Smoothed Empirical Likelihood


[Up] [Top]

Documentation for package ‘smoothemplik’ version 0.0.14

Help Pages

brentMin Brent's local minimisation
brentZero Brent's local root search
bw.CV Bandwidth Selectors for Kernel Density Estimation
bw.rot Silverman's rule-of-thumb bandwidth
ctracelr Compute empirical likelihood on a trajectory
dampedNewton Damped Newton optimiser
DCV Density cross-validation
getSELWeights Construct memory-efficient weights for estimation
interpTwo Monotone interpolation between a function and a reference parabola
kernelDensity Kernel density estimation
kernelDiscreteDensitySmooth Density and/or kernel regression estimator with conditioning on discrete variables
kernelFun Basic univatiate kernel functions
kernelMixedDensity Density with conditioning on discrete and continuous variables
kernelMixedSmooth Smoothing with conditioning on discrete and continuous variables
kernelSmooth Local kernel smoother
kernelWeights Kernel-based weights
logTaylor Modified logarithm with derivatives
LSCV Least-squares cross-validation function for the Nadaraya-Watson estimator
pit Probability integral transform
prepareKernel Check the data for kernel estimation
smoothEmplik Smoothed Empirical Likelihood function value
sparseMatrixToList Convert a weight vector to list
sparseVectorToList Convert a weight vector to list
svdlm Least-squares regression via SVD
tlog d-th derivative of the k-th-order Taylor expansion of log(x)
trimmed.weighted.mean Weighted trimmed mean
weightedEL Self-concordant multi-variate empirical likelihood with counts
weightedEL0 Uni-variate empirical likelihood via direct lambda search
weightedEuL Multi-variate Euclidean likelihood with analytical solution