The boilerplate
package now supports JSON format for all
database operations. JSON provides several advantages over the
traditional RDS format:
{{variable}}
placeholders in your text# Create a temporary directory for examples
temp_dir <- tempdir()
json_path <- file.path(temp_dir, "json_example")
dir.create(json_path, showWarnings = FALSE)
# Create a sample database
sample_db <- list()
# Add methods entries
sample_db <- boilerplate_add_entry(
sample_db,
path = "methods.sampling",
value = "Participants were randomly selected from {{population}}."
)
sample_db <- boilerplate_add_entry(
sample_db,
path = "methods.analysis.regression",
value = "We conducted linear regression using {{software}}."
)
# Add measures
sample_db <- boilerplate_add_entry(
sample_db,
path = "measures.age",
value = list(
name = "Age",
description = "Participant age in years",
type = "continuous",
range = c(18, 65)
)
)
# Save as JSON
boilerplate_save(
sample_db,
data_path = json_path,
format = "json",
confirm = FALSE,
quiet = TRUE,
create_dirs = TRUE
)
# Import JSON database (auto-detects format)
imported_db <- boilerplate_import(
data_path = json_path,
quiet = TRUE
)
# Check structure
# Note: Since we only added methods and measures, those will be the only categories
str(imported_db, max.level = 3)
#> List of 2
#> $ measures:List of 1
#> ..$ age:List of 4
#> .. ..$ name : chr "Age"
#> .. ..$ description: chr "Participant age in years"
#> .. ..$ type : chr "continuous"
#> .. ..$ range :List of 2
#> $ methods :List of 2
#> ..$ analysis:List of 1
#> .. ..$ regression: chr "We conducted linear regression using {{software}}."
#> ..$ sampling: chr "Participants were randomly selected from {{population}}."
# Save categories with proper structure
methods_db <- list(methods_db = sample_db$methods)
measures_db <- list(measures_db = sample_db$measures)
jsonlite::write_json(
methods_db,
file.path(json_path, "methods_db.json"),
pretty = TRUE,
auto_unbox = TRUE
)
jsonlite::write_json(
measures_db,
file.path(json_path, "measures_db.json"),
pretty = TRUE,
auto_unbox = TRUE
)
# Import specific category
methods_only <- boilerplate_import(
data_path = json_path,
category = "methods",
quiet = TRUE
)
names(methods_only)
#> [1] "analysis" "sampling"
If you have existing RDS databases, you can easily migrate them to JSON format:
# Create RDS databases for migration example
rds_path <- file.path(temp_dir, "rds_example")
dir.create(rds_path, showWarnings = FALSE)
# Save as RDS first
saveRDS(sample_db$methods, file.path(rds_path, "methods_db.rds"))
saveRDS(sample_db$measures, file.path(rds_path, "measures_db.rds"))
# Migrate to JSON
migration_output <- file.path(temp_dir, "migrated_json")
results <- boilerplate_migrate_to_json(
source_path = rds_path,
output_path = migration_output,
format = "unified", # Creates a single unified JSON file
backup = TRUE, # Creates backup of RDS files
quiet = FALSE
)
#>
#> ── Migrating 2 RDS files to JSON ──
#>
#> ℹ Creating backup in /var/folders/q9/lkcn14l97mb6mkhbxsxrpr4w0000gn/T//RtmpsViTqC/migrated_json/backup_20250621_161558
#> ℹ Processing measures_db.rds
#> ℹ Processing methods_db.rds
#> ℹ Saving unified database to boilerplate_unified.json
#>
#> ── Migration Summary
#> ✔ Migrated 2 databases
#> ℹ 0/1 passed validation
# Check migration results
print(results$migrated)
#> [1] "/var/folders/q9/lkcn14l97mb6mkhbxsxrpr4w0000gn/T//RtmpsViTqC/rds_example/measures_db.rds"
#> [2] "/var/folders/q9/lkcn14l97mb6mkhbxsxrpr4w0000gn/T//RtmpsViTqC/rds_example/methods_db.rds"
# Verify the migrated data
# The migrated file is in the output directory
migrated_file <- file.path(migration_output, "boilerplate_unified.json")
if (file.exists(migrated_file)) {
migrated_db <- boilerplate_import(
data_path = migrated_file,
quiet = TRUE
)
names(migrated_db)
} else {
# Alternative: import from the directory
migrated_db <- boilerplate_import(
data_path = migration_output,
quiet = TRUE
)
names(migrated_db)
}
#> [1] "measures" "methods"
The package provides tools for batch editing JSON databases:
# Create a measures database for editing
measures_db <- list(
anxiety_scale = list(
name = "Generalized Anxiety Disorder 7-item",
description = "GAD-7 anxiety measure",
reference = "Spitzer2006",
items = list(
"Feeling nervous or on edge",
"Not being able to stop worrying"
)
),
depression_scale = list(
name = "Patient Health Questionnaire",
description = "PHQ-9 depression measure",
reference = "Kroenke2001",
items = list(
"Little interest or pleasure",
"Feeling down or hopeless"
)
)
)
# Batch update all references to include @ symbol
updated_db <- boilerplate_batch_edit(
db = measures_db, # Can also pass file path directly
field = "reference",
new_value = "@reference_2024", # This will update all references
target_entries = "*", # Apply to all entries
preview = FALSE, # Don't preview, just update
confirm = FALSE, # Don't ask for confirmation
quiet = TRUE # Suppress messages
)
# For more complex edits, use boilerplate_batch_clean
# to add @ prefix to existing references
for (measure in names(measures_db)) {
if (!is.null(measures_db[[measure]]$reference)) {
ref <- measures_db[[measure]]$reference
if (!startsWith(ref, "@")) {
measures_db[[measure]]$reference <- paste0("@", ref)
}
}
}
# Check the updates
measures_db$anxiety_scale$reference
#> [1] "@Spitzer2006"
measures_db$depression_scale$reference
#> [1] "@Kroenke2001"
# Standardise measures database
standardised <- boilerplate_standardise_measures(
db = measures_db,
json_compatible = TRUE,
quiet = TRUE
)
# Check standardization added missing fields
str(standardised$anxiety_scale)
#> List of 6
#> $ name : chr "anxiety_scale"
#> $ description : chr "GAD-7 anxiety measure"
#> $ reference : chr "spitzer2006"
#> $ items :List of 2
#> ..$ : chr "Feeling nervous or on edge"
#> ..$ : chr "Not being able to stop worrying"
#> $ standardised : logi TRUE
#> $ standardised_date: Date[1:1], format: "2025-06-21"
The package provides multiple ways to validate your JSON databases:
# Save a JSON database
boilerplate_save(
measures_db,
data_path = temp_dir,
category = "measures",
format = "json",
confirm = FALSE,
quiet = TRUE
)
json_file <- file.path(temp_dir, "measures_db.json")
# Validate structure (requires schema files)
validation_errors <- validate_json_database(
json_file,
type = "measures"
)
if (length(validation_errors) == 0) {
message("JSON structure is valid!")
} else {
message("Validation errors found:")
print(validation_errors)
}
# Validate the saved JSON file
json_file <- file.path(json_path, "boilerplate_unified.json")
if (file.exists(json_file)) {
validation_errors <- validate_json_database(json_file, type = "unified")
if (length(validation_errors) == 0) {
message("JSON database structure is valid!")
} else {
warning("Database validation found issues:")
print(validation_errors)
}
}
#> Warning: Database validation found issues:
#> [1] "Schema not found for type: unified"
# Check that paths exist
methods_paths <- boilerplate_list_paths(boilerplate_methods(sample_db))
cat("Methods entries:", length(methods_paths), "\n")
#> Methods entries: 3
measures_names <- names(boilerplate_measures(sample_db))
cat("Measures entries:", length(measures_names), "\n")
#> Measures entries: 1
JSON databases work seamlessly with all existing boilerplate functions:
# Generate text using JSON database
text <- boilerplate_generate_text(
category = "methods",
sections = "sampling",
db = imported_db,
global_vars = list(
population = "university students"
)
)
#> ℹ generating methods text with 1 sections
#> ℹ using methods from unified database
#> ℹ processing section: sampling
#> ℹ applying template variables to sampling
#> ✔ successfully generated methods text with 1 section(s)
cat(text)
#> Participants were randomly selected from university students.
# Generate text from nested path
analysis_text <- boilerplate_generate_text(
category = "methods",
sections = "analysis.regression",
db = imported_db,
global_vars = list(
software = "R version 4.3.0"
)
)
#> ℹ generating methods text with 1 sections
#> ℹ using methods from unified database
#> ℹ processing section: analysis.regression
#> ℹ applying template variables to analysis.regression
#> ✔ successfully generated methods text with 1 section(s)
cat(analysis_text)
#> We conducted linear regression using R version 4.3.0.
# Generate measures text
measures_text <- boilerplate_generate_measures(
variable_heading = "Demographics",
variables = "age",
db = imported_db
)
#> ℹ using measures from unified database
#> ℹ generating formatted text for 1 Demographics
#> ℹ using heading level 3 and subheading level 4
#> ℹ processing variable: age
#> ℹ adding description for age
#> ✔ successfully generated formatted text for Demographics
cat(measures_text)
#> ### Demographics
#>
#> #### Age
#>
#> Participant age in years.
Use meaningful file names: Name your JSON files
descriptively (e.g., study1_methods.json
)
Version control: JSON files work great with Git - commit them to track changes
Use template variables: Include
{{variable}}
placeholders in your text for dynamic
content:
Regular validation: Use
validate_json_database()
to ensure database structure is
correct
Backup before migration: Use the
backup = TRUE
option when migrating
Choose appropriate format:
Track database contents: Regularly check database contents:
JSON support in boilerplate provides a modern, flexible way to manage your research text databases. Whether you’re starting fresh or migrating existing RDS databases, the JSON functionality integrates seamlessly with your workflow while providing better visibility and version control.