
BiTrinA

Tamara J. Blätte, Florian Schmid, Stefan Mundus, Ludwig Lausser,
Martin Hopfensitz, Christoph Müssel and Hans A. Kestler

October 2, 2023

Contents

1 Introduction 2

2 Methods in the package 2
2.1 Binarization by k-means clustering 2
2.2 Binarization Across multiple SCales (BASC) 3
2.3 Trinarization Across multiple SCales (TASC) 5

3 Application 6
3.1 k-means . 8
3.2 BASC . 11
3.3 TASC . 13

4 Quality assessment using statistical tests 15

1

1 Introduction

BiTrinA is an R package that provides three different methods for the bina-
rization of one-dimensional data. The package also offers an assessment of the
quality of the computed binarization as well as two different visualization func-
tions for the results.
Binarization is the process of dividing data into two groups and assigning one out
of two values to all the members of the same group. This is usually accomplished
by defining a threshold t and assigning the value 0 to all the data points below
the threshold and 1 to those above it. Binarization can thus be formulated as a
threshold function f : R→ B with

f(u) =

{
0 u ≤ t
1 u > t

Accordingly, the binarized vector that corresponds to a real valued vector u =
(u1, . . . , uN) ∈ RN is b = (f(u1), . . . , f(uN)). It is the aim of any binarization
method that uses such a threshold t to find the one that most appropriately splits
the data in two. A correct binarization is especially important considering that
binarization is often part of the initial preprocessing of a dataset. This data
preprocessing is the basis for all the methods and analyses that follow.
One important application of binarization is the reconstruction of Boolean net-
works from data. These networks model gene regulation by representing each
gene as a binary variable to illustrate the two states "active/transcribed" and
"inactive/not transcribed" [3, 4]. For gene expression data to be used in the
reconstruction of such a network, the data has to be binarized beforehand
[5, 6, 8, 9]. However, a binarization that does not correctly represent the distri-
bution of the original data will have misleading effects on the resulting network.
The BiTrinA package addresses this problem by offering a quality assessment
of the computed binarization. Based on this assessment, genes that are only
poorly binarizeable can be excluded from the network reconstruction. In this
way, the quality of the reconstruction can be improved.
The following sections describe three different binarization algorithms that each
take a different approach to this common objective of finding an appropriate
threshold and assessing the quality of the respective binarization.

2 Methods in the package

The package comprises three binarization methods that are associated with
statistical testing procedures for quality control. These methods are described
in the following.

2.1 Binarization by k-means clustering

Binarization can be seen as a clustering problem: The aim is to sort the mea-
surements into two groups in an unsupervised manner. A common clustering
algorithm is the k-means algorithm [7] (with k = 2) which is also used by the
BiTrinA package. In general, this algorithm starts by randomly picking k initial

2

cluster centers from the original data and then assigning the remaining points
to the closest cluster center. In several consecutive cycles the algorithm then
updates this clustering by calculating the mean of each cluster’s data, redefining
the cluster centers to these mean values and reassigning all data points to the
closest updated cluster center.
In this way the algorithm tries to minimize the sum over the squared distance
of the data points to their respective cluster center. This sum is given by

k∑
j=1

∑
ui∈Cj

(ui − µj)2,

where Cj is the j-th Cluster, ui is one value of the input vector, and µj is the
center of the j-th cluster. For binarization purposes the number of clusters k is
set to 2 (for trinarization k = 3).

2.2 Binarization Across multiple SCales (BASC)

The BASC algorithms [2] are binarization techniques that aim at determining
a robust binarization by analyzing the data at multiple scales. This packages
implements two BASC variants called BASC A and BASC B. The BASC al-
gorithms consider the sorted input values

(
u(1), . . . , u(N)

)
as a step function

and determine step functions with fewer steps that approximate this original
function.
A step function on a sorted input vector u can be generally defined as a func-
tion s : (0, N] →

[
u(1), u(N)

]
with (sorted) discontinuity positions d(i) ∈ D ⊆

{1, . . . , N − 1}

s (x) =

|D|+1∑
i=1

u(i) · I[d(i−1)<x≤d(i)],

where d(0) = 0 and d(|D|+1) = N .
Both algorithms can be divided into three steps:

1. Compute a series of step functions: From an initial step function that
corresponds to the sorted measurements, step functions with fewer discon-
tinuities are calculated. BASC A determines step functions that minimize
the Euclidean distance to this initial step function. BASC B obtains step
functions by smoothening the input function in a scale-space manner.

2. Find the strongest discontinuity in each step function: The strongest
discontinuity of each step function corresponds to a potential binarization
threshold and is determined by a high jump size (derivative) in combina-
tion with a low approximation error.

3. Estimate location and variation of the strongest discontinuities: Based
on these estimates, a statistical testing procedure can reject input vectors
that yield an unreliable binarization.

3

Computing a series of step functions

Starting with the initial step function f given by the sorted input vector u ∈ RN ,
the BASC algorithms determine step functions with fewer discontinuities.

BASC A computes a set of N − 2 successive step functions with a decreasing
number of discontinuities. For each number of discontinuities n, it chooses the
step function s∗n ∈ Sn that minimizes the approximation error to the the initial
step function f :

s∗n = argmin
sn∈Sn

√√√√ N∑
x=1

(f(x)− sn(x))2.

Here, Sn denotes the set of all possible step functions of n discontinuities based
on the input vector u. For the identification of the optimal step functions s∗n,
BASC A uses a dynamic programming strategy.

BASC B differs from BASC A in the way the step functions with a lower
number of steps are calculated from the initial step function. First, this algo-
rithm calculates the slopes of the original step function with 4(x) = f ′(x) =
f(x+ 1)− f(x), x ∈ N. After that, a set of smoothed versions is calculated by
convolving f ′(x) with a kernel Tσ(n) based on In, the modified Bessel function
of order n:

4σ(x) =
∞∑

k=−∞

4(x) · Tσ(x− k), with

Tσ(n) = e−2σ · In(2σ),

Here, σ ∈ R denotes the smoothing parameter. The smoothed version of the
step function itself can be constructed from its smoothed derivative as follows:

fσ(x) = u(1) +

dxe−1∑
n=1

4σ(n)

BASC B utilizes the maxima Mσ of a smoothed slope function as discontinuity
positions for constructing a step function sσ

Mσ = {x | 4σ(x− 1) < 4σ(x) ∧4σ(x+ 1) < 4σ(x)} .

A variety of step functions is generated by utilizing different smoothing param-
eters σ1, . . . , σS . Possible duplicates are eliminated.

Finding the strongest discontinuity in each step function

Once the series of step functions is calculated, both BASC algorithms continue
in the same way. Every discontinuity d(i) ∈ D of an optimal step function is
scored according to two criteria. The first criterion is the jumping height h(d(i))
at the discontinuity

h(d(i)) =
1

|Ni+1|
∑

n∈Ni+1

f(n)− 1

|Ni|
∑
n∈Ni

f(n)

4

where
Ni =

{
n ∈ N : d(i−1) < n ≤ d(i)

}
are the indices of the points from the original vector u that are located between
the (i − 1)-th and the i-th discontinuity. In this context, f(d(i)) denotes the
original step function in case of BASC A and the smoothed version of the
original step function fσ(d(i)) for the current σ in case of BASC B.
The second criterion is the approximation error e(d(i)) of a possible binarization
threshold to the initial step function

e(d(i)) =

N∑
n=1

(
f(n)− z(d(i))

)2 with z(d(i)) =
f(d(i)) + f(d(i) + 1)

2
.

A high score is reached by a large jumping height combined with a small ap-
proximation error. For each optimal step function, the position with the highest
score

v = argmax
di∈D

h(d(i))

e(d(i))

is determined. This yields a vector v of possible binarization threshold locations
for all step functions.

Estimating location and variation of the strongest discontinuities

Each strongest step vi in v an optimal step function is a possible location for the
binarization threshold t. The final binarization threshold is the median value
of v. BASC uses a bootstrap test to evaluate the robustness of this threshold.
The null hypothesis of this test is that the expected normalized deviation of
strongest discontinuities in step functions from the median is greater than or
equal to a prespecified value τ ∈ (0, 1] that balances the α error versus the β
error of the test. A significant p-value resulting from this test indicates that
the number of different strongest step positions is low and that their values are
within a small range, i.e. the computed binarization is of good quality. Details
on the testing procedure can be found in [2].

2.3 Trinarization Across multiple SCales (TASC)

BiTrinA includes extensions of the BASC algorithms that allow for the trinar-
ization of a signal f : R→ {0, 1, 2}. This type of data transformation discretizes
a real-valued number u into one of three levels according to two adapted thresh-
olds t1 and t2,

f(u) =

0 u ≤ t1
1 t1 < u ≤ t2
2 t2 < u

.

The corresponding extensions are called TASC A and TASC B respectively. The
search for an optimal pair of thresholds leads to modifications in the analysis of
the optimal step functions. The TASC algorithms have to identify the strongest
pair of discontinuities in each optimal step function. Afterwards the location
and variation of the strongest pair of discontinuities have to be determined.

5

Finding the strongest pair of discontinuities in each step function

BASCs evaluation criteria for a single optimal discontinuity must be replaced
by a score for a pair of discontinuities at break points i, k with i < k,

v = argmax
di,dk∈D

h(d(i)) + h(d(k))

2etri(d(i), d(k))
, i < k

In this context, the error function has to be replaced by

etri(d(i), d(k)) =

d(i)∑
n=1

(
f(n)− z(d(i))

)2
+

N∑
n=d(k)

(
f(n)− z(d(k))

)2
+
1

2

d(k)∑
n=d(i)

(
f(n)− z(d(i))

)2
+

1

2

d(k)∑
n=d(i)

(
f(n)− z(d(k))

)2
Estimating location and variation of the strongest discontinuities

For testing the robustness of a TASC result we use a bootstrap test with a
test statistic similar to the one used for BASC. The difference is that here the
normalized deviation of both thresholds is used for the calculation.

3 Application

In the following, the usage of the binarization methods and plot functions is il-
lustrated using code examples. To execute these examples, the BiTrinA package
must be properly installed in the R environment. This can be done by typing

> install.packages("BiTrinA")

in an R console or by the corresponding menu entries in the R GUI. In a second
step, the BiTrinA package is loaded via

> library("BiTrinA")

The package must be installed only once, but it has to be loaded at the beginning
of every R session. Only then are the methods and classes of the BiTrinA
package available to the R workspace and ready to use.
The binarization methods require at least an input vector of measurements
u = (u1, . . . , uN) ∈ RN with N ≥ 3. Additional arguments depend on the
particular method used and will be discussed in greater detail in the appropriate
subsection below. The method output of each function call is encapsulated into
an S4 object whose class is either of type BinarizationResult or of a derived
type with additional attributes. The class BinarizationResult contains the
following attributes:

• originalMeasurements: The original input vector u

• binarizedMeasurements: The binarized vector b

6

• method: The name of the method used for the binarization

• threshold: The threshold t used for the binarization

• p.value: A parameter that rates how well the method was able to binarize
the original data

In the following subsections, an artifical dataset is used to illustrate the appli-
cation of each algorithm. This example dataset is a matrix with ten rows that
each represent a feature vector to be binarized. Each feature vector consists of
five random measurements sampled from one normal distribution N (0, 1) and
five measurements sampled from a second normal distribution. The mean of
this second normal distribution varies between the different feature vectors in
the dataset. It starts at 10 in the first feature vector (row of the dataset) and is
decremented by one in each consecutive feature vector. In the last vector, the
mean of the second normal distribution is therefore 1. To load the matrix and
make the variable binarizationExample available in the R workspace, type

> data(binarizationExample)

One would expect the binarization threshold for each feature vector in this
dataset to be in-between the means of the two normal distributions from which
the data points were sampled (see Figure 1).

−5 0 5 10 15

0.
0

0.
1

0.
2

0.
3

0.
4

x

fu
nc

tio
n(

x)
 d

no
rm

(x
, m

ea
n

=
 0

, s
d

=
 1

)
+

 d
no

rm
(x

, m
ea

n
=

 1
0,

Figure 1: The density function of the first feature vector of the
binarizationExample dataset. The dashed line marks the mean of this row.
The density functions of the other feature vectors in binarizationExample only
differ in the distance between the two peaks of the normal distributions sampled
from.

7

3.1 k-means

To binarize the first feature vector of the binarizationExample dataset using
the k-means algorithm, type:

> bin <- binarize.kMeans(binarizationExample[1,])
> print(bin)

Method: k-Means

Threshold: 4.98118

Binarized vector: [0 0 0 0 0 1 1 1 1 1]

p value: 0.0002593634

In addition to the required input vector, other arguments may be passed. The
most important one is dip.test which defaults to TRUE. If set to TRUE, Harti-
gan’s dip test for unimodality [1] is performed on the input vector. If the test
is significant, the assumption that the distribution of the data is unimodal is
rejected. Thus, the corresponding p-value indicates how well the data is bina-
rizeable.
The function call results in an object of type BinarizationResult which con-
tains the attributes listed above. These can be accessed using the @ operator.
E.g., to access the vector of binarized measurements, type:

> print(bin@binarizedMeasurements)

[1] 0 0 0 0 0 1 1 1 1 1

A binarization can be visualized using the generic plot()method of the package.
This method visualizes the computed binarization result using a one- or two-
dimensional plot and can be applied to all binarization methods available in the
package. The only required argument is an object of type BinarizationResult
or BASCResult. To visualize the results of the binarization in a one-dimensional
plot, type:

> plot(bin)

The resulting plot is shown in the left panel of Figure 2. By setting the argument
twoDimensional to TRUE, a two-dimensional plot can be created:

> plot(bin, twoDimensional=TRUE)

In this two-dimensional plot, the values of the input vector are plotted on the
y-axis and their positions within the original input vector are aligned on the
x-axis (see the right panel of Figure 2).
plot() also accepts the arguments of the standard plotting methods like col and
pch. This can be used to visualize two different groupings, such as a binarization
and a class assignment, in the same plot. In this way, it is possible to see how
much these two groupings coincide.

8

0 2 4 6 8 10

zeros
ones
threshold

0
2

4
6

8
10

1 2 3 4 5 6 7 8 9 10

zeros
ones
threshold

Figure 2: Two plots that were created with plot() and illustrate the result
of the binarization of binarizationExample[1,] using the k-means algorithm.
The left picture shows a plot with the parameter twoDimensional set to FALSE,
whereas twoDimensional=TRUE in the right plot.

For the next example, we assume that the class labels correspond to the distri-
butions from which the data points in the binarizationExample dataset were
sampled. Instead of the first feature vector, we take the last feature vector here,
as the two classes cannot be clearly separated here:

> label <- c(rep(0,5), rep(1,5))
> bin <- binarize.kMeans(binarizationExample[10,])

To display the class label simultaneously with a binarization result, we assign
different colors and shapes to the corresponding data points:

> plot(bin, twoDimensional=TRUE,
+ col=label+1, pch=label,
+ showLegend=FALSE)

The plot is shown in Figure 3.
So far, we have only binarized a single feature vector. To binarize all the fea-
ture vectors of a matrix at once, the binarizeMatrix method can be used.
This method must be supplied with a matrix of measurements (one vector per
row) as well as the binarization algorithm that should be used. To binarize
binarizationExample using the k-Means algorithm, type:

> binMatrix <- binarizeMatrix(binarizationExample,
+ method="kMeans")

The resulting matrix contains the binarized measurements, the binarization
thresholds and the p-values of the different features’ binarization in the re-
spective rows. As an additional argument, a method to correct the p-values for
multiple testing may be passed via adjustment. All values that are accepted
by p.adjust may be passed. Per default, no adjustment is applied. To binarize

9

−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0
2.

5

1 2 3 4 5 6 7 8 9 10

Figure 3: A plot created with the plot() function where the threshold illus-
trates the binarization of the data and the color and shape of the data points
correspond to the class label, i.e. the distribution the points were originally
sampled from.

binarizationExample and adjust the resulting p-values according to the false
discovery rate (FDR), type:

> binMatrixFDR <- binarizeMatrix(binarizationExample,
+ method="kMeans",
+ adjustment="fdr")

10

3.2 BASC

The second binarization function in the BiTrinA package provides implemen-
tations of the two BASC variants. The following examples illustrate the use of
the BASC algorithms. To binarize the first feature of binarizationExample
using BASC A, type:

> bin <- binarize.BASC(binarizationExample[1,], method="A")
> print(bin)

Method: BASC A

Threshold: 4.98118

Binarized vector: [0 0 0 0 0 1 1 1 1 1]

p value: 0.001

The required argument for binarize.BASC() is the input vector. The most
important arguments that may be passed in addition are method, tau and sigma.
method specifies the BASC algorithm to be used with "A" for BASC A and "B"
for BASC B. If no method is specified, BASC A is used by default. An optional
parameter tau adjusts the sensitivity and specificity of the statistical test that
rates the quality of binarization. For BASC B, the parameter sigma specifies a
vector of different σ values for the convolutions of the Bessel functions.
The function call returns an object of the type BASCResult. In addition to the
attributes contained by objects of the type BinarizationResult, this type also
contains the following attributes:

• intermediateSteps: A matrix specifying the optimal step functions from
which the binarization was calculated. The number of rows corresponds
to the number of step functions and the number of columns is determined
by the length of the input vector minus 2. From the first to the last row
the number of steps per function increases. Non-zero entries represent the
step locations, while rows with fewer steps than the input step function
have entries in the matrix set to zero.

• intermediateHeights: A matrix specifying the jump heights of the steps
supplied in intermediateSteps

• intermediateStrongestSteps: A vector with one entry for each step
function, i.e. row in intermediateSteps. The entries specifiy the location
of the strongest step of each function.

E.g., one can view the locations of the strongest discontinuities in the reduced
step functions by typing

> print(bin@intermediateStrongestSteps)

[1] 5 5 5 5 5 5 5 5

11

It can be seen that the potential threshold locations of all step functions are the
same for this feature. As there is no variation, the statistical test is also highly
significant (see above).
Apart from the generic plot() function demonstrated for the k-means binariza-
tion, a specialized plot for the BASCmethods is supplied: The plotStepFunctions()
method plots all the optimal step functions calculated by the BASC algorithms.
The only required argument is an object of type BASCResult. To plot the step
functions of such an object, type for example:

> plotStepFunctions(bin)

The corresponding plot can be seen in Figure 4. Figure 5 shows the reduced
number of step functions that BASC B creates for the same data. It can be
seen from the figure that the strongest steps (dashed lines) are the same for all
step functions, which means that the binarization is very reliable. This is also
indicated by the p-value of 0.001 in the result object.

0 2 4 6 8 10

steps
strongest steps

Figure 4: The step functions calculated by BASC A and the original step func-
tion of the binarizationExample[1,] data with an increasing number of steps
from top to bottom.

12

0 2 4 6 8 10

steps
strongest steps

Figure 5: The computed step functions calculated by BASC B and the original
step function of the binarizationExample[1,] data with an increasing number
of steps from top to bottom.

3.3 TASC

The application of the TASC function is similar to the application of BASC.
The method provides an implementation of TASC A and B, with calculation of
step functions equal to BASC A and B respectively.
The package includes an artificial dataset for illustrating the application of the
trinarization algorithms. The dataset is (as the binarization dataset) a matrix.
It consists of one hundred rows that each represent a feature vector to be trinar-
ized. Each row consists of five random measurements sampled from a normal
distribution N (0, 1), five measurements sampled from a second normal distri-
bution and 5 additional samples from a third normal distribution. The means
of the second and third normal distribution vary between the different feature
vectors in the dataset. The second starts at 10 in the first feature vector (row
of the dataset) and is decremented by one in each consecutive feature vector
until it is 1. The mean of the third distribution is decremented in steps of 2
with a maximum of 20 and a minimum of 2. This is repeated for each value
of the second distribution. In the last vector, the mean of the second normal
distribution is 1 and the mean of the third one is 2. To load the matrix and
make the variable trinarizationExample available in the R workspace, type

> data(trinarizationExample)

13

The trinarization of the first row can be done by typing:

> tri <- TASC(trinarizationExample[1,], method="A")
> print(tri)

Method: TASC A

Threshold1: 4.445755

Threshold2: 14.93978

Trinarized vector: [0 0 0 0 0 1 1 1 1 1 2 2 2 2 2]

p value: 0.001

The arguments of the TASC function are equal to binarize.BASC. They are
method to switch between TASC A and TASC B, tau for the sensitivity of the
statistical test and sigma for the Bessel functions if TASC B is applied.
The returned result is of type TASCResult which is a subclass of TrinarizationResult.
A TrinarizationResult consists of the following elements:

• originalMeasurements: The original input vector u

• trinarizedMeasurements: The trinarized vector b

• method: The name of the method used for the trinarization

• threshold1: The threshold t1 used for the trinarization

• threshold2: The threshold t2 used for the trinarization

• p.value: A parameter that rates how well the method was able to trinarize
the original data

The TASCResult additionally contains:

• intermediateSteps: A matrix specifying the optimal step functions from
which the binarization was calculated. The number of rows corresponds
to the number of step functions and the number of columns is determined
by the length of the input vector minus 2. From the first to the last row
the number of steps per function increases. Non-zero entries represent the
step locations, while rows with fewer steps than the input step function
have entries in the matrix set to zero.

• intermediateHeights1: A matrix specifying the jump heights of the
steps supplied in intermediateSteps for the first threshold

• intermediateHeights2: A matrix specifying the jump heights of the
steps supplied in intermediateSteps for the second threshold

• intermediateStrongestSteps: A matrix with two columns and one row
for each step function, i.e. row in intermediateSteps. The entries speci-
fiy the location of the pair of strongest steps of each function.

14

The location of the strongest steps can be viewed by typing

> print(tri@intermediateStrongestSteps)

[,1] [,2]
[1,] 5 10
[2,] 5 10
[3,] 5 10
[4,] 5 10
[5,] 5 10
[6,] 5 10
[7,] 5 10
[8,] 5 10
[9,] 5 10

[10,] 5 10
[11,] 5 10
[12,] 5 10

It can be seen that the potential threshold locations of all step functions are
the same as in the binarization example. As there is no variation, the statistical
test is highly significant (see above).
Analogously to the visualizations of binarization results there are functions for
trinarization results included in the package:

> plotStepFunctions(tri)
> plot(tri, twoDimensional = TRUE)

The corresponding plots can be seen in Figure 6. It shows the step functions
that TASC A creates for the data. On the right the original data, trinarized into
three groups is shown in two-dimensional space with the determined thresholds
drawn as dashed lines.

4 Quality assessment using statistical tests

As already mentioned, all binarization and trinarization routines in the pack-
age provide a statistical testing procedure that evaluates the reliability of the
results. While the dip test employed with k-means is based on the distribution
of the original data, the bootstrap test of BASC/TASC assesses the variability
of potential thresholds.
The statistical tests can be utilized to select a subset of reliable feature vectors
from a set of features and to reject those features which do not show a clear
separability into two groups.
The following example binarizes all 10 feature vectors of the binarizationExample
dataset using k-means and determines the number of features with significant
p-values:

> binMatrix <- binarizeMatrix(binarizationExample,
+ method="kMeans",
+ adjustment="fdr")

15

> significantRows <- sum(binMatrix[,12] < 0.05)
> print(significantRows)

[1] 4

As we performed 10 tests here, we have to correct the p-values for multiple
testing. This is done according to the false discovery rate using the adjustment
argument.
For the BASC algorithms, the code is analogous and yields the following num-
bers of significant features:

0 3 6 9 12 15

steps
strongest steps

0
5

10
15

20

1 3 5 7 9 11 13 15

zero
one
two
threshold

Figure 6: Left: The step functions calculated by TASC A and the original step
function of the trinarizationExample[1,] data with an increasing number
of steps from top to bottom. Right: The trinarized data in a two dimensional
plot. The grouping is shown by the different colors. The thresholds are drawn
as dashed lines.

16

BASC A:

> print(significantRows)

[1] 8

BASC B:

> print(significantRows)

[1] 6

It can be observed that the dip test employed with k-means is more restrictive
than the bootstrap test in the BASC variants. The sensitivity and specificity of
the bootstrap test can be adjusted by changing the tau parameter.
The following example demonstrates this:

> tauValues <- seq(0,0.25, 0.05)
> print(tauValues)

[1] 0.00 0.05 0.10 0.15 0.20 0.25

The vector above stores different tau values. For each of these values, binarizationExample
is now binarized using BASC B. The resulting number of features in binarizationExample
with a p-value < 0.05 is stored in significantFeatures and printed out.

> significantFeatures <- sapply(tauValues, function(tau)
+ {
+ binMatrix <- binarizeMatrix(binarizationExample,
+ method="BASCB",
+ adjustment="fdr",
+ tau=tau)
+
+ significantRows <- sum(binMatrix[,12] < 0.05)
+ return(significantRows)})
> names(significantFeatures) <- tauValues
> print(significantFeatures)

0 0.05 0.1 0.15 0.2 0.25
0 6 7 8 9 10

It can be seen that different tau values result in a different number of significant
features. The binarization thresholds themselves are independent of tau and
remain unchanged when tau is changed.

References
[1] J. A. Hartigan and P. M. Hartigan. The dip test of unimodality. The Annals

of Statistics, 13(1):1–433, 1985.

17

[2] M. Hopfensitz, C. Müssel, C. Wawra, M. Maucher, M. Kühl, H. Neumann,
and H. A. Kestler. Multiscale binarization of gene expression data for re-
constructing Boolean networks. IEEE/ACM Trans. Comput. Biol. Bioin-
formatics, 9(2):487–498, 2012.

[3] S. A. Kauffman. Metabolic stability and epigensis in randomly constructed
genetic nets. Journal of Theoretical Biology, 22(3):437–467, 1969.

[4] S. A. Kauffman. The origins of order: Self-organization and selection in
evolution. Oxford University Press, 1993.

[5] H. Lähdesmäki, I. Shmulevich, and O. Yli-Harja. On learning gene reg-
ulatory networks under the Boolean network model. Machine Learning,
52(1-2):147–167, 2003.

[6] S. Liang, S. Fuhrman, R. Somogyi, et al. REVEAL, a general reverse engi-
neering algorithm for inference of genetic network architectures. In Pacific
symposium on biocomputing, volume 3, page 2, 1998.

[7] J. B. MacQueen. Some methods for classification and analysis of multivariate
observations. In J. Neyman and L. L. Cam, editors, 5th Berkeley Symposium
on Math, Statistics and Probability, volume 1, pages 281–297, Berkeley, 1967.
University of California Press.

[8] M. Maucher, B. Kracher, M. Kühl, and H. A. Kestler. Inferring Boolean
network structure via correlation. Bioinformatics, 27(11):1529–1536, 2011.

[9] C. Müssel, M. Hopfensitz, and H. A. Kestler. BoolNet – an R package for
generation, reconstruction and analysis of Boolean networks. Bioinformatics,
26(10):1378–1380, 2010.

18

	Introduction
	Methods in the package
	Binarization by k-means clustering
	Binarization Across multiple SCales (BASC)
	Trinarization Across multiple SCales (TASC)

	Application
	k-means
	BASC
	TASC

	Quality assessment using statistical tests

