A comprehensive educational package combining clustering algorithms with detailed step-by-step explanations. Provides implementations of both traditional (hierarchical, k-means) and modern (Density-Based Spatial Clustering of Applications with Noise (DBSCAN), Gaussian Mixture Models (GMM), genetic k-means) clustering methods as described in Ezugwu et. al., (2022) <doi:10.1016/j.engappai.2022.104743>. Includes educational datasets highlighting different clustering challenges, based on 'scikit-learn' examples (Pedregosa et al., 2011) <https://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html>. Features detailed algorithm explanations, visualizations, and weighted distance calculations for enhanced learning.
Version: | 1.0.1 |
Depends: | R (≥ 4.3.0) |
Imports: | proxy (≥ 0.4-27), cli (≥ 3.6.1) |
Suggests: | deldir (≥ 1.0-9), knitr, rmarkdown |
Published: | 2025-02-17 |
DOI: | 10.32614/CRAN.package.UAHDataScienceUC |
Author: | Eduardo Ruiz Sabajanes [aut],
Roberto Alcantara [aut],
Juan Jose Cuadrado Gallego
|
Maintainer: | Andriy Protsak Protsak <andriy.protsak at edu.uah.es> |
License: | MIT + file LICENSE |
NeedsCompilation: | no |
Materials: | NEWS |
CRAN checks: | UAHDataScienceUC results |
Reference manual: | UAHDataScienceUC.pdf |
Vignettes: |
Using the Unified Interface in clustlearn 1.1.0 (source, R code) |
Package source: | UAHDataScienceUC_1.0.1.tar.gz |
Windows binaries: | r-devel: UAHDataScienceUC_1.0.1.zip, r-release: UAHDataScienceUC_1.0.1.zip, r-oldrel: UAHDataScienceUC_1.0.1.zip |
macOS binaries: | r-devel (arm64): not available, r-release (arm64): not available, r-oldrel (arm64): not available, r-devel (x86_64): UAHDataScienceUC_1.0.1.tgz, r-release (x86_64): UAHDataScienceUC_1.0.1.tgz, r-oldrel (x86_64): UAHDataScienceUC_1.0.1.tgz |
Old sources: | UAHDataScienceUC archive |
Please use the canonical form https://CRAN.R-project.org/package=UAHDataScienceUC to link to this page.