Last updated on 2025-04-25 06:49:35 CEST.
Flavor | Version | Tinstall | Tcheck | Ttotal | Status | Flags |
---|---|---|---|---|---|---|
r-devel-linux-x86_64-debian-clang | 1.2-6 | 18.61 | 180.13 | 198.74 | OK | |
r-devel-linux-x86_64-debian-gcc | 1.2-6 | 13.09 | 125.62 | 138.71 | OK | |
r-devel-linux-x86_64-fedora-clang | 1.2-6 | 309.07 | OK | |||
r-devel-linux-x86_64-fedora-gcc | 1.2-6 | 261.86 | ERROR | |||
r-devel-windows-x86_64 | 1.2-6 | 23.00 | 166.00 | 189.00 | OK | |
r-patched-linux-x86_64 | 1.2-6 | 18.70 | 171.55 | 190.25 | OK | |
r-release-linux-x86_64 | 1.2-6 | 18.72 | 171.23 | 189.95 | OK | |
r-release-macos-arm64 | 1.2-6 | 79.00 | OK | |||
r-release-macos-x86_64 | 1.2-6 | 212.00 | OK | |||
r-release-windows-x86_64 | 1.2-6 | 18.00 | 174.00 | 192.00 | OK | |
r-oldrel-macos-arm64 | 1.2-6 | 78.00 | OK | |||
r-oldrel-macos-x86_64 | 1.2-6 | 121.00 | OK | |||
r-oldrel-windows-x86_64 | 1.2-6 | 26.00 | 214.00 | 240.00 | OK |
Version: 1.2-6
Check: tests
Result: ERROR
Running ‘anisotropyChoice.R’ [10s/23s]
Running ‘biasCorr.R’ [10s/25s]
Running ‘findLocalBias.R’ [9s/22s]
Running ‘findRegionalBias.R’ [10s/26s]
Running ‘optimizingTest.R’ [0m/89m]
Running the tests in ‘tests/optimizingTest.R’ failed.
Complete output:
> options(error = recover)
> #test = TRUE
> test = FALSE
> mantest = FALSE
> set.seed(1)
> library(intamapInteractive)
Loading required package: intamap
Loading required package: sp
> library(gstat)
> #require(maptools)
> # for SIC2004 dataset
> data(sic2004)
> coordinates(sic.val) = ~x+y
> observations = sic.val["dayx"]
> coordinates(sic.grid)=~x+y
> predGrid = sic.grid
>
> #Finding the polygon for the candidate locations
> bb = bbox(predGrid)
> boun = SpatialPoints(data.frame(x=c(bb[1,1],bb[1,2],bb[1,2],bb[1,1],bb[1,1]),
+ y=c(bb[2,1],bb[2,1],bb[2,2],bb[2,2],bb[2,1])))
> Srl = Polygons(list(Polygon(boun)),ID = as.character(1))
> candidates = SpatialPolygonsDataFrame(SpatialPolygons(list(Srl)),
+ data = data.frame(ID=1))
>
> # Limits the number of prediction locations to have faster UK
> # computations
> nGrid = dim(coordinates(predGrid))[1]
> predGrid = predGrid[sample(seq(1,nGrid),1000),]
> # Fits the variogram model (using function fit.variogram from package
> # gstat)
> model = fit.variogram(variogram(dayx~x+y, sic.val), vgm(50, "Sph", 250000, 250))
> #plot(variogram(dayx~x+y, sic.val), model=model)
> # Computes the Mukv of the current network
> initMukv <- calculateMukv(observations, predGrid, model, formulaString = dayx~x+y)
Flavor: r-devel-linux-x86_64-fedora-gcc