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BDgraph-package Bayesian Structure Learning in Graphical Models

Description

The R package BDgraph provides statistical tools for Bayesian structure learning in undirected
graphical models for continuous, ordinal/count/dicrete, binary, and mixed data. The package is
implemented the recent improvements in the Bayesian graphical models’ literature, including Mo-
hammadi and Wit (2015), Mohammadi et al. (2021), Mohammadi et al. (2017), and Dobra and
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Mohammadi (2018). To speed up the computations, the intensive tasks of the package are im-
plemented in parallel using OpenMP in C++ and interfaced with R. Besides, the package contains
several functions for simulation and visualization, as well as several multivariate datasets taken
from the literature.

How to cite this package

To cite BDgraph in publications use:

Mohammadi, R. and Wit, E. C. (2019). BDgraph: An R Package for Bayesian Structure Learning
in Graphical Models, Journal of Statistical Software, 89(3):1-30, doi:10.18637/jss.v089.103

Author(s)

Reza Mohammadi [aut, cre] (<https://orcid.org/0000-0001-9538-0648>),
Ernst Wit [aut] (<https://orcid.org/0000-0002-3671-9610>),

Adrian Dobra [ctb] (<https://orcid.org/0000-0001-7793-2197>).
Maintainer: Reza Mohammadi <a.mohammadi@uva.nl>
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See Also

bdgraph, bdgraph.mpl, bdgraph.dw, bdgraph.sim, compare, rgwish

Examples

## Not run:
library( BDgraph )

set.seed( 10 )

# Generating multivariate normal data from a 'scale-free' graph
data.sim <- bdgraph.sim( n = 100, p = 10, graph = "scale-free"”, vis = TRUE )

# Running algorithm based on GGMs
bdgraph.obj <- bdgraph( data = data.sim, iter = 5000 )

summary ( bdgraph.obj )

# To compare the result with true graph
compare( bdgraph.obj, data.sim, main = c( "Target”, "BDgraph” ), vis = TRUE )

# Confusion Matrix
conf.mat( actual = data.sim, pred = bdgraph.obj )

conf.mat.plot( actual = data.sim, pred = bdgraph.obj )

# Running algorithm based on GGMs and marginal pseudo-likelihood
bdgraph.mpl.obj <- bdgraph.mpl( data = data.sim, iter = 5000 )

summary ( bdgraph.mpl.obj )

# Confusion Matrix
conf.mat( actual = data.sim, pred = bdgraph.mpl.obj )

conf.mat.plot( actual = data.sim, pred = bdgraph.mpl.obj )
# To compare the results of both algorithms with true graph
compare( list( bdgraph.obj, bdgraph.mpl.obj ), data.sim,
main = c( "Target”, "BDgraph”, "BDgraph_mpl"” ), vis = TRUE )

## End(Not run)

adj2link Extract links from an adjacency matrix

Description

Extract links from an adjacency matrix or an object of calsses "sim" from function bdgraph.sim
and "graph” from function graph.sim.
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Usage
adj2link( adj )

Arguments
adj adjacency matrix corresponding to a graph structure in which a;; = 1 if there is
a link between notes 7 and j, otherwise a;; = 0. It can be an object with S3 class
"sim" from function bdgraph.sim. It can be an object with S3 class "graph”
from function graph.sim.
Value

matrix corresponding to the extracted links from graph structure.

Author(s)

Reza Mohammadi <a.mohammadi@uva.nl>

References

Mohammadi, R. and Wit, E. C. (2019). BDgraph: An R Package for Bayesian Structure Learning
in Graphical Models, Journal of Statistical Software, 89(3):1-30, doi:10.18637/jss.v089.103

Mohammadi, A. and Wit, E. C. (2015). Bayesian Structure Learning in Sparse Gaussian Graphical
Models, Bayesian Analysis, 10(1):109-138, doi:10.1214/14BA889

Mohammadi, R., Massam, H. and Letac, G. (2021). Accelerating Bayesian Structure Learning in
Sparse Gaussian Graphical Models, Journal of the American Statistical Association, doi:10.1080/
01621459.2021.1996377

Mohammadi, A. et al (2017). Bayesian modelling of Dupuytren disease by using Gaussian copula
graphical models, Journal of the Royal Statistical Society: Series C, 66(3):629-645, doi:10.1111/
rssc.12171

Dobra, A. and Mohammadi, R. (2018). Loglinear Model Selection and Human Mobility, Annals of
Applied Statistics, 12(2):815-845, doi:10.1214/18AOAS1164

Pensar, J. et al (2017) Marginal pseudo-likelihood learning of discrete Markov network structures,
Bayesian Analysis, 12(4):1195-215, doi:10.1214/16BA1032

See Also

link2adj, graph.sim

Examples

# Generating a 'random' graph
adj <- graph.sim( p = 6, vis = TRUE )

adj2link( adj )
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auc Compute the area under the ROC curve

Description

This function computes the numeric value of area under the ROC curve (AUC) specifically for graph
structure learning.

Usage

auc( pred, actual, cut = 200, calibrate = TRUE )

Arguments
pred adjacency matrix corresponding to an estimated graph. It can be an object with
S3 class "bdgraph" from function bdgraph. It can be an object of S3 class
"ssgraph”, from the function ssgraph: : ssgraph () of R package ssgraph: : ssgraph().
It can be a numeric or ordered vector of the same length than actual, contain-
ing the predicted value of each observation.
actual adjacency matrix corresponding to the actual graph structure in which a;; =
1 if there is a link between notes 4 and j, otherwise a;; = 0. It can be an
object with S3 class "sim" from function bdgraph.sim. It can be an object
with S3 class "graph” from function graph.sim. It can be a factor, numeric
or character vector of responses (true class), typically encoded with O (controls)
and 1 (cases). Only two classes can be used in a ROC curve.
cut number of cut points.
calibrate If TRUE, compute the value of AUC by taking the level of the probabilities into
account.
Value

The numeric AUC value

Author(s)

Reza Mohammadi <a.mohammadi@uva.nl>; Lucas Vogels <1.f.o.vogels@uva.nl>

References

Tom Fawcett (2006) “An introduction to ROC analysis”. Pattern Recognition Letters 27, 861-874,
doi:10.1016/j.patrec.2005.10.010

Xavier Robin, Natacha Turck, Alexandre Hainard, et al. (2011) “pROC: an open-source package
for R and S+ to analyze and compare ROC curves”. BMC Bioinformatics, 7,77, doi:10.1186/1471-
21051277.


https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1186/1471-2105-12-77
https://doi.org/10.1186/1471-2105-12-77
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See Also

plotroc, pROC: :plot.roc(), pROC: :auc(), pROC: :print.roc(), bdgraph, bdgraph.mpl, compare

Examples

## Not run:
set.seed( 5 )

# Generating multivariate normal data from a 'scale-free' graph
data.sim = bdgraph.sim( n = 200, p = 15, graph = "scale-free"”, vis = TRUE )

# Running BDMCMC algorithm
sample.bdmecmc = bdgraph( data = data.sim, algorithm = "bdmcmc”, iter = 10000 )

BDgraph: :auc( pred = sample.bdmcmc, actual = data.sim, calibrate = TRUE )

## End(Not run)

bdgraph Search algorithm in graphical models

Description

As the main function of the BDgraph package, this function consists of several MCMC sampling
algorithms for Bayesian model determination in undirected graphical models. To speed up the com-
putations, the birth-death MCMC sampling algorithms are implemented in parallel using OpenMP
in C++,

Usage

bdgraph( data, n = NULL, method = "ggm”, algorithm = "bdmcmc", iter = 5000,
burnin = iter / 2, not.cont = NULL, g.prior = 0.2, df.prior = 3,
g.start = "empty”, jump = NULL, save = FALSE,
cores = NULL, threshold = 1e-8, verbose = TRUE, nu =1 )

Arguments

data there are two options: (1) an (n X p) matrix or a data.frame corresponding
to the data, (2) an (p X p) covariance matrix as S = X’X which X is the data
matrix (n is the sample size and p is the number of variables). It also could
be an object of class "sim", from function bdgraph.sim. The input matrix is
automatically identified by checking the symmetry.

n number of observations. It is needed if the "data" is a covariance matrix.

method character with two options "ggm" (default) and "gcgm". Option "ggm" is for

Gaussian graphical models based on Gaussianity assumption. Option "gcgm" is
for Gaussian copula graphical models for the data that not follow Gaussianity
assumption (e.g. continuous non-Gaussian, count, or mixed dataset).



algorithm

iter
burnin

not.cont

g.prior

df.prior

g.start

jump

save

cores

threshold

verbose

nu

Value

bdgraph

character with two options "bdmemc" (default) and "rjmemc". Option "bdmcmc"
is based on birth-death MCMC algorithm. Option "rjmcmc" is based on reveri-
ble jump MCMC algorithm. Option "bd-dmh" is based on birth-death MCMC
algorithm using double Metropolis Hasting. Option "rj-dmh" is based on reveri-
ble jump MCMC algorithm using double Metropolis Hasting.

number of iteration for the sampling algorithm.
number of burn-in iteration for the sampling algorithm.

for the case method = "gcgm”, a vector with binary values in which 1 indicates
not continuous variables.

for determining the prior distribution of each edge in the graph. There are two
options: a single value between 0 and 1 (e.g. 0.5 as a noninformative prior) or
an (p X p) matrix with elements between 0 and 1.

degree of freedom for G-Wishart distribution, W (b, D), which is a prior distri-
bution of the precision matrix.

corresponds to a starting point of the graph. It could be an (p X p) matrix,
"empty" (default), or "full". Option "empty" means the initial graph is an
empty graph and "full" means a full graph. It also could be an object with
S3 class "bdgraph" of R package BDgraph or the class "ssgraph” of R package
ssgraph: :ssgraph(); this option can be used to run the sampling algorithm
from the last objects of previous run (see examples).

it is only for the BDMCMC algorithm (algorithm = "bdmcmc"). It is for si-
multaneously updating multiple links at the same time to update graph in the
BDMCMC algorithm.

logical: if FALSE (default), the adjacency matrices are NOT saved. If TRUE,
the adjacency matrices after burn-in are saved.

number of cores to use for parallel execution. The case cores = "all" means
all CPU cores to use for parallel execution.

threshold value for the convergence of sampling algorithm from G-Wishart for
the precision matrix.

logical: if TRUE (default), report/print the MCMC running time.

prior parameter for option method = "tgm".

An object with S3 class "bdgraph" is returned:

p_links

K_hat

upper triangular matrix which corresponds the estimated posterior probabilities
of all possible links.

posterior estimation of the precision matrix.

For the case "save = TRUE" is returned:

sample_graphs

graph_weights

vector of strings which includes the adjacency matrices of visited graphs after
burn-in.

vector which includes the waiting times of visited graphs after burn-in.
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all_graphs vector which includes the identity of the adjacency matrices for all iterations
after burn-in. It is needed for monitoring the convergence of the BD-MCMC
algorithm.

all_weights vector which includes the waiting times for all iterations after burn-in. It is

needed for monitoring the convergence of the BD-MCMC algorithm.

Author(s)

Reza Mohammadi <a.mohammadi@uva.nl> and Ernst Wit

References

Mohammadi, R. and Wit, E. C. (2019). BDgraph: An R Package for Bayesian Structure Learning
in Graphical Models, Journal of Statistical Software, 89(3):1-30, doi:10.18637/jss.v089.103

Mohammadi, A. and Wit, E. C. (2015). Bayesian Structure Learning in Sparse Gaussian Graphical
Models, Bayesian Analysis, 10(1):109-138, doi:10.1214/14BA889

Mohammadi, R., Massam, H. and Letac, G. (2021). Accelerating Bayesian Structure Learning in
Sparse Gaussian Graphical Models, Journal of the American Statistical Association, doi:10.1080/
01621459.2021.1996377

Mohammadi, A. et al (2017). Bayesian modelling of Dupuytren disease by using Gaussian copula
graphical models, Journal of the Royal Statistical Society: Series C, 66(3):629-645, doi:10.1111/
rssc.12171

Dobra, A. and Mohammadi, R. (2018). Loglinear Model Selection and Human Mobility, Annals of
Applied Statistics, 12(2):815-845, doi:10.1214/18AOAS1164

Mohammadi, A. and Dobra A. (2017). The R Package BDgraph for Bayesian Structure Learning
in Graphical Models, ISBA Bulletin, 24(4):11-16

See Also

bdgraph.mpl, bdgraph.dw, bdgraph.sim, summary.bdgraph, compare

Examples

## Not run:
set.seed( 10 )

# - - Example 1

# Generating multivariate normal data from a 'random' graph
data.sim <- bdgraph.sim( n = 100, p = 10, size = 15, vis = TRUE )

bdgraph.obj <- bdgraph( data = data.sim, iter = 1000, save = TRUE )
summary ( bdgraph.obj )

# Confusion Matrix
conf.mat( actual = data.sim, pred = bdgraph.obj )

conf.mat.plot( actual = data.sim, pred = bdgraph.obj )


https://doi.org/10.18637/jss.v089.i03
https://doi.org/10.1214/14-BA889
https://doi.org/10.1080/01621459.2021.1996377
https://doi.org/10.1080/01621459.2021.1996377
https://doi.org/10.1111/rssc.12171
https://doi.org/10.1111/rssc.12171
https://doi.org/10.1214/18-AOAS1164
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# To compare our result with true graph
compare( bdgraph.obj, data.sim, main = c( "Target”, "BDgraph” ), vis =T )

# Running algorithm with starting points from previous run
bdgraph.obj2 <- bdgraph( data = data.sim, g.start = bdgraph.obj )

compare( list( bdgraph.obj, bdgraph.obj2 ), data.sim,
main = c( "Target”, "Frist run”, "Second run” ) )

# - - Example 2

# Generating mixed data from a 'scale-free' graph
data.sim <- bdgraph.sim( n = 200, p = 7, type = "mixed", graph = "scale-free"”, vis = TRUE )

bdgraph.obj <- bdgraph( data = data.sim, method = "gcgm" )
summary( bdgraph.obj )

compare( bdgraph.obj, data.sim, vis =T )

conf.mat( actual = data.sim, pred = bdgraph.obj )
conf.mat.plot( actual = data.sim, pred = bdgraph.obj )

## End(Not run)

bdgraph.dw Search algorithm for Gaussian copula graphical models for count
data

Description

This function consists of several sampling algorithms for Bayesian structure learning in undirected
graphical models for count data. It is based on Gaussian copula graphical models with discrete
Weibull distributed marginals. To speed up the computations, the birth-death MCMC sampling
algorithms are implemented in parallel using OpenMP in C++.

Usage

bdgraph.dw( data, x = NULL, formula =y ~ .,
n = NULL, algorithm = "bdmcmc”, iter = 5000,
burnin = iter / 2, g.prior = 0.2, df.prior = 3,
ZI = FALSE, iter_bdw = 5000,
g.start = "empty”, jump = NULL, save = FALSE,
g = NULL, beta = NULL, pii = NULL,
cores = NULL, threshold = 1e-8, verbose = TRUE )



bdgraph.dw

Arguments

data

X

formula

n

algorithm

iter
burnin

g.prior

df.prior

Z1

iter_bdw

g.start

jump

save

q, beta

pii
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(n X p)matrix or a data. frame corresponding to the data on the p nodes of the
graph. It can also be an object of class "sim", from the function bdgraph.sim.

(n x k) matrix or a data.frame corresponding to the predictors.

object of class formula as a symbolic description of the model for linking each
node to the predictors. For the case of data.frame, it is taken as the model
frame (see model.frame).

number of observations. It is needed if the "data" is a covariance matrix.

character with two options "bdmemc"” (default) and "rjmemc”. Option "bdmemc”
is based on a birth-death MCMC algorithm. Option "rjmcmc" is based on a
reversible jump MCMC algorithm.

number of iterations for the sampling algorithm for graph learning.
number of burn-in iterations for the sampling algorithm for graph learning.

for determining the prior distribution of each edge in the graph. There are two
options: a single value between 0 and 1 (e.g. 0.5 as a noninformative prior) or a
(p X p) matrix with elements between 0 and 1.

degree of freedom for G-Wishart distribution, W (b, D), which is a prior distri-
bution for the precision matrix.

logical. If FALSE (default), the conditional distribution of each response vari-
able is assumed to be Discrete Weibull given the predictors x. If TRUE, a zero-
inflated model will be applied to each response. ZI can be passed also as a
vector, in order to specify which of the (p variables) should be fitted with zero-
inflation (TRUE) or not (FALSE).

number of iterations for the sampling algorithm to estimate the regression pa-
rameters for the Discrete Weibull distribution. It is passed to the bdw. reg func-
tion.

corresponds to a starting point of the graph. It could be an (p X p) matrix,
"empty" (default), or "full". Option "empty" means that the initial graph is an
empty graph and "full" means a full graph. It also could be an object with
S3 class "bdgraph" of R package BDgraph or the class "ssgraph” of R package
ssgraph: :ssgraph(); this option can be used to run the sampling algorithm
from the last objects of the previous run (see examples).

it is only for the BDMCMC algorithm (algorithm = "bdmcmc"). It is for simul-
taneously updating multiple links at the same time while updating the graph in
the BDMCMC algorithm.

logical: if FALSE (default), the adjacency matrices are NOT saved. If TRUE,
the adjacency matrices after burn-in are saved.

parameters of the discrete Weibull distribution used for the marginals. They
should be given either as a (n X p) matrix (if covariates are present) or as a
vector (if covariates are not present). If NULL (default), these parameters are
estimated by the bdw. reg function.

vector of zero-inflation parameters of the zero-inflated discrete Weibull distribu-
tions used for the marginals. If NULL (default), this parameter is estimated by
the bdw. reg function when ZI = TRUE.
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cores number of cores to use for parallel execution. The case cores = "all" means
all CPU cores to use for parallel execution.

threshold threshold value for the convergence of the sampling algorithm from G-Wishart
for the precision matrix.

verbose logical: if TRUE (default), report/print the MCMC running time.

Value

An object with S3 class "bdgraph" is returned, containing:

p_links upper triangular matrix corresponding to the estimated posterior probabilities of
all possible links.
K_hat posterior estimation of the precision matrix.

sample_marginals
posterior samples of the regression coefficients of the marginal distributions.

For the case "save = TRUE", the code returns:

sample_graphs vector of strings which includes the adjacency matrices of the graphs visited
after burn-in.

graph_weights vector which includes the waiting times of the graphs visited after burn-in.

all_graphs vector which includes the identity of the adjacency matrices for all iterations
after burn-in. It is needed for monitoring the convergence of the BDMCMC
algorithm.

all_weights vector which includes the waiting times for all iterations after burn-in. It is

needed for monitoring the convergence of the BDMCMC algorithm.

Author(s)

Reza Mohammadi <a.mohammadi@uva.nl>, Veronica Vinciotti, and Pariya Behrouzi

References

Vinciotti, V., Behrouzi, P., and Mohammadi, R. (2022) Bayesian structural learning of microbiota
systems from count metagenomic data, arXiv preprint, doi:10.48550/arXiv.2203.10118

Peluso, A., Vinciotti, V., and Yu, K. (2018) Discrete Weibull generalized additive model: an applica-
tion to count fertility, Journal of the Royal Statistical Society: Series C, 68(3):565-583, doi:10.1111/
rssc.12311

Haselimashhadi, H., Vinciotti, V., and Yu, K. (2018) A novel Bayesian regression model for counts
with an application to health data, Journal of Applied Statistics, 45(6):1085-1105, doi:10.1080/
02664763.2017.1342782

Mohammadi, R. and Wit, E. C. (2019). BDgraph: An R Package for Bayesian Structure Learning
in Graphical Models, Journal of Statistical Software, 89(3):1-30, doi:10.18637/jss.v089.103

Mohammadi, A. and Wit, E. C. (2015). Bayesian Structure Learning in Sparse Gaussian Graphical
Models, Bayesian Analysis, 10(1):109-138, doi:10.1214/14BA889
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Mohammadi, A. et al (2017). Bayesian modelling of Dupuytren disease by using Gaussian copula
graphical models, Journal of the Royal Statistical Society: Series C, 66(3):629-645, doi:10.1111/
rssc.12171

Mohammadi, R., Massam, H. and Letac, G. (2021). Accelerating Bayesian Structure Learning in
Sparse Gaussian Graphical Models, Journal of the American Statistical Association, doi:10.1080/
01621459.2021.1996377

See Also

bdgraph, bdgraph.mpl, bdw.reg, bdgraph.sim, summary.bdgraph, compare

Examples

## Not run:
# - - Example 1

# Generating multivariate Discrete Weibull data based on 'random' graph
data.sim <- bdgraph.sim( n = 100, p = 10, type = "dw", vis = TRUE )

bdgraph.obj <- bdgraph.dw( data = data.sim, iter = 5000 )
summary( bdgraph.obj )

# To compare the result with true graph
compare( bdgraph.obj, data.sim, main = c( "Target"”, "BDgraph” ), vis = TRUE )

# - - Example 2

# Generating multivariate Discrete Weibull data based on a 'scale-free' graph
data.sim <- bdgraph.sim( n = 100, p = 10, type = "dw", graph = "scale-free”, vis = TRUE )

bdgraph.obj <- bdgraph.dw( data = data.sim, iter = 10000 )
summary( bdgraph.obj )
compare( bdgraph.obj, data.sim, main = c( "Target”, "BDgraph” ), vis = TRUE )

## End(Not run)

bdgraph.mpl Search algorithm in graphical models using marginal pseudo-
likehlihood

Description

This function consists of several sampling algorithms for Bayesian model determination in undi-
rected graphical models based on mariginal pseudo-likelihood. To speed up the computations, the
birth-death MCMC sampling algorithms are implemented in parallel using OpenMP in C++.


https://doi.org/10.1111/rssc.12171
https://doi.org/10.1111/rssc.12171
https://doi.org/10.1080/01621459.2021.1996377
https://doi.org/10.1080/01621459.2021.1996377

14 bdgraph.mpl

Usage

bdgraph.mpl( data, n = NULL, method = "ggm", transfer = TRUE,
algorithm = "bdmcmc"”, iter = 5000, burnin = iter / 2,
g.prior = 0.2, g.start = "empty”,
jump = NULL, alpha = 0.5, save = FALSE,
cores = NULL, operator = "or", verbose = TRUE )

Arguments

data there are two options: (1) an (n X p) matrix or a data.frame corresponding
to the data, (2) an (p X p) covariance matrix as S = X’X which X is the data
matrix (n is the sample size and p is the number of variables). It also could
be an object of class "sim", from function bdgraph.sim. The input matrix is
automatically identified by checking the symmetry.

n number of observations. It is needed if the "data" is a covariance matrix.

method character with two options "ggm" (default), "dgm" and "dgm-binary". Option
"ggm" is for Gaussian graphical models based on Gaussianity assumption. Op-
tion "dgm" is for discrete graphical models for the count data. Option "dgm-binary"
is for discrete graphical models for the data that are binary.

transfer for only 'count' data which method = "dgm" or method = "dgm-binary".

algorithm character with two options "bdmemc" (default) and "r jmemc". Option "bdmcmc"
is based on birth-death MCMC algorithm. Option "rjmcmc" is based on reveri-
ble jump MCMC algorithm. Option "hc” is based on hill-climbing algorithm;
this algorithm is only for count data which method = "dgm" or method = "dgm-binary".

iter number of iteration for the sampling algorithm.

burnin number of burn-in iteration for the sampling algorithm.

g.prior for determining the prior distribution of each edge in the graph. There are two
options: a single value between 0 and 1 (e.g. 0.5 as a noninformative prior) or
an (p X p) matrix with elements between 0 and 1.

g.start corresponds to a starting point of the graph. It could be an (p X p) matrix,
"empty" (default), or "full". Option "empty" means the initial graph is an
empty graph and "full" means a full graph. It also could be an object with
S3 class "bdgraph" of R package BDgraph or the class "ssgraph” of R package
ssgraph: :ssgraph(); this option can be used to run the sampling algorithm
from the last objects of previous run (see examples).

jump it is only for the BDMCMC algorithm (algorithm = "bdmcmc"). It is for si-
multaneously updating multiple links at the same time to update graph in the
BDMCMC algorithm.

alpha value of the hyper parameter of Dirichlet, which is a prior distribution.

save logical: if FALSE (default), the adjacency matrices are NOT saved. If TRUE,
the adjacency matrices after burn-in are saved.

cores number of cores to use for parallel execution. The case cores = "all" means
all CPU cores to use for parallel execution.

operator character with two options "or" (default) and "and". It is for hill-climbing algo-
rithm.

verbose logical: if TRUE (default), report/print the MCMC running time.
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Value
An object with S3 class "bdgraph" is returned:

p_links upper triangular matrix which corresponds the estimated posterior probabilities
of all possible links.

For the case "save = TRUE" is returned:

sample_graphs vector of strings which includes the adjacency matrices of visited graphs after
burn-in.

graph_weights vector which includes the waiting times of visited graphs after burn-in.

all_graphs vector which includes the identity of the adjacency matrices for all iterations
after burn-in. It is needed for monitoring the convergence of the BD-MCMC
algorithm.

all_weights vector which includes the waiting times for all iterations after burn-in. It is

needed for monitoring the convergence of the BD-MCMC algorithm.

Author(s)

Reza Mohammadi <a.mohammadi@uva.nl>, Adrian Dobra, and Johan Pensar

References

Dobra, A. and Mohammadi, R. (2018). Loglinear Model Selection and Human Mobility, Annals of
Applied Statistics, 12(2):815-845, doi:10.1214/18 AOAS1164

Mohammadi, A. and Wit, E. C. (2015). Bayesian Structure Learning in Sparse Gaussian Graphical
Models, Bayesian Analysis, 10(1):109-138, doi:10.1214/14BA889

Mohammadi, A. and Dobra, A. (2017). The R Package BDgraph for Bayesian Structure Learning
in Graphical Models, ISBA Bulletin, 24(4):11-16

Pensar, J. et al (2017) Marginal pseudo-likelihood learning of discrete Markov network structures,
Bayesian Analysis, 12(4):1195-215, doi:10.1214/16BA1032

Mohammadi, R. and Wit, E. C. (2019). BDgraph: An R Package for Bayesian Structure Learning
in Graphical Models, Journal of Statistical Software, 89(3):1-30, doi:10.18637/jss.v089.103

See Also

bdgraph, bdgraph.dw, bdgraph.sim, summary.bdgraph, compare

Examples

# Generating multivariate normal data from a 'random' graph
data.sim <- bdgraph.sim( n = 70, p = 5, size = 7, vis = TRUE )

bdgraph.obj <- bdgraph.mpl( data = data.sim, iter = 500 )
summary ( bdgraph.obj )

# To compare the result with true graph
compare( bdgraph.obj, data.sim, main = c( "Target”, "BDgraph” ) )


https://doi.org/10.1214/18-AOAS1164
https://doi.org/10.1214/14-BA889
https://doi.org/10.1214/16-BA1032
https://doi.org/10.18637/jss.v089.i03

16 bdgraph.npn

bdgraph.npn Nonparametric transfer

Description

Transfers non-Gaussian data to Gaussian.

Usage

bdgraph.npn( data, npn = "shrinkage", npn.thresh = NULL )

Arguments
data (n X p)matrix or a data.frame corresponding to the data (n is the sample size
and p is the number of variables).
npn character with three options "shrinkage” (default), "truncation”, and "skeptic”.
Option "shrinkage” is for the shrunken transformation, option "truncation”
is for the truncated transformation and option "skeptic” is for the non-paranormal
skeptic transformation. For more details see references.
npn.thresh truncation threshold; it is only for the truncated transformation (npn= "truncation").
The default value is 1/(4n'/*\/mlog(n)).
Value

(n x p) matrix of transferred data, if npn = "shrinkage"” or "truncation”, and a non-paranormal
correlation (p x p) matrix, if npn = "skeptic”.

Author(s)

Reza Mohammadi <a.mohammadi@uva.nl>

References

Liu, H., et al (2012). High Dimensional Semiparametric Gaussian Copula Graphical Models, An-
nals of Statistics, 40(4):2293-2326

Zhao, T. and Liu, H. (2012). The huge Package for High-dimensional Undirected Graph Estimation
in R, Journal of Machine Learning Research, 13:1059-1062

See Also

bdgraph.sim, bdgraph, bdgraph.mpl
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Examples

## Not run:
# Generating multivariate normal data from a 'random' graph
data.sim <- bdgraph.sim( n = 6, p = 4, size = 4 )

data <- ( data.sim $ data - 3 ) * 4
data

# Transfer the data by truncation
bdgraph.npn( data, npn = "truncation” )

# Transfer the data by shrunken
bdgraph.npn( data, npn = "shrunken” )

# Transfer the data by skeptic
bdgraph.npn( data, npn = "skeptic” )

## End(Not run)

bdgraph.sim Graph data simulation

Description

Simulating multivariate distributions with different types of underlying graph structures, includ-
ing "random", "cluster", "smallworld", "scale-free", "lattice", "hub", "star", "circle",
"AR(1)", and "AR(2)". Based on the underlying graph structure, the function generates differ-
ent types of multivariate data, including "Gaussian", "non-Gaussian", "categorical", "pois" (Pois-
son), "nbinom" (negative binomial), "dweibull" (discrete Weibull), "binary", "t" (t-distribution),
"alternative-t", or "mixed" data. This function can be used also for simulating only graphs by

setting the option n=0 (default).

Usage

bdgraph.sim( p = 10, graph = "random”, n = @, type = "Gaussian"”, prob = 0.2,
size = NULL, mean = @, class = NULL, cut = 4, b = 3,
D = diag( p ), K = NULL, sigma = NULL,
g = exp(-1), beta = 1, vis = FALSE, rewire = 0.05,
range.mu = c( 3, 5 ), range.dispersion = c( 0.01, 0.1 ), nu =1)

Arguments
p number of variables (nodes).
graph graph structure with options "random", "cluster", "smallworld", "scale-free",

"lattice", "hub", "star", "circle", "AR(1)", and "AR(2)". It could also be an
adjacency matrix corresponding to a graph structure (an upper triangular matrix
in which g;; = 1 if there is a link between nodes ¢ and j, otherwise g;; = 0).
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type

prob
size
mean
class

cut

sigma

q, beta

vis
rewire
range.mu, range.

nu

bdgraph.sim

number of samples required. Note that for the case n =@, only the graph is
generated.

type of data with options "Gaussian" (default), "non-Gaussian", "categorical
"pois", "nbinom", "dweibull", "binary", "mixed", "t", and "alternative-t".
For the option "Gaussian", data are generated from a multivariate normal distri-
bution. For the option "non-Gaussian", data are transfered from a multivariate
normal distribution to a continuous multivariate non-Gaussian distribution via
Exponential marginals. For the option "categorical", data are transfered from
a multivariate normal distribution to multivariate ’categorical’ data. For the op-
tion "pois", data are transfered from a multivariate normal distribution to a mul-
tivariate Poisson distribution. For the option "nbinom", data are transfered from
a multivariate normal distribution to a multivariate Negative Binomial distribu-
tion. For the option "dweibull", data are transfered from a multivariate normal
distribution to a multivariate discrete Weibull distribution with parameters q and
beta. For the option "binary", data are generated directly from the joint dis-
tribution, in this case p must be less than 17. For the option "mixed", data are
transfered from a multivariate normal distribution to a mixture of ’categorical’,
‘non-Gaussian’, ’binary’ and *Gaussian’, respectively.

if graph = "random", it is the probability that a pair of nodes has a link.
number of links in the true graph (graph size).

vector specifying the mean of the variables.

if graph = "cluster", it is the number of classes.

if type = "categorical", it is the number of categories for simulating ’categor-
ical’ data.

degree of freedom for G-Wishart distribution, W¢ (b, D).

positive definite (p x p) "scale" matrix for G-Wishart distribution, W¢ (b, D).
The default is an identity matrix.

if graph = "fixed", it is a positive-definite symmetric matrix, corresponding to
the true precision matrix.

if graph = "fixed", it is a positive-definite symmetric matrix corresponding to
the true covariance matrix.

if type = "dweibull", they are the parameters of the discrete Weibull distribu-
tion with density

plz,q,8) = ¢ —q=D" wr={0,1,2,...}.
They can be given either as a vector of length p or as an (n X p) matrix, e.g. if
covariates are available and a regression model is used.

visualize the true graph structure.

rewiring probability for smallworld network. Must be between 0 and 1.
dispersion

if type ="nbinom", vector with two elements specifying the range of parameters
for the Negative Binomial distribution.

if type ="t" or "alternative-t", it is the parameter of the t distribution with
density.

bl
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Value

An object with S3 class "sim" is returned:

data generated data as an (n X p) matrix.

sigma covariance matrix of the generated data.

K precision matrix of the generated data.

G adjacency matrix corresponding to the true graph structure.
Author(s)

Reza Mohammadi <a.mohammadi@uva.nl>, Pariya Behrouzi, Veronica Vinciotti, Ernst Wit, and
Alexander Christensen

References

Mohammadi, R. and Wit, E. C. (2019). BDgraph: An R Package for Bayesian Structure Learning
in Graphical Models, Journal of Statistical Software, 89(3):1-30, doi:10.18637/jss.v089.103

See Also

graph.sim, bdgraph, bdgraph.mpl

Examples

## Not run:

# Generating multivariate normal data from a 'random' graph
data.sim <- bdgraph.sim( p = 10, n = 50, prob = 0.3, vis = TRUE )
print( data.sim )

# Generating multivariate normal data from a 'hub' graph
data.sim <- bdgraph.sim( p = 6, n = 3, graph = "hub", vis = FALSE )

round( data.sim $ data, 2 )

# Generating mixed data from a 'hub' graph
data.sim <- bdgraph.sim( p = 8, n = 10, graph = "hub", type = "mixed"” )

round( data.sim $ data, 2 )

# Generating only a 'scale-free' graph (with no data)
graph.sim <- bdgraph.sim( p = 8, graph = "scale-free" )

plot( graph.sim )
graph.sim $ G

## End(Not run)


https://doi.org/10.18637/jss.v089.i03

20 bdw.reg

bdw.reg Bayesian estimation of (zero-inflated) Discrete Weibull regression

Description

Bayesian estimation of the parameters for Discrete Weibull (DW) regression. The conditional dis-
tribution of the response given the predictors is assumed to be DW with parameters q and beta,
dependent on the predictors, and, with an additional parameter pi under zero inflation.

Usage

bdw.reg( data, formula = NA, iter = 5000, burnin = NULL,
dist.q = dnorm, dist.beta = dnorm,
par.qg =c( @0, 1), par.beta=c¢c( 0, 1), par.pi =c(1, 1),
initial.q = NULL, initial.beta = NULL, initial.pi = NULL,
ZI = FALSE, scale.proposal = NULL, adapt = TRUE, print = TRUE )

Arguments

data data.frame or matrix corresponding to the data, containing the variables in
the model.

formula object of class formula as a symbolic description of the model to be fitted. For
the case of data. frame, it is taken as the model frame (see model . frame).

iter number of iterations for the sampling algorithm.

burnin number of burn-in iterations for the sampling algorithm.

dist.q Prior density for the regression coefficients associated to the parameter q. The
default is a Normal distribution (dnorm). Any density function which has two
parameters and can support the 1og = TRUE flag can be used, e.g. dnorm, dlnorm,
dunif etc.

dist.beta Prior density for the regression coefficients associated to the parameter beta.
The default is a Normal distribution (dnorm). Any density function which has
two parameters and can support the log = TRUE flag can be used, e.g. dnorm,
dlnorm, dunif etc.

par.q vector of length two corresponding to the parameters of dist.q.

par.beta vector of length two corresponding to the parameters of dist.beta.

par.pi vector of length two corresponding to the parameters of the beta prior density

on pi.
initial.q, initial.beta, initial.pi
vector of initial values for the regression coefficients and for pi (if ZI = TRUE).
Z1 logical: if FALSE (default), the conditional distribution of the response given
the predictors is assumed to be DW with parameters q and beta. If TRUE, a
zero-inflated DW distribution will be applied.
scale.proposal
scale of the proposal function. Setting to lower values results in an increase in
the acceptance rate of the sampler.
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adapt logical: if TRUE (default), the proposals will be adapted. If FALSE, no adapting
will be applied.
print logical: if TRUE (default), tracing information is printed.
Details

The regression model uses a logit link function on g and a log link function on beta, the two
parameters of a DW distribution, with probability mass function given by

DW(y) = ¢ —q@" y=0,1,2,...

For the case of zero inflation (ZI = TRUE), a zero-inflated DW is considered:

fly) = (1 —pi)I(y = 0) + piDW (y)

where 0 < pi < 1 and I(y = 0) is an indicator for the point mass at zero for the response y.

Value
sample MCMC samples
g.est posterior estimates of q
beta.est posterior estimates of beta
pi.est posterior estimates of pi

accept.rate acceptance rate of the MCMC algorithm

Author(s)

Veronica Vinciotti, Reza Mohammadi <a.mohammadi@uva.nl>, and Pariya Behrouzi

References

Vinciotti, V., Behrouzi, P., and Mohammadi, R. (2022) Bayesian structural learning of microbiota
systems from count metagenomic data, arXiv preprint, doi:10.48550/arXiv.2203.10118

Peluso, A., Vinciotti, V., and Yu, K. (2018) Discrete Weibull generalized additive model: an applica-
tion to count fertility, Journal of the Royal Statistical Society: Series C, 68(3):565-583, doi:10.1111/
rssc.12311

Haselimashhadi, H., Vinciotti, V. and Yu, K. (2018) A novel Bayesian regression model for counts
with an application to health data, Journal of Applied Statistics, 45(6):1085-1105, doi:10.1080/
02664763.2017.1342782

See Also

bdgraph.dw, bdgraph, ddweibull, bdgraph.sim
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Examples
## Not run:
# - - Example 1
q = 0.6
beta = 1.1
n = 500

y = BDgraph::rdweibull( n = n, q = q, beta = beta )

output = bdw.reg( data =y, y ~ ., iter = 5000 )

output $ q.est
output $ beta.est

traceplot( output $ sample[ , 1 ]
traceplot( output $ sample[ , 2 1, acf

T, pacf
T, pacf

, acf

—
N

# - - Example 2

q = 0.6

beta = 1.1

pii = 0.8

n = 500

y_dw = BDgraph::rdweibull( n = n, q = q, beta = beta )
z = rbinom( n = n, size = 1, prob = pii )

y =z * y_dw

output = bdw.reg( data =y, iter = 5000, ZI = TRUE )
output $ g.est

output $ beta.est

output $ pi.est

traceplot( output $ sample[ , 1 1, acf =T, pacf =T )
traceplot( output $ sample[ , 2 ], acf = T, pacf =T )
traceplot( output $ sample[ , 3 ], acf = T, pacf =T )

# - - Example 3

theta

theta.beta

x1 =
x2

reg_q
q

-q

50

runif( n = n, min = @, max = 1
runif( n

0

c( 0.1, -0.1, 0.34 ) # true parameter
c( 0.1, -.15, 0.5 ) # true parameter

5)
1.5)

n, min

@, max

theta.q[l 1 ] + x1 x theta.q[ 2 ] + x2 % theta.q[ 3 ]
17 (1 +exp( -reg_q))

bdw.reg
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reg_beta = theta.betal 1 ] + x1 x theta.beta[ 2 ] + x2 x theta.betal 3 ]
beta exp( reg_beta )

y = BDgraph: :rdweibull( n = n, g = q, beta = beta )

data = data.frame( x1, x2, y )

output = bdw.reg( data, y ~. , iter = 5000 )

# - - Example 4

theta.q =c(1, -1, 0.8 ) # true parameter
theta.beta = c( 1, -1, 0.3 ) # true parameter
pii = 0.8

n = 500

x1 = runif( n = n, min = @, max =

1.5)
X2 5)

runif( n = n, min = @, max

reg_q = theta.q[ 1 1 + x1 * theta.q[ 2 1 + x2 * theta.q[ 3 ]
q 17 C1 +exp(-regq))

reg_beta = theta.betal 1 ] + x1 % theta.beta[ 2 ] + x2 x theta.betal 3 ]
beta = exp( reg_beta )

y_dw
z

BDgraph: :rdweibull( n q = q, beta = beta )
rbinom( n = n, size = 1, prob = pii )
zZ % y_dw

1
1
>

data = data.frame( x1, x2, y )
output = bdw.reg( data, y ~. , iter = 5000 )

## End(Not run)

bf Bayes factor for two graphs

Description

Compute the Bayes factor for two graph structures.

Usage

bf( num, den, bdgraph.obj, log = TRUE )
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Arguments

num, den adjacency matrix corresponding to the true graph structure in which a;; = 1 if
there is a link between notes 7 and j, otherwise a;; = 0. It can be an object with
S3 class "graph” from function graph.sim. It can be an object with S3 class
"sim" from function bdgraph.sim.

bdgraph.obj object of S3 class "bdgraph", from function bdgraph. It also can be an object
of S3 class "ssgraph”, from the function ssgraph: :ssgraph() of R package

ssgraph: :ssgraph().

log character value. If TRUE the Bayes factor is given as log(BF).

Value

single numeric value, the Bayes factor of the two graph structures num and den.

Author(s)

Reza Mohammadi <a.mohammadi@uva.nl>

References

Mohammadi, R. and Wit, E. C. (2019). BDgraph: