, you may just use the as.micro_array function:
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> micro_S<-as.micro_array(micro_S,time=c(60,90,210,390),subject=6)

> micro_US<-as.micro_array(micro_US,time=c(60,90,210,390),subject=6)

In addition of the matrix of microarray measurements, this class also contains the name of genes,
their group, the first time at which they are expressed, the time points at which they are measured,
and the number of subjects. Primarily, method print summarizes these informations:

> print(micro_S)

This is a micro_array S4 class. It contains :

- (@microarray) a matrix of dimension 54613 * 24

.... [gene expressions]

- (@name) a vector of length 54613 .... [gene names]

- (@group) a vector of length 1 .... [groups for genes]

- (@start_time) a vector of length 1

.... [first differential expression for genes]

- (@time)a vector of length 4 .... [time points]

- (@subject) an integer .... [number of subject]

While method print gives the structure of the object, method head gives an overview of the data:

> head(micro_S)

The matrix :

N1_S_T60 N1_S_T90 N1_S_T210

1007_s_at 136.1 116.6 127.6

1053_at 32.0 43.3 31.3

117_at 78.0 63.5 57.9

121_at 201.8 209.2 208.8

1255_g_at 16.3 8.0 15.8

1294_at 196.8 198.7 163.9

...

Vector of names :

[1] "1007_s_at" "1053_at" "117_at" "121_at"

[5] "1255_g_at" "1294_at"

...

Vector of group :

[1] 0

...

Vector of starting time :

[1] 0

...

Vector of time :

[1] 60 90 210 390

Number of subject :

[1] 6

Entries Vector of group and Vector of starting time are set to 0 because they are no yet
defined. They will be completed automatically when using gene selection functions of this package.
Otherwise, it should be completed by the user.

Once the data are coerced into the micro_array class, this package allows doing gene selection and
reverse-engineering of the network.
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4 Gene selection

The selection step requires at least two sets of data. The selection function will select genes differentially
expressed in one condition compared with the other. If only one experimental condition is provided
(e.g., unstimulated control data omitted), it will be compared to a flat and null pattern.

In this package gene selection mainly relies on the R-bioconductor limma package (Smyth, 2005).
The limma package allows selecting genes that are differentially expressed between two conditions. In
our case, these two conditions are “stimulated” and “unstimulated”. The method relies on linear models
and on improved bayesian t-tests (Smyth, 2005). Basically, to find the 50 more significant expressed
genes you will use:

> Selection<-geneSelection(x=micro_S,y=micro_US,

tot.number=50,data_log=TRUE)

The data_log option (default to TRUE) indicates that the data are logged before analysis. This
function returns an object of class micro_array, with the difference “stimulated” (S) minus “unstimu-
lated” (US) of the 50 more significant expressed genes ; as the data_log option is here activated, we
get:

log(S)− log(US) = log

(
S

US

)
.

Notice that the group and start_time are filled out automatically.

Applying the summary method prints the structure of Pearson linear correlation for subjects (see
Figure 2) and the structure of Pearson linear correlation for genes (see Figure 3):

> summary(Selection)
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Figure 2: Correlation between subjects
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Figure 3: Correlation between genes
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Note that a hierarchical clustering (function agnes of package cluster) is performed before plot-
ting the result. This allows pointing out some structures, as correlated objects will be close in the graph.

If we want to select genes that are differentially expressed at specific time points we use the option
wanted.patterns:

> #If we want to select genes that are differentially

> #at time t60 or t90 :

> Selection<-geneSelection(x=micro_S,y=micro_US,tot.number=30,

wanted.patterns=

rbind(c(0,1,0,0),c(1,0,0,0),c(1,1,0,0)))

You may want forbid some patterns thanks to the forbidden.patterns option.

If we wish select genes that have a differential maximum of expression at a specific time point, we
may use the genePeakSelection method. Basically, this function selects genes that are differentially
expressed at desired time point, and which differential expression is significantly higher at this time
point:

> Selection<-genePeakSelection(x=micro_S,y=micro_US,1,

abs_val=FALSE,alpha_diff=0.01)

If there are more than two microarrays of interest, geneSelection may be used with a list of microar-
rays as first argument, and a list specifying the contrast as a second argument:

First element: “condition”, “condition&time” or “pattern”. The “condition” specification is used when the overall
goal is to compare two conditions. The “condition&time” specification is used when comparing
two conditions at two precise time points. The “pattern” specification allows to choose at which
time points selected a gene should be expressed or not.

Second element: a vector of length 2, corresponding to the two conditions that should be compared. If a non-
temporal dataset is used as control, it should be the first element of the micro array list and the
option “cont=TRUE” should be used.

Third element: depends on the first element. This element is not needed if “condition” has been specified. If
“condition&time” has been specified, then this is a vector containing the time point at which the
comparison should be done. If “pattern” has been specified, then this is a vector of 0 and 1 of
length T, where T is the number of time points. Time points where differential expression is
wanted are provided with 1.

We can now compute an effective selection. As shown in Figure 4, the early time points (t1 =60 and
t2 =90) are correlated together and the later time points (t3 =210 and t4 =390) are correlated together;
this is a fact that is well known in the literature (Yosef and Regev, 2011).

As an illustrating example, the following selection will be used for reverse-engineering:

> #Genes with differential expression at t1

> Selection1<-geneSelection(x=micro_S,y=micro_US,20,wanted.patterns= rbind(c(1,0,0,0)))

> #Genes with differential expression at t2

> Selection2<-geneSelection(x=micro_S,y=micro_US,20,wanted.patterns= rbind(c(0,1,0,0)))

> #Genes with differential expression at t3

> Selection3<-geneSelection(x=micro_S,y=micro_US,20,wanted.patterns= rbind(c(0,0,1,0)))

> #Genes with differential expression at t4

> Selection4<-geneSelection(x=micro_S,y=micro_US,20,wanted.patterns= rbind(c(0,0,0,1)))

> #Genes with global differential expression

> Selection5<-geneSelection(x=micro_S,y=micro_US,20)
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We then make the union between these different selections:

> Selection<-unionMicro(list(Selection1,Selection2,Selection3,Selection4,Selection5))

> print(Selection)

This is a micro_array S4 class. It contains :

- (@microarray) a matrix of dimension 74 * 24

.... [gene expressions]

- (@name) a vector of length 74 .... [gene names]

- (@group) a vector of length 74 .... [groups for genes]

- (@start_time) a vector of length 74

.... [first differential expression for genes]

- (@time)a vector of length 4 .... [time points]

- (@subject) an integer .... [number of subject]

We use the org.Hs.eg.db Bioconductor database to match probesets with gene ID:

> library(org.Hs.eg.db)

> ff<-function(x){substr(x, 1, nchar(x)-3)}

> ff<-Vectorize(ff)

> #Here is the function to transform the probeset names to gene ID.

>

> library("hgu133plus2.db")

> probe_to_id<-function(n){

x <- hgu133plus2SYMBOL

mp<-mappedkeys(x)

xx <- unlist(as.list(x[mp]))

genes_all = xx[(n)]

genes_all[is.na(genes_all)]<-"unknown"

return(genes_all)

}

> Selection@name<-probe_to_id(Selection@name)

> #Prints the correlation graphics Figure 4:

> summary(Selection,3)
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Figure 4: Correlation structure of the final selection
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5 Gene regulatory network reverse-engineering

5.1 Theoretical background

Our gene regulatory network reverse-engineering method relies on a Lasso penalized estimation of
a linear regression model (Tibshirani, 1996). Before describing our model, we make some general
reminders of the Lasso estimator.

5.1.1 The Lasso estimate

Suppose that we have data (xi., yi)i=1,··· ,N where the xi. = (xi1, · · · , xip)T are the predictors while the
yi are the response. The linear regression model is:

yi =

p∑
j=1

βjxij + ηi, (1)

where ηi is a noise following some probabilistic distribution.

Assume that the predictors are standardized and that the response is centered. The Lasso estimate
is then given by:

β̂
L

(λ) = argmin
β∈Rp

 N∑
i=1

yi − p∑
j=1

βjxij

2

+ λ‖β‖1

 , (2)

with λ a non-negative scalar that determines the level of the constraints which is user-provided. We
remark that:

� When λ = 0, β̂
L

is an ordinary least square estimation.

� When λ = +∞, we get β̂
L

= 0p.

The Lasso estimate for linear regression has two main advantages:

1. it allows dealing with ill-posed problems where the number of observations is inferior to the number
of variables,

2. it allows performing variable selection: for a proper choice of λ, β̂
L

(λ) will be parsimonious.

The Lasso estimate for linear regression can also be written in the following form:

β̂
L

(λ) = argmin
β∈Rp ‖β‖16λ̃

 N∑
i=1

yi − p∑
j=1

βjxij

2
 . (3)

These two formulations (equation (2) which is the penalized formulation and equation (3) which is
the constrained formulation) are equivalent in the sense that for each non negative λ there is a non-
negative λ̃ leading to the same solution.
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5.1.2 Model for network reverse-engineering

Suppose that we have selected N genes across T time points and for P individuals; we note xnpt the
expression of gene n for individual p at time-point t. Since each gene will be considered exactly once as
a response variable, our model is composed of N linear regression models. As the action of a gene of
another is not instantaneous, we define:

x̃np. =

xnpt2...
xnptT

 and x̌np. =

 xnpt1
...

xnptT−1

 ,

x̃n.. =

x̃n1....
x̃nP.

 and x̌n.. =

x̌n1....
x̌nP.

 .

We note that x̃np. begins at time point t2 and ends at time point tT , while x̌np. begins at time point
t1 and ends at time point tT−1. In the following, when gene n is the response variable we will use x̃np.,
and x̌np. when gene n is a predictor variable.

We further assume that each gene has been assigned to one and only one of the T time-cluster (one
cluster for each time).

We have previously proposed (Vallat et al., 2013) the follwing linear regression model:

x̃n.. =

N∑
n′=1

Fm(n′)m(n)ωn′nx̌n′.. + εn,

where:

� m(•) is the function that maps a gene to its time-cluster,

� Fm(n′)m(n) is a T − 1 square matrix that describes the action of genes,

� ωn′n is the strength of the connection from gene i toward gene j,

� ε is a noise vector of length T − 1 with E(ε) = 0 and var(ε) = σ2

We choose to use a Lasso estimate for our linear regression model:

(ω̂, F̂ ) = argmin
ωn′n∈R, 16n′,n6N

F ab∈MT−1(R),16a,b6T

 N∑
n=1

(
x̃n.. −

N∑
n′=1

Fm(n′)m(n)ωn′nx̌n′..

)2
 ,

with the constraint:

∀n = 1, ..., N,

N∑
n′=1

ωn′n 6 λn.

So, x̃n.. is the regulated gene and xn′.., n
′ = 1, · · · , N are the regulators. Notice that matrix

Fm(n′)m(n) permits to the link between genes n′ and n to evolve across time. To enforce temporal
causality we need the two following time constraints:

1. m(n′) > m(n)⇒ Fm(n′)m(n) = 0: this ensures that a gene with temporal cluster tk can influence
a gene with temporal cluster tk′ if and only if k < k′,
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2. the matrices F are lower triangular matrices: this ensures that the expression of a gene at time
tk can influence another gene at time tk′ if and only if k < k′.

Sub-diagonals and the diagonal of matrices F are supposed to be invariant (Vallat et al., 2013).
Consequently, interactions depend only on time index differences rather than absolute time index.

We solve this problem with a coordinate ascent approach, by iteratively supposing the F matrices
or the ωn′n matrices known. The result of the optimization is a connectivity network described by the
nonzero elements of ω̂n′n(obs) combined with a set of cluster-dependent interaction models described

by the set F̂m(n′)m(n)(obs).

However, if clusters are sufficiently homogeneous, inference of matrices Fm(n′)m(n) doesn’t depend
on which genes are active (i.e. which ωn′n 6= 0). That’s why a non iterative algorithm is proposed in
which estimation of of matrices Fm(i)m(j) precedes estimation of matrix Ω.

To get a more robust result, at each step, the estimation of matrices Fm(n′)m(n) is done several times
throughout cross-validation. Furthermore, to avoid computational issues, the new solution is chosen by
a linear combination between the old and the new solution.

5.2 Performing the reverse-engineering algorithm

To perform this algorithm on our data:

> network<-inference(Selection)

We are at step : 1

The convergence of the network is (L1 norm) : 0.01096

We are at step : 2

The convergence of the network is (L1 norm) : 0.00302

We are at step : 3

The convergence of the network is (L1 norm) : 0.00217

We are at step : 4

The convergence of the network is (L1 norm) : 0.00177

We are at step : 5

The convergence of the network is (L1 norm) : 0.00146

We are at step : 6

The convergence of the network is (L1 norm) : 0.00111

We are at step : 7

The convergence of the network is (L1 norm) : 0.00089

We can plot a representation of F matrices (Figure 5) and the resulting network (Figure 6) by simply
using the plot method:

> plot(network,choice="F")

> plot(network,choice="network",gr=Selection@group,label_v=Selection@name)

Note that all network plots are computed using the Igraph R package (Csardi and Nepusz, 2006).
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The number of edges in the network makes the message difficult to interpret ; and as we will see in
the next section, results in term of predictive positive value and F-score can be improved when choosing
a right cutoff level. Using the nv option, we will choose a cutoff under which the regression coefficient
estimates (ω̂ij(obs)) are set to 0. In Figure 7 a cutoff of 0.11 is chosen.

5.3 Choosing the best cutoff for edge minimal strength

The difficulty is now to choose the best cutoff. As a starting point, we propose method evolution,
that allows the user to see, in a html page, the evolution of the network when the cutoff is growing up.
When the fix option is set to FALSE, at each step the position of the genes are re-calculated.

> evolution(network,seq(0,0.4,by=0.01),gr=Selection@group,

fix=TRUE,label_v=Selection@name)

> evolution(network,seq(0,0.4,by=0.01),gr=Selection@group,

fix=FALSE,label_v=Selection@name)

To see the result of these functions, go to :

� http://www-irma.u-strasbg.fr/~njung/evolution_fix_true/evol.html : here the fix op-
tion is set to TRUE.

� http://www-irma.u-strasbg.fr/~njung/evolution_fix_false/evol.html: here the fix op-
tion is set to FALSE.

As it is mostly accepted, gene regulatory networks are supposed to be scale-free (Jeong et al., 2000).
The notion of scale freeness in networks relies on the probability distribution of the number of outgoing
edges. A network is called scale free when this distribution is a power law distribution (Clauset et al.,
2009). As this family of law is large, it is difficult to test such an hypothesis. We used the test proposed
by Clauset et al.(Clauset et al., 2009):

> #To be computed:

> #evol_cutoff<-cutoff(network)

> nv<-0.15

We plot here the smooth interpolation rather than the exact values, as our interest relies mostly on
the trend (Figure 8). We propose a choice of cutoff that relies on two criteria:

� the p-value should be greater than 0.10: in this case, the scale-freeness of the network is reliable
(Clauset et al., 2009).

� we determined by simulation the best area of choice (on the plot (Figure 8)).

Based on these two criteria, we choose a cutoff of nv = 0.11.
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5.4 Analyzing the network

One may want to know which genes are important in the network. In our representation, the bigger the
vertex the larger the number of outgoing edges. Indeed, genes with many outgoing edges, the hubs, are
important in the network. But genes controlling these hubs should be considered with attention. The
analyze_network method allows computing different indicators:

� betweenness : it is a measure of the node centrality. It is calculated, for node n, by the following
formula: ∑

s 6=t6=n

σst(n)

σst

where σst is the number of shortest ways between s and t, and σst(n) is the number of shortest
ways between s and t passing by n ;

� degree : the number of outgoing edges ;

� output : the sum of weights of outgoing genes ;

� closeness : it is a measure of the distance (in terms of shortest path) of a gene to others.

As our network is weighted we used specific measures developed by Opsahl (Opsahl, 2009).

> analyze<-analyze_network(network,nv,Selection@name)

> head(analyze)

node betweenness degree output closeness

1 LOC100506299 0 3 0.8133348 14.841838

2 CCDC40 0 3 0.8884602 7.305208

3 unknown 0 1 0.1749376 8.826222

4 LOC100506102 0 2 0.3661906 9.622533

5 TNFRSF9 0 0 0.0000000 0.000000

6 CSTF3 0 12 3.4345058 23.065564

Note that one can plot the network and modulate the size of the vertex following one of this measure,
using the weight.node option.

Using again the package animation, we can see how the signal spreads in the network by turning
to TRUE the option ani:

> plot(network,nv=nv,gr=Selection@group,ani=TRUE,label_v=Selection@name,

edge.arrow.size=0.9,edge.thickness=1.5)

Result is available at http://www-irma.u-strasbg.fr/~njung/network_spread/spread.html.

The method plot has basically two steps:

1. it calculates the position of the vertex,

2. it plots the graph.

In some case, it is interesting to produce two plots of a same network without changing vertex
positions. Here is a way to do that, using the ini option of method plot:

> P<-position(network,nv=nv)

> #plotting the network with the given position

> plot(network,nv=nv,gr=Selection@group,ini=P,label_v=Selection@name)

However, we didn’t develop all possibilities of the plot option ; for more possibilities, please refer
to the manual:

> vignette("Cascade-manual")

17

http://www-irma.u-strasbg.fr/~njung/network_spread/spread.html


6 Prediction of gene expression modulations after a knock-out
experiment

Once the network has been reverse-engineered, we want to know the impact of an experimental per-
turbation in this network. For example, what would happen if expression of EGR1 is knocked-out
?

> EGR1<-which(Selection@name %in% "EGR1")

First the geneNeighborhood method allows determining which are the neighborhood of EGR1 (see
Figure 9).

> geneNeighborhood(network,targets=EGR1,nv=nv,ini=P,

label_v=Selection@name)

> #label.hub: only hubs vertex should have a name

> #label_v: name of the vertex

We predict gene expression modulations within the network if EGR1 is experimentaly knocked-out.

> prediction_ko5<-predict(Selection,network,nv=nv,targets= EGR1)

Then we plot the results (Figure 10):

> #We plot the results.

> #Here for example we see changes at time point t2:

> plot(prediction_ko5,time=2,ini=P,label_v=Selection@name)

7 Simulation

To simulate gene expressions based on a gene regulatory network, we first have to generate the net-
work. Here, we implemented an algorithm that is inspired by the preferential attachment from Barabási
(Barabási, 2003; Jeong et al., 2007). We adapted this algorithm in our case of temporal cascade net-
works.

We then use our linear model to make some simulations, using Laplace laws to initiate the algorithm.

> #We set the seed to make the results reproducible

> set.seed(1)

> #We create a random scale free network

> Net<-network_random(

nb=100,

time_label=rep(1:4,each=25),

exp=1,

init=1,

regul=round(rexp(100,1))+1,

min_expr=0.1,

max_expr=2,

casc.level=0.4

)

> #We change F matrices

> T<-4

> F<-array(0,c(T-1,T-1,T*(T-1)/2))
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> for(i in 1:(T*(T-1)/2)){diag(F[,,i])<-1}

> F[,,2]<-F[,,2]*0.2

> F[2,1,2]<-1

> F[3,2,2]<-1

> F[,,4]<-F[,,2]*0.3

> F[3,1,4]<-1

> F[,,5]<-F[,,2]

> Net@F<-F

> #We simulate gene expression according to the network Net

> M<-gene_expr_simulation(

network=Net,

time_label=rep(1:4,each=25),

subject=5,

level_pic=200)

> #We infer the new network

> Net_inf<-inference(M)

> #Comparing true and inferred networks

> F_score<-rep(0,200)

> #Here are the cutoff level tested

> test.seq<-seq(0,max(abs(Net_inf@network*0.9)),length.out=200)

> u<-0

> for(i in test.seq){

u<-u+1

F_score[u]<-compare(Net,Net_inf,i)[3]

}

> #Choosing the cutoff

> cut.seq<-cutoff(Net_inf)

> points(0.125,0.1199,col="red",pch=16,cex=2)

> #Corresponding Fscore evolution

> plot(test.seq,F_score,type="l",xlab="cutoff",ylab="Fscore")

> abline(v=0.125,col="red")

Figure 11 shows the evolution of the p-value of the scale-freeness test while Figure 12 shows the
corresponding evolution of the F-score. As shown, choosing the best cut-off allows a dramatic increase
of the cut-off.

Figure 13 show the evolution of the F-score when the number of individuals increase.
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Figure 11: Evolution of the scale-freeness of the network in function of the cutoff
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