
Package ‘gimap’
February 19, 2025

Type Package

Title Calculate Genetic Interactions for Paired CRISPR Targets

Version 1.0.2

Description Helps find meaningful patterns in complex genetic experi-
ments. First gimap takes data from paired CRISPR (Clustered regularly interspaced short palin-
dromic repeats) screens that has been pre-processed to counts table of paired gRNA (guide Ri-
bonucleic Acid) reads. The in-
put data will have cell counts for how well cells grow (or don't grow) when differ-
ent genes or pairs of genes are disabled. The output of the 'gimap' package is genetic interac-
tion scores which are the distance between the observed CRISPR score and the ex-
pected CRISPR score. The expected CRISPR scores are what we expect for the CRISPR val-
ues to be for two unrelated genes. The further away an observed CRISPR score is from its ex-
pected score the more we suspect genetic interaction. The work in this pack-
age is based off of original research from the Alice Berger lab at Fred Hutchinson Cancer Cen-
ter (2021) <doi:10.1016/j.celrep.2021.109597>.

License GPL-3

URL https://github.com/FredHutch/gimap

BugReports https://github.com/FredHutch/gimap/issues

Imports readr, dplyr, tidyr, rmarkdown, vroom, ggplot2, magrittr,
pheatmap, purrr, janitor, broom, utils, stats, stringr, httr,
jsonlite, openssl

Suggests testthat (>= 3.0.0), roxygen2, kableExtra, knitr

Config/testthat/edition 3

Encoding UTF-8

RoxygenNote 7.3.2

VignetteBuilder knitr

NeedsCompilation no

Author Candace Savonen [aut, cre],
Phoebe Parrish [aut],
Kate Isaac [aut],
Howard Baek [aut],

1

https://doi.org/10.1016/j.celrep.2021.109597
https://github.com/FredHutch/gimap
https://github.com/FredHutch/gimap/issues

2 Contents

Daniel Grosso [aut],
Siobhan O'Brien [aut],
Alice Berger [aut]

Maintainer Candace Savonen <cansav09@gmail.com>

Depends R (>= 3.5.0)

Repository CRAN

Date/Publication 2025-02-18 23:40:01 UTC

Contents

calc_gi . 3
cn_setup . 4
crtl_genes . 4
encrypt_creds_path . 5
example_data_folder . 5
get_example_data . 5
get_figshare . 6
gimap_annotate . 7
gimap_filter . 9
gimap_normalize . 11
gimap_object . 13
gimap_rep_stats . 13
key_encrypt_creds_path . 13
plot_crispr . 14
plot_exp_v_obs_scatter . 15
plot_rank_scatter . 16
plot_targets_bar . 17
plot_theme . 18
plot_volcano . 18
qc_cdf . 19
qc_constructs_countzero_bar . 20
qc_cor_heatmap . 21
qc_filter_plasmid . 22
qc_filter_zerocounts . 23
qc_plasmid_histogram . 24
qc_sample_hist . 25
qc_variance_hist . 25
run_qc . 26
setup_data . 27
supported_cell_lines . 29
tpm_setup . 29

Index 30

calc_gi 3

calc_gi Calculate Genetic Interaction scores

Description

Create results table that has CRISPR scores, Wilcoxon rank-sum test and t tests. The output of the
‘gimap‘ package is genetic interaction scores which _is the distance between the observed CRISPR
score and the expected CRISPR score._ The expected CRISPR scores are what we expect for the
CRISPR values should two genes be unrelated to each other. The further away an observed CRISPR
scoreis from its expected the more we suspect genetic interaction. This can be true in a positive way
(a CRISPR knockout pair caused more cell proliferation than expected) or in a negative way (a
CRISPR knockout pair caused more cell lethality than expected).

The genetic interaction scores are based on a linear model calculated for each sample where ‘ob-
served_crispr_single‘ is the outcome variable and ‘expected_crispr_single‘ is the predictor variable.
For each sample: lm(observed_crispr_single ~ expected_crispr_single)

Using ‘y = mx+b‘, we can fill in the following values: * ‘y‘ = observed CRISPR score * ‘x‘ =
expected CRISPR score * ‘m‘ = slope from linear model for this sample * ‘b‘ = intercept from
linear model for this sample

The intercept and slope from this linear model are used to adjust the CRISPR scores for each
sample: single target gi score = observed single crispr - (intercept + slope * expected single crispr)
double_target_gi_score = double crispr score - (intercept + slope * expected double crispr) These
single and double target genetic interaction scores are calculated at the construct level and are then
summarized using a t-test to see if the the distribution of the set of double targeting constructs is
significantly different than the overall distribution single targeting constructs. After multiple testing
correction, FDR values are reported. Low FDR value for a double construct means high suspicion
of paralogs.

Usage

calc_gi(.data = NULL, gimap_dataset)

Arguments

.data Data can be piped in with tidyverse pipes from function to function. But the data
must still be a gimap_dataset

gimap_dataset A special dataset structure that is setup using the ‘setup_data()‘ function.

Value

A gimap dataset with statistics and genetic interaction scores calculated. Overall results in the
returned object can be obtained using gimap_dataset$overall_results Whereas target level genetic
interaction scores can be retrieved using ‘gimap_dataset$gi_scores‘.

4 crtl_genes

Examples

gimap_dataset <- get_example_data("gimap") %>%
gimap_filter() %>%
gimap_annotate(cell_line = "HELA") %>%
gimap_normalize(
timepoints = "day",
missing_ids_file = tempfile()

) %>%
calc_gi()

saveRDS(gimap_dataset, file.path(tempdir(), "gimap_dataset_final.RDS"))

cn_setup Download and set up DepMap CN

Description

This function sets up the tpm data from DepMap is called by the ‘gimap_annotate()‘ function if the
cn_annotate = TRUE

Usage

cn_setup(overwrite = TRUE)

Arguments

overwrite Should the files be redownloaded?

crtl_genes Download and set up control genes

Description

This function sets up the control genes file from DepMap is called by the ‘gimap_annotate()‘

Usage

crtl_genes(overwrite = TRUE)

Arguments

overwrite Should the file be redownloaded and reset up?

encrypt_creds_path 5

encrypt_creds_path Default creds path

Description

Default creds path

Usage

encrypt_creds_path(app_name)

Arguments

app_name What app set up are you looking for? Supported apps are ’google’ ’calendly’
and ’github’

example_data_folder Get file path to an default credentials RDS

Description

Get file path to an default credentials RDS

Usage

example_data_folder()

Value

Returns the file path to folder where the example data is stored

get_example_data Returns example data for package

Description

This function loads and returns example data for the package. Which dataset is returned must be
specified. Data will be downloaded from Figshare the first time it is used.

Usage

get_example_data(which_data)

6 get_figshare

Arguments

which_data options are "count" or "meta"; specifies which example dataset should be re-
turned

Value

the respective example data either as a data frame or a specialized gimap_dataset depending on
what was requested.

Examples

counts_timepoint <- get_example_data("count")
counts_treatment <- get_example_data("count_treatment")
gimap_timepoint_dataset <- get_example_data("gimap")
gimap_treatment_dataset <- get_example_data("gimap_treatment")
metadata <- get_example_data("meta")
annotation <- get_example_data("annotation")

get_figshare Handler function for GET requests from Figshare

Description

Handler function for GET requests from Figshare

Usage

get_figshare(
file_name = NA,
item = "19700056",
output_dir = NULL,
return_list = FALSE

)

Arguments

file_name Which item are we downloading?

item What is the item we are retrieving?

output_dir Where should the file be saved?

return_list Should the list of files be returned instead of the file

Value

Downloads necessary annotation files from Figshare and reads them in as data frames.

gimap_annotate 7

Examples

get_figshare(
return_list = TRUE
)

get_figshare(
file_name = "Achilles_common_essentials.csv",
output_dir = tempdir()
)

gimap_annotate Annotate gimap data

Description

In this function, a ‘gimap_dataset‘ is annotated as far as which genes should be used as controls.

Usage

gimap_annotate(
.data = NULL,
gimap_dataset,
annotation_file = NULL,
control_genes = NULL,
cell_line_annotate = TRUE,
custom_tpm = NULL,
cell_line = NULL

)

Arguments

.data Data can be piped in with tidyverse pipes from function to function. But the data
must still be a gimap_dataset

gimap_dataset A special dataset structure that is setup using the ‘setup_data()‘ function.

annotation_file

If no file is given, will attempt to use the design file from https://media.addgene.org/cms/filer_public/a9/9a/
a99a9328-324b-42ff-8ccc-30c544b899e4/pgrna_library.xlsx

control_genes A vector of gene symbols (e.g. AAMP) that should be labeled as control genes.
These will be used for log fold change calculations. If no list is given then
DepMap Public 23Q4 Achilles_common_essentials.csv is used https://depmap.org/portal/download/all/

cell_line_annotate

(Optional) TRUE or FALSE you’d also like to have cell_line_annotation from
DepMap.

8 gimap_annotate

custom_tpm (Optional) You may supply your own data frame of transcript per million ex-
pression to be used for this calculation if you can’t or don’t want to use DepMap
data annotation for your cell_line. This data frame needs to have two columns:
’log2_tpm’ that has the log2 tpm expression data for this cell line and and
’genes’ which needs to be gene symbols that match those in the data. eg.
"NDL1". Note that you can use custom_tpm with cell_line_annotate but your
custom_tpm will be used instead of the tpm data from DepMap. However other
data from DepMap like CN will be added.

cell_line which cell line are you using? (e.g., HELA, PC9, etc.). Required argument if
cell_line_annotate is TRUE.

Value

A gimap_dataset with annotation data frame that can be retrieve by using gimap_dataset$annotation.
This will contain information about your included genes in the set.

Examples

Not run:

By default DepMap annotation will be used to determine genes which are
unexpressed. In the `gimap_normalize` this will by default be used to
normalize to.
gimap_dataset <- get_example_data("gimap") %>%

gimap_filter() %>%
gimap_annotate(cell_line = "HELA")

You can also say cell_line_annotate = false if you don't want to use DepMap
annotation BUT if you don't also specify that you say you are
`normalize_by_unexpressed = FALSE` in the normalize step you will get a
warning.
gimap_dataset <- get_example_data("gimap") %>%

gimap_filter() %>%
gimap_annotate(cell_line_annotate = FALSE) %>%
gimap_normalize(
timepoints = "day",
normalize_by_unexpressed = FALSE,
missing_ids_file = tempfile()

)

CUSTOM TPM example
Lastly, this is also an option:
where custom data is provided to `custom_tpm` is a data frame with
`genes` and `log2_tpm` as the columns.
gimap_dataset <- get_example_data("gimap") %>%

gimap_filter() %>%
gimap_annotate(
cell_line = "HELA",
custom_tpm = custom_tpm) %>%

gimap_normalize(timepoints = "day",

gimap_filter 9

missing_ids_file = tempfile()
)

End(Not run)

gimap_filter A function to run filtering

Description

This function applies filters to the gimap data. By default it runs both the zero count (across all
samples) and the low plasmid cpm filters, but users can select a subset of these filters or even adjust
the behavior of each filter

Usage

gimap_filter(
.data = NULL,
gimap_dataset,
filter_type = "both",
cutoff = NULL,
filter_zerocount_target_col = NULL,
filter_plasmid_target_col = NULL,
filter_replicates_target_col = NULL,
min_n_filters = 1

)

Arguments

.data Data can be piped in with tidyverse pipes from function to function. But the data
must still be a gimap_dataset

gimap_dataset A special dataset structure that is setup using the ‘setup_data()‘ function.

filter_type Can be one of the following: ‘zero_count_only‘, ‘low_plasmid_cpm_only‘ or
‘both‘. Potentially in the future also ‘rep_variation‘, ‘zero_in_last_time_point‘
or a vector that includes multiple of these filters.

cutoff default is NULL, relates to the low_plasmid_cpm filter; the cutoff for low log2
CPM values for the plasmid time period; if not specified, The lower outlier
(defined by taking the difference of the lower quartile and 1.5 * interquartile
range) is used

filter_zerocount_target_col

default is NULL; Which sample column(s) should be used to check for counts
of 0? If NULL and not specified, downstream analysis will select all sample
columns

filter_plasmid_target_col

default is NULL, and if NULL, will select the first column only; this parameter
specifically should be used to specify the plasmid column(s) that will be selected

10 gimap_filter

filter_replicates_target_col

default is NULL, Which sample columns are the final time point replicates; If
NULL, the last 3 sample columns are used. This is only used by this function to
save a list of which pgRNA IDs have a zero count for all of these samples.

min_n_filters default is 1; this parameter defines at least how many/the minimum number of
independent filters have to flag a pgRNA construct before the construct is filtered
when using a combination of filters You should decide on the appropriate filter
based on the results of your QC report.

Value

a filtered version of the gimap_dataset returned in the $filtered_data section filter_step_run is a
boolean reporting if the filter step was run or not (since it’s optional) metadata_pg_ids is a subset the
pgRNA IDs such that these are the ones that remain in the dataset following completion of filtering
transformed_log2_cpm is a subset the log2_cpm data such that these are the ones that remain in the
dataset following completion of filtering removed_pg_ids is a record of which pgRNAs are filtered
out once filtering is complete all_reps_zerocount_ids is not actually filtered data necessarily. Instead
it’s just a record of which pgRNAs have a zero count in all final timepoint replicates

Examples

gimap_dataset <- get_example_data("gimap") %>%
gimap_filter()

To see filtered data
gimap_dataset$filtered_data

If you want to only use a single filter or some subset,
specify which using the filter_type parameter
gimap_dataset <- get_example_data("gimap") %>%

gimap_filter(filter_type = "zero_count_only")
or
gimap_dataset <- get_example_data("gimap") %>%

gimap_filter(filter_type = "low_plasmid_cpm_only")

If you want to use multiple filters and more than one to flag a pgRNA
construct before it's filtered out, use the `min_n_filters` argument
gimap_dataset <- get_example_data("gimap") %>%
gimap_filter(

filter_type = "both",
min_n_filters = 2

)

You can also specify which columns the filters will be applied to
gimap_dataset <- get_example_data("gimap") %>%
gimap_filter(
filter_type = "zero_count_only",
filter_zerocount_target_col = c(1, 2)

)

gimap_normalize 11

gimap_normalize Normalize Log fold changes

Description

This calculates the log fold change for a gimap dataset based on the annotation and metadata pro-
vided. gimap takes in a counts matrix that represents the number of cells that have each type of
pgRNA this data needs some normalization before CRISPR scores and Genetic Interaction scores
can be calculated.

There are four steps of normalization. 1. ‘Calculate log2CPM‘ - First we account for different
read depths across samples and transforms data to log2 counts per million reads. ‘log2((counts
/ total counts for sample)) * 1 million) + 1)‘ 2. ‘Calculate log2 fold change‘ - This is done by
subtracting the log2CPM for the pre-treatment from each sample. control is what is highlighted.
The pretreatment is the day 0 of CRISPR treatment, before CRISPR pgRNAs have taken effect.
‘log2FC = log2CPM for each sample - pretreament log2CPM‘

3. ‘Normalize by negative and positive controls‘ - Calculate a negative control median for each
sample and a positive control median for each sample and divide each log2FC by this value. log2FC
adjusted = log2FC / (median negative control for a sample - median positive control for a sample)

Usage

gimap_normalize(
.data = NULL,
gimap_dataset,
normalize_by_unexpressed = TRUE,
timepoints = NULL,
treatments = NULL,
control_name = NULL,
num_ids_wo_annot = 20,
rm_ids_wo_annot = TRUE,
missing_ids_file = "missing_ids_file.csv",
overwrite = TRUE

)

Arguments

.data Data can be piped in with a tidyverse pipe from function to function. But the
data must still be a gimap_dataset

gimap_dataset A special dataset structure that is setup using the ‘setup_data()‘ function.
normalize_by_unexpressed

TRUE/FALSE crispr data should be normalized so that the median of unex-
pressed controls is 0. For this to happen set this to TRUE but you need to have
added TPM data in the gimap_annotate step using cell_line_annotation or cus-
tom_tpm.

12 gimap_normalize

timepoints Specifies the column name of the metadata set up in ‘$metadata$sample_metadata‘
that has a factor that represents the timepoints. Timepoints will be made into
three categories: plasmid for the earliest time point, early for all middle time-
points and late for the latest timepoints. The late timepoints will be the focus
for the calculations. The column used for timepoints must be numeric or at least
ordinal.

treatments Specifies the column name of the metadata set up in ‘$metadata$sample_metadata‘
that has a factor that represents column that specifies the treatment applied to
each. The replicates will be kept collapsed to an average.

control_name A name that specifies the data either in the treatments column that should be used
as the control. This could be the Day 0 of treatment or an untreated sample. For
timepoints testing it will be assumed that the mininmum timepoint is the control.

num_ids_wo_annot

default is 20; the number of pgRNA IDs to display to console if they don’t have
corresponding annotation data; ff there are more IDs without annotation data
than this number, the output will be sent to a file rather than the console.

rm_ids_wo_annot

default is TRUE; whether or not to filter out pgRNA IDs from the input dataset
that don’t have corresponding annotation data available

missing_ids_file

If there are missing IDs and a file is saved, where do you want this file to be
saved? Provide a file path.

overwrite Should existing normalized_log_fc data in the gimap_dataset be overwritten?

Value

A gimap_dataset with normalized log FC as a data frame that can be retrieve by using gimap_dataset$normalized_log_fc.
This will contain log2FC adjusted stored in a column named ‘log_adj‘ and the CRISPR scores stored
in a column named ‘crispr_score‘. genes in the set.

Examples

gimap_dataset <- get_example_data("gimap") %>%
gimap_filter() %>%
gimap_annotate(cell_line = "HELA") %>%
gimap_normalize(

timepoints = "day",
missing_ids_file = tempfile()

)

gimap_object 13

gimap_object Make an empty gimap dataset object

Description

This function makes an empty gimap data object

Usage

gimap_object()

Value

an empty ‘gimap_dataset‘ which is a named list which will be filled by various ‘gimap‘ functions.

gimap_rep_stats Do tests for each replicate –an internal function used by calc_gi()
function

Description

Create results table that has t test p values

Usage

gimap_rep_stats(replicate, gi_calc_double, gi_calc_single)

Arguments

replicate a name of a replicate to filter out from gi_calc_adj

gi_calc_double a data.frame with adjusted double gi scores

gi_calc_single a data.frame with adjusted single gi scores

key_encrypt_creds_path

Get file path to an key encryption RDS

Description

Get file path to an key encryption RDS

Usage

key_encrypt_creds_path()

14 plot_crispr

plot_crispr Plot CRISPR scores after normalization

Description

This plots normalization after CRISPR scores have been calculated

Usage

plot_crispr(.data = NULL, gimap_dataset, output_file = "crispr_norm_plot.png")

Arguments

.data Data can be piped in with tidyverse pipes from function to function. But the data
must still be a gimap_dataset

gimap_dataset A special dataset structure that is setup using the ‘setup_data()‘ function.

output_file A file for the output

Value

A ggplot2 boxplot of the CRISPR scores separated by the type of target. Can be used to determine
the normalization has proceeded properly.

Examples

gimap_dataset <- get_example_data("gimap") %>%
gimap_filter() %>%
gimap_annotate(cell_line = "HELA") %>%
gimap_normalize(

timepoints = "day",
missing_ids_file = tempfile()

)

Plot:
plot_crispr(gimap_dataset)

plot_exp_v_obs_scatter 15

plot_exp_v_obs_scatter

Expected vs Observed CRISPR Scatterplot

Description

This plot is meant to be functionally equivalent to Fig S5K (for HeLa, equivalent of Fig 3a for PC9).
Scatter plot of target-level observed versus expected CRISPR scores in the screen. The solid line is
the linear regression line for the negative control (single KO) pgRNAs, while dashed lines indicate
the lower and upper quartile residuals.

Usage

plot_exp_v_obs_scatter(gimap_dataset, facet_rep = TRUE, reps_to_drop = "")

Arguments

gimap_dataset A special dataset structure that is originally setup using ‘setup_data()‘ and has
had gi scores calculated with ‘calc_gi()‘.

facet_rep Should the replicates be wrapped with facet_wrap()?

reps_to_drop Names of replicates that should be not plotted (Optional)

Value

A ggplot2 scatterplot of the target level observed vs expected CRISPR scores.

Examples

gimap_dataset <- get_example_data("gimap") %>%
gimap_filter() %>%
gimap_annotate(cell_line = "HELA") %>%
gimap_normalize(

timepoints = "day",
missing_ids_file = tempfile()

) %>%
calc_gi()

To plot results
plot_exp_v_obs_scatter(gimap_dataset, reps_to_drop = "Day05_RepA_early")
plot_rank_scatter(gimap_dataset, reps_to_drop = "Day05_RepA_early")
plot_volcano(gimap_dataset, reps_to_drop = "Day05_RepA_early")

16 plot_rank_scatter

plot_rank_scatter Rank plot for target-level GI scores

Description

This plot is meant to be functionally equivalent to Fig 5a (for HeLa, equivalent of Fig 3c for PC9).
Rank plot of target-level GI scores. Dashed horizontal lines are for GI scores of 0.25 and -0.5

Usage

plot_rank_scatter(gimap_dataset, reps_to_drop = "")

Arguments

gimap_dataset A special dataset structure that is originally setup using ‘setup_data()‘ and has
had gi scores calculated with ‘calc_gi()‘.

reps_to_drop Names of replicates that should be not plotted (Optional)

Value

A ggplot2 rankplot of the target level genetic interaction scores.

Examples

gimap_dataset <- get_example_data("gimap") %>%
gimap_filter() %>%
gimap_annotate(cell_line = "HELA") %>%
gimap_normalize(

timepoints = "day"
) %>%
calc_gi()

To plot results
plot_exp_v_obs_scatter(gimap_dataset, reps_to_drop = "Day05_RepA_early")
plot_rank_scatter(gimap_dataset, reps_to_drop = "Day05_RepA_early")
plot_volcano(gimap_dataset, reps_to_drop = "Day05_RepA_early")

plot_targets_bar 17

plot_targets_bar Target bar plot for CRISPR scores

Description

This plot is for when you’d like to examine a target pair specifically – meant to be functionally
equivalent to Fig 3b CRISPR scores for representative synthetic lethal paralog pairs. Data shown
are the mean CRISPR score for each single KO or DKO target across three biological replicates
with replicate data shown in overlaid points.

Usage

plot_targets_bar(gimap_dataset, target1, target2, reps_to_drop = "")

Arguments

gimap_dataset A special dataset structure that is originally setup using ‘setup_data()‘ and has
had gi scores calculated with ‘calc_gi()‘.

target1 Name of the first target to be plotted e.g.

target2 Name of the second target to be plotted e.g.

reps_to_drop Names of replicates that should be not plotted (Optional)

Value

A ggplot2 bar plot of the specific target’s genetic interaction scores.

Examples

gimap_dataset <- get_example_data("gimap") %>%
gimap_filter() %>%
gimap_annotate(cell_line = "HELA") %>%
gimap_normalize(

timepoints = "day"
) %>%
calc_gi()

To plot results, pick out two targets from the gi_score table
head(dplyr::arrange(gimap_dataset$gi_score, fdr))

"NDEL1_NDE1" is top result so let's plot that
plot_targets_bar(gimap_dataset, target1 = "NDEL1", target2 = "NDE1")

18 plot_volcano

plot_theme Standardized plot theme

Description

this is a ggplot2 standardized plot theme for this package

Usage

plot_theme()

Value

A ggplot2 theme that can be used on the plots.

plot_volcano Volcano plot for GI scores

Description

This plot is meant to be functionally equivalent to Fig 5b (for HeLa, equivalent of Fig 3d for PC9).
Volcano plot of target-level GI scores Blue points are synthetic lethal paralog GIs with GI < 0.5 and
FDR < 0.1; red points are buffering paralog GIs with GI > 0.25 and FDR < 0.1.

Usage

plot_volcano(gimap_dataset, facet_rep = TRUE, reps_to_drop = "")

Arguments

gimap_dataset A special dataset structure that is originally setup using ‘setup_data()‘ and has
had gi scores calculated with ‘calc_gi()‘.

facet_rep Should the replicates be wrapped with facet_wrap()?

reps_to_drop Names of replicates that should be not plotted (Optional)

Value

A ggplot2 volcano plot of the target level genetic interaction scores.

qc_cdf 19

Examples

gimap_dataset <- get_example_data("gimap") %>%
gimap_filter() %>%
gimap_annotate(cell_line = "HELA") %>%
gimap_normalize(
timepoints = "day"

) %>%
calc_gi()

To plot results
plot_exp_v_obs_scatter(gimap_dataset, reps_to_drop = "Day05_RepA_early")
plot_rank_scatter(gimap_dataset, reps_to_drop = "Day05_RepA_early")
plot_volcano(gimap_dataset, reps_to_drop = "Day05_RepA_early")

qc_cdf Create a CDF for the pgRNA normalized counts

Description

This function uses pivot_longer to rearrange the data for plotting and then plots a CDF of the
normalized counts

Usage

qc_cdf(gimap_dataset, wide_ar = 0.75)

Arguments

gimap_dataset The special gimap_dataset from the ‘setup_data‘ function which contains the
transformed data

wide_ar aspect ratio, default is 0.75

Value

counts_cdf a ggplot

Examples

gimap_dataset <- get_example_data("gimap")
qc_cdf(gimap_dataset)

20 qc_constructs_countzero_bar

qc_constructs_countzero_bar

Create a bar graph that shows the number of replicates with a zero
count for pgRNA constructs flagged by the zero count filter

Description

This bar graph first uses the specified ‘filter_zerocount_target_col‘ columns to flag pgRNA con-
structs that have a raw count of 0 in any one of those columns/samples of interest. Then, it looks
at the specified columns for the final day/sample replicates (‘filter_replicates_target_col‘) to see for
pgRNAs that were flagged by the filter, how many of those replicate samples had raw counts of
zeros. And it produces a bar plot reporting on this. Note, if you select samples/columns to check
with the filter that don’t have the replicate samples, this graph won’t be informative. So you want
there to be overlap between the columns for the two target_col parameters to have an informative
graph

Usage

qc_constructs_countzero_bar(
gimap_dataset,
filter_zerocount_target_col = NULL,
filter_replicates_target_col = NULL,
wide_ar = 0.75

)

Arguments

gimap_dataset The special gimap_dataset from the ‘setup_data‘ function which contains the
transformed data

filter_zerocount_target_col

default is NULL; Which sample column(s) should be used to check for counts
of 0? If NULL and not specified, downstream analysis will select all sample
columns

filter_replicates_target_col

default is NULL; Which sample columns are replicates whose variation you’d
like to analyze; If NULL, the last 3 sample columns are used

wide_ar aspect ratio, default is 0.75

Value

a ggplot barplot

Examples

gimap_dataset <- get_example_data("gimap")
qc_constructs_countzero_bar(gimap_dataset)

qc_cor_heatmap 21

or if you want to select a specific column(s) for
looking at where/which samples zero counts are present for
qc_constructs_countzero_bar(gimap_dataset, filter_zerocount_target_col = 3:5)

or if you want to select a specific column(s) for the final day/sample replicates
qc_constructs_countzero_bar(gimap_dataset, filter_replicates_target_col = 3:5)

or some combination of those
qc_constructs_countzero_bar(gimap_dataset,

filter_zerocount_target_col = 3:5,
filter_replicates_target_col = 3:5

)

qc_cor_heatmap Create a correlation heatmap for the pgRNA CPMs

Description

This function uses the ‘cor‘ function to find correlations between the sample CPM’s and then plots
a heatmap of these

Usage

qc_cor_heatmap(gimap_dataset)

Arguments

gimap_dataset The special gimap_dataset from the ‘setup_data‘ function which contains the
transformed data

Value

‘sample_cor_heatmap‘ a pheatmap

Examples

gimap_dataset <- get_example_data("gimap")
qc_cor_heatmap(gimap_dataset)

22 qc_filter_plasmid

qc_filter_plasmid Create a filter for pgRNAs which have a low log2 CPM value for the
plasmid/Day 0 sample/time point

Description

This function flags and reports which and how many pgRNAs have low log2 CPM values for the
plasmid/Day 0 sample/time point. If more than one column is specified as the plasmid sample, we
pool all the replicate samples to find the lower outlier and flag constructs for which any plasmid
replicate has a log2 CPM value below the cutoff

Usage

qc_filter_plasmid(
gimap_dataset,
cutoff = NULL,
filter_plasmid_target_col = NULL

)

Arguments

gimap_dataset The special gimap_dataset from the ‘setup_data‘ function which contains the
log2 CPM transformed data

cutoff default is NULL, the cutoff for low log2 CPM values for the plasmid time pe-
riod; if not specified, The lower outlier (defined by taking the difference of the
lower quartile and 1.5 * interquartile range) is used

filter_plasmid_target_col

default is NULL, and if NULL, will select the first column only; this parameter
specifically should be used to specify the plasmid column(s) that will be selected

Value

a named list with the filter ‘filter‘ specifying which pgRNAs have low plasmid log2 CPM (column
of interest is ‘plasmid_cpm_filter‘) and a report df ‘reportdf‘ for the number and percent of pgRNA
which have a low plasmid log2 CPM

Examples

gimap_dataset <- get_example_data("gimap")

qc_filter_plasmid(gimap_dataset)

or to specify a cutoff value to be used in the filter rather than the lower
outlier default
qc_filter_plasmid(gimap_dataset, cutoff = 2)

or to specify a different column (or set of columns to select)
qc_filter_plasmid(gimap_dataset, filter_plasmid_target_col = 1:2)

qc_filter_zerocounts 23

or to specify a cutoff value that will be used in the filter rather than
the lower outlier default as well as to specify a different column (or set
of columns) to select
qc_filter_plasmid(gimap_dataset,

cutoff = 1.75,
filter_plasmid_target_col = 1:2

)

qc_filter_zerocounts Filter out samples of zero counts Create a filter for pgRNAs which have
a raw count of 0 for any sample/time # point

Description

This function flags and reports which and how many pgRNAs have a raw count of 0 for any sam-
ple/time point

Usage

qc_filter_zerocounts(gimap_dataset, filter_zerocount_target_col = NULL)

Arguments

gimap_dataset The special gimap_dataset from the ‘setup_data‘ function which contains the
raw count data

filter_zerocount_target_col

default is NULL; Which sample column(s) should be used to check for counts
of 0? If NULL and not specified, downstream analysis will select all sample
columns

Value

a named list with the filter ‘filter‘ specifying which pgRNA have a count zero for at least one
sample/time point and a report df ‘reportdf‘ for the number and percent of pgRNA which have a
count zero for at least one sample/time point

Examples

gimap_dataset <- get_example_data("gimap")
qc_filter_zerocounts(gimap_dataset)

or to specify a different column (or set of columns to select)
qc_filter_zerocounts(gimap_dataset, filter_zerocount_target_col = 1:2)

24 qc_plasmid_histogram

qc_plasmid_histogram Create a histogram with plasmid log2 CPM values and ascertain a
cutoff for low values

Description

Find the distribution of plasmid (day0 data) pgRNA log2 CPM values, and ascertain a cutoff or
filter for low log2 CPM values. Assumes the first column of the dataset is the day0 data; do I need
a better method to tell, especially if there are reps?

Usage

qc_plasmid_histogram(
gimap_dataset,
cutoff = NULL,
filter_plasmid_target_col = NULL,
wide_ar = 0.75

)

Arguments

gimap_dataset The special gimap_dataset from the ‘setup_data‘ function which contains the
transformed data

cutoff default is NULL, the cutoff for low log2 CPM values for the plasmid time pe-
riod; if not specified, The lower outlier (defined by taking the difference of the
lower quartile and 1.5 * interquartile range) is used

filter_plasmid_target_col

default is NULL, and if NULL, will select the first column only; this parameter
specifically should be used to specify the plasmid column(s) that will be selected

wide_ar aspect ratio, default is 0.75

Value

a ggplot histogram

Examples

gimap_dataset <- get_example_data("gimap")

qc_plasmid_histogram(gimap_dataset)

or to specify a "cutoff" value that will be displayed as a dashed vertical line
qc_plasmid_histogram(gimap_dataset, cutoff = 1.75)

or to specify a different column (or set of columns) to select
qc_plasmid_histogram(gimap_dataset, filter_plasmid_target_col = 1:2)

qc_sample_hist 25

or to specify a "cutoff" value that will be displayed as a dashed vertical
line as well as to specify a different column (or set of columns) to select
qc_plasmid_histogram(gimap_dataset, cutoff = 2, filter_plasmid_target_col = 1:2)

qc_sample_hist Create a histogram for the pgRNA log2 CPMs, faceted by sample

Description

This function uses pivot_longer to rearrange the data for plotting and then plots sample specific
histograms of the pgRNA cpm’s

Usage

qc_sample_hist(gimap_dataset, wide_ar = 0.75)

Arguments

gimap_dataset The special gimap_dataset from the ‘setup_data‘ function which contains the
transformed data

wide_ar aspect ratio, default is 0.75

Value

sample_cpm_histogram a ggplot

Examples

gimap_dataset <- get_example_data("gimap")
qc_sample_hist(gimap_dataset)

qc_variance_hist Create a histogram for the variance within replicates for each pgRNA

Description

This function uses pivot_longer to rearrange the data for plotting, finds the variance for each pgRNA
construct (using row number as a proxy) and then plots a histogram of these variances

26 run_qc

Usage

qc_variance_hist(
gimap_dataset,
filter_replicates_target_col = NULL,
wide_ar = 0.75

)

Arguments

gimap_dataset The special gimap_dataset from the ‘setup_data‘ function which contains the
transformed data

filter_replicates_target_col

default is NULL; Which sample columns are replicates whose variation you’d
like to analyze; If NULL, the last 3 sample columns are used

wide_ar aspect ratio, default is 0.75

Value

a ggplot histogram

Examples

gimap_dataset <- get_example_data("gimap")
qc_variance_hist(gimap_dataset)

run_qc Run Quality Control Checks

Description

This function takes a ‘gimap_dataset‘ and creates a QC report

Usage

run_qc(
gimap_dataset,
output_file,
plots_dir,
overwrite = FALSE,
filter_zerocount_target_col = NULL,
filter_plasmid_target_col = NULL,
filter_replicates_target_col = NULL,
open_results = TRUE,
...

)

setup_data 27

Arguments

gimap_dataset A special dataset structure that is setup using the ‘setup_data()‘ function.

output_file Needs to be a string that ends with ".Rmd" What the name of the output QC
report file should be.

plots_dir directory to save plots created with this function, if it doesn’t exist already it will
be created

overwrite default is FALSE; whether to overwrite the QC Report file
filter_zerocount_target_col

default is NULL; Which sample column(s) should be used to check for counts
of 0? If NULL and not specified, downstream analysis will select all sample
columns

filter_plasmid_target_col

default is NULL; Which sample columns(s) should be used to look at log2 CPM
expression for plasmid pgRNA constructs? If NULL and not specified, down-
stream analysis will select the first sample column only

filter_replicates_target_col

default is NULL; Which sample columns are replicates whose variation you’d
like to analyze; If NULL, the last 3 sample columns are used

open_results default is TRUE but if you don’t want the report automatically opened, choose
FALSE.

... additional parameters are sent to ‘rmarkdown::render()‘

Value

a QC report saved locally

Examples

gimap_dataset <- get_example_data("gimap")

run_qc(
gimap_dataset,
plots_dir = tempdir(),
output_file = paste0(tempfile(), "_QC_Report.Rmd")

)

setup_data Making a new gimap dataset

Description

This function allows people to have their data ready to be processed by gimap

28 setup_data

Usage

setup_data(counts = NULL, pg_ids = NULL, sample_metadata = NULL)

Arguments

counts a matrix of data that contains the counts where rows are each paired_guide target
and columns are each sample

pg_ids the pgRNA IDs: metadata associated with the pgRNA constructs that corre-
spond to the rows of the counts data

sample_metadata

metadata associated with the samples of the dataset that correspond to the columns
of the counts data. Should include a column that has replicate information as
well as a column that contains timepoint information respectively (this will be
used for log fold calculations). These columns should be factors.

Value

A special gimap_dataset to be used with the other functions in this package.

Examples

counts <- get_example_data("count") %>%
dplyr::select(c(

"Day00_RepA", "Day05_RepA", "Day22_RepA", "Day22_RepB",
"Day22_RepC"

)) %>%
as.matrix()

pg_ids <- get_example_data("count") %>% dplyr::select("id")

sample_metadata <- data.frame(
col_names = c("Day00_RepA", "Day05_RepA", "Day22_RepA", "Day22_RepB", "Day22_RepC"),
day = as.numeric(c("0", "5", "22", "22", "22")),
rep = as.factor(c("RepA", "RepA", "RepA", "RepB", "RepC"))
)

gimap_dataset <- setup_data(
counts = counts,
pg_ids = pg_ids,
sample_metadata = sample_metadata

)

supported_cell_lines 29

supported_cell_lines List the supported cell lines

Description

This function downloads the metadata for DepMap and lists which cell lines are supported.

Usage

supported_cell_lines()

Value

A list of the cell line names that are available in DepMap for use for annotation in this package.

Examples

cell_lines <- supported_cell_lines()

tpm_setup Download and set up DepMap TPM data

Description

This function sets up the tpm data from DepMap is called by the ‘gimap_annotate()‘ function

Usage

tpm_setup(overwrite = TRUE)

Arguments

overwrite should the files be re downloaded

Index

calc_gi, 3
cn_setup, 4
crtl_genes, 4

encrypt_creds_path, 5
example_data_folder, 5

get_example_data, 5
get_figshare, 6
gimap_annotate, 7
gimap_filter, 9
gimap_normalize, 11
gimap_object, 13
gimap_rep_stats, 13

key_encrypt_creds_path, 13

plot_crispr, 14
plot_exp_v_obs_scatter, 15
plot_rank_scatter, 16
plot_targets_bar, 17
plot_theme, 18
plot_volcano, 18

qc_cdf, 19
qc_constructs_countzero_bar, 20
qc_cor_heatmap, 21
qc_filter_plasmid, 22
qc_filter_zerocounts, 23
qc_plasmid_histogram, 24
qc_sample_hist, 25
qc_variance_hist, 25

run_qc, 26

setup_data, 27
supported_cell_lines, 29

tpm_setup, 29

30

	calc_gi
	cn_setup
	crtl_genes
	encrypt_creds_path
	example_data_folder
	get_example_data
	get_figshare
	gimap_annotate
	gimap_filter
	gimap_normalize
	gimap_object
	gimap_rep_stats
	key_encrypt_creds_path
	plot_crispr
	plot_exp_v_obs_scatter
	plot_rank_scatter
	plot_targets_bar
	plot_theme
	plot_volcano
	qc_cdf
	qc_constructs_countzero_bar
	qc_cor_heatmap
	qc_filter_plasmid
	qc_filter_zerocounts
	qc_plasmid_histogram
	qc_sample_hist
	qc_variance_hist
	run_qc
	setup_data
	supported_cell_lines
	tpm_setup
	Index

