Feature Selection Algorithms for Computer Aided Diagnosis


[Up] [Top]

Documentation for package ‘FRESA.CAD’ version 3.4.4

Help Pages

B C E F G H I J K L M N O P R S T U

FRESA.CAD-package FeatuRE Selection Algorithms for Computer-Aided Diagnosis (FRESA.CAD)

-- B --

backVarElimination_Bin IDI/NRI-based backwards variable elimination
backVarElimination_Res NeRI-based backwards variable elimination
baggedModel Get the bagged model from a list of models
barPlotCiError Bar plot with error bars
BESS CV BeSS fit
BESS_EBIC CV BeSS fit
BESS_GSECTION CV BeSS fit
BinaryBenchmark Compare performance of different model fitting/filtering algorithms
bootstrapValidation_Bin Bootstrap validation of binary classification models
bootstrapValidation_Res Bootstrap validation of regression models
bootstrapVarElimination_Bin IDI/NRI-based backwards variable elimination with bootstrapping
bootstrapVarElimination_Res NeRI-based backwards variable elimination with bootstrapping
BSWiMS.model BSWiMS model selection

-- C --

cancerVarNames Data frame used in several examples of this package
ClustClass Hybrid Hierarchical Modeling
clusterISODATA Cluster Clustering using the Isodata Approach
correlated_Remove Univariate Filters
CoxBenchmark Compare performance of different model fitting/filtering algorithms
crossValidationFeatureSelection_Bin IDI/NRI-based selection of a linear, logistic, or Cox proportional hazards regression model from a set of candidate variables
crossValidationFeatureSelection_Res NeRI-based selection of a linear, logistic, or Cox proportional hazards regression model from a set of candidate variables
CVsignature Cross-validated Signature

-- E --

EmpiricalSurvDiff Estimate the LR value and its associated p-values
ensemblePredict The median prediction from a list of models

-- F --

featureAdjustment Adjust each listed variable to the provided set of covariates
filteredFit A generic fit method with a filtered step for feature selection
FilterUnivariate Univariate Filters
ForwardSelection.Model.Bin IDI/NRI-based feature selection procedure for linear, logistic, and Cox proportional hazards regression models
ForwardSelection.Model.Res NeRI-based feature selection procedure for linear, logistic, or Cox proportional hazards regression models
FRESA.CAD FeatuRE Selection Algorithms for Computer-Aided Diagnosis (FRESA.CAD)
FRESA.Model Automated model selection
FRESAScale Data frame normalization

-- G --

getKNNpredictionFromFormula Predict classification using KNN
getLatentCoefficients Derived Features of the UPSTM transform
getSignature Returns a CV signature template
getVar.Bin Analysis of the effect of each term of a binary classification model by analysing its reclassification performance
getVar.Res Analysis of the effect of each term of a linear regression model by analysing its residuals
GLMNET GLMNET fit with feature selection"
GLMNET_ELASTICNET_1SE GLMNET fit with feature selection"
GLMNET_ELASTICNET_MIN GLMNET fit with feature selection"
GLMNET_RIDGE_1SE GLMNET fit with feature selection"
GLMNET_RIDGE_MIN GLMNET fit with feature selection"
GMVEBSWiMS Hybrid Hierarchical Modeling with GMVE and BSWiMS
GMVECluster Set Clustering using the Generalized Minimum Volume Ellipsoid (GMVE)

-- H --

heatMaps Plot a heat map of selected variables
HLCM Latent class based modeling of binary outcomes
HLCM_EM Latent class based modeling of binary outcomes

-- I --

IDeA Decorrelation of data frames
improvedResiduals Estimate the significance of the reduction of predicted residuals

-- J --

jaccardMatrix Jaccard Index of two labeled sets

-- K --

KNN_method KNN Setup for KNN prediction

-- L --

LASSO_1SE GLMNET fit with feature selection"
LASSO_MIN GLMNET fit with feature selection"
listTopCorrelatedVariables List the variables that are highly correlated with each other
LM_RIDGE_MIN Ridge Linear Models

-- M --

modelFitting Fit a model to the data
mRMR.classic_FRESA FRESA.CAD wrapper of mRMRe::mRMR.classic

-- N --

NAIVE_BAYES Naive Bayes Modeling
nearestCentroid Class Label Based on the Minimum Mahalanobis Distance
nearestNeighborImpute nearest neighbor NA imputation

-- O --

OrdinalBenchmark Compare performance of different model fitting/filtering algorithms

-- P --

plot Plot ROC curves of bootstrap results
plot.bootstrapValidation_Bin Plot ROC curves of bootstrap results
plot.bootstrapValidation_Res Plot ROC curves of bootstrap results
plot.FRESA_benchmark Plot the results of the model selection benchmark
plotModels.ROC Plot test ROC curves of each cross-validation model
predict Linear or probabilistic prediction
predict.CLUSTER_CLASS Predicts 'ClustClass' outcome
predict.fitFRESA Linear or probabilistic prediction
predict.FRESAKNN Predicts 'class::knn' models
predict.FRESAsignature Predicts 'CVsignature' models
predict.FRESA_BESS Predicts 'BESS' models
predict.FRESA_FILTERFIT Predicts 'filteredFit' models
predict.FRESA_GLMNET Predicts GLMNET fitted objects
predict.FRESA_HLCM Predicts BOOST_BSWiMS models
predict.FRESA_NAIVEBAYES Predicts 'NAIVE_BAYES' models
predict.FRESA_RIDGE Predicts 'LM_RIDGE_MIN' models
predict.FRESA_SVM Predicts 'TUNED_SVM' models
predict.GMVE Predicts 'GMVECluster' clusters
predict.GMVE_BSWiMS Predicts 'GMVEBSWiMS' outcome
predictDecorrelate Decorrelation of data frames
predictionStats_binary Prediction Evaluation
predictionStats_ordinal Prediction Evaluation
predictionStats_regression Prediction Evaluation
predictionStats_survival Prediction Evaluation

-- R --

randomCV Cross Validation of Prediction Models
rankInverseNormalDataFrame rank-based inverse normal transformation of the data
RegresionBenchmark Compare performance of different model fitting/filtering algorithms
reportEquivalentVariables Report the set of variables that will perform an equivalent IDI discriminant function
residualForFRESA Return residuals from prediction

-- S --

signatureDistance Distance to the signature template
summary Returns the summary of the fit
summary.bootstrapValidation_Bin Generate a report of the results obtained using the bootstrapValidation_Bin function
summary.fitFRESA Returns the summary of the fit
summaryReport Report the univariate analysis, the cross-validation analysis and the correlation analysis

-- T --

timeSerieAnalysis Fit the listed time series variables to a given model
trajectoriesPolyFeatures Extract the per patient polynomial Coefficients of a feature trayectory
TUNED_SVM Tuned SVM

-- U --

uniRankVar Univariate analysis of features (additional values returned)
univariateRankVariables Univariate analysis of features
univariate_BinEnsemble Univariate Filters
univariate_correlation Univariate Filters
univariate_cox Univariate Filters
univariate_DTS Univariate Filters
univariate_KS Univariate Filters
univariate_Logit Univariate Filters
univariate_residual Univariate Filters
univariate_Strata Univariate Filters
univariate_tstudent Univariate Filters
univariate_Wilcoxon Univariate Filters
update Update the univariate analysis using new data
update.uniRankVar Update the univariate analysis using new data
updateModel.Bin Update the IDI/NRI-based model using new data or new threshold values
updateModel.Res Update the NeRI-based model using new data or new threshold values