The goal of IVPP is to compare network models for intensive time-series and panel data.
You can install the development version of IVPP from GitHub with:
# install.packages("devtools")
::install_github("xinkaidupsy/IVPP") devtools
An example that uses IVPP to compare panelGVAR models:
library(IVPP)
# Generate the network
<- gen_panelGVAR(n_node = 6,
net_ls p_rewire = 0.5,
n_group = 3)
# Generate the data
<- sim_panelGVAR(temp_base_ls = net_ls$temporal,
data cont_base_ls = net_ls$omega_zeta_within,
n_person = 500,
n_time = 4,
n_group = 3,
n_node = 6)
# IVPP test on the temporal network
<- IVPP_panelgvar(data,
ivpp vars = paste0("V",1:6),
idvar = "subject",
beepvar = "time",
groups = "group",
test = "temporal",
net_type = "saturated",
prune_net = "temporal",
partial_prune = TRUE,
estimator = "FIML",
standardize = "z")
An example that uses IVPP to compare N = 1 GVAR models
library(IVPP)
# Generate the network
<- gen_tsGVAR(n_node = 6,
net_ls p_rewire = 0.5,
n_persons = 3)
# Generate the data
<- sim_tsGVAR(beta_base_ls = net_ls$beta,
data kappa_base_ls = net_ls$kappa,
# n_person = 3,
n_time = 50)
# IVPP test on
<- IVPP_tsgvar(data = data,
ivpp_ts vars = paste0("V",1:6),
idvar = "id",
test = "temporal",
net_type = "saturated",
prune_net = "temporal",
partial_prune = TRUE,
estimator = "FIML",
standardize = "z")