The Tidymodels Extension for Time Series Modeling


[Up] [Top]

Documentation for package ‘modeltime’ version 1.1.1

Help Pages

A B C D E G I J L M N O P R S T U W X misc

-- A --

adam_fit_impl Low-Level ADAM function for translating modeltime to forecast
adam_params Tuning Parameters for ADAM Models
Adam_predict_impl Bridge prediction function for ADAM models
adam_reg General Interface for ADAM Regression Models
add_modeltime_model Add a Model into a Modeltime Table
arima_boost General Interface for "Boosted" ARIMA Regression Models
Arima_fit_impl Low-Level ARIMA function for translating modeltime to forecast
arima_params Tuning Parameters for ARIMA Models
Arima_predict_impl Bridge prediction function for ARIMA models
arima_reg General Interface for ARIMA Regression Models
arima_xgboost_fit_impl Bridge ARIMA-XGBoost Modeling function
arima_xgboost_predict_impl Bridge prediction Function for ARIMA-XGBoost Models
as_modeltime_table Scale forecast analysis with a Modeltime Table
auto_adam_fit_impl Low-Level ADAM function for translating modeltime to forecast
Auto_adam_predict_impl Bridge prediction function for AUTO ADAM models
auto_arima_fit_impl Low-Level ARIMA function for translating modeltime to forecast
auto_arima_xgboost_fit_impl Bridge ARIMA-XGBoost Modeling function

-- B --

bake_xreg_recipe Developer Tools for processing XREGS (Regressors)

-- C --

changepoint_num Tuning Parameters for Prophet Models
changepoint_range Tuning Parameters for Prophet Models
combination_method Tuning Parameters for TEMPORAL HIERARCHICAL Models
combine_modeltime_tables Combine multiple Modeltime Tables into a single Modeltime Table
control_fit_workflowset Control aspects of the training process
control_modeltime Control aspects of the training process
control_nested_fit Control aspects of the training process
control_nested_forecast Control aspects of the training process
control_nested_refit Control aspects of the training process
control_refit Control aspects of the training process
create_model_grid Helper to make 'parsnip' model specs from a 'dials' parameter grid
create_xreg_recipe Developer Tools for preparing XREGS (Regressors)
croston_fit_impl Low-Level Exponential Smoothing function for translating modeltime to forecast
croston_predict_impl Bridge prediction function for CROSTON models

-- D --

damping Tuning Parameters for Exponential Smoothing Models
damping_smooth Tuning Parameters for Exponential Smoothing Models
default_forecast_accuracy_metric_set Forecast Accuracy Metrics Sets
distribution Tuning Parameters for ADAM Models

-- E --

error Tuning Parameters for Exponential Smoothing Models
ets_fit_impl Low-Level Exponential Smoothing function for translating modeltime to forecast
ets_predict_impl Bridge prediction function for Exponential Smoothing models
exp_smoothing General Interface for Exponential Smoothing State Space Models
exp_smoothing_params Tuning Parameters for Exponential Smoothing Models
extended_forecast_accuracy_metric_set Forecast Accuracy Metrics Sets
extend_timeseries Prepared Nested Modeltime Data
extract_nested_best_model_report Log Extractor Functions for Modeltime Nested Tables
extract_nested_error_report Log Extractor Functions for Modeltime Nested Tables
extract_nested_future_forecast Log Extractor Functions for Modeltime Nested Tables
extract_nested_modeltime_table Log Extractor Functions for Modeltime Nested Tables
extract_nested_test_accuracy Log Extractor Functions for Modeltime Nested Tables
extract_nested_test_forecast Log Extractor Functions for Modeltime Nested Tables
extract_nested_test_split Log Extractor Functions for Modeltime Nested Tables
extract_nested_train_split Log Extractor Functions for Modeltime Nested Tables

-- G --

get_arima_description Get model descriptions for Arima objects
get_model_description Get model descriptions for parsnip, workflows & modeltime objects
get_tbats_description Get model descriptions for TBATS objects
growth Tuning Parameters for Prophet Models

-- I --

information_criteria Tuning Parameters for ADAM Models
is_calibrated Test if a Modeltime Table has been calibrated
is_modeltime_model Test if object contains a fitted modeltime model
is_modeltime_table Test if object is a Modeltime Table
is_residuals Test if a table contains residuals.

-- J --

juice_xreg_recipe Developer Tools for processing XREGS (Regressors)

-- L --

load_namespace These are not intended for use by the general public.
log_extractors Log Extractor Functions for Modeltime Nested Tables

-- M --

m750 The 750th Monthly Time Series used in the M4 Competition
m750_models Three (3) Models trained on the M750 Data (Training Set)
m750_splits The results of train/test splitting the M750 Data
m750_training_resamples The Time Series Cross Validation Resamples the M750 Data (Training Set)
maape Mean Arctangent Absolute Percentage Error
maape.data.frame Mean Arctangent Absolute Percentage Error
maape_vec Mean Arctangent Absolute Percentage Error
make_ts_splits Generate a Time Series Train/Test Split Indicies
metric_sets Forecast Accuracy Metrics Sets
modeltime_accuracy Calculate Accuracy Metrics
modeltime_calibrate Preparation for forecasting
modeltime_fit_workflowset Fit a 'workflowset' object to one or multiple time series
modeltime_forecast Forecast future data
modeltime_nested_fit Fit Tidymodels Workflows to Nested Time Series
modeltime_nested_forecast Modeltime Nested Forecast
modeltime_nested_refit Refits a Nested Modeltime Table
modeltime_nested_select_best Select the Best Models from Nested Modeltime Table
modeltime_refit Refit one or more trained models to new data
modeltime_residuals Extract Residuals Information
modeltime_residuals_test Apply Statistical Tests to Residuals
modeltime_table Scale forecast analysis with a Modeltime Table

-- N --

naive_fit_impl Low-Level NAIVE Forecast
naive_predict_impl Bridge prediction function for NAIVE Models
naive_reg General Interface for NAIVE Forecast Models
nest_timeseries Prepared Nested Modeltime Data
new_modeltime_bridge Constructor for creating modeltime models
nnetar_fit_impl Low-Level NNETAR function for translating modeltime to forecast
nnetar_params Tuning Parameters for NNETAR Models
nnetar_predict_impl Bridge prediction function for ARIMA models
nnetar_reg General Interface for NNETAR Regression Models
non_seasonal_ar Tuning Parameters for ARIMA Models
non_seasonal_differences Tuning Parameters for ARIMA Models
non_seasonal_ma Tuning Parameters for ARIMA Models
num_networks Tuning Parameters for NNETAR Models

-- O --

outliers_treatment Tuning Parameters for ADAM Models

-- P --

panel_tail Filter the last N rows (Tail) for multiple time series
parallel_start Start parallel clusters using 'parallel' package
parallel_stop Start parallel clusters using 'parallel' package
parse_index Developer Tools for parsing date and date-time information
parse_index_from_data Developer Tools for parsing date and date-time information
parse_period_from_index Developer Tools for parsing date and date-time information
plot_modeltime_forecast Interactive Forecast Visualization
plot_modeltime_residuals Interactive Residuals Visualization
pluck_modeltime_model Extract model by model id in a Modeltime Table
pluck_modeltime_model.mdl_time_tbl Extract model by model id in a Modeltime Table
predict.recursive Recursive Model Predictions
predict.recursive_panel Recursive Model Predictions
prep_nested Prepared Nested Modeltime Data
prior_scale_changepoints Tuning Parameters for Prophet Models
prior_scale_holidays Tuning Parameters for Prophet Models
prior_scale_seasonality Tuning Parameters for Prophet Models
probability_model Tuning Parameters for ADAM Models
prophet_boost General Interface for Boosted PROPHET Time Series Models
prophet_fit_impl Low-Level PROPHET function for translating modeltime to PROPHET
prophet_params Tuning Parameters for Prophet Models
prophet_predict_impl Bridge prediction function for PROPHET models
prophet_reg General Interface for PROPHET Time Series Models
prophet_xgboost_fit_impl Low-Level PROPHET function for translating modeltime to Boosted PROPHET
prophet_xgboost_predict_impl Bridge prediction function for Boosted PROPHET models
pull_modeltime_model Extract model by model id in a Modeltime Table
pull_modeltime_residuals Extracts modeltime residuals data from a Modeltime Model
pull_parsnip_preprocessor Pulls the Formula from a Fitted Parsnip Model Object

-- R --

recipe_helpers Developer Tools for processing XREGS (Regressors)
recursive Create a Recursive Time Series Model from a Parsnip or Workflow Regression Model
regressors_treatment Tuning Parameters for ADAM Models

-- S --

season Tuning Parameters for Exponential Smoothing Models
seasonality_daily Tuning Parameters for Prophet Models
seasonality_weekly Tuning Parameters for Prophet Models
seasonality_yearly Tuning Parameters for Prophet Models
seasonal_ar Tuning Parameters for ARIMA Models
seasonal_differences Tuning Parameters for ARIMA Models
seasonal_ma Tuning Parameters for ARIMA Models
seasonal_period Tuning Parameters for Time Series (ts-class) Models
seasonal_reg General Interface for Multiple Seasonality Regression Models (TBATS, STLM)
select_order Tuning Parameters for ADAM Models
smooth_fit_impl Low-Level Exponential Smoothing function for translating modeltime to forecast
smooth_level Tuning Parameters for Exponential Smoothing Models
smooth_predict_impl Bridge prediction function for Exponential Smoothing models
smooth_seasonal Tuning Parameters for Exponential Smoothing Models
smooth_trend Tuning Parameters for Exponential Smoothing Models
snaive_fit_impl Low-Level SNAIVE Forecast
snaive_predict_impl Bridge prediction function for SNAIVE Models
split_nested_timeseries Prepared Nested Modeltime Data
stlm_arima_fit_impl Low-Level stlm function for translating modeltime to forecast
stlm_arima_predict_impl Bridge prediction function for ARIMA models
stlm_ets_fit_impl Low-Level stlm function for translating modeltime to forecast
stlm_ets_predict_impl Bridge prediction function for ARIMA models
summarize_accuracy_metrics Summarize Accuracy Metrics

-- T --

table_modeltime_accuracy Interactive Accuracy Tables
tbats_fit_impl Low-Level tbats function for translating modeltime to forecast
tbats_predict_impl Bridge prediction function for ARIMA models
temporal_hierarchy General Interface for Temporal Hierarchical Forecasting (THIEF) Models
temporal_hierarchy_params Tuning Parameters for TEMPORAL HIERARCHICAL Models
temporal_hier_fit_impl Low-Level Temporaral Hierarchical function for translating modeltime to forecast
temporal_hier_predict_impl Bridge prediction function for TEMPORAL HIERARCHICAL models
theta_fit_impl Low-Level Exponential Smoothing function for translating modeltime to forecast
theta_predict_impl Bridge prediction function for THETA models
time_series_params Tuning Parameters for Time Series (ts-class) Models
trend Tuning Parameters for Exponential Smoothing Models
trend_smooth Tuning Parameters for Exponential Smoothing Models
type_sum.mdl_time_tbl Succinct summary of Modeltime Tables

-- U --

update_modeltime_description Update the model description by model id in a Modeltime Table
update_modeltime_model Update the model by model id in a Modeltime Table
update_model_description Update the model description by model id in a Modeltime Table
use_constant Tuning Parameters for ADAM Models
use_model Tuning Parameters for TEMPORAL HIERARCHICAL Models

-- W --

window_function_fit_impl Low-Level Window Forecast
window_function_predict_impl Bridge prediction function for window Models
window_reg General Interface for Window Forecast Models

-- X --

xgboost_impl Wrapper for parsnip::xgb_train
xgboost_predict Wrapper for xgboost::predict

-- misc --

.prepare_panel_transform Prepare Recursive Transformations
.prepare_transform Prepare Recursive Transformations