cossonet: Sparse Nonparametric Regression for High-Dimensional Data

Estimation of sparse nonlinear functions in nonparametric regression using component selection and smoothing. Designed for the analysis of high-dimensional data, the models support various data types, including exponential family models and Cox proportional hazards models. The methodology is based on Lin and Zhang (2006) <doi:10.1214/009053606000000722>.

Version: 1.0
Imports: cosso, survival, stats, MASS, glmnet, graphics
Suggests: knitr, rmarkdown, testthat (≥ 3.0.0), usethis (≥ 2.1.5), devtools
Published: 2025-03-13
DOI: 10.32614/CRAN.package.cossonet
Author: Jieun Shin [aut, cre]
Maintainer: Jieun Shin <jieunstat at uos.ac.kr>
License: GPL-3
NeedsCompilation: yes
Materials: README
CRAN checks: cossonet results

Documentation:

Reference manual: cossonet.pdf
Vignettes: Estimation of sparse nonlinear functions in nonparametric regression using component selection and smoothing. (source, R code)

Downloads:

Package source: cossonet_1.0.tar.gz
Windows binaries: r-devel: cossonet_1.0.zip, r-release: not available, r-oldrel: cossonet_1.0.zip
macOS binaries: r-devel (arm64): cossonet_1.0.tgz, r-release (arm64): cossonet_1.0.tgz, r-oldrel (arm64): cossonet_1.0.tgz, r-devel (x86_64): cossonet_1.0.tgz, r-release (x86_64): cossonet_1.0.tgz, r-oldrel (x86_64): cossonet_1.0.tgz

Linking:

Please use the canonical form https://CRAN.R-project.org/package=cossonet to link to this page.