Modified genetic algorithm (GA) special for changepoint detection in time series.
You can install the version of changepointGA from CRAN:
install.packages("changepointGA")
or the development version from Github:
# install.packages("devtools")
devtools::install_github("mli171/changepointGA")
##### Stationary time series with autocorrelation
N = 1000
betaT = c(0.5, -0.5, 0.3) # intercept, B, D
period = 30
XMatT = cbind(rep(1, N), cos(2*pi*(1:N)/period), sin(2*pi*(1:N)/period))
colnames(XMatT) = c("intercept", "Bvalue", "DValue")
sigmaT = 1
phiT = c(0.5, -0.5)
thetaT = c(0.8)
DeltaT = c(2, -2)
Cp.prop = c(1/4, 3/4)
CpLocT = floor(N*Cp.prop)
Xt = ts.sim(beta=betaT, XMat=XMatT, sigma=sigmaT, phi=phiT, theta=thetaT, Delta=DeltaT, CpLoc=CpLocT, seed=1234)
TsPlotCheck(X=1:N, Xat=seq(from=1, to=N, length=10), Y=Xt, tau=CpLocT)
GA_param = list(
popsize = 200,
Pcrossover = 0.95,
Pmutation = 0.15,
Pchangepoint = 10/N,
minDist = 1,
mmax = N/2 - 1,
lmax = 2 + N/2 - 1,
maxgen = 100000,
maxconv = 1000,
option = "cp",
monitoring = FALSE,
parallel = FALSE,
nCore = NULL,
tol = 1e-5,
seed = NULL
)
tim1 = Sys.time()
tmp1 = GA(ObjFunc=BinSearch.BIC, N=N, GA_param=GA_param, Xt=Xt)
tim2 = Sys.time()
##### Stationary time series with autocorrelation
N = 1000
betaT = c(0.5) # intercept
XMatT = matrix(1, nrow=N, ncol=1)
colnames(XMatT) = "intercept"
sigmaT = 1
phiT = c(0.5, -0.5)
thetaT = c(0.8)
DeltaT = c(2, -2)
Cp.prop = c(1/4, 3/4)
CpLocT = floor(N*Cp.prop)
Xt = ts.sim(beta=betaT, XMat=XMatT, sigma=sigmaT, phi=phiT, theta=thetaT, Delta=DeltaT, CpLoc=CpLocT, seed=1234)
TsPlotCheck(X=1:N, Xat=seq(from=1, to=N, length=10), Y=Xt, tau=CpLocT)
## No parallel computing
IslandGA_param = list(
popsize = 40,
Islandsize = 5,
Pcrossover = 0.95,
Pmutation = 0.15,
Pchangepoint = 10/N,
minDist = 1,
mmax = N/2 - 1,
lmax = 2 + N/2 - 1,
maxMig = 500,
maxgen = 100,
maxconv = 100,
option = "cp",
monitoring = FALSE,
parallel = FALSE, ###
nCore = NULL,
tol = 1e-5,
seed = NULL
)
tim3 = Sys.time()
tmp2 = IslandGA(ObjFunc=BinSearch.BIC, N=N, IslandGA_param, Xt=Xt)
tim4 = Sys.time()
## Parallel computing
IslandGA_param = list(
popsize = 40,
Islandsize = 5,
Pcrossover = 0.95,
Pmutation = 0.15,
Pchangepoint = 10/N,
minDist = 1,
mmax = N/2 - 1,
lmax = 2 + N/2 - 1,
maxMig = 500,
maxgen = 100,
maxconv = 100,
option = "cp",
monitoring = FALSE,
parallel = TRUE, ###
nCore = 10,
tol = 1e-5,
seed = NULL
)
tim5 = Sys.time()
tmp3 = IslandGA(BinSearch.BIC, N=N, IslandGA_param, Xt=Xt)
tim6 = Sys.time()
tim4 - tim3
tim6 - tim5
tmp2$overbestfit
tmp3$overbestfit
tmp2$overbestchrom
tmp3$overbestchrom
N = 1000
betaT = c(0.5, -0.5, 0.3) # intercept, B, D
period = 30
XMatT = cbind(rep(1, N), cos(2*pi*(1:N)/period), sin(2*pi*(1:N)/period))
colnames(XMatT) = c("intercept", "Bvalue", "DValue")
sigmaT = 1
phiT = c(0.5, -0.5)
thetaT = c(0.8)
DeltaT = c(2, -2)
Cp.prop = c(1/4, 3/4)
CpLocT = floor(N*Cp.prop)
Xt = ts.sim(beta=betaT, XMat=XMatT, sigma=sigmaT, phi=phiT, theta=thetaT, Delta=DeltaT, CpLoc=CpLocT, seed=1234)
TsPlotCheck(X=1:N, Xat=seq(from=1, to=N, length=10), Y=Xt, tau=CpLocT)
p.range = list(ar=c(0,2), ma=c(0,2))
GA_param = list(
popsize = 200,
Pcrossover = 0.95,
Pmutation = 0.15,
Pchangepoint = 10/N,
minDist = 1,
mmax = N/2 - 1,
lmax = 2 + N/2 - 1,
maxgen = 10000,
maxconv = 1000,
option = "both",
monitoring = FALSE,
parallel = TRUE,
nCore = 10,
tol = 1e-5,
seed = NULL
)
tim1 = Sys.time()
tmp1 = GA(ObjFunc=ARIMA.BIC.Order, N=N, GA_param, p.range=p.range, XMat=XMatT, Xt=Xt)
tim2 = Sys.time()
tim2 - tim1
tmp1$overbestfit
tmp1$overbestchrom
N = 1000
betaT = c(0.5, -0.5, 0.3) # intercept, B, D
period = 30
XMatT = cbind(rep(1, N), cos(2*pi*(1:N)/period), sin(2*pi*(1:N)/period))
colnames(XMatT) = c("intercept", "Bvalue", "DValue")
sigmaT = 1
phiT = c(0.5, -0.5)
thetaT = c(0.8)
DeltaT = c(2, -2)
Cp.prop = c(1/4, 3/4)
CpLocT = floor(N*Cp.prop)
myts = ts.sim(beta=betaT, XMat=XMatT, sigma=sigmaT, phi=phiT, theta=thetaT, Delta=DeltaT, CpLoc=CpLocT, seed=1234)
TsPlotCheck(X=1:N, Xat=seq(from=1, to=N, length=10), Y=Xt, tau=CpLocT)
p.range = list(ar=c(0,2), ma=c(0,2))
IslandGA_param = list(
popsize = 40,
Islandsize = 5,
Pcrossover = 0.95,
Pmutation = 0.15,
Pchangepoint = 10/N,
minDist = 1,
mmax = N/2 - 1,
lmax = 2 + N/2 - 1,
maxMig = 500,
maxgen = 100,
maxconv = 50,
option = "both",
monitoring = FALSE,
parallel = FALSE,
nCore = NULL,
tol = 1e-5,
seed = NULL
)
tim3 = Sys.time()
tmp2 = IslandGA(ObjFunc=ARIMA.BIC.Order, N=N, IslandGA_param, p.range=p.range, XMat=XMatT, Xt=Xt)
tim4 = Sys.time()
IslandGA_param = list(
popsize = 40,
Islandsize = 5,
Pcrossover = 0.95,
Pmutation = 0.15,
Pchangepoint = 10/N,
minDist = 1,
mmax = N/2 - 1,
lmax = 2 + N/2 - 1,
maxMig = 500,
maxgen = 100,
maxconv = 50,
option = "both",
monitoring = FALSE,
parallel = TRUE,
nCore = 5,
tol = 1e-5,
seed = NULL
)
tim5 = Sys.time()
tmp3 = IslandGA(ObjFunc=ARIMA.BIC.Order, N=N, IslandGA_param, p.range=p.range, XMat=XMatT, Xt=Xt)
tim6 = Sys.time()
tim4 - tim3
tim6 - tim5
tmp2$overbestfit
tmp3$overbestfit
tmp2$overbestchrom
tmp3$overbestchrom